Документ подписан простой электронной подписью	
Информация о владельце:	
ФИО: Ястребов Олег Арексиндрани State Autono	mous Educational Institution of Higher Education
Должность: Ректор	DIENDOUD UNIVEDOUTV OF DUCCIA
Дата подписания: 07.06.2023 17:43.25 ОРСЕЗ Т	FRIENDSHIP UNIVERSITY OF RUSSIA
Уникальный программный ключ:	RUDN University
ca953a0120d891083f939673078ef1a989dae18a	
	Institute of Medicine

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Physics course title

Recommended by the Didactic Council for the Education Field of:

31.05.01 General Medicine

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

General Medicine

higher education programme profile/specialisation title

2022-2023

1. COURSE GOAL(s)

The goal of the course "Physics" is to equip students with the basic knowledge about the basic laws and concepts of physics, necessary for the formation of skills of physical thinking, natural scientific outlook and practical activities of a doctor. Learn the basic physical laws. To develop the ability to use physical abstractions and models when one's considering medical and biological problems and taking into account the conditions of applicability of the assumptions made. Form the skill to quantify the accuracy of scientific forecasting and experimental results.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the course (module) "Physics" is aimed at the development of the following competences /competences in part: GC-1, GPC-4

Competence code	Competence descriptor	Competence formation indicators (within this course)
GC-1	Being able to implement critical analysis of problem situations based on systems approach, develop an action strategy.	GC-1.2. Assessing in a critical way the reliability of information sources; working with contradictory information from different sources.
GPC-4	Being able to use medical products prescribed by the medical procedure, as well as to carry out examinations of the patient for diagnosis.	GPC -4.2. Being able to evaluate the effectiveness and safety of the use of medical devices.

Table 2.1. List of competences that students acquire through the course study

2. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the <u>core</u>/variable/elective* component of (B1) block of the higher educational programme curriculum.

* - Underline whatever applicable.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Competence	Competence	Previous	Subsequent
code	descriptor	courses/modules*	courses/modules*

001	D 11/	D: 1 : /
CC-1	Being able to	Biochemistry
	implement critical	Hygiene
	analysis of	Public health and
	problem situations	healthcare, healthcare
	based on systems	economics
	approach, develop	Epidemiology
	an action strategy.	Neurology, Medical
		Biochemistry
		Hygiene
		Public health and
		healthcare, healthcare
		economics
		Epidemiology
		Neurology, medical
		genetics, neurosurgery
		Hospital therapy
		Endocrinology
		Infectious diseases
		Phthisiology
		Medical Elementology
		Allergology
		Introduction to
	Daina ahla ta maa	Nutritionology
GPC-4	Being able to use	General surgery
	medical devices	Neurology, medical
	provided for by	genetics, neurosurgery
	the procedure for	Faculty therapy
	providing medical	Endocrinology
	care, as well as to	Obstetrics and gynecology
	conduct patient	Emergency Medical
	examinations in	Manipulation Practice
	order to determine	(Simulation Center)
	a diagnosis.	
	GPC-4. Being	
	able to use	
	medical devices	
	provided for by	
	the procedure for	
	medical care, and	
	conduct patient	
	examinations in	
	order to determine	
1	a diagnosis	

* To be filled in according to the competence matrix of the higher education programme.

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course "Physics" is 2 credits (72 academic hours).

Table 4.1. Types of academic activities during the periods of higher education programme mastering (<u>full-time training</u>)*

Type of academic activities		Total academic	Semesters/training modules			
		hours	2			
Contact academic hours		51	51			
including:		-	-	-	-	-
Lectures (LC)		17	17			
Lab work (LW)		34	34			
Seminars		-				
(workshops/tutorials) (S)						
Self-studies		21	21			
Evaluation and assessment (exam/passing/failing grade)						
Course workload	academic hours	72	72			
	credits	2	2			

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Introductory lecture. Fundamentals of vector and mathematical analysis	Methods of processing of measurement results. Direct and indirect measurements. Theory of errors. Types of errors: gross, systematic, random; absolute, relative. Rules for registration of laboratory work. The order of writing the abstract. Safety at work in the physical laboratory. Basic concepts of mathematical and vector analysis. Derivatives and differentials. Rules for adding (subtracting) and multiplying vectors. Integration rules. Calculations of indefinite and definite integrals.	LC, LW
Mechanics.	Introduction. Definitions (kinematics, dynamics, statics, trajectory, reference systems, equation of motion).	LC, LW

