Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Экологический факультет

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины

Физико-химические и аналитические методы контроля компонентов отходов

Рекомендуется для направления подготовки/специальности

05.04.06 «Экология и природопользование»

Направленность программы (профиль)

Рециклинг отходов производства и потребления

1. Цели и задачи дисциплины:

Формирование знаний, умений и навыков в области применения физико-химических методов для контроля экологической опасности компонентов отходов и воздействия отходов на окружающую среду, классификации отходов по классу опасности, классификации отходов по приоритетным признакам.

2. Место дисциплины в структуре ОП ВО:

Дисциплина «Физико-химические и аналитические методы контроля компонентов отходов» относится к вариативной части блока 2 учебного плана.

В таблице N 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 Предшествующие и последующие дисциплины, направленные на формирование компетенций

$N_{\underline{0}}$	Шифр и наименование	Предшествующие	Последующие дисциплины			
Π/Π	компетенции	дисциплины	(группы дисциплин)			
Общек	ультурные компетенции					
Общег	Общепрофессиональные компетенции					
1		Физика				
2		Химия				
3		Экология				
Профе	ссиональные компетенці	ии (вид профессиональной д	цеятельности			
образо	вательная)					
1		Отходы в окружающей				
		среде				

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций: **УК-7; ОПК-4; ПК-6**

Код и наименование компетенции	Код и наименование индикатора достижения					
выпускника	компетенции					
УК-7. Способен к использованию	УК-7.1 владеет навыками использования					
цифровых технологий и методов	цифровых технологий и методов поиска,					
поиска, обработки, анализа,	УК-7.2 умеет обрабатывать, анализировать,					
хранения и представления	хранить и правильно представлять информацию					
информации (в области экологии и	УК-7.3 знает принципы и приемы современной					
природопользования) в условиях	корпоративной информационной культуры и					
цифровой экономики и	основы цифровой экономики					
современной корпоративной						
информационной культуры.						
ОПК-4. Способен осуществлять	ОПК-4.1 Знает основы экологического					
профессиональную деятельность в	нормирования и основы законодательства в					
соответствии с нормативными	области природопользования					
правовыми актами в сфере	ОПК-4.2 Умеет использовать и применять					
экологии, природопользования и	нормативные правовые акты в сфере экологии и					
охраны природы, нормами	природопользования					
профессиональной этики	ОПК-4.3 Способен использовать нормы					
	профессиональной этики в своей					
	профессиональной деятельности					
ПК-6 Способен осуществлять	ПК-6.1 Способен осуществлять контроль					

координацию деятельности по				деятельности в области обращения с отходами					
организации и	контролн	о в обл	асти	ПК-6.2	Имеет		навыки	opı	ганизации
обращения	c	OTXO	цами	инфрастру	ктуры	ЭК	ологически	бе	зопасного
производства и потребления				обезвреживания и переработки от				отходов	
				производст	ва и пот	ребл	пения		

В результате изучения дисциплины студент должен:

Знать: Характер взаимодействия отдельных видов ксенобиотиков с абиотическими компонентами окружающей среды и основные пути воздействия загрязняющих веществ на живые организмы. Экологические, физико-химические и токсикологические особенности приоритетных стойких органических загрязнителей (СОЗ). Возможности контроля степени и типов воздействий совокупностью физических, физико-химических, химических и биологических методов. Классификация методов по областям наук. Классификация методов по получаемой информации. Наиболее универсальные методы выявления физической, химической и биологической опасности компонентов отходов.

Уметь: осуществлять выбор и применять совокупность методов экологического контроля для идентификации компонентов отходов органического и неорганического видов. Классифицировать отходы по агрегатно/физическому составу, степени вредного вохдействия на окружающую природную среду.

Владеть: Классификацией отходов по классу опасности по Федеральному классификационному каталогу отходов. Алгоритмами выбора совокупности методов для идентификации компонентов отходов на основе знаний о возможностях, трудоемкости и иных характеристиках наиболее доступных и универсальных методов инструментального экологического контроля.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетных единиц.

