Сингулярные решения квазилинейных эллиптических и эволюционных уравнений
Сингулярные решения квазилинейных эллиптических и эволюционных уравнений

В задаче об описании асимптотических свойств обобщенных решений квазилинейных параболических уравнений в окрестности времени сингулярного обострения граничного режима (т. е. граничных данных) к настоящему времени найдены предельные ограничения сверху на интенсивность обострения, приводящие к решениям с ненулевой, но конечной мерой множества «blow-up», т.е описаны так называемые S-режимы. Для более интенсивных граничных режимов (так называемых HS-режимов) найдены точные оценки сверху распространения волны сингулярности. В рамках проекта предполагается изучить произвольные менее сингулярные, чем S-режимы, так называемые LS-режимы, и установить точные оценки сверху на предельный профиль решения в окрестности времени обострения в зависимости от  асимптотики соответствующего LS-режима. На основе этого анализа планируется изучит свойства «больших» решений различных классов уравнений типа нестационарной диффузии-нелинейной абсорбции с вырождающимся в некоторый конечный момент времени абсорбционным потенциалом. Предполагается дать точное описание распространения особенностей «больших» решений с границы области внутрь области вдоль многообразия вырождения абсорбционного потенциала. Кроме того, для различных классов эллиптических и параболических уравнений типа стационарной и нестационарной диффузии-нелинейной абсорбции с абсорбционным потенциалом, вырождающимся на некоторых многообразиях, выходящих на границу  соответствующей области или начальную плоскость, предполагается установить точные необходимые и достаточные условия (а в некоторых случаях и критерий) на характер вырождения потенциала, гарантирующие существование или несуществование суперсингулярных решений с точечной сингулярностью в точке из пересечения указанного выше многообразия и границы соответствующей области или начальной плоскости.

Предполагается рассмотреть ряд задач о существовании и несуществовании глобальных решений различных классов стационарных и эволюционных уравнений с нелинейным источником в духе теорем Фуджиты. Так, планируется установить условия эффекта «blow-up» решений, условия устранимости особенностей, установить условия стабилизации решений на бесконечности для широких классов эллиптических, параболических и некоторых бестипных уравнений высокого порядка. Будет продолжено изучение эффекта «blow-up» решений задачи Коши и задач в четверти пространства для модельных нелинейных уравнений современной математической физики: обобщенных уравнений Хохлова-Заболоцкой, уравнений ионно-звуковых волн в плазме, уравнений Розенау-Бюргерса, уравнений типа Бенджамина-Бона-Махони-Бюргерса, а также различных вариантов уравнений акустических и электромагнитных волн в сплошных средах. Будет изучено разрушение и мгновенное разрушение решений  нелинейных эволюционных уравнений с некоэрцитивными нелинейностями вида производной от квадратичной нелинейности.

Планируется также изучить влияние поведения коэффициентов при больших значениях времени на глобальную разрешимость начально-краевых задач для нелинейных параболических уравнений с нелокальными членами в уравнении и граничном условии. При этом предполагается исследовать задачи с нелокальными членами как по пространственным переменным так и по времени.
Будут также изучены близкие по методам исследований в теории сингулярных решений задачи об усреднении нелинейных эллиптических уравнений. Так для семейств эллиптических операторов с нестандартным ростом при наличии так называемого эффекта Лаврентьева будет построена предельная усредненная задача на основе подходящего обобщения понятия G-сходимости. Для описания условий роста усредненных операторов будет использована Г-сходимость анизотропных интегральных функционалов. Также планируется исследовать асимптотическое поведение решений вариационных задач с неявными ограничениями и вариационных неравенств с двусторонними препятствиями в переменных  областях.

Будет исследована суммируемость энтропийных решений нелинейных эллиптических уравнений с правой частью из слабых логарифмических классов.

Цели проекта
  • Изучается предельное поведение решений квазилинейных параболических уравнений в окрестности времени сингулярного обострения граничного режима.
  • Рассматриваются вопросы существования и несуществования глобальных решений различных классов стационарных и эволюционных уравнений с нелинейным источником.
  • Изучаются условия существования суперсингулярных и больших решений уравнений типа диффузии-нелинейной абсорбции с вырождающимся абсорбционным потенциалом.
  • Изучаются вопросы усреднения семейств граничных задач для нелинейных эллиптических уравнений и усреднения вариационных неравенств.
Руководитель проекта Все участники
empty-photo

Шишков Андрей Евгеньевич

Ученая степень основная - Доктор физико-математических наук
Ученое звание - Профессор
Результаты проекта
Качественная теория нелинейных уравнений в частных производных
Приложения к нелинейным задачам математической физики