Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребов Олег Федераяльное государственное автономное образовательное учреждение Должность: Реконсиде го образования «Российский университет дружбы народов имени Патриса Дата подписания: 2 Лумумбы»

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математическое моделирование тепловых процессов

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

15.04.05 «Конструкторско-технологическое обеспечение машиностроительных производств» (код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

Конструкторско-технологическое обеспечение энергетических производств

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Математическое моделирование тепловых процессов» является формирование знаний по вопросам математического моделирования тепловых процессов энергетических установок с паровыми и газовыми турбинами. Задача дисциплины -формирование практических навыков математического моделирования тепловых процессов установок с паро- газотурбинными двигателями.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Математическое моделирование тепловых процессов» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении

дисииплины (результаты освоения дисииплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)		
ОПК-4	Способен подготавливать научно-технические отчеты и обзоры по результатам выполненных исследований и проектно-конструкторских работ в области машиностроения	ОПК-4.1. Организует и составляет планы научного труда команды, оценивает научную деятельность исследователей, анализирует уровень их знаний ОПК-4.2. Способен оформлять научно-технические отчеты и обзоры по результатам выполненных исследований и проектно-конструкторских работ в области машиностроения		
ПК-4	Определение основных проблем соответствующей научной области с использованием при их решении сложных задач выбора, современных методов научного исследования, решения прикладных исследовательских задач	ПК-4.1. Производит анализ и теоретическое обобщение научных данных в соответствии с задачами исследования, организует сбор и изучение научно-технической информации по теме ПК-4.2. Применяет актуальную нормативную документацию в соответствующей области знаний ПК-4.3. Способен применять методы и средства планирования, организации, проведения и внедрения научных исследований и опытно-конструкторских разработок с использованием современных методов исследования, решения прикладных исследовательских задач		

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Математическое моделирование тепловых процессов» относится к части, формируемой участниками образовательных отношений блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Математическое моделирование тепловых процессов».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению

запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-4	Способен подготавливать	Дисциплины бакалавриата	Преддипломная практика,

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	научно-технические отчеты и обзоры по результатам выполненных исследований и проектно-конструкторских работ в области машиностроения		Выпускная квалификационная работа
ПК-4	Определение основных проблем соответствующей научной области с использованием при их решении сложных задач выбора, современных методов научного исследования, решения прикладных исследовательских задач исследовательских задач	Дисциплины бакалавриата	Преддипломная практика, Выпускная квалификационная работа

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «<u>Математическое моделирование тепловых процессов</u>» составляет <u>4</u> зачетных единицы.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>ОЧНОЙ</u>

формы обучения

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		36	36			
в том числе:						
Лекции (ЛК)		18	18			
Лабораторные работы (ЛР)						
Практические/семинарские занятия (СЗ)		18	18			
Самостоятельная работа обучающихся, ак.ч.		108	108			
Контроль (экзамен/зачет с оценкой), ак.ч.						
ак.ч.		144	144			
Общая трудоемкость дисциплины	зач.ед.	4	4			

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
Раздел 1. Принципы	Тема 1.1. Концепции моделирования в механике.	ЛК, СР
математического моделирования.	Тема 1.2. Элементарные математические модели.	ЛК, СР
Раздел 2. Получение	Тема 2.1. Сохранение массы вещества.	ЛК, СР
моделей из	Тема 2.2. Сохранение энергии.	ЛК, СР
фундаментальных законов природы	Тема 2.3. Сохранение числа частиц.	C3, CP
Раздел 3. Совместное	Тема 3.1. Предварительные понятия газовой	ЛК, СР

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
применение нескольких	динамики.	
фундаментальных законов	Тема 3.2. Уравнения газовой динамики в лагранжевых координатах.	ЛК, СР
Раздел 4. Модели из	Тема 4.1. Вариационный принцип Гамильтона.	ЛК, СР
вариационных принципов	Тема 4.2. Малые колебания струны.	ЛК, СР
Раздел 5. Иерархическая	Тема 5.1. Уравнение Больцмана.	ЛК, СЗ, СР
цепочка моделей	Тема 5.2. Уравнения для моментов функции.	ЛК, СР
	Тема 6.1. Применение методов подобия.	ЛК, СР
Раздел 6. Исследование математических моделей	Тема 6.2. Применение анализа размерностей к построению точных частных решений задач математической физики.	C3, CP
	Тема 6.3. Анализ размерностей и группы преобразований.	СР

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	переносной мультимедиа проектор;Интерактивная доска SmartBoard 660
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Основы математического моделирования технических систем: учебное пособие / В.И. Аверченков, В.П. Федоров, М.Л. Хейфец. 4-е изд., стер. Москва : ФЛИНТА, 2021.-271 с.
 - 2. Пестриков, В. М. Математические методы в инженерии: учеб. пособие / В. М.

Пестриков; М-во науки и высшего образования РФ, С.- Петерб. гос. ун-т пром. технологии и дизайна, Высш. шк. технологии и энергетики.—Санкт-Петербург: ВШТЭ СПбГУПТД, 2023. — 158 с.— ISBN 978-5-91646-354-5. — Текст: электронный. Режим доступа: http://nizrp.narod.ru/metod/kafpriklmatiif/1686622511.pdf

3. Пестриков В.М., Смирнова Т.С., Леонова Н.Л. Компьютерное моделирование задач теплотехники: Учебно-методическое пособие. — СПб.: СПб ГТУРП, 2012. — 69 с.

Дополнительная литература:

- 1. Моделирование и алгоритмизация задач теплоэнергетики [Текст] : учебное пособие / А. В. Бараков, А. А. Надеев, В. И. Ряжских ; ФГБОУ ВО "Воронежский гос. технический ун-т". Воронеж : Воронежский гос. технический ун-т, 2015. 198 с.
- 2. Голдаев С.В. Практикум по математическому моделированию в теплоэнергетике: учебное пособие / С.В. Голдаев; Томский политехнический университет. Томск: Изд-во Томского политехнического университета.
- 3. Бондарь А. Г. Математическое моделирование в химической технологии / А. Г. Бондарь : Учебник. Киев: "Вища школа", 1973. 278 с.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:

Электронно-библиотечная система РУДН – ЭБС РУДН http://lib.rudn.ru/MegaPro/Web

- ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
- ЭБС Юрайт http://www.biblio-online.ru
- ЭБС «Консультант студента» www.studentlibrary.ru
- ЭБС «Лань» http://e.lanbook.com/
- ЭБС «Троицкий мост»
- 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
- поисковая система Яндекс https://www.yandex.ru/
- поисковая система Google https://www.google.ru/
- реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

1. Курс лекций по дисциплине «<u>Математическое моделирование тепловых</u> процессов».

^{* -} все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС</u>!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Математическое моделирование тепловых процессов» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИКИ:		
Доцент кафедры энергетического машиностроения		Ощепков П.П.
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП: Заведующий кафедрой машиностроительных технологий		Вивчар А.Н.
Наименование БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО: Заведующий кафедрой машиностроительных технологий		Вивчар А.Н.
Наименование БУП	Подпись	Фамилия И.О.