Должность: Ректор Дата подписания: 28.06.2022 13:24:26 Уникальный программнь выс шего образова са953a0120d891083f939673078ef1a989dae18a

АННОТАЦИИ ДИСЦИПЛИН (МОДУЛЕЙ) ОП ВО

Изучение дисциплин ведется в рамках освоения основной профессиональной образовательной программы высшего образования (ОП ВО)

Civil Engineering and Built Environment / Строительная инженерия и построенная среда (англ.) (наименование (профиль/специализация) ОП ВО)

реализуемой по направлению подготовки/специальности:

08.04.01 Строительство

(код и наименование направления подготовки/специальности)

Mastering of the discipline is carried out within the framework of the implementation of the main professional educational program of higher education « Civil Engineering and Built Environment »

major 08.04.01 Civil engineering

Name of disciplines	«Professional Russian (as a Foreign Language)»
Course Workload, credits/academic hours	6/216
	DISCIPLINE CONTENT
Units	Topics
	Unit 1. Acquaintance with academic / scientific text. Types, primary and secondary genres of academic texts. Structure of scientific text. Scientific style of speech.
Module 1. Basics of academic/scientific	Unit 1.1. Academic / scientific text (AT): parsing. Elements of the content structure of AT. Syntactic structures of AT. General scientific and special vocabulary AT. Syntactic constructions, specifics of an academic/scientific text.
	Unit 1.2. The target audience of AT, the purpose of the statement. Complex argumentation AT. Foreign words and terms. Syntactic analysis of academic/scientific text. Compilation of a glossary for the article.
Module 2. Preparation of an	Unit 2. Features of preparing slides for a scientific presentation. General recommendations. Text and data slides. Requirements for the preparation of the AP.
academic/scientific presentation in English.	Unit 2.1. Academic/scientific presentation in English. Discussions. The structure of an academic/scientific presentation.
Module 3. Academic/scientific presentation in English.	Unit 3. Stylistic devices of academic presentation (AP) - repetitions, parallel constructions, complex grammatical and syntactic constructions.

Name of disciplines	«Problem solving tecniques in Civil Engineering»
Course Workload, credits/academic hours	3/108
	DISCIPLINE CONTENT
Units	Units
Introduction	Science as a continuously evolving system of knowledge of objective laws of nature, society and thinking. The goal of science. Scientific research. Purposes of scientific research. The theoretical studies. Applied research. Technical and techno-logical development. The purpose of development. Scientific and technical information. The scientific direction. The scientific problem. The wording of the problem and making hypotheses. Scientific theme.
Experimental studies	The basics of methodology of experimental studies. Natural experiments. Artificial experiments. The computational experiments. Laboratory experiment. Full-scale experiment. Research (search) experi-ment. The goals and objectives of experimental re-search. Experiment planning. The planning matrix. Regression analysis. factorial experiment.

Name of disciplines	«Problem solving tecniques in Civil Engineering»
Course Workload, credits/academic hours	3/108
DISCIPLINE CONTENT	
Units	Units
Development of technical and	Copyright. Patent law. The invention. Useful model. An industrial
technological solutions scientific	design. Application for intellectual property object. Methods of
and technical problems	preparing the patent ap-plication. A patent search
	Selection of unique. Criticism of peers. Selection of the prototype.
	Criticism of the prototype. Drawing description.

Name of disciplines	«Mathematical methods of experimental data processing»
Course Workload, credits/academic hours	3/108
DISCIPLINE CONTENT	
Units	Units
Sample characteristics as random	Discrete and continuous random variables. Selective
variables. Methods for presenting	characteristics. The laws of distribution of random variables.
the results of experiments.	Computer simulation of a random variable with a given distribution law: normal and log-normal distribution, Poisson distribution, equal probability distribution.
Methods of dropping measurement	Rule "3 Sigma." Criterion for Chouvenet. Criteria of Romanovsky,
errors.	Irvin, Dickson, variational scale.
Methods for testing statistical	The concept of a parametric criterion. Power criterion. Confidence.
hypotheses. Parametric and	Errors of the first and second kind. The use of computer
nonparametric criteria.	technology for the elimination of erroneous values.
Fundamentals of optimization. Construction of mathematical models.	The concept of the objective function, the limitations of the area of decision-making. The Bran-don method. Estimation of adequacy of the con-structed models.
Methods of decision-making in conditions of uncertainty and multicriteria.	Criteria for Wald, Laplace, Hurwitz, Se-Vidge, mixed criteria.
Ranking factors. Processing of survey results.	Ranking methods. Calculation of the coefficient of concord.
Methods of cluster analysis. Ways to form clusters.	Calculation of the characteristics of clusters - centers, dispersion, radius.

