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Введение

Актуальность темы исследования

Актуальность исследования заключается в отсутствии единого универсаль-
ного подхода к расчету оптических систем, таких как линзыидифракционные
решетки. В современных условиях каждая специфичная задача требует
индивидуального подхода, что значительно усложняет моделирование и оп-
тимизацию оптических устройств. Это особенно важно в контексте развития
технологий, где необходимы высокоточные расчеты для создания новых оп-
тических элементов и улучшения их характеристик.
Дифракционные решетки – ключевые компоненты спектральных приборов,

лазерных систем и сенсоров, однако для их проектирования до сих пор не
существует универсального подхода, объединяющего точность электродина-
мических моделей и инженерную простоту лучевой оптики.
Одновременно быстрый прогресс в области машинного обучения, особен-

но Physics-Informed Neural Networks (PINN), открывает возможность прямого
включения физических законов в процесс оптимизации.
В сочетании с классическими методами геометрической (лучевой) оптики

это обещает создать гибкий и вычислительно легкий инструментарий для
моделирования трансформирующих сред нового поколения.
Текущие решения зачастую ограничены по области применения или требу-

ют значительных вычислительных ресурсов. Исследование новых подходов,
таких как нейросетевые методы, в сочетании с традиционными численными
методами, может дать возможность преодолеть эти ограничения и предло-
жить более универсальные и гибкие инструменты для решения задач оптики
и фотоники.
Таким образом, работа направлена на решение актуальной научной пробле-

мы – поиск эффективных методов расчета и моделирования дифракционных
систем, что имеет значительное значение для фундаментальных и приклад-
ных исследований в области оптики.
Работа посвящена разработке и комплексному анализу моделей распростра-

нения лучей с целью оптимизации расчета характеристик трансформирую-
щих сред на основе методов лучевой оптики и нейронных сетей.
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Степень разработанности темы исследования

В настоящее время тема моделирования трансформирующих сред на осно-
ве лучевой оптики находится на стадии активного развития. Традиционные
аналитические методы детально описаны в работах Борна, Тихонравова и др.,
но их применение для решеток с большими периодами или в трансформиру-
ющих средах остается громоздким. Существующие исследования предлагают
разнообразныеподходы, включаячисленныеметодыиклассическиерешения
дифференциальных уравнений, однако универсального подхода, учитываю-
щего все особенности, покане сформировано.Недавниеисследования активно
внедряют нейронные сети, такие как нейронные сети, основанные на физике
(Physics-informed neural networks, PINN), что открывает новые горизонты в точ-
ности и скорости моделирования. Первые попытки интеграции нейронных
сетей в задачу расчета трансформирующих средпоявились лишь в 2019–2024г.
Однако, несмотря на значительный прогресс, остаются нерешенными вопро-
сы комплексного учета трансформирующих сред и оптимизации геометрии
решеток.
Таким образом, степень разработанности темы можно охарактеризовать

как промежуточную: уже есть серьезные наработки, но остается широкое поле
для дальнейших исследований и внедрения новых подходов.

Цели и задачи

Целью является разработка гибридного мультимодельного вычислитель-
ного подхода к моделированию трансформирующих сред, объединяющего
лучевую оптику и методы машинного обучения, и экспериментальное под-
тверждение его эффективности.
Для достижения этой цели в работе решаются следующие задачи:

— Систематизация существующих численных и аналитических методов
расчета трансформирующих сред, выделение ограничения лучевого
приближения;

— Моделирование дифракции на основе численных методов решения диф-
ференциальных уравнений FSM (Fast sweeping method);
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— Разработка и применение нейронной сети, основанной на физике
(Physics-informed neural networks, PINN), с использованием библиотеки
NeuralPDE.jl для решения задачи моделирования дифракции;

— Сравнение точности, скорости и сложности реализации обоих подходов;

— Проведение серии численных экспериментов с различными параметра-
ми трансформирующих сред.

