Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Александрович

Должность: Ректор

Дата подписания: 13.10.2022 11:29:14 Уникальный программный ключ: ca953a0120d891083f939673078ef1a989dae18a

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Учебно-научный институт гравитации и космологии

(наименование основного учебного подразделения (ОУП) – разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Философские вопросы естествознания

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

03.04.02 Физика

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

Гравитация, космология и релятивистская астрофизика. Реализуется на английском языке

(наименование (профиль/специализация) ОП ВО)

1. Цели и задачи дисциплины:

Курс направлен на теоретический обзор и методологическое обобщение разрозненных знаний, полученных ранее студентами в отдельных разделах (теориях) стандартных курсов общей и теоретической физики. Его назначение состоит в интеграции общего и специального образования будущих физиков и формировании единой физической картины мира как фундаментальной и обобщенной модели природы.

- 2. Место дисциплины в структуре ООП: Дисциплина «Философские вопросы естествознания» относится к дисциплинам базовой части общенаучного цикла основной образовательной программы по направлению 03.04.02 «ФИЗИКА». Предполагается владение студентом знаниями из общей физики в соответствии со следующими компетенциями:
 - способность оперировать углубленными знаниями в области математики и естественных наук (УК-1);
 - способность оперировать углубленными знаниями в области гуманитарных и экономических наук (УК-2);
 - -способность самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности знания и умения, в том числе в новых областях, непосредственно не связанных со сферой деятельности, расширять и углублять своё научное мировоззрение (УК-3);
 - -способность совершенствовать и развивать свой интеллектуальный и общекультурный уровень, добиваться нравственного и физического совершенствования своей личности (УК-6).

(указывается цикл, к которому относится дисциплина; формулируются требования к входным знаниям, умениям и компетенциям студента, необходимым для ее изучения; определяются дисциплины, для которых данная дисциплина является предшествующей)

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- иметь углубленные знания в области математики и естественных наук (УК-1). (указываются в соответствии с $\Phi \Gamma OCBO$)

В результате изучения дисциплины студент должен:

Знать: методологию физики

Уметь: использовать в научном процессе знание фундаментальных основ, современных достижений и тенденций научной деятельности, профессионально оформлять и представлять результаты исследований;

Владеть: основами методологии научного познания при изучении различных уровней организации материи, пространства и времени.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 2_ зачетных единицы.

Вид учебной работы	Всего	Семестры			
	часов	1	2	3	4
Аудиторные занятия (всего)	26	26			
В том числе:	-	-	-	-	-
Лекции	26	26			
Практические занятия (ПЗ)					

Семинары (С)						
Лабораторные работы (ЛР)						
Самостоятельная работа (всего)		42	42			
В том числе:		-	-	-	-	-
Курсовой проект (работа)						
Расчетно-графические работы						
Реферат		20	20			
Другие виды самостоятельной работь	ı					
Подготовка в семинарским занятиям		22	22			
Вид промежуточной аттестации (зачет, экзамен)		зачет				
Общая трудоемкость	72 часа	72	72			
	2 зач. ед.	2	2			

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела
п/п	дисциплины	
1.	Общие представления о стратегиях и методах научного познания природы	Принцип относительности результатов познания по отношению к средствам наблюдения. Классический и неклассический подходы к оценке роли исследователя в познании природы. Приоритеты и возможности исследователя в зависимости от выбранной стратегии познания. Моделирование как общий метод естественнонаучного познании. Модели объектов и модели состояний.
2.	Взаимоотношения объекта и его окружения	Фейнмановский подход к описанию природы — объект и «остаток Вселенной». Роль окружения в формировании состояния объекта. Контролируемые и стохастические воздействия. Регулярные и случайные характеристики объекта. Проблема измерений в классической и неклассической физике. Возможность одновременных точных измерений нескольких характеристик. Реальные измерения. Современная трактовка экспериментальной науки.
3.	Классическая физика - основные представления и модели	Фундаментальные модели классической физики – корпускула и континуум. Физические величины – наблюдаемые. Особенности фундаментальных характеристик. Инвариантность и сохранение. Перестановочность и аддитивность физических характеристик объектов. Фундаментальные физические характеристики объектов в моделях корпускулы и континуума (масса, импульс, энергия, момент, плотности характеристик).