Name of disciplines	«Mathematical Modelling»
Course Workload,	2/109
credits/academic hours	5/108
DISCIPLINE CONTENT	
Units	Units
The subject and tasks of the	- Place, purpose and advantage of mathematical
course "mathe-	modelling in the process of knowledge of ob-
matical modeling of spatial	jects and natural phenomena. Model, as a tool
structures"	for the investigation of objects and phenomena
	and as a tool for managing them. Prerequisites
	for the successful application of mathematical
	modelling. Abstract model by R. Kalman. Clas-

Name of disciplines	«Mathematical Modelling»
Course Workload,	2/100
credits/academic hours	3/108
	DISCIPLINE CONTENT
Units	Units
	sification of objects by type of behavior. Analyt-
	ical and simulation models. Stages of mathemat-
	ical modelling. Historical experience in the for-
	mation of mathematical models and solving
	practical problems by means of mathematics.
	The task of the trajectory of a ray of light re-
	flecting from a mirror. The problem of the tra-
	jectory of a Brachistochrone problem. Models based on the
	principle of least action and the princi-ple of equilibrium.
Basic fundamental laws in	Principles of causality. Equations of state. Postu-
mechanics	lates about space and time. The law of conserva-
	tion. The least action. The principle of Lagrange.
	Hamilton-Ostrogradsky principle. Stable and
	unstable equilibrium. Euler equations. Principle
	d'Alembert.
The concept of a mathematical	The concept of the model of the object or phe-
model	nomenon. Mathematical model. The requirement
	for a mathematical model. General technology
	for solving practical problems using mathemat-
	ics. The sequence of construction and testing of
	mathematical models on the examples of the sim-plest
	problems of mechanics: stretching and
	compression of the beam. Bending of the beam,
	loss of stability of the beam. The test of a math-
	ematical model is an assessment of the state of
	an object. Models for controlling the parameters
	of objects and phenomena. The multiplicity of
	questions about the manifestations of objects
	and phenomena and the generality of models.
	Check the adequacy of mathematical models.
	Simplified models.
Formation of mathematical	Ideas used as the basis of mathematical models.
models	Reflection of properties and characteristics of
	objects in a mathematical model. Idealization
	and abstraction. Mathematical language of the
	formation of a practical problem. Characteristic
	concepts for describing objects and phenomena
	(energy, mass, force, space, time, etc.) and
	quantitative and quantitative representation in madela. Covariance Tecks of analysis and sun
	thesis Determining relationships and empirical
	dependencies in mathematical models. Dimen-
	sion of the quantities and formulas expressing
	the problem. Simplification and refinement of
	the mathematical model. The dimension of the
	tasks. Analysis of the impact of simplifications
	and clarifications.
Types of mathematical models	Structural and functional models. Discrete and
	continuous, linear and nonlinear models. Simu-
	lation of partial differential equations. The prob-

Name of disciplines	«Mathematical Modelling»
Course Workload,	2/100
credits/academic hours	3/108
	DISCIPLINE CONTENT
Units	Units
	lem of the shapes of the searchlight mirror. Lin-
	earization. Variational models. Likely models.
	Other types of models. Hierarchy of mathemati-
	cal models. Mathematics Mode Closure
Methods for solving problems	The investigation of the mathematical problem
formulated by	generated by the created mathematical model.
mathematical models.	Existence, multiplicity and uniqueness of solu-
	tions. The choice of mathematical methods for
	solving the formulated problem. Exact and close
	solution. Variational tasks. The boundary value
	problem and the Cauchy problem. Analytical
	solution. Asymptotic expansions. Ritz method.
	Bubnov-Galerkin
	Method.
	tasks. Euler method. Reduction of the solution to
	the solution of problems of linear algebra. Finite
	difference method and finite element method.
	Systems of linear equations and their solution.
	The problem of eigenvalues.
	extremums of functions and functionals. New-
	ton's method for solving nonlinear problems.
	Research solutions. Selection and control of solu-tion
	accuracy. Dimensional
71 0 1	Verification of models.
The use of computing in	The concept of computational experiment. Triad
mathematical model-	"model-algorithm-program". Numerical simula-tion. A
ling.	preliminary investigation of mathemati-
	cal models. Qualitative analysis. Dimensionless
	analysis of the problem. Approximate solutions.
	Exact solutions. Algorithm solutions. Program-
	ming and problem solving soltware. Carrying
	Diamping calculations and their analysis.
	results. Pofinement of computational models
Mathematical modelling in	Penresentation of a solid body as a continuum
nroblems of me-	Other simplifying hypotheses and assumptions
chanics of a deformable solid	Flastic hody Plastic hody Internal forces stress-
	es deformations displacements Stress-strain
	state of a solid. Strain tensor, stress tensor and
	principal stress. Hooke's law as an equation of
	state. Static equilibrium equations and equilibri-
	um equations in motion. Compatibility equations
	of deformations. The expression of the change
	of energy. The formulation and solution of prob-
	lems of statics and dynamics of a rigid body.
	Two-dimensional and one-dimensional prob-
	lems of the theory of elasticity. Construction of
	mathematical models and solving problems of
	mechanics of liquids and gases. Ideal incom-