Вид учебной работы	Всего		Moz	дуль	
	часов	1	2	3	4
Аудиторные занятия (всего)	36			36	
В том числе:	-		-	-	-
Лекции	18			18	
Практические занятия (ПЗ)	18			18	
Семинары (С)					
Контроль	9			9	
Самостоятельная работа (всего)	63			63	
Общая трудоемкость	108			108	
	3			3	

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела (темы)				
Π/Π	дисциплины					
1.	Классификация методов	Химические методы. Физические методы. Биологические				
	контроля и	методы. Основные направления применения каждой				
	идентификации	группы методов.				
	компонентов отходов					
2.	Методы элементного	Методы сожжения проб. Атомно-адсорбционный анализ.				
	анализа	Рентгено-флуорисцентный анализ. Нейтронно-				
		активационный анализ. Метод масс-спектрального анализа.				
3.	Масс-спектрометрия	Методы ионизации: электронный удар, химическая				
		ионизация, фотоионизация, полевая ионизация, полевая				
		десорбция, бомбардировка быстрыми атомами, матричная				
		лазерная ионизация десорбцией (MALDI), электроспрей.				

		Детекторы ионов: цилиндр Фарадея, вторичный
		электронный умножитель, многоканальный усилитель.
		Масс-анализаторы: принципы действия, разрешающая
		способность. Преимущества и недостатки. Аналитические
		возможности масс-спектрометрии. Молекулярные,
		осколочные и метастабильные ионы. Комбинации масс-
		спектрометра с хроматографами. Примеры использования
		масс-спектрометрии.
4.	Хроматография	Хроматографическое разделение смеси веществ.
'.	промитогрифия	Физическая и химическая адсорбция. Адсорбционно-
		десорбционное равновесие. Ширина и форма
		хроматографического пика. Разрешающая способность
		хроматографической колонки. Устройство и схема работы
		хроматографа. "Мертвое" время и время удерживания.
		Набивные и капиллярные колонки, их параметры.
		Оптимальные размеры и разрешение хроматографической
		колонки. Детекторы.
5.	Радиоспектроскопия	Магнитные моменты электрона и ядер. ЯМР-активные
		ядра. Спин в постоянном магнитном поле. Магнитный
		момент и ларморова прецессия. Поглощение энергии ВЧ-
		поля. Спектроскопия ядерного магнитного резонанса.
		Химический сдвиг. Спин-спиновое взаимодействие.
		Применение метода ЯМР.
		Спектроскопия электронного парамагнитного резонанса.
		Сверхтонкая структуры спектра ЭПР. Структурные и
		динамические характеристики вещества, определяемые
		методами ЭПР. Принципиальная схема ЭПР-спектрометра.
		Применение метода ЭПР.
6.	0	
0.	Оптическая	Классы спектральных приборов. Диспергирующие
	спектроскопия	элементы спектральных приборов и их разрешающая
		способность. Прохождение света через поглощающую
		среду. Сечение поглощения, молярный коэффициент
		экстинкции. Закон Ламберта-Бугера-Бэра. Спектры
		поглощения, испускания и рассеяния. Люминесценция и
		флуоресценция.
		Спектральные диапазоны и соответствующие им степени
		свободы в молекулярных системах. Вращательные спектры
		и микроволновая спектроскопия. Колебательные спектры и
		инфракрасная спектроскопия. Колебания многоатомных
		молекул. Электронные переходы и спектроскопия в
		видимом и ультрафиолетовом диапазонах. Интенсивность
		электронно-колебательных спектров: принцип Франка-
		Кондона. Спектроскопия комбинационного рассеяния
		света.
7.	Экологическая	Особенности взаимодействия ксенобиотиков с
'.		
	опасность отходов	
		Особенности воздействия загрязняющих веществ на живые
		организмы. Экологические, физико-химические и
		токсикологические особенности приоритетных стойких
		органических загрязнителей (СОЗ).
8	Классификация отходов	Отходы 1-го, 2-го, 3-го, 4-го, 5-го класса опасности.
	по классу опасности и	Федеральный классификационный каталог отходов 2014
	приоритетным	года. Классификация отходов по:
	признакам	- происхождению;
	1 1	<u> </u>

		- агрегатному и физическому состоянию; - опасным свойствам; - степени вредного воздействия на окружающую природную среду.
9	ФЗ об отходах производства и потребления	Основные понятия. Правовое регулирование в области обращения с отходами. Требования к объектам размещения отходов. Требования к обращению с опасными отходами. Требования к транспортировке опасных отходов. Государственный кадастр отходов. Производственный контроль в области обращения с отходами.