Научная новизна

Научная новизна состоит в разработке и реализации мультимодельного
подхода к моделированию дифракционных систем в трансформирующих сре-
дах на основе уравнения эйконала, сочетающего численный метод быстрого
«подметания» (Fast Sweeping Method, FSM) и физически информированные
нейронные сети (PINN) в инфраструктуре SciML/NeuralPDE.jl. Получены следу-
ющие результаты:

1. Разработаны и программно реализованы две взаимодополняющие
вычислительные схемы решения уравнения эйконала для трансфор-
мирующих сред (FSM и PINN) с единым контуром визуализации фронтов
и лучей на тестовых профилях (линзы Люнеберга, Максвелла).

2. Выполнена адаптация постановки PINN к задачам геометрической
оптики с неоднородным показателем преломления, включая прак-
тические решения ограничений Symbolics/NeuralPDE для задания
кусочно-непрерывных профилей.

3. Проведён сопоставительный анализ свойств FSM и PINN применительно
к задачам моделирования трансформирующих сред (требования к зави-
симостямиинфраструктуре, устойчивостьпостановки, удобство задания
граничных условий и профилей среды, визуализация), выявлены обла-
сти предпочтимости каждого подхода.

4. Показана воспроизводимость расчётов и визуализаций в открытой среде
Julia/SciML с возможностью переноса на типовые задачи оптического
проектирования.
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Теоретическая и практическая значимость работы

Полученные результаты могут быть полезными для производителей
оптических компонентов и систем, в том числе для разработчиков радио-
локационных систем, так как метод ускоряет проектирование и оптимизацию
новых типов линз и трансформирующих сред, существенно сокращая цикл
разработки и вывода продукции на рынок.
Кроме того, методика представляет интерес для исследовательских лабора-

торий и научных коллективов, так как мультимодельный подход позволяет
усовершенствовать процессы проектирования оптических элементов за счет
сокращения времени расчета, упрощения методов оптимизации и возмож-
ности выполнения расчетов на персональных компьютерах, что критично
для научных лабораторий без доступа к ресурсам высокопроизводительных
вычислительных кластеров.

Методология и методы исследования

В научно-квалификационной работе применен мультимодельный подход,
объединяющий численные алгоритмы (Fast Sweeping Method, FSM) и обучен-
ныенафизических уравнениях нейросетевыемодели (Physics-InformedNeural
Networks на базе NeuralPDE.jl).

Положения, выносимые на защиту

1. Разработанмультимодельныйподход кмоделированиюдифракционных
систем в трансформирующих средах, основанный на сочетании числен-
ного метода быстрого распространения фронта (Fast Sweeping Method,
FSM)ифизическиинформированныхнейронныхсетей (Physics-Informed
Neural Networks, PINN) в инфраструктуре библиотеки NeuralPDE.jl.

2. Сформулирована математическая постановка задачи моделирования
распространения лучей в трансформирующих средах на основе уравне-
ния эйконала, адаптированная для использования в среде PINN с учётом
физических ограничений и профиля показателя преломления.
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3. Выполненапрограммнаяреализацияиметодикавизуализациирезульта-
тов моделирования в виде полей распространения и волновых фронтов
для типовых оптических систем (линзы Люнеберга, Максвелла, Итона).

4. Выполнен сравнительный анализ классических численных и нейро-
сетевых подходов (FSM и PINN), демонстрирующие их применимость
к различным классам задач моделирования дифракционных систем,
включая оценку вычислительных затрат, устойчивости и визуальной
интерпретируемости решений.

5. Выработаны практические рекомендации по выбору и комбинированию
численных и нейросетевых методов для решения задач лучевой оптики
в трансформирующих средах, основанные на обобщении проведённых
экспериментов.

