Faculty of Science ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course Title	Methodology of scientific research	
Course Scope	3 credits (108 hours)	
COURSE SUMMARY		
Course Units (Topics)	Course Units (Topics) Outline	
Analogy and its role in	Analogy as one of the important methods of cognition in science.	
science	Classification of physical quantities and kinematic analogies (vectors	
	and tensors). Inductive and deductive methods of research. Intuition	
	and hypothesis in theoretical physics.	
Symmetry principles	Symmetry principle of P. Curie and its consequences. E. Noether	
	theorem and conservation laws. Stability principle as a basis for the	
	theory of measurements.	
Optics-mechanics analogy	Quantum mechanics and optics-mechanics analogy. Charge	
	independence of nuclear forces and gauge invariance of interactions	
	as checking principle for physical models.	
History and methodology	Mechanics of Newton as a basis for physical world picture.	
of physics	Lagrangian and Hamiltonian formalisms. Electrodynamics of	
	Maxwell and Faraday. Electromagnetic origin of light. Wave and	
	corpuscular optics. Relativistic mechanics. Special theory of relativity.	
	Molecular physics and kinetic theory of heat. Quantum	
	thermodynamics. Planck's law. Irreversibility in statistical physics.	
	Atomic hypothesis. Wave – particle dualism. Quantum mechanics as a	
	basis of a new physical world picture. Quantum gravity.	

Developers:

Professor of the

Institute of physical research and technology (name of the department)

1000

Yu.G.Rudoy (full name)

(signature) Y u.

Federal state autonomous educational institution of higher education

"People's Friendship University of Russia", RUDN University

Faculty of Science

ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course Title	Condensed Matter Physics	
Course Scope	3 credits (108 hours)	
COURSE SUMMARY		
Course Units (Topics)	Course Units (Topics) Outline	
General concepts and	Main dynamic and thermodynamic parameters of state for	
methods of condensed	the matter. Gaseous state, electrically neutral states and	
matter physics	plasmas. Condensed state: liquid, solid, intermediate states.	
	Quantum effects in condensed matter physics. Order	
	parameters and quasi-particles.	
Electric properties of	Electric properties of crystals. Quasi-classical theory of	
condensed matter	metals: Drude, Lorentz, Sommerfeld. Quantum states of	
	electrons in crystals. Adiabatic and self-consistent	
	approximations. Approximation of slightly bound electrons.	
	Kronig – Penny problem, periodicity in crystals. Bloch	
	functions and Brillouin zones. Approximation of strongly	
	bound electrons. Wannier functions. Metals, semiconductors	
	and dielectrics. Fermi surface.	
Electron-phonon interaction	Electron-phonon interaction. Cooper phenomenon. Bardeen	
and superconductivity	– Cooper – Schrieffer – Bogoliubov theory of	
	superconductivity. Low-dimensional matter: strings and	
	films. Graphene. Quantum points and wires. Quantum Hall	
	effect. Polaritons and plasmons in metals.	
Magnetic properties of	Weak and strong magnetics. Landau levels. Ferro-	
condensed matter	magnetics, antiferro-magnetics, ferri-magnetics.	
	Magnetocaloric effect and its applications. Spin-waves,	
	magnons. Surface properties of solids. Thermo-electron and	
	photo-electron emission. Photo-conductivity. Amorphous	
	solids, glasses. Polymers, bio-polymers.	

Developers:

Professor of the

Institute of physical research and technology name of the department

10 Place

Yu.G. Rudoy full name

signature

Faculty of Science

ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course Title	Foreign Language
Course Scope	5 credits (180 hours)
COURSE SUMMARY	
Course Units (Topics)	Course Units (Topics) Outline
The main principles of scientific reviews	Phrases-clichés. Bibliography lists. Reference styles. Scientific vocabulary. Typical fields of research. Motivation of the paper. Theoretical hypothesis and its experimental verification. Plan of future research. Unsolved problems. Conclusion.
Professional fields of research	Particle physics. Nuclear physics. Physical units of measurement. Statistical terminology. Symmetry principles. Typical mathematical constructions.
Useful advices for authors	Author's translation and editing. The translation of "professional translator".Mathematical clichés. Terms as objects and concepts. Introductory expressions.
Collection of typical errors	Misuse of articles and words "it", "which", "whose" and "that". How to represent lectures and reports.