Name of disciplines	«Mathematical Modelling»
Course Workload, credits/academic hours	3/108
	DISCIPLINE CONTENT
Units	Units
	pressible fluid. Viscous fluid. Perfect gas. Set-
	ting goals. Euler's equation for the motion of an
	ideal fluid. Tasks hydrostatics. Perfect fluid
	movement and viscous fluid movement. Navier-
	Stokes equation. Waves in liquid and gas.
Problems of finding the optimal	Ideas involved in the construction of mathemati-
solution and	cal models of optimization problems. Variation-
their mathematical modelling	al tasks. The formulation and solution of the
	Brachistochrone problem. The simplest prob-
	lems of finding the optimal solution and solving
	them mathematically. Tasks on the best size of a
	tincan.Economic tasks in construction.
	Mathematical programming. Modelling by goal
	function and constraint inequalities.

Name of disciplines	«Digital technologies in construction»
Course Workload, credits/academic hours	4/144
	DISCIPLINE CONTENT
Units	Units
	Introduction to BIM process and integrated project de-livery. ND
1. BIM Technology	modelling. BIM software systems and guide-lines to choosing
	different BIM software systems.
	Introduction of modelling environment and tools. Mod-elling
2. Basic Modelling	approaches to producing plans, 3D models, views and sections of
	buildings. Modelling of building including basic and vital elements,
	production of plans, views and 3D models.
	Model customizations, elements and materials. Creation of
3. Advance Concepts	internal components, external elements, massing and site
	modelling. Elements visibility, visualization and walkthroughs.
	Virtual Reality vs. Augmented Reality. Applications of AR/VR in
4. Virtual and Augmented	construction.
Reality	

Name of disciplines	«Project management»	
Course Workload,		
credits/academic hours		
DISCIPLINE CONTENT		
Units	Units	
	Definition of a project. Nature of construction pro-jects. Project	
1. Foundations of Project	life-cycle. Principles of project management. Project management	
Management	functions.	

Name of disciplines	«Project management»
Course Workload, credits/academic hours	2/72
	DISCIPLINE CONTENT
Units	Units
2. Project planning and scheduling	Scheduling process. Work breakdown structures. Scheduling techniques. Critical path method. Resource management. Crashing.
3. Project cost estimating	Planning and design. Project scope management. Elements of cost estimation. Estimating methods, project budgeting. Bidding.
4. Performance measurement	Definition of performance. Performance issues in construction. Factors affecting project success. Industry reports. Performance measurement tools. Key performance indicators.

Name of disciplines	«Life Cycle Economics of Buildings»
Course Workload, credits/academic hours	3/108
	DISCIPLINE CONTENT
Units	Units
	Engineering economy.
Introduction	Decision making process.
	Costs.
	Concepts of engineering economics analysis.
	Time value of money.
	Cash flow/time diagram.
Time value of monov	Single payment. Uniform series payments.
Time value of money	Uniform infinite series.
	Arithmetic gradient uniform series payments.
	Economics evaluation.
	Planning horizon.
	Life cycle costing.
Economic Evaluation	Present worth analysis.
	Equivalent uniform annual worth analysis.
	Rate of return method.
	Benefit/cost ratio method.
	Payback period.
Applications	Depreciation.
	Estimating equipment costs (rentals).
	Sensitivity analysis.
	Breakeven analysis.