Степень достоверности и апробация результатов

Достоверность полученных результатов обеспечивается правильностью вы-
бранных методов и их перекрестной верификацией, а также численными
экспериментами с применением численного анализа.
Основные результаты работы представлены на всероссийских и междуна-

родных конференциях:

— международная научная конференция «The XXVII Saratov fall meeting
2023 (SFM’23) XXVII International School for Junior Scientists and Students
on Optics, Laser Physics & Biophotonics» (г. Саратов, Саратовский государ-
ственный университет, 2023 г.);

— всероссийская конференция с международным участием
«Информационно-телекоммуникационные технологии и матема-
тическое моделирование высокотехнологичных систем» (г. Москва,
РУДН, 2023–2024 г.).

Основные результаты опубликованы в ведущих научных журналах:
Programming and Computer Software, Discrete and ContinuousModels and Applied
Computational Science, Программирование, а также в трудах всероссийской
конференции с международным участием.
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Также основные результаты докладывались на научном семинаре «Мате-
матическое моделирование» кафедры прикладной информатики и теории
вероятностей РУДН.
Основные результаты изложены в 3 работах, в том числе в изданиях, входя-

щих в базу данных Scopus, Web of Science, список ВАК категорий К-1, К-2 и в 3
свидетельствах о государственной регистрации программ для ЭВМ.

Обозначения и соглашения

Основным математическим аппаратом, используемым в работе, является
аппарат векторного анализа и тензорного анализа. Краткие сведения из век-
торного анализа представлены в приложении C).
Греческие индексы (𝛼, 𝛽) будут относиться к четырёхмерному пространству

и в компонентном виде будут иметь следующие значения: 𝛼 = 0, 3. Латинские
индексы из середины алфавита (𝑖, 𝑗, 𝑘) будут относиться к трёхмерному про-
странству и в компонентном виде будут иметь следующие значения: 𝑖 = 1, 3.
Для записи уравнений электродинамики в работе преимущественно исполь-

зуется система СГС симметричная [74].
Все векторные величины выделены полужирнымшрифтом, например, ра-

диус вектор точки𝑋 обозначается как𝐱 = (𝑥1, 𝑥2, 𝑥3)𝑇 = (𝑥, 𝑦, 𝑧)𝑇. Все векторы
считаются столбцами и их компоненты номеруются верхними индексами.
Функция эйконала обозначена как 𝑢(𝐱), коэффициент преломления среды

— 𝑛(𝐱).
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Глава 1. Трансформирующие среды

1.1. Методы моделирования оптических
трансформирующих сред

Оптические трансформирующие среды — это среды, изменяющие про-
странственное распределение направления и плотности потока света. К ним
относятся призмы, зеркальные и градиентные структуры, волноводные пере-
ходы, а также композиционныематериалы с пространственно-неоднородным
показателемпреломления. Такие средыприменяютсядля управленияформой
волнового фронта, концентрации энергии и перенаправления лучей в задан-
ные области пространства.
В основе их теоретического описания лежит геометрическая оптика — при-

ближение волновой теории света, применимое в случае, когда характерные
размеры неоднородностей и элементов системы значительно превышают
длину волны излучения.
Моделирование оптических трансформирующих сред в приближении гео-

метрической оптики основано на представлении света как совокупности
лучей, которые распространяются в пространстве по законам преломления
и отражения, подчиняясь принципуФерма. Этот подход особенно эффективен
для систем, размеры которых значительно превышают длину волны излуче-
ния, а пространственные изменения показателя преломления происходят
плавно.
Геометрическая оптика рассматривает свет как поток энергии, движущийся

вдоль направлений, перпендикулярных волновым фронтам — поверхностям,
все точки которых колеблются в одинаковой фазе. В этом приближении иг-
норируется волновая природа света, а параметры электромагнитного поля
заменяются геометрическими характеристиками — направлением и поло-
жением лучей, плотностью потока, а также оптической длиной пути. Таким
образом, геометрическаяоптикаобеспечиваетпростуюиинтуитивнуюмодель
распространения света, позволяющую описывать фокусировку, коллимацию,
расхождение и преобразование пучков без учёта интерференционных и ди-
фракционных эффектов.
Основу геометрической оптики составляет принцип Ферма (1662) — по-