4.	некогерентная	Общая идея когерентности. Суперпозиция базисных и небазисных классических состояний. Аддитивная суперпозиция и интерференция. Роль когерентности в механике и электродинамике. Когерентность в модельных и реальных процессах. Время когерентности.
5.	Релятивистские представления как основа интеграции классических теорий физики	Событие и процесс. Проблема синхронизации часов как фундаментальная проблема пространственновременного описания событий. Мир событий. Четырехмерные скаляры и векторы. Фундаментальные релятивистские физические величины — вектор энергииимпульса.
6.	Основные представления и модели неклассической физики	Фейнмановский подход к описанию природы в неклассической интерпретации. Идея неконтролируемости внешнего воздействия — стохастичность, случайные значения наблюдаемых и их флуктуации. Плотность вероятности и функции распределения. Моделирование окружения (макрообстановки). Фундаментальные модели неклассической физики — макросостояние (тепловые состояния) и микросостояние (квантовые состояния). Неклассические общефизические представления в других естественных науках.
7.	фундаментальные взаимодействия	Особенности микросостояний в субатомном мире. Внутренние квантовые числа как характеристики микросостояний. Частицы и античастицы. Физический вакуум. Принцип перекрестной симметрии. Критерий фундаментальности взаимодействий. Калибровочная инвариантность. Сильные и слабые нефундаментальные ядерные силы. Кварки, лептоны и кванты фундаментальных полей. Единое электрослабое взаимодействие. Стандартная модель элементарных частиц.

(Содержание указывается в дидактических единицах. По усмотрению разработчиков материал может излагаться не в форме таблицы)

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) Не предусмолтрены.

5.3. Разделы дисциплины и виды занятий

No	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Семин	CPC	Bce-
п/п			зан.	зан.			ГО
							час.
1.	Общие представления о стратегиях и методах научного познания природы	4				6	10
2.	Взаимоотношения объекта и его окружения	4				6	10

3	Классическая физика - основные представления и модели	4		6	10
4.	Когерентная и некогерентная суперпозиция в классической физике	4		6	10
5.	Релятивистские представления как основа интеграции классических теорий физики	4		6	10
6.	Основные представления и модели неклассической физики	4		6	10
7.	Микросостояния в субатомном мире и фундаментальные взаимодействия	2		6	8

6. Лабораторный практикум

Лабораторный практикум не предусмотрен.

7. Примерная тематика курсовых проектов (работ)

Курсовые работы не предусмотрены.

8. Учебно-методическое и информационное обеспечение дисциплины:

- а) основная литература
 - 1) Грин Б. Ткань космоса. М.: Книжный дом Либроком, 2009. -608 с.
 - 2) *Пенроуз Р.* Путь к реальности, или законы, управляющие Вселенной. Москва-Ижевск: R&C Dynamics, 2007- 911 с.
 - 3) *Вайнберг С.* Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы. Пер. с англ. Изд.2 М: Едиториал УРСС, 2008. 256 с.
 - 4) Эйнштейн и философия науки. М: Наука, 1979. 568 с.

б) дополнительная литература

- 1. Джеммер М. Понятие массы в классической и современной физике. М.: Прогресс, 1967. (Переиздание: М., Едиториал УРСС, 2003, ISBN 5-354-00363-6)
- 2. *Овчинников Н.Ф.* Методологические принципы в истории научной мысли. Изд.2, стереот. М., Едиториал УРСС, 2003. 296 с.
- 3. *Хокинг С., Млодинов Л.* Кратчайшая история времени. М., Едиториал УРСС , 2011. 180 с.
- 4. Contemporary philosophy of physics. Ed. *Dean Rickles*. Burlington, Ashgate publishing company, 2008, -386 p.p.
- 5. Longair M. Theoretical concepts in physics. Camb. Univ. Press, 2001, 366 p.p.
- 6. The nature of matter. Ed. J. Mulvey. Clarendon press, Oxford, 1981.- 202 p.p.
- 7. Степин В.С. Теоретическое знание. М: Прогресс-традиция, 2000. -743 с.

9. Материально-техническое обеспечение дисциплины:

При чтении лекций и презентации рефератов используются современные информационные технологии.

10. Методические рекомендации по организации изучения дисциплины:

Курс состоит из введения и двух моделей:

Модуль 1: Методологический анализ идей классической физики.

Модуль 2: Методологический анализ идей неклассической физики.

В процессе изучения материала студенты знакомятся с литературными источниками по предлагаемой тематике и выполняют самостоятельную работу над рефератами. По окончании курса проводится итоговый контроль знаний (зачет и защита рефератов).

(указываются рекомендуемые модули внутри дисциплины или междисциплинарные модули, в состав которых она может входить, образовательные технологии, а также примеры оценочных средств для текущего контроля успеваемости и промежуточной аттестации)

Разработчики:		
доцент	<u>УНИГК</u>	В.В. Кассандров
Должность,	название кафедры,	(инициалы, фамилия)
Заведующий	<u>УНИГК</u> название кафедры,	А.П. Ефремов инициалы, фамилия