5.2. Разделы дисциплин и виды занятий

$N_{\underline{0}}$	Наименование раздела дисциплины	Лекц.	Практ.	Контроль	CPC	Все-го
Π/Π			зан.			час.
1.	Классификация методов котроля и	2	2	1	4	12
	идентификации компонентов					
	контроля					
2.	Методы элементного анализа	2	2	1	4	12
3.	Масс-спектрометрия	2	2	1	6	14
4.	Хроматография	2	2	1	4	12
5.	Радиоспектроскопия	2	2	1	6	14
6.	Оптическая спектроскопия	2	2	1	4	12
7.	Экологическая опасность отходов	2	2	1	4	10
8	Классификация отходов по классу	2	2	1	4	10
	опасности и приоритетным					
	признакам					
9	ФЗ об отходах производства и	2	2	1	4	12
	потребления					
	Итого	18	18	9	63	108

7. Практические занятия (семинары)

№ π/π	№ раздела дисциплины	Тематика практических занятий (семинаров)	Трудо- емкость (час.)
1.	Классификация методов контроля и идентификации компонентов отходов	Химические методы. Физические методы. Биологические методы. Основные направления применения каждой группы методов.	2
2.	Методы элементного анализа	Методы сожжения проб. Атомно- адсорбционный анализ. Рентгено- флуорисцентный анализ. Нейтронно- активационный анализ. Метод масс- спектрального анализа.	2
3.	Масс-спектрометрия	Методы ионизации: электронный удар, химическая ионизация, фотоионизация, полевая ионизация, полевая десорбция, бомбардировка быстрыми атомами, матричная лазерная ионизация десорбцией (MALDI), электроспрей. Детекторы ионов: цилиндр Фарадея, вторичный электронный умножитель, многоканальный усилитель. Масс-анализаторы: принципы действия, разрешающая способность.	2

		Γ	T
		Преимущества и недостатки. Аналитические	
		возможности масс-спектрометрии.	
		Молекулярные, осколочные и метастабильные	
		ионы. Комбинации масс-спектрометра с	
		хроматографами. Примеры использования масс-	
		спектрометрии.	
4.	Хроматография	Хроматографическое разделение смеси веществ.	2
	1 1	Физическая и химическая адсорбция.	
		Адсорбционно-десорбционное равновесие.	
		Ширина и форма хроматографического пика.	
		Разрешающая способность хроматографической	
		колонки. Устройство и схема работы	
		хроматографа. "Мертвое" время и время	
		удерживания. Набивные и капиллярные	
		колонки, их параметры. Оптимальные размеры и	
		разрешение хроматографической колонки.	
-	D	Детекторы.	2
5.	Радиоспектроскопия	Магнитные моменты электрона и ядер. ЯМР-	2
		активные ядра. Спин в постоянном магнитном	
		поле. Магнитный момент и ларморова	
		прецессия. Поглощение энергии ВЧ-поля.	
		Спектроскопия ядерного магнитного резонанса.	
		Химический сдвиг. Спин-спиновое	
		взаимодействие. Применение метода ЯМР.	
		Спектроскопия электронного парамагнитного	
		резонанса. Сверхтонкая структуры спектра ЭПР.	
		Структурные и динамические характеристики	
		вещества, определяемые методами ЭПР.	
		Принципиальная схема ЭПР-спектрометра.	
		Применение метода ЭПР.	
6.	Оптическая	Классы спектральных приборов.	2
	спектроскопия	Диспергирующие элементы спектральных	
	-	приборов и их разрешающая способность.	
		Прохождение света через поглощающую среду.	
		Сечение поглощения, молярный коэффициент	
		экстинкции. Закон Ламберта-Бугера-Бэра.	
		Спектры поглощения, испускания и рассеяния.	
		Люминесценция и флуоресценция.	
		Спектральные диапазоны и соответствующие им	
		степени свободы в молекулярных системах.	
		Вращательные спектры и микроволновая	
		спектроскопия. Колебательные спектры и	
		инфракрасная спектроскопия. Колебания	
		многоатомных молекул. Электронные переходы	
		и спектроскопия в видимом и ультрафиолетовом	
		диапазонах. Интенсивность электронно-	
		колебательных спектров: принцип Франка-	
		Кондона. Спектроскопия комбинационного	
		рассеяния света.	2
7.	Экологическая опасность	Особенности взаимодействия ксенобиотиков с	2
	отходов	абиотическими компонентами окружающей	
		среды. Особенности воздействия загрязняющих	
		веществ на живые организмы. Экологические,	
		физико-химические и токсикологические	