стулат, согласно которому свет выбирает путь, для прохождения которого
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требуется минимальное время. Величина времени распространения света
между двумя точками определяется интегралом оптической длины пути:

𝑇 =
1
𝑐 ∫𝑛(𝐫) 𝑑𝑠,

где 𝑛(𝐫) — показатель преломления среды, 𝑑𝑠 — элемент длины пути, а 𝑐 —
скорость света в вакууме. Минимизация этого интеграла по всем возможным
траекториямприводит кпринципунаименьшего действия для лучей света. На
основе этого принципа Гамильтон (William Rowan Hamilton, 1831) вывел урав-
нение, описывающее эволюцию фазы волны — уравнение Эйконала, ставшее
фундаментом математической оптики.
Термин eikonal (от греческого «образ») закрепился в XX веке благодаря рабо-

там в области волновой теории и акустики.
В современном виде уравнение Эйконала записывается как:

|∇𝑆(𝐫)|2 = 𝑛2(𝐫),

где 𝑆(𝐫)—функция фазы или оптический путь, представляющая собой эквива-
лент расстояния, пройденного волной в среде с неоднородным показателем
преломления. Поверхности 𝑆 = const соответствуют волновым фронтам, а ли-
нии, перпендикулярные этим поверхностям, — траекториям лучей.
Это уравнение является асимптотическим приближением уравнения Гельм-

гольца при коротких длинах волн (𝜆 → 0) и позволяет перейти от
волнового описания к лучевому. Таким образом, уравнение Эйконала связыва-
ет пространственное распределение показателя преломления с геометрией
распространения света и позволяет вычислять пути лучей в неоднородных
средах. При постоянном 𝑛(𝐫) = 𝑛0 уравнение имеет простое решение — прямо-
линейные лучи. Если же показатель преломления изменяется в пространстве,
траектории лучей искривляются, отражая градиент 𝑛(𝐫).

Уравнения лучей и численные методы их решения

Из уравнения Эйконала можно вывести систему уравнений лучей, описыва-
ющую динамику направления распространения света в неоднородной среде:

𝑑𝐫
𝑑𝑠

= 𝐭,
𝑑(𝑛𝐭)
𝑑𝑠

= ∇𝑛,
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где 𝐫(𝑠) — радиус-вектор точки на траектории луча, 𝐭 — единичный вектор
касательной, 𝑠— длина дуги, а 𝑛(𝐫)— показатель преломления среды.
Эта система выражает баланс между направлением луча и градиентом пока-

зателя преломления: при увеличении 𝑛(𝐫) луч изгибается в сторону области
с более высоким показателем.
Для численного решения этой системы уравнений применяются различ-

ные методы интегрирования обыкновенных дифференциальных уравнений.
Метод Эйлера представляет собой простейшую линейную аппроксимацию,
пригодную для случаев, когда изменение показателя преломления 𝑛(𝐫) отно-
сительно мало.
Метод Рунге–Кутты четвёртого порядка обеспечивает более высокую точ-

ность и устойчивость при умеренных градиентах показателя преломления
и является стандартным инструментом для интегрирования траекторий лу-
чейвоптическихрасчётах.Наконец, симплектическиесхемыинтегрирования
применяются в задачах, где важно сохранять физические инварианты систе-
мы — такие как энергия или угловой момент, — что особенно актуально при
моделировании длинных оптических трактов и волноводных структур.
Результатом интегрирования является семейство траекторий лучей, форми-

рующее пучок света, для которого можно оценить расходимость, фокусировку
и распределение плотности энергии в различных областях пространства.