D		
Dynamics,	Rectilinear motion. Circular motion. Inertia.	
mechanical	Force of inertia. Dynamics of rotational motion.	
oscillations	Moment of inertia. The moment of impulse and	
	the law of its preservation. Gravitational	
	interaction. Acceleration of gravity.	
	Weightlessness. Harmonic vibrations.	
	Gravitational interaction. Acceleration of gravity.	
	Work and energy. Potential field, the work of	LC, LW
	conservative forces, potential energy. Kinetic	
	energy. The law of conservation of energy.	
	Rotational motion of a rigid body. A moment of	
	strength. The basic equation of the dynamics of	
	rotational motion. The equation of motion of the	
	angular momentum. The law of conservation of	
	the angular momentum.	
The waves.	Mechanical waves. The plane wave equation.	LC, LW
Sound wave	Parameters of vibrations and waves. Energy	
	characteristics. The Doppler effect and its use in	
	medicine. Sound. Types of sounds. A complex	
	tone and its acoustic spectrum. Wave resistance.	
	Objective(physical) and subjective (biological)	
	characteristics of sound. Infrasound. Ultrasound,	
	the physical basis of application in medicine.	
Undrastatia	The viscosity. Methods for determining the	LC, LW
Hydrostatic. Molecular	· · ·	LC, LW
	viscosity of liquids. Stationary flow, laminar and	
Physics	turbulent flows. Newton's formula, Newtonian	
	and non-Newtonian liquids. The Poiseuille	
	formula. The Reynolds number. Features of	
	hemodynamics in the main, resistive, capillary	
	and venous vessels of the circulatory model.	
	Work and warmth. The first beginning of	
	thermodynamics. Heat capacity. An adiabatic	
	process (Poisson's formula). The basic equation	
	of molecular kinetic theory. The heat and motion	
	of molecules. The first principle of	
	thermodynamics applied to the human body. The	
	role of nutrition and respiration. Internal energy.	
	Internal pressure and surface tension in the fluid.	
	-	
	Diffusion. Osmosis. Wetting Capillary	
	phenomena.	ICIW
Electricity and	Electric charges and their properties. Coulomb's	LC, LW
magnetism	law. The electrostatic field. Field strength. Power	
	lines. Potential. Equipotential surfaces. The	
	relationship between tension and potential.	
	Conductors in an electrostatic field. Electrical	
	capacity. Capacitors, their connection. The	
	energy of the electric field. Current strength and	
		ı

	current density. Electromotive force (EMF.). of the EMF source. Ohm's law for a homogeneous,	
	inhomogeneous section of the circuit, for a closed	
	circuit. The Kirchhoff rules. Ohm's laws and	
	Kirchhoff's rules for direct current. Electric and	
	magnetic fields, currents and electromagnetic	
	fields. The total resistance (impedance) in	
	electrical circuits. Ohm's law for alternating	
	current and voltage. Diathermy. UHF therapy.	
	Microwave therapy. Physical foundations of	
	rheography and its application in medicine.	
Optics	Geometric optics. The phenomenon of total	LC, LW
•	internal reflection of light. Refractometry. Fiber	
	optics. The eye is an optical system. Microscopy.	
	Wave optics. Electromagnetic waves. The scale	
	of electromagnetic waves. Energy characteristics	
	of light fluxes: the flux of light radiation and the	
	flux density (intensity). Diffraction grating. The	
	resolution of optical devices and the eye. The	
	polarization of light. Polarization microscopy.	
	Polarimetry. The interaction of light with matter.	
	Light scattering. Light absorption. The Booger-	
	Lambert-Behr law.	
Electromagnetic	Thermal radiation. Characteristics and laws of	LC, LW
radiation of the	thermal radiation. The spectrum of black body	
optical range	radiation. The radiation of the Sun. Application	
	of Kirchhoff's law for measuring brightness	
	temperature Calculation of the radiation	
	temperature based on the Stefan-Boltzmann law.	
	Lasers and their application.	
Atomic	Atomic structure. Nuclear force. Isotopes.	LC, LW
structure. EPR.	Electronic paramagnetic resonance. Nuclear	
NMR. Ionizing	magnetic resonance. Principles of magnetic	
radiation.	resonance imaging. Electron-positron	
	tomography.	
	Ultraviolet radiation and its application. X-ray	
	radiation and its use in land management.	
	Radioactive radiation. Detection and dosimetry	
	of ionizing radiation	