		особенности приоритетных стойких органических загрязнителей (СОЗ).	
8.	Классификация отходов по классу опасности и приоритетным признакам	Отходы 1-го, 2-го, 3-го, 4-го, 5-го класса опасности. Федеральный классификационный каталог отходов 2014 года. Классификация отходов по: - происхождению; - агрегатному и физическому состоянию; - опасным свойствам; - степени вредного воздействия на окружающую природную среду.	2
9.	ФЗ об отходах производства и потребления	Основные понятия. Правовое регулирование в области обращения с отходами. Требования к объектам размещения отходов. Требования к обращению с опасными отходами. Требования к транспортировке опасных отходов. Государственный кадастр отходов. Производственный контроль в области обращения с отходами.	2
	ИТОГО		18

8. Материально-техническое обеспечение дисциплины:

Комплект специализированной мебели; доска меловая; технические средства: системный блок HP PRO, монитор HP-V2072A, выдвижной проекционный экран LUMIEN, имеется выход в интернет. Microsoft Windows 7 корпоративная. Лицензия № 5190227, дата выдачи 16.03.2010 г.

MS Office 2007 Prof, Лицензия № 6842818, дата выдачи 07.09.2009 г.

9. Информационное обеспечение дисциплины

- a) программное обеспечение MicrosoftOffice 2003, 2007, 2010, Netware (Novell), OS/2 (IBM), SunOS (SunMicrosystems), Java Desktop System Sun Microsystems
- б) базы данных, информационно-справочные и поисковые системы Google, Yandex, Yahoo, Google Scholar, РИНЦ

10. Учебно-методическое обеспечение дисциплины:

а) основная литература

- 1. Иванкин, А.Н. Физико-химические методы анализа. Спектрометрия: учеб. пособие /А. Н. Иванкин, Г.Л. Олиференко, В.А. Беляков, Н.Л.Вострикова. М.: МГУЛ, 2016. 127 с. Электронный ресурс: https://mf.bmstu.ru/UserFiles/File/7_IVANKIN/spektrometria2016_Iv-Ol-Bel-Vos.pdf
- 2. Гиндуллина Т.М. Г 34 Хроматографические методы анализа: учебно-методическое пособие /Т.М. Гиндуллина, Н.М. Дубова Томск: Изд-во Томского политехнического университета, 2010. 80 с Электронный ресурс:

http://window.edu.ru/resource/704/74704/files/Chromatography posobie.pdf

3. Жерин И.И. Основы электрохимических методов анализа. Учебное пособие. Ч.1 / -Томск: Изд-во Томского политехнического университета, 2013, -101 с. Электронный ресурс: https://portal.tpu.ru/SHARED/g/GERINII/UMKD/Tab/UP%20elek.pdf

б) дополнительная литература

1. Методическое пособие по применению «Критериев отнесения опасных отходов к классам опасности для окружающей природной среды» /ФГУ «ЦЭКА», Министерсктво природных ресурсов РФ, 2003 г., Электронный ресурс:

https://www.waste.ru/uploads/library/denger waste.pdf

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Самостоятельная работа студента — это вид учебной деятельности, выполняемый учащимся без непосредственного контакта с преподавателем или управляемый преподавателем опосредовано через специальные учебные материалы; неотъемлемое обязательное звено процесса обучения, предусматривающее прежде всего индивидуальную работу учащихся в соответствии с установкой преподавателя или учебника, программы обучения.

В процессе самостоятельной деятельности студент должен научиться выделять познавательные задачи, выбирать способы их решения, выполнять операции контроля за правильностью решения поставленной задачи, совершенствовать навыки реализации теоретических знаний. Формирование умений и навыков самостоятельной работы студентов может протекать как на сознательной, так и на интуитивной основе. В первом случае исходной базой для правильной организации деятельности служат ясное понимание целей, задач, форм, методов работы, сознательный контроль за ее процессом и результата ми. Во втором случае преобладает смутное понимание, действие привычек, сформировавшихся под влиянием механических повторений, подражание и т. п.

Формы самостоятельной работы студентов - это письменные работы, изучение литературы и практическая деятельность.