Применение геометрической оптики к моделированию трансформирую-
щих сред

Оптические трансформирующие среды проектируются таким образом, что-
бы управлять направлением распространения света. Математически задача
моделирования сводится к нахождению такого распределения показателя
преломления 𝑛(𝐫), при котором траектории лучей принимают требуемую фор-
му.
Это так называемая обратная задача геометрической оптики — задача восста-

новления пространственного профиля показателя преломления по заданной
форме волнового фронта или требуемому распределению интенсивности све-
тового поля.
Примеры таких применений включают различные классы оптических

устройств и сред. К ним относятся оптические концентраторы — структуры,
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предназначенныедлянаправленного сбораиконцентрациисветовыхпотоков
в ограниченной области, что обеспечивает повышение энергоэффективности
систем и уменьшение потерь излучения. К числу трансформирующих сред
также относятся градиентные (GRIN) структуры, в которыхпоказатель прелом-
ления изменяется плавно, создавая непрерывное искривление траекторий
лучей без резких границ раздела сред. Широкое применение находят волно-
водные переходы и трансформаторы пучков, обеспечивающие равномерное
перераспределение энергии между модами и согласование полей на стыках
оптических элементов. Особый интерес представляют метаматериалы, в кото-
рых пространственная модуляция эффективного показателя преломления
реализует заданные функции управления светом — например, направленный
изгиб без отражения, фокусировку вне оси, создание оптических плащей неви-
димости и других эффектов пространственного перенаправления излучения.
В таких задачах геометрическая оптика используется как первый этап мо-

делирования: она позволяет оценить направленное распределение энергии
и определить начальные условия для дальнейшего волнового анализа.

Достоинства и ограничения подхода

Методы геометрической оптики обладают рядом существенных преиму-
ществ, определяющихихширокоеприменение в теоретическихиприкладных
исследованиях. Прежде всего, данный подход отличается высокой вычисли-
тельной эффективностью, что позволяет проводить моделирование сложных
трёхмерных оптических структур без необходимости прямого решения
уравнений Максвелла, требующих значительно больших вычислительных
ресурсов. Кроме того, геометрическая оптика обеспечивает наглядную
и интуитивно понятную интерпретацию процессов распространения света:
визуализация траекторий лучей даёт возможность ясно представитьфункцио-
нирование оптической системы, оценить её фокусирующие и преобразующие
свойства, а также качественно проанализировать влияние формы и располо-
жения элементов на результирующее поле. Ещё одним важным достоинством
является масштабируемость метода — он может с одинаковой успешностью
применяться как к макроскопическим системам, таким как линзы, зеркала
и призмы, так и к микроструктурам, при условии, что размеры элементов
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исследуемой среды значительно превышают длину волны излучения. Бла-
годаря этим особенностям геометрическая оптика служит эффективным
инструментом предварительного анализа и оптимизации трансформиру-
ющих оптических сред, обеспечивая разумный баланс между физической
достоверностью и вычислительной простотой.
Однако приближение геометрической оптики имеет ограничения. Оно не

учитывает дифракцию, интерференцию и поляризацию, а также теряет точ-
ность при размерах элементов, сопоставимых с длиной волны. В этих случаях
необходимпереходкволновымметодам (уравнениеГельмгольца,методФурье-
оптики, BPM или FDTD).
Тем не менее, геометрическая оптика остаётся фундаментальной теорети-

ческой основой для понимания процессов распространения света и служит
отправной точкой при построении численных моделей трансформирующих
сред различной сложности.

Численное моделирование лучей

В простейшем случае линзу можно рассматривать как тонкий пре-
ломляющий элемент, изменяющий направление распространения лучей
в соответствии с законом Снеллиуса:

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2,

где 𝑛1 и 𝑛2 — показатели преломления двух сред, а 𝜃1 и 𝜃2 — углы падения
и преломления соответственно. Этот закон определяет фундаментальное со-
отношение между углами и показателями преломления и служит основой для
описания поведения лучей при переходе через границу раздела сред.
В компьютерных моделях линза представляется как совокупность оптиче-