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	A lecture hall for lecture-type classes, equipped with a set of specialised furniture; board (screen) and technical means of multimedia presentations.	
Lab work	A classroom for laboratory work, individual consultations, current and mid-term assessment; equipped with a set of specialised furniture and machinery.	List of specialised laboratory equipment, machinery, stands, etc.
Seminar	A classroom for conducting seminars, group and individual consultations, current and mid- term assessment; equipped with a set of specialised furniture and technical means for multimedia presentations.	List of specialised equipment, stands, visual posters, etc.
Computer Lab	A classroom for conducting classes, group and individual consultations, current and mid-term assessment, equipped with personal computers (in the amount ofpcs), a board (screen) and technical means of multimedia presentations.	List of specialised software installed on computers for mastering the discipline
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment.	

* The premises for students' self-studies are subject to <u>MANDATORY</u> mention

7. RESOURCES RECOMMENDED FOR COURSE STUDY *Main readings:*

- 1. Samuel. J Ling, Jeff Sanny, William Moebs (2016), "University Physics Vol 1", Openstax, Rice University, .
- 2. Samuel. J Ling, Jeff Sanny, William Moebs (2016), "University Physics Vol 2", Openstax, Rice University, .
- 3. Radj Kumar, G.L. Mittal (1997), "Physics", Nageen Prakasham, Meerut.
- 4. Tom Duncan, Heather Kennett, (2014) "**Cambridge IGCSE Physics Third Edition**", Hodder Education, an Hachette UK Company.
- 5. Ahmed Mohammed (2008)," **Physics for Medical Students**", Wheatmark, 610 East Delano Street, suite 104, Tucsun, Arisona 85705 U.S.A.

6. Karnilovich S. P., Yahya Shaar, "**The process of solving problems in physics**". Study guide for foreign students of RUDN and abroad. M.: RUDN, 2019. p.64

Additional readings:

- 1. V.M. Yavorsky, A.A. Pinsky. Fundamentals of Physics. -M .: Nauka, 2007.V..
- **2.** N.I. Golovtsov, I.M. Kashirsky, A.P. Loginov, N.A. Kovalchukov, A.K. Nikitin, T.A. Ryzhov. Tasks in physics. –M.: Publishing house of RUDN University, 2008. -159c.2.
- 3. Konev S.V., Volotovsky I.D. Photobiology // Minsk: BSU, 1974 285 p.
- **4.** Nerpin S.V., Chudnovsky A.F. Energy and mass transfer in the system "plant-soil-air" // L .:

Hydrometeoizdat, 1975. - 358 s.

- 5. Vladimirov Yu.A. and others. Biophysics // M .: Medicine, 1991 427 c.
- c) software: OC MS Windows (XP и выше), MS Office 2010, Mentor, TUIS.

d) databases, reference and retrieval systems

- 1. «Soros Educational Journal» <u>http://www.issep.rssi.ru</u>
- 2. Project "Ramler-science" natural sciences <u>http://www . nature .ru</u> 3. Electronic version of the journal "Science" <u>http://www . sciencemag .org</u>

Training toolkit for self- studies to master the course *:

1. The set of lectures on the course "Physics"

* The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (GC-1, GPC-4) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Deputy Director of

the Institute of Physical

Research and Technology

L.V. Konovaltseva

position, department

name and surname

Director		
of the Institute of Physical		
Research and Technology		O.T. Loza
position, department	signature	name and surname
HEAD OF EDUCATIONAL DEPAR f Physical Research and	RTMENT:	
Technology		O.T. Loza
name of department	signature	name and surname
HEAD OF HIGHER EDUCATION PROGE First Deputy Director of MI for Academic Affairs		I.V. Radysh
position, department	signature	name and surname