Виды самостоятельной работы студентов:

- · контрольные работы;
- рефераты, доклады;
- эссе и практические задания;

Изучение литературы также можно подразделить на отдельные виды самостоятельной работы:

- · изучение базовой литературы учебников и монографий;
- · изучение дополнительной литературы периодические издания, специализированные книги, практикумы;
- · конспектирование изученных источников.

Практическая деятельность, как форма самостоятельной работы, включает в себя следующие виды самостоятельной работы:

- · подготовку научных докладов, рефератов и выступление с ними на заседаниях научного кружка студентов при кафедрах;
- · изготовление наглядных схем, диаграмм и т.п.;
- · подготовку отчетов по практике;
- участие в конкурсах, олимпиадах на лучшую работу студентов;
- выступление с докладами на научных студенческих конференциях.

Отдельно следует выделить подготовку к экзаменам и зачетам, как особый вид самостоятельной работы. Основное его отличие от других видов изучения литературы в том, что студенты готовятся к экзамену по имеющейся программе и ищут в различных источниках ответы на конкретные вопросы. Т.е. источники не изучаются сплошным методом, а выборочно по оглавлению и ключевым терминам (которые можно найти в конце большинства учебников).

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Паспорт ФОС (см. в Приложении 1)

13. Тест-вопросы для промежуточной аттестации, ГЭК и темы докладов/рефератов.

См. в приложении 2

13. Критерии оценивания

Оценка всех результатов освоения компетенций проводится в соответствии со шкалой международной балльно-рейтинговой системы ECTS. В соответствии с рассчитанной системой оценивания (*см. паспорт ФОС), учащийся набирает необходимые баллы.

Работа на занятии (за один час занятий): **макс 1 балл**. Оценка выставляется за присутствие и активную работу на семинаре или на лекции (лекции проводятся в интерактивной форме) – ответы на текущие вопросы, конспектирование, обсуждение.

Самостоятельная подготовка к занятию: макс **3 балла** за каждую тему. Тема подготовлена, есть презентация, результаты расчетов, студент свободно отвечает на вопросы - 2 балла; студент присутствует на занятии, участвует в обсуждении, но затрудняется ответить на вопросы -1 балл. Студент отсутствует или задание не подготовлено -0 баллов

Рубежная и итоговая аттестация:

Оценка производится в процентах от общего количества проверенных заданий, с последующим переводом процентов в баллы в соответствии с утвержденной БРС. Например, студент ответил правильно на 10 тестовых вопросов из 15, следовательно, он набрал 67%. Максимальный балл за рубежную аттестацию — 9, умножаем 0,67 на 9, получаем 6 баллов. Данный балл выставляется в общую ведомость и суммируется с остальными баллами. Студент считается успешно прошедшим рубежную или итоговую аттестацию, если сумма баллов за все виды деятельности на момент аттестации превышает 50% от максимально возможного балла.

Итоговая оценка за семестр складывается как сумма баллов за все виды деятельности студента (*см. паспорт ФОС) и может составить максимально **86 баллов**, то есть нижнюю границу оценки «отлично», категории В.

Итоговый экзамен сдается студентом добровольно, если им набран минимально возможный для аттестации балл — **51 балл**. В остальных случаях экзамен является обязательным и оценивается максимально в **14 баллов**, в результате суммарный балл выводится с учетом результата сдачи экзамена и итоговая оценка соответствует международной шкале ECTS. Если на экзамене студент набирает менее **7 баллов**, то экзамен считается не сданным и студент может сдать его повторно (пройти переэкзаменовку).

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Разработчики:

Профессор кафедр системной экологии

Калабин Г.А.

Руководитель программы

Зав. кафедрой ЭМиП, к.х.н., доцент

Mej

Харламова М.Д.

Приложение 1 Паспорт фонда оценочных средств по дисциплине «Физико-химические и аналитические методы контроля компонентов отходов» Направление <u>05.04.06 «Экология и природопользования»</u>

