Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чосударственное автономное образовательное учреждение высшего образования должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 02.06.2023 15:22:06

Уникальный программный ключ:

ca953a0120d891083f939673078

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

01.03.02 ПРИКЛАДНАЯ МАТЕМАТИКА И ИНФОРМАТИКА

(код и наименование направления подготовки/специальности)

ДИСШИПЛИНЫ велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МЕХАНИКИ КОСМИЧЕСКОГО ПОЛЕТА И АНАЛИЗА ГЕОИНФОРМАЦИОННЫХ ДАННЫХ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Уравнения математической физики» входит в программу бакалавриата «Математические методы механики космического полета и анализа геоинформационных данных» по направлению 01.03.02 «Прикладная математика и информатика» и изучается в 7 семестре 4 курса. Дисциплину реализует Департамент механики и процессов управления. Дисциплина состоит из 2 разделов и 17 тем и направлена на изучение уравнений математической физики и методов их решения

Целью освоения дисциплины является приобретение учащимися знаний и навыков в теории дифференциальных уравнений с частными производными второго порядка, возникающих в математической физике, овладение методами решения таких уравнений, включая аналитические методы и численные методы

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Уравнения математической физики» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-1	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	ОПК-1.1 Обладает базовыми знаниями, полученными в области математических и (или) естественных наук; ОПК-1.2 Умеет использовать их в профессиональной деятельности; ОПК-1.3 Имеет навыки выбора методов решения задач профессиональной деятельности на основе теоретических знаний;
ОПК-2	Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач	ОПК-2.1 Владеет математическими методами, основами программирования и специализированными системами программирования для реализации алгоритмов решения прикладных задач; ОПК-2.2 Умеет осуществлять выбор и адаптацию математических методов и программного обеспечения к решению практических задач; ОПК-2.3 Владеет навыками разработки и реализации алгоритмов решения прикладных задач в области профессиональной деятельности;
ОПК-3	Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности	ОПК-3.1 Знает теоретические основы и принципы математического моделирования; ОПК-3.2 Умеет разрабатывать и использовать методы математического моделирования, информационные технологии для решения задач прикладной математики; ОПК-3.3 Владеет практическими навыками решения задач прикладной математики, методами математического моделирования, информационными технологиями и основами их использования в профессиональной деятельности, навыками профессионального мышления и арсеналом методов и подходов, необходимыми для адекватного использования методов современной математики в теоретических и прикладных задачах;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Уравнения математической физики» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Уравнения математической физики».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-1	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности	Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы); Технологическая практика; Физика; Теоретическая механика; Алгебра и геометрия; Теория вероятностей и математическая статистика; Математический анализ; Дифференциальные уравнения; Комплексный анализ; Механика космического полета; Аррlications of Earth Remote Sensing;	Преддипломная практика; Технологическая практика;
ОПК-2	Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач	Алгебра и геометрия; Теория вероятностей и математическая статистика; Математический анализ; Дифференциальные уравнения; Комплексный анализ; Информатика и программирование; Численные методы; Механика космического полета; Анализ геоинформационных данных; Теория автоматического управления; Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы); Технологическая практика;	Преддипломная практика; Технологическая практика;
ОПК-3	Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности	Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы); Технологическая практика; Механика космического полета; Алгебра и геометрия; Теория вероятностей и математическая статистика; Математический анализ; Численные методы;	Преддипломная практика; Технологическая практика;

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
		Дифференциальные уравнения;	
		Комплексный анализ;	
		Теоретическая механика;	
		Анализ геоинформационных	
		данных;	
		Теория автоматического	
		управления;	
		Методы оптимального	
		управления;	

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Уравнения математической физики» составляет «8» зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur vinofinoŭ poforti	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			7	
Контактная работа, ак.ч.	108		108	
Лекции (ЛК)			54	
Лабораторные работы (ЛР)	0		0	
Практические/семинарские занятия (С3)	54		54	
Самостоятельная работа обучающихся, ак.ч.	144		144	
Контроль (экзамен/зачет с оценкой), ак.ч.	36		36	
Общая трудоемкость дисциплины	ак.ч.	288	288	
	зач.ед.	8	8	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
	Уравнения математической физики	1.1	Основные уравнения математической физики	ЛК, СЗ
		1.2	Задача Коши для уравнения колебаний струны	ЛК, СЗ
		1.3	Формула Даламбера	ЛК, СЗ
		1.4	Колебания полуограниченной струны	ЛК, СЗ
		1.5	Ряды Фурье	ЛК, СЗ
Раздел 1		1.6	Решение задачи Коши для уравнения колебаний	ЛК, СЗ
			струны с закрепленными концами	·
		1.7	Вынужденные колебания струны	ЛК, СЗ
		1.8	Уравнение распространения тепла в стержне	ЛК, СЗ
		1.9	Теплопроводность в конечном стержне	ЛК, СЗ
		1.10	Уравнение Лапласа	ЛК, СЗ
		1.11	Запись в полярных координатах	ЛК, СЗ
		1.12	Метод Фурье для уравнения Лапласа	ЛК, СЗ
	Методы решения уравнений математической физики	2.1	Методы теории потенциала	ЛК, СЗ
Раздел 2		2.2	Численные методы	ЛК, СЗ
		2.3	Вариационные методы	ЛК, СЗ
		2.4	Проекционные методы	ЛК, СЗ
		2.5	Асимптотические методы	ЛК, СЗ

^{* -} заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: $\mathit{ЛК}$ – лекции; $\mathit{ЛP}$ – лабораторные работы; $\mathit{C3}$ – семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

* - аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Тихонов А.Н. Самарский А.А. Уравнения математической физики
- 2. Араманович И.Г., Левин В.И. Уравнения математической физики. М. Наука. 1976.
- 3. Савин А.Ю. Стернин Б.Ю. Уравнения математической физики. Презентация. РУДН. 2012
- 4. Кириллов А.И. (ред.) Решебник. Высшая математика. Специальные разделы, 2е изд., ФМЛ, 2006
- 5. Коршунов Ю.С., Рыновская М.В., Савин А.Ю. Уравнения математической физики. М. РУДН. 2016.

Дополнительная литература:

- 1. Фарлоу С.. Уравнения с частными производными для научных работников и инженеров. М.Мир. 1985
 - 2. E. Zauderer Partial differential equations and applied mathematics. 2006
- 3. Агошков В. И., Дубовский П. Б., Шутяев В. П. Методы решения задач математической физики / Под ред. Г. И. Марчука. М.: ФИЗМАТЛИТ, 2002. 320 с. ISBN 5-9221-02457-5

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Уравнения математической физики».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Уравнения математической физики» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИК:

Должность, БУП

		Салтыкова Ольга	
Доцент	Conf	Александровна	
Должность, БУП	Подпись	Фамилия И.О.	
РУКОВОДИТЕЛЬ БУП:	le l		
	H	Разумный Юрий	
Директор ДМПУ		Николаевич	
Должность БУП	Подпись	Фамилия И.О.	
РУКОВОДИТЕЛЬ ОП ВО:	le l		
	J.	Разумный Юрий	
Профессор	1	Николаевич	

Подпись

Фамилия И.О.