Name of disciplines	«BIM-Technology in Construction Management»
Course Workload, credits/academic hours	4/144
	DISCIPLINE CONTENT
Units	Units
1. BIM Technology	The concept of BIM. Project delivery methods and BIM implementation. Levels of Development (LOD). Applications in construction management.
2. Cloud-BIM for design/construction coordi- nation & clash detection	BIM for buildability scenario forecasting. Interfer-ence management. Clash detection.
3. Construction Planning and 4D Simulation	Construction planning. Elements to model location for scheduling tasks. 4D simulations.
4. Quantity Takeoff and Cost Estimating	Types of estimates. Conceptual estimate. Detailed estimate. Model-based calculation.

Name of disciplines	«Numerical methods for Civil Engineering»
Course Workload,	4/144
credits/academic hours	4/144
	DISCIPLINE CONTENT
Units	Units
Fundamentals of Variational	This section discusses analytical and numerical methods for
methods for calculating	calculating structures based on the Lagrange variational
structures	principle: the Ritz-Timoshenko method, the Kantorovich-
	Vlasov method, and the Bubnov-Galerkin method. The
	Lagrange principle is proved and the main methods for
	calculating a rigid deformable body based on the principle of
	the minimum total energy of deformations are considered.
Fundamentals of the Finite	This section discusses numerical methods for implementing
element method (FEM)	calculations. The basics of the finite element method for
	calculating rigid deformable bodies operating in a plane stress
	state, methods for solving stress-strain problems in
	calculating the bending of plates and bulk bodies are
	analyzed.
Variational-difference method	The basics of the Variational-difference method for
for calculating structures	calculating plates and shells are considered.

Name of disciplines	«Structural Design in Steel »
Course Workload, credits/academic hours	4/144
	DISCIPLINE CONTENT
Units	Units
Introduction to steel structures	Introduction: Building codes, Seismic forces, Analysis, and
	design of complex structures. Loads, philosophy of design,
	steel and properties,
	Review of tension members, Review of compression
	members, Review of flexural members, Review of flexural
Members of steel structures	members, Pure torsion of homogeneous sections; shear
	stresses due to bending of thin-wall open x-section,
	Torsional stresses in I-shaped steel sections
Steel structures analysis	Analogy between torsional and plane bending; load and
	resistance factor design for torsion, Allowable strength
	design for torsion, torsional buckling, Lateral support of
	beams; elastic and inelastic lateral torsional buckling of
	beams,
Steel structures design	,Load and resistance factor design-I shaped beams; allowable
	strength design – I shaped beams Allowable strength design –
	I shaped beams, effective lateral unbraced length, Lateral
	bracing design,

Name of disciplines	«Nanotechnology in Civil Engineering»
Course Workload, credits/academic hours	4/144
	DISCIPLINE CONTENT
Units	Units
General approach to	- Composition of composite materials. Matrix, different types
composite materials	of matrix. Reinforcement of composite materials, types of
	reinforcement.
Classification of composites	-Classification by the type of reinforcing filler, by the type of matrix, by designation, depending on the type and location of fibers.
	-Isotropic and anisotropic composite materials. Their
	advantages and disadvantages.
Fiberglass composites	- Mechanical and physical properties, methods of production.
	- Application of fiberglass in civil engineering. Spatial
	structures made of fiberglass.
Methods of strength	- Strength criteria for isotropic and anisotropic composite
calculations for structures	materials. Mieses-Hill criterion,
made of composites.	- Zakharov–Malmeister criterion. Goldenblat– Kopnov criterion. Their graphical interpretation and range of application. The modified strength criterion.
Nanotechnologies for	-Types of nano-particles. Carbon nanoparticles: fullerenes,
production of advanced	nano-tubes, astralens and the other ones,
composite materials	-Concrete modified with nanoparticles. Influence of nano-
	modification on physical and mechanical properties of
	concrete.