Developers:

Professor of the

Institute of physical research and technology name of the department signature

Faculty of Humanities and Social Sciences

DISCIPLINE ANNOTATION

Education Programs in all fields of postgraduate study

Discipline	History and Philosophy of Science
Total	4 credits (144 hours)
	Contents
Units	Topics
The subject and basic concepts of	Philosophy of science as the study of general laws of
modern philosophy of science	scientific knowledge in its historical development and
	changing socio-cultural context. The evolution of
	approaches to the analysis of science.
	Logical and epistemological approach to the study of
	science. Positivist tradition in the philosophy of science.
	Expansion of the field of philosophical issues in the
	postpositivistic philosophy of science.
Science in the culture of modern	Traditionalist and technogenic types of civilizational
civilization	development and their basic values. The role of science in
	modern education and the formation of personality.
	Functions of science in society.
The genesis of science and the main	The culture of the ancient polis and the formation of the
stages of its historical evolution	first forms of theoretical science. Antique logic and
	mathematics. Western and Eastern medieval science. The
	formation of experimental science in the new European
	culture. Background of the experimental method and its
	connection with a mathematical description of nature.
	Formation of science as a professional activity. The
	genesis of disciplinary organized science. Formation of technical sciences. The formation of social and human
	sciences.
The structure of scientific knowledge	The variety of types of scientific knowledge. Empirical
The structure of scientific knowledge	and theoretical levels, the criteria for their distinction.
	Features of the empirical and theoretical language of
	science. The structure of empirical knowledge.
	Experiment and observation. Empirical dependencies and
	empirical facts. The structure of theoretical knowledge.
	Primary theoretical models and laws. Developed theory.
	Theoretical models. Foundations of science. Ideals and
	norms of research. Scientific picture of the world.
	Philosophical foundations of science.
Dynamics of science	The interaction of the foundations of science and
	experience, the formation of a new discipline. Formation
	of primary theoretical models and laws. The role of
	analogies in the theoretical search. Procedures to
	substantiate theoretical knowledge. The relationship of
	the logic of discovery and logic of justification
	Formation of a developed scientific theory. Problem

	situations in science. The development of science under the influence of new theories.
Scientific traditions and scientific revolutions. Types of scientific rationality	The interaction of traditions and the emergence of new knowledge. Scientific revolution as the restructuring of the foundations of science. Problems of typology of scientific revolutions. Intra-disciplinary mechanisms of scientific revolutions. Global revolutions and types of scientific rationality. Historical change of types of scientific rationality: classical, non-classical, post-non- classical science.
Features of the modern stage of	Modern processes of differentiation and integration of
development of science. Prospects for	sciences. Global evolutionism as a synthesis of
scientific and technological progress	evolutionary and systemic approaches. New ethical problems of science at the end of XX century. The problem of humanitarian control in science and high technology. Environmental and socio-humanitarian expertise of scientific and technical projects. Scientism and anti-scientism. Science and parascience. The role of science in overcoming contemporary global crises.
Science as a social institution	Scientific communities and their historical types. Science schools. Scientific training. Historical development of the methods of transmitting scientific knowledge. Science and economics. Science and power. The problem of state regulation of science.
Modern philosophical problems of the branch of science	In the areas of training postgraduate students

Author:

Professor of the Ontology and Epistemology department

The Head of the Ontology and Epistemology department

The Head of the Social Philosophy department

Blee V.M. Naidysh

hay

M.L.Ivleva

ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course title	Physics of Nonlinear Processes
Course Scope	3 credits (108 hours)
COURSE SUMMARY	
Course Units (Topics)	Course Units (Topics) Outline
Topological solitons: review of models	Topological solitons: review of models. Kinks, monopoles, and instantons. Many-dimensional solitons in chiral models. Hobart – Derrick theorem. Hopf invariant and topological charge of the degree type . Skyrme and Faddeev models. Methods of studying many-dimensional solitons. Coleman – Palais symmetry principle. Hadrons' structure and the problem of describing their basic states. Models of extended particles. Soliton models in particle physics and in condensed matter physics.
Many-dimensional solitons in chiral models	Topological solitons and their classification: chiral and Higgsian solitons. Simplest examples: kinks in Sine-Gordon and ϕ^4 - models. Anyons, lamps, vortices in $(2 + 1)$ – dimensional solitonian models. Vortices of Nielsen – Olesen and Belavin – Polyakov. Anyons. Monopoles of 't Hooft – Polyakov, Bogomolnyi equations, BPS – monopoles. N- monopoles configurations and scattering of monopoles. Instantons in Euclidian model of Yang – Mills. Self-duality equations and their solutions. BPTSch-instantons. N-instantons solutions.
Methods of studying many- dimensional solitons	Topological solitons in the Skyrme model and its gauge generalizations. Torons in n-field Faddeev model and their relation to the theory of nodes and strings. Topological charges of chiral and Higgsian solitons and algorithms for searching their explicit forms. Hopf invariant and methods of its construction. Hobart – Derrick theorems and topological stability of solitons. Estimate for the energy functional from below through the Hopf invariant.