ских поверхностей, каждая из которых задаётся аналитическим выражением
𝑧 = 𝑧(𝑥, 𝑦) либо параметрическим уравнением. На основе таких описа-
ний производится вычисление точек пересечения лучей с поверхностями
и последующее определение новых направлений распространения после пре-
ломления. Подобные модели позволяют анализировать траектории лучей,
распределение интенсивности в фокальной области, а также оценивать вли-
яние геометрии поверхности и показателя преломления на фокусирующие
свойства системы.
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Процесс моделирования хода лучей в трансформирующих оптических
средах представляет собой последовательность этапов, направленных на
воспроизведение и анализ процессов распространения света в заданной гео-
метрии.
1. Определение параметров линзы. На первом этапе осуществляется опре-

деление параметров оптической системы, включающее выбор радиусов
кривизны поверхностей, толщины элементов, показателя преломления мате-
риала и взаимного расположения компонентов. Эти характеристики задают
геометрию среды, в которой будет происходить распространение излучения,
и определяют её фокусирующие и трансформирующие свойства.
2. Задание исходного пучка лучей. Следующий этап заключается в задании

исходных условий длямоделирования—формировании пучка лучей, который
будет использоваться в качестве входного сигнала. Определяются простран-
ственные координаты источника, диапазон направлений, апертура пучка
и его пространственно-угловое распределение. От корректности задания этих
параметров зависит достоверность результатов, поскольку они определяют
область и характер взаимодействия света с элементами системы.
3. Применение закона преломления на каждой границе. После этого выпол-

няется вычисление взаимодействия лучей с поверхностями среды. На каждой
границе раздела сред применяется закон Снеллиуса, описывающий изме-
нение направления распространения света при переходе между областями
с различными показателями преломления. На основе этого закона для каж-
дого луча вычисляется новое направление распространения, что позволяет
пошагово проследить его путь через всю систему.
4. Построение траекторий лучей после прохождения линзы. Далее осу-

ществляется построение траекторий лучей и их визуализация в пространстве
модели. Эти данные дают возможность определить, каким образом пучок све-
та изменяет своё направление, форму и распределение интенсивности под
воздействием исследуемой оптической структуры. На данном этапе выявля-
ются фокусирующие свойства системы, оцениваются положения фокальных
областей, а также анализируются возможные искажения. Для выполне-
ния вычислений траекторий применяется метод трассировки лучей (ray
tracing), представляющий собой алгоритм, последовательно вычисляющий
путь каждого луча через систему поверхностей. В рамках этого метода луч
рассматривается как дискретная частица, последовательно пересекающая
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элементы оптической системы, отражающаяся и преломляющаяся в соответ-
ствии с физическими законами. В простейших случаях трассировка может
выполняться аналитически, если уравнения поверхностей имеют извест-
ный функциональный вид. В более сложных конфигурациях, особенно при
наличии неоднородных или градиентных сред, используется численное ин-
тегрирование траекторий, позволяющее учитывать непрерывное изменение
показателя преломления вдоль пути распространения света.
5. Анализ фокусировки, аберраций и распределения интенсивности в фо-

кальной плоскости. Завершающим этапом моделирования является анализ
результатов расчёта. Проводится оценка фокусировки и расходимости пучка,
исследуется распределение интенсивности в фокальной плоскости, выявля-
ются области с максимальной концентрацией энергии и участки с потерями
из-за отражений или аберраций. Полученные данные позволяют количе-
ственно оценить эффективность оптической системы, определить степень
соответствия её параметров проектным требованиям и при необходимости
скорректировать геометрию или материал среды.
Таким образом, численное моделирование хода лучей представляет собой

комплексный процесс, сочетающий физические принципы распространения
света с вычислительными методами анализа. Его результаты обеспечивают
глубокое понимание работы оптических систем и служат основой для даль-
нейшей оптимизации их структуры, направленной на достижение требуемых
характеристик фокусировки, пропускания и преобразования световых пото-
ков.