Name of disciplines	«Structural Design in Reinforced Concrete: Special Topics»
Course Workload,	5/190
credits/academic hours	5/180
	DISCIPLINE CONTENT
Units	Units
Introduction to steel structures	Introduction: Building codes, Seismic forces, Analysis, and
	design of complex structures. Loads, philosophy of design,
	steel and properties,
	Interaction equations. Effects of moment
	gradient loading. Design resistance of beam-column members
	Methods of Analysis for Required, Strength, The Moment
Beam-Column Design	Amplification Method, Braced versus Unbraced Frames,
	Members in Braced Frames, Members in Unbraced Frames,
	Design of Beam–Columns, Trusses with Top-Chord Loads
	Between, Joints
Plate girders	Introduction, General Considerations, AISC Requirements for
	Proportions of Plate, Girders ; Flexural Strength, Shear
	Strength
	Bearing Stiffeners, Design
Connection: Welding and	, Concept of welding process. Type of welded connections and
bolting and design codes and	failure mode. Design of welded connections, Type of bolted
analysis of steel using	connections and failure mode. Design of bolted
computer software	connections. Discussion of different design codes and
	analysis of steel structural system by using computer software

Name of disciplines	«Structural Stability / Устойчивость сооружений»
Course Workload, credits/academic hours	5/180
	DISCIPLINE CONTENT
Units	Units
Concepts of structural	Topic 1.1. Definition of stability. Instability without large
stability	displacements. Order and linearity of structural theories; First
	order theory of an axially loaded bar
	Topic 1.2. Second order theory for Euler columns;
	Behaviour of geometrically imperfect columns; Behaviour
	of columns with load perturbation
	Topic 1.3. Instability with large displacements: Nonlinear
	mathematical model of a 2-bar truss; Solutions of governing
	equations; Types of in stability for shallow and steel trusses
	Topic 2.1 Members of a frame: Governing equa
	tions for a member and their solution.
	Topic 2.2. Member stiffness matrix: Exact stiffness
Second order plane frame	coefficients; Limit expressions for the stiffness co
analysis	efficient
	Topic 2.3. Member load vector: Exact load coefficients;
	Limit expressions for the load coefficients

Name of disciplines	«Structural Stability / Устойчивость сооружений»
Course Workload, credits/academic hours	5/180
	DISCIPLINE CONTENT
Units	Units
	Topic 2.4. Algorithms for second order plane frame
	analysis. Limitations of second order analysis
Single columns and column	Topic 3.1. Single columns: Boundary conditions for
groups	single columns. Elastically supported single columns.
	Topic 3.2. Effective length and slenderness of columns.
	Linked Columns
	Topic 3.3. Columns in frames: Translation and rotation restraints at nodes; Single column with girder restraint and side-sway. Columns in portal frames
	Topic 3.4. Columns in multi-storey buildings. General method for the analysis of column sta bility in frames.

Name of disciplines	«Structural Design in Reinforced Concrete»
Course Workload,	5/190
credits/academic hours	5/180
DISCIPLINE CONTENT	
Units	Units
Basic concepts of the design of	Historical background. Concrete and reinforced concrete.
reinforced concrete structures	Advantages of reinforced concrete as a structural
	material.Design Codes. SI Units and shaded areas.
	Admixtures. Calculation accuracy.
	Introduction to Loads. Dead loads. Live loads. Environmental
	loads. Selection of Design loads. Calculation accuracy.
Flexural and strength analysis	- Ultimate or nominal flexural moments. Cracking moment.
of beams according ACI code	Elastic stresses—Concrete cracked.
	- Design methods. Advantages of Strength Design. Elastic
	Stresses—Concrete Cracked. Structural Safety.
	- Strength reduction or φ Factors. Minimum Percentage of
	Steel. Balanced steel percentage.
Analysis and Design of Beams	- Analysis of T-beams.Design of T-beams. Design of T-
(Single and Double Reinf; T-	beams for negative moments. L-shaped beams. Load factors.
Beams; Continuous Beams)	Design of rectangular beams. Miscellaneous beam
	considerations. Determining steel area when beam
	dimensions are predetermined.
Serviceability limit states of	Importance of deflections. Control of deflections. Calculation
the structures (Deflection of	of deflections.
Beams)	Continuous-beam deflections. Types of cracks. Control of
	flexural cracks. ACI Code Provisions concerning cracks.
	Miscellaneouss cracks.
Shear and Torsion Design	Shear Stresses in Concrete Beams. Shear Strength of Concrete.
	Shear Strength of Members Subjected to Axial Forces.