Developers:

Developers:

Professor of the

Institute of physical research and technology name of the department **Specialty Supervisor:**

Federal state autonomous educational institution of higher professional education Peoples' Friendship University of Russia Philological Faculty

DISCIPLINE ANNOTATION

Education Programs in all fields of postgraduate study

Discipline	Pedagogy of Higher Education	
Total	2 credits (72 hours)	
Contents		
Units	Topics	
Unit I. Pedagogy of higher education as a field of study and academic subject area.	 Pedagogy as a science, key concepts. Pedagogy of higher education in the system of pedagogical science. Systems of higher education: comparative analyses. Contemporary trends in higher education. Internationalization of higher education. 	
Unit 2. Didactics of higher education.	 General aspects of didactic system. Content of higher education (laws and regulations; main principles of selecting content). Curriculum and course syllabus. Forms and methods of teaching. Lecture in modern higher education. Seminars, practical training, laboratory class. Project – working. Students' individual work. Interactive methods of teaching (discussions, case-study training, professional simulation etc.). ICT in modern higher education. Monitoring and evaluation of academic performance. Point rating system. 	
Unit 3.	1. Faculty members' rights and responsibilities. Professional	
Educational environment of	ethics.	
modern university.	Faculty interaction with students: case study.	
	Educational potential of extra-curricular activities.	

Author: Associate Professor of the Psychology and Pedagogy Department _ All O.K. Logvinova

The Head of the Psychology and Pedagogy Department Hazaf N.B. Karabushchenko

ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course Title	Quantum Field Theory
Course Scope	3 credits (108 hours)
COURS	E SUMMARY
Course Units (Topics)	Course Units (Topics) Outline
Relativistic description of particles	Foundations of classical field theory.
	Variational principle. Structure of conserved
	quantities. Classical "displacement",
	"rotation", and "charge" theorems in Hamiltonian formalism. Methods of group
	theory in physics of particles. Infinitesimal
	method for constructing irreducible
	representations of Lie groups. Irreducible
	representations of rotation group, Lorentz
	group, and Poincaré group. The Dirac's
	equation. Internal symmetry groups. Dynkin
	schemes and root diagrams. Principle of
	gauge symmetry. Higgs effect. Supersymmetry.
	Supersymmetry.
General theory of quantum fields	Dirac quantization rule. Canonical
	commutation relations. The second
	quantization method. Von Neumann's theory
	of infinite tensor products of Hilbert spaces.
	Fock space. Foundations of generalized
	functions theory. Schwarz space and functionals in it. Tensor representation of
	operators in Fock space. Superselection rule.
	General principles of fields quantization.
	Schwinger – Feynman dynamical principle.
	Quantization of scalar field, massive vector
	field, and electromagnetic field. Quantization
	of spinor field.
Scattering matrix in quantum field theory	Scattering matrix in quantum field theory.
	Tomonaga – Schwinger equation and Dyson's solution. <i>S</i> -matrix properties. Feynman's rules
	in quantum electrodynamics. Calculation of
	the simplest effects. Estimation of radiation
	corrections. Heisenberg theorem on
	renormalizable field theories. Bogoliubov's
	<i>R</i> -operation and elimination of divergences.
	Dyson and Schwinger equations for complete

Green functions. Bethe – Salpeter equation. Axiomatic theory of <i>S</i> -matrix.

Developers:

Professor of the

Institute of physical research and technology name of the department

Yu.P. Rybakov full name

Federal state autonomous educational institution of higher education

"People's Friendship University of Russia", RUDN University

Faculty of Science

ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course Title	Scientific Seminar
Course Scope	8 credits (288 hours)
· · · · · · · · · · · · · · · · · · ·	SUMMARY
Course Units (Topics)	Course Units (Topics) Outline
Theory of nuclei and particles	Part I. Foundations of nuclei theory.Types ofparticles and nuclei interactions.Mainproperties of nuclei.Nuclei models.origin of nuclear forces.Deuteron.nuclear forces.Deuteron.Nuclearreactions.Part II.Relativistic theory of particlesscattering.The Dirac's equation.Spin inDirac theory.Polarization density matrix.Relativistic theory of quantum transitions.Feynman diagrams.Decay probabilities andeffective sections of scattering.Mott and Rosenbluth formulae.Pionsscattering.Scattering of polarized electrons.
Group theory of nuclei and particles	Part III. Classification of particles. Historical introduction. Group theory approach to particles classification. Unitary groups.Masses relations. Spin effects estimation in quark models. Supersymmetry.Part IV. Weak interaction. Pauli hypothesis on neutrino. Fermi theory of beta-decays.Structure of matrix elements. Fermi and Gamov – Teller selection rules. Five variants of weak interaction. Neutrino physics. Lepton numbers. Neutrino mass and neutrinos oscillations. Neutrino in astrophysics.
Electro-weak interactions of particles	Oscillations. Neutrino in astrophysics.Part I. Current – current theory of weakinteractions.Weinberg's classification ofcurrents. Conservation of vector current andpartial conservation of axial-vector current.Fermi theory of beta-decay. General form ofcurrent – current Lagrangian of weakinteraction. Creation of V-A theory of beta-