Контролируемые компетенции или ее части	Контролируемый раздел дисциплины	Контролируемая тема дисциплины	Наиме	нование о	ценоч	ного с	ередств	a		
ее части			Работа на занятии	Защита лабораторной работы	Промежуточна я аттестация	Реферат	Итоговое тестирование	Экзамен	Баллы темы	Баллы раздела
УК-7; ОПК-4	Классификация методов контроля и идентификации компонентов отходов		3		2		3	1		9
ПК-6	Методы элементного анализа		3		2	2	3	1		11
ПК-6	Масс-спектрометрия		3		2	2	3	1		11
ПК-6	Хроматография		3		2	2	3	1		11
ПК-6	Радиоспектроскопия		3		2	2	3	2		12
ПК-6	Оптическая спектроскопия		3		2	2	3	2		12
ПК-6	Экологическая опасность отходов		3		2	2	3	1		11
УК-7; ОПК-4	Классификация отходов по классу опасности и приоритетным признакам		3		2	2	3	2		12
ОПК-4	ФЗ об отходах производства и потребления		3		2	2	3	1		11
	Итого:		27		18	16	27	12		100

^{*}Примечание: Тема реферата выбирается по желанию студента из списка дополнительных тем для самостоятельного изучения и защищается в конце семестра. Полученный балл приплюсовывается к итоговому баллу за семестр.

Фонд оценочных средств

Вопросы промежуточной аттестации по курсу

- 1. Химические методы экологического контроля.
- 2. Физические методы экологического контроля.
- 3. Биологические методы экологического контроля.
- 4. Методы сожжения проб.
- 5. Атомно-адсорбционный анализ.
- 6. Рентгено-флуоресцентный анализ.
- 7. Нейтронно-активационный анализ.
- 8. Метод масс-спектрального анализа.
- 9. Детекторы ионов в МС.
- 10. Методы ионизации в МС.
- 11. Комбинация МС с хроматографией.
- 12. Принципы хроматографии.
- 13. Виды хроматографии.
- 14. Сочетание хроматографии с другими методами.
- 15. Принцип спектроскопии ЯМР.
- 16. ЯМР идентификация веществ.
- 17. ЯМР в количественном анализе.
- 18. Особенности ЯМР в приложении к контролю отходов.
- 19. Спектральные методы оптического диапазона.
- 20. Колебательные спектры.
- 21. Спектроскопия комбинационного рассеяния спектра.
- 22. УФ спектроскопия в анализе веществ.
- 23. Особенности взаимодействия ксенобиотиков с абиотическими компонентами окружающей среды.
- 24. Особенности воздействия загрязняющих веществ на живые организмы.
- 25. Экологические, физико-химические и токсикологические особенности приоритетных стойких органических загрязнителей (СОЗ).
- 26. Отходы 1-го, 2-го, 3-го, 4-го, 5-го класса опасности.
- 27. Федеральный классификационный каталог отходов.
- 28. Классификация отходов по происхождению.
- 29. Классификация отходов по опасным свойствам;
- 30. Классификация отходов по степени вредного воздействия на окружающую природную среду.

Темы рефератов по дисциплине «Методы экологического контроля и идентификации компонентов отходов

»:

- 1. Отходы целлюлозно-бумажной промышленности: происхождение, методы контроля, утилизация;
- 2. Отходы стекольной промышленности: происхождение, методы контроля, утилизация;
- 3. Отходы шинной промышленности: происхождение, методы контроля, утилизация;
- 4. Отходы металлургической промышленности: происхождение, методы контроля, утилизация;
- 5. Отходы производства ПЭТ: происхождение, методы контроля, утилизация;
- 6. Отходы текстильной промышленности: происхождение, методы контроля, утилизация;
- 7. Отходы лесопереработки: происхождение, методы контроля, утилизация;
- 8. Отходы нефтеперерабатывающей промышленности: происхождение, методы контроля, утилизация;

- 9. Отходы алюминиевой промышленности: происхождение, методы контроля, утилизация;
- 10. Отходы угольной промышленности: происхождение, методы контроля, утилизация;
- 11. Отходы фармацевтической промышленности: происхождение, методы контроля, утилизация;
- 12. Отходы производства мясной продукции: происхождение, методы контроля, утилизация;
- 13. Отходы производства молочной продукции: происхождение, методы контроля, утилизация;
- 14. Отходы кожевенных и обувных производств: происхождение, методы контроля, утилизация;
- 15. Отходы цементных производств: происхождение, методы контроля, утилизация;
- 16. Отходы производства хлеба: происхождение, методы контроля, утилизация;
- 17. Отходы гальванических производств: происхождение, методы контроля, утилизация;
- 18. Отходы производства сахара: происхождение, методы контроля, утилизация;
- 19. Отходы производства муки: происхождение, методы контроля, утилизация;
- 20. Отходы производства зерна: происхождение, методы контроля, утилизация;