Name of disciplines	«Structural Design in Reinforced Concrete»
Course Workload,	5/180
credits/academic hours	5/180
	DISCIPLINE CONTENT
Units	Units
	Torsional reinforcing. Torsional moments that have to be considered in design. Torsional moment strength. Torsional stresses. Design of torsional reinforcing. Additional ACI Requirements.
Bond, Development Lengths,	Development lengths for welded wire fabric in tension.
and Splices.	Development lengths for compression bars. Critical sections for development length
	Effect of combined shear and moment on development
	lengths. Effect of shape of moment Diagram on development
	lengths
Columns. Design of short	Types of columns. Axial load capacity of columns. Code
columns subject to axial load	requirements for cast-in-place Columns. Failure of tied and
and bending. Slender columns.	spiral columns.
	Design of axially loaded columns. Design formulas. Comments on economical column design. Axial load and bending. The Plastic centroid.
	Slenderness effects. Slender columns in nonsway and sway
	frames. ACI Code treatments of slenderness Effects.
	Magnification of column moments in nonsway and sway
	frames.
Footings	Design of wall footings. Plain concrete footings.
	Rectangular isolated footings. Combined footings. Actual
	soil pressures. Allowable soil pressures. Design of square
	isolated footings.
	Footings subjected to axial loads and moments. Load transfer
	from columns to footings. Footings supporting round or
	regular polygon-shaped columns.

Name of disciplines	«Building materials: Special Topics»
Course Workload, credits/academic hours	5/180
	DISCIPLINE CONTENT
Units	Units
Section #1. BASIC PROPERTIES OF BUILDING MATERIALS	 Properties, structure and composition of building materials Physical properties and structural char-acteristics Mechanical properties.
Section #2. THERMAL INSULATION MATE-RIALS 1 part	 Purpose and classification of thermal insu-lation materials Technical properties of heat-insulating ma-terials
Section No.3. THERMAL INSULATION MATERIALS 2 part	 Inorganic heat-insulating materials and products. Organic thermal insulation materials and products.
Section #4. THERMAL INSULATION MATERIALS Part 3	 Organic thermal insulation materials and products. Heat-insulating plastics
Section #5.	1. General provisions

Name of disciplines	«Building materials: Special Topics»	
Course Workload, credits/academic hours	5/180	
DISCIPLINE CONTENT		
Units	Units	
MATERIALS FOR ROOFING	2. Rolled and mastic roofs	
	Roofs made of sheet and piece materials	
Section #6. PAINT AND	1. Nomenclature and characteristics	
VARNISH MATERIALS Part 1	2. Binders for paints	
	3. Pigments	
Section #7. PAINT AND	1. Pigments	
VARNISH MATERIALS	2. Fillers	
	3. Diluents and solvents	
	4. Types of paint compositions	
Section #8. ACOUSTIC	1. General information	
MATERIALS	2. Sound-absorbing materials	

Name of disciplines	«Structural Design in Steel: Special Topics»
Course Workload, credits/academic hours	4/144
	DISCIPLINE CONTENT
Units	Units
Introduction to steel structures	Introduction: Building codes, Seismic forces, Analysis, and
	design of complex structures. Loads, philosophy of design,
	steel and properties,
	Review of tension members, Review of compression
	members, Review of flexural members, Review of flexural
Members of steel structures	members, Pure torsion of homogeneous sections; shear
	stresses due to bending of thin-wall open x-section,
	Torsional stresses in I-shaped steel sections
Steel structures analysis	Analogy between torsional and plane bending; load and
	resistance factor design for torsion, Allowable strength
	design for torsion, torsional buckling, Lateral support of
	beams; elastic and inelastic lateral torsional buckling of
	beams,
Steel structures design	,Load and resistance factor design-I shaped beams; allowable
	strength design – I shaped beams Allowable strength design –
	I shaped beams, effective lateral unbraced length, Lateral
	bracing design,

Name of disciplines	«Modelling of Construction Processes»
Course Workload,	4/144
credits/academic hours	4/144
DISCIPLINE CONTENT	
Units	Units
	The concept of BIM. Project delivery methods and BIM
BIM Technology	implementation. Levels of Development (LOD). Applications
	in construction management.

Name of disciplines	«Modelling of Construction Processes»
Course Workload, credits/academic hours	4/144
DISCIPLINE CONTENT	
Units	Units
Cloud-BIM for design/construction coordination & clash detection	BIM for buildability scenario forecasting. Interference management. Clash detection.
Construction Planning and 4D Simulation	Construction planning. Elements to model location for scheduling tasks. 4D simulations.
Quantity Takeoff and Cost Estimating	Types of estimates. Conceptual estimate. Detailed estimate. Model-based calculation.