	decay and its generalization to other processes. Weak form-factors. Non- renormalizability of theory with intermediate vector boson.
Gauge invariance in particle physics	Part II. Gauge models.Principle of gaugeinvariance.Local SU(2)-symmetry.Yang –Mills fields.T'Hooft – Polyakov monopole.Asymptotic freedom.Spontaneous symmetrybreaking.Higgs fields and Goldstonetheorem.Weinberg – Salam model of unitaryelectro-weak interaction.Intermediate vectorbosons.Main principles of quantumchromodynamics.Grand unification ofinteractions.Supersymmetry.
Structure of elementary particles	Composite models of particles. The simplest models of atomic nuclei. Nuclear form- factors. Phenomenological description of elementary particles structure. Mott and Rosenbluth formulae. Hofstadter experiments on determination of proton structure. Nonlinear models in physics of fields and particles. Composite models, quarks, gluons. Color. Grand unification.
Quarks theory	First composite models of particles. Symmetry between leptons and quarks. Lie algebras and groups. Unitary symmetries. Quark constituents in hadrons. Masses relations. Parton model. Color. Weinberg – Salam model of electroweak interaction of leptons. Foundations of quantum chromodynamics. Problem of quarks confinement.

Developers:

Professor of the

Institute of physical research and technology name of the department

Federal state autonomous educational institution of higher education

"People's Friendship University of Russia", RUDN University

Faculty of Science

ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course Title	Theoretical Physics	
Course Scope	3 credits (108 hours)	
COURSE SUMMARY		
Course Units (Topics)	Course Units (Topics) Outline	
General concepts of coherent states	Main points in representations of coherent	
-	states. 1/N-decomposition and quasi-classical	
	approximation for description of quantum	
	extended objects. Weyl displacement	
	operator. Bargmann – Segal – Fock	
	holomorphic representation.	
Quantum Optics and Lasers	Quantum optics. Glauber – Arecchi photon	
	detector model. Glauber laser model.	
	Generalized coherent states and theory of Lie	
	groups.	
Spin Coherent States in Ferromagnetics	Spin coherent states and their application for	
• 0	description of localized excitations in	
	ferromagnetics. Landau – Lifshitz equation.	

Developers:

Professor of the

Institute of physical research and technology name of the department Yu.P. Rybakov full name

Faculty of Science

ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course Title	Pedagogical practice
Course Scope	24 credits (864 hours)
COURSE SUMMARY	
Course Units (Topics)	Course Units (Topics) Outline
Planning lectures and seminars on	The goal of pedagogical practice is
theoretical physics	accomplishing the abilities in teaching the
	courses from the cycle "Theoretical physics"
	including theoretical mechanics,
	electrodynamics, quantum theory and
	statistical physics. Acquiring the experience
	in preparing the seminar problems,
	acquaintance with the typical pedagogical
	approaches in analyzing the solutions to the
	physical problems.
Preparing presentations of lectures	Acquired professional competences: ability to
	change its professional activity depending on
	interests of the pupils; ability to plan the
	seminars or labs according to the content of
	the training plan. Preparing presentations of
	lectures and reports.

Developers:

Professor of the

Institute of physical research and technology name of the department

Faculty of Science

ANNOTATION OF THE ACADEMIC DISCIPLINE

Educational Program 03.06.01 Physics and Astronomy (specialization Theoretical Physics)

Course Title	Scientific practice
Course Scope	179 credits (6444 hours)
COURSE SUMMARY	
Course Units (Topics)	Course Units (Topics) Outline
Planning scientific publications	The goal of scientific practice is
	accomplishing of the practical
	knowledge and abilities in future
	professional activity of theoretical
	physicist including the experience in
	proper scientific work, in preparing the
	talks at scientific conferences.
Studying mathematical methods in	Acquired competences: free usage of
theoretical physics	the professional knowledge in
	computer technologies; ability to use
	recent achievements in modern
	physics; ability to put scientific
	problems.

Developers:

Professor of the

Institute of physical research and technology name of the department

Yu.P. Rybakov full name