Name of dissiplines	«Applications of Finite Element Method for Civil
Name of disciplines	Engineering problems»
Course Workload, credits/academic hours	3/108
	DISCIPLINE CONTENT
Units	Units
Plane Stress and Plane Strain	- Plane stress and plan strain approximations. Coordinate
Theory	systems. Displacement of material points. State of strain.
	State of stress. Stress equilibrium at a point. Constitutive
	equations. Boundary conditions. Differential form of the
	governing equations. Weighted residual method. Integral
	form of the governing equations,
	-Finite element concept. Description of finite element shape.
	Quadrilateral elements. Triangular elements. Interpolation
	of variables in finite elements.
	- Differentiation of functions in finite elements: Dif-
	ferentiation of shape functions. Differentiation of behavioral
Finite Element Tools	variables
	-Integration of functions in finite elements: Integration over
	quadrilateral elements: Integration over triangular elements.
	- Numerical integration One-dimensional Gauss in-
	tegration: Gauss integration in quadrilaterals: Gauss
	integration in triangles.
Finite Element Networks	- Decomposition of a slab. Element shape. Displacement
	interpolation. Strain mterpolation.
	-Element and system stiffness matrices. Element and system
	body load vectors. Boundary conditions: Shape of the
	boundary; System boundary load vector: Boundary
	conditions at nodes.
	- Algebraic governing equations. Assembly and solu-
	tion of the algebraic system equations. Assembly of the
	system equations.
	- Structure of the system matrix. Solution of linear equations with
	method Stress computation
Finite Element Types	- Rectangular element with 4 nodes. Constant strain triangular
	element.

Name of disciplines	«Applications of Finite Element Method for Civil Engineering problems»
Course Workload, credits/academic hours	3/108
DISCIPLINE CONTENT	
Units	Units
	- Quadrilateral element with 8 nodes. Linear strain triangular
	element.

Name of disciplines	«Sustainability in Civil Engineering»
Course Workload,	3/108
credits/academic hours	5/100
	DISCIPLINE CONTENT
Units	Units
Conceptual development of a typology of sustainable buildings	 Introduction to the basic terminology of sustainable buildings. Principles of formation of sustainable architecture. Energy efficient (passive, active) and smart buildings. Factors of influence on the process of viability and "sustainable" development of buildings and structures. The concept of "life cycle of the building". Organizational structure of buildings. Main trends in the development of modern urban planning. Above-ground and underground types of "green buildings". adaptive architecture. Eco-certification of "green" construction objects in Russia and abroad
	and abroad.
Architectural and space- planning solution for energy- efficient buildings.	 Typology of energy efficient buildings. Overview of the first projects of energy efficient buildings. Definition of the basic principle of energy efficient buildings. Typology of buildings according to the method of extracting energy from natural factors (solar buildings, wind-powered, hydropower-active and buried dwellings). "Active" and "passive" houses. Accounting for regional specifics in the design of energy efficient buildings. Stages of designing an energy-efficient buildings (climate of the area and orientation of buildings, solar radiation and insolation, aeration and wind regime, type of landscape of the building site, main patterns of microclimate formation in various conditions of the underlying surface). Gardening and improvement
	planning solutions for energy-efficient houses in the Russian
	planning solutions for energy-efficient houses in the Russian

Name of disciplines	«Sustainability in Civil Engineering»
Course Workload, credits/academic hours	3/108
DISCIPLINE CONTENT	
Units	Units
	Federation and abroad. Foreign experience in the design and construction of bioclimatic energy efficient architecture.

Name of disciplines	«Optimization Methods in Civil Engineering»
Course Workload,	
credits/academic hours	
DISCIPLINE CONTENT	
Units	Units
Introduction to optimization	Methods of Operations Research.
	Historical development.
Statement of optimization	Constrained and unconstrained optimization problems.
problem	Design Vector. Design Constraints constraint surface.
	Objective Function. Objective Function Surfaces.
Classification of optimization	Classification Based on the Existence of Constraints.
problems	Classification Based on the Nature of the Design Variables.
	Classification Based on the Physical Structure of the
	Problem. Classification Based on the Nature of the
	Equations Involved.
	Single-variable optimization. Theorem of necessary and
Classical optimization	sufficient condition.
techniques	
	The necessary and sufficient conditions for the minimum or
Multivariable optimization	maximum of an unconstrained function of several variables
with no constraints	

Name of disciplines	«Structural Dynamics»
Course Workload,	2/72
credits/academic hours	
DISCIPLINE CONTENT	
Units	Units
General information on the	General concepts. Forces of inertia. The D'Alembert
dynamics of deformed systems	principle. The main types of dynamic load. Dynamic tasks,
	reduced to tasks of static calculation. Calculation of inertial
	loads
Hit	Dynamic factor
Oscillations of systems with <i>n</i>	Elastic natural oscillations of systems with one degree of
degrees of freedom	freedom. Forced oscillations of systems with one degree of
-	freedom. Resonance. Attenuation of vibrations. Elastic free
	oscillations of systems with several degrees of freedom.
Free oscillations of rod systems	Free oscillations of beams as systems with distributed mass.
as systems with distributed mass	Longitudinal oscillations of a rod with distributed mass. The
	method of displacements in problems on harmonic vibrations

Name of disciplines	«Structural Dynamics»
Course Workload, credits/academic hours	2/72
DISCIPLINE CONTENT	
Units	Units
	of rod systems. Free vibrations of rod systems with
	distributed mass. Free oscillations of the Π-shaped frame.
Calculation of fatigue	Voltage variables. Stress cycle. Fatigue. Curve fatigue. Limit
	of endurance. The main factors affecting the value of the
	limit of endurance
Free oscillations of plates and	Free vibrations of rectangular plates. Oscillations of
shells	cylindrical and spherical shells.

Name of disciplines	«Geometric Shaping and Analysis of Shells»
Course Workload,	2/72
credits/academic hours	
DISCIPLINE CONTENT	
Units	Units
Classification and forms of	- Planar designs. Classification and forms of spatial
spatial structures	structures. Signs of static shaping. Kine- matic surfaces.
On the design and construction	- Structures working "on the span", rigid shells, regular
of spatial structures	systems, suspended roofs, transforming systems, air-
	supporting and air-suspended struc- tures. Tent structures.
	Structural concept. Pro- duction, transportation and
	construction of spa- tial systems.
Shells of Revolution	- Spherical shell. Shells in the form of a single- cavity
	hyperboloid of revolution. Paraboloid and ellipsoid of
	revolution. Circular torus Pseudosphere. Catenoid. Globoid.
	A drop. The mating surfaces of coaxial cylinder and cone.
Ruled shells of zero Gaussian	- Conical, cylindrical and torse shells. Build torse
curvature	developments. Replacement of cylinders, cones and torse
	surfaces folds. Surfaces of the equal slope.
Ruled shells of negative	- Hyperbolic paraboloid. Conoids. Cylindroids.
Gaussian curvature	5 types of ruled helicoids. Ruled rotary and spiroid surfaces.
	Catalan Surfaces.
Cyclic surfaces	- Channel surfaces. Normal cyclic surfaces. Cyclic surfaces
	with a parallelism plane. Cyclic surfaces with circles in the
	planes of the bunch.
Kinematic surfaces	- Direct transfer surfaces. Rotative and spiroid surfaces.
Umbrella surfaces and	- Wavy type and wavy surfaces. Corrugated surfaces.
umbrella type surfaces	Corrugated products. Umbrella domes on the cone.
	Reinforced concrete, metal, tent umbrella shells.
Minimal surfaces	- Minimal surfaces strung on a rigid support contour. Dome
	structures made of plastic.
Helicoidal and helical shape	- Ordinary screw surfaces. Screw surface vari- able pitch.
shells. Shells in the form of	Cyclic surface in the cylinder. Helical surfaces with
spiral and spiral shape	generatrix in the planes of the bunch.
surfaces.	
Membrane and cable coatings.	- Examples of built structures with membrane and suspended
	roofs.

Name of disciplines	«Geometric Shaping and Analysis of Shells»
Course Workload,	2/7
credits/academic hours	
DISCIPLINE CONTENT	
Units	Units
Shells in the form of	- Overview of the constructed structures Con- structive forms
analytically indefinable	of wildlife and their influence on the development of
surfaces	fundamentally new spatial structures.
Spatial Composite Structures	- Smooth mating of two surfaces. Transforma- ble structures.
Geometrical Shaping of Shells	- Manufacturing models that demonstrate the methods of
(experimental part)	generating the middle surfaces of the shells.

руководитель оп во:

Директор департамента строительства Должность, БУП

Подпись

Рынковская М.И.

Фамилия И.О.