Программные реализации

Современные вычислительные методы моделирования оптических си-
стем реализуются в виде специализированных программных комплексов,
предназначенных для решения задач трассировки лучей, анализа опти-
ческих характеристик и оптимизации параметров элементов. Наиболее
широко применяются профессиональные пакеты Zemax OpticStudio, Code V
и TracePro, представляющие собой полнофункциональные среды для проек-
тирования и анализа оптических систем различной степени сложности. Эти
программы обеспечивают возможность моделирования распространения све-
та в трёхмерных структурах, расчёта фокусных характеристик, аберраций
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и освещённости, а также позволяют выполнять автоматизированную оптими-
зацию конфигурации элементов в соответствии с заданными критериями
качества изображения или эффективности передачи излучения. Благода-
ря развитым графическим интерфейсам и высокой точности вычислений,
данные комплексы стали промышленным стандартом при проектировании
объективов, осветительных приборов и других оптических устройств.
Особое место занимает программная среда COMSOLMultiphysics с модулем Ray

Optics Module, которая объединяет возможности геометрической и волновой
оптики в рамках единой многофизической платформы. Такой подход позволя-
ет проводить комплексные исследования, в которых учитываются не только
геометрические аспекты распространения света, но и электромагнитные,
тепловые или механические эффекты, возникающие при взаимодействии
излучения с материалами. Использование данной среды особенно актуально
при моделировании гибридных оптических систем, где важно согласовать
результаты, полученные в различных физических приближениях.
Для научных и образовательных целей всё более активно применяются от-

крытые и гибкие инструменты, реализованные на языках программирования
общего назначения. Среди них можно выделить библиотеки на языке Python,
такие как Raysect, PyOpTools и POV-Ray. Эти программные средства позволяют
строить настраиваемые модели оптических систем, выполнять численные
расчёты траекторий лучей и визуализировать результаты моделирования. Их
использование обеспечивает исследователям возможность адаптации алго-
ритмов под конкретные задачи, интеграции с другими вычислительными
библиотеками (например, для анализа данных или оптимизации), а также вос-
производимости вычислительных экспериментов в рамках открытой научной
среды.
Независимо от конкретного программного инструмента, принцип, лежа-

щий в основе всех реализаций, остаётся единым и базируется на решении
уравнений геометрической оптики, описывающих распространение света
в пространстве с заданным распределением показателя преломления. Во
всех случаях целью моделирования является получение достоверных данных
о траекториях лучей, фокусирующих свойствах системы и распределении све-
товой энергии, что позволяет как анализировать существующие оптические
конструкции, так и разрабатывать новые, обладающие улучшенными характе-
ристиками. Такимобразом, программные средствамоделирования выступают
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неотъемлемым компонентом современного оптического проектирования,
объединяя физическую строгость теоретических моделей с удобством вы-
числительных и визуальных инструментов.

1.2. Линзы Люнеберга, Максвелла и Итона

1.2.1. Общее описание линз

Рассмотрим линзу, представляющую собой сферу с центром в точке 𝑋0

с радиус вектором𝐗0. Источник электромагнитных волн разместим в точке
с радиус вектором 𝐱0.
Следует сразу же подчеркнуть, что используемый метод численного

решения уравнения эйконала влечет разное математическое описание элек-
тромагнитной волны.

— При использование метода характеристик естественной является интер-
претация излучения в виде лучей. Каждый луч в этом случае является
решением системы ОДУ для заданных начальных значений обобщенных
координат 𝐱 и импульсов 𝐩. Начальные значения координат 𝐱0 зада-
ют положение источника, то есть начало луча, а начальные значения
импульсов 𝐩0 — направление луча.

— При использовании метода FSM используется уже волновая интерпрета-
ция оптики и считается, что функция эйконала 𝑢(𝐱) изначально задана
в каждой точки пространства, а точнее в каждой точке сетки (см. раз-
дел 2.3). Местоположение источника задается граничным условием
𝑢(𝐱0) = 0 системы (??), где 𝐱0 — радиус вектор точек, принадлежащих
источнику.

На рисунках 1.1 и 1.2 изображены линзы, на которые падает электромагнит-
ное излучение из точечного источника (рис. 1.1) и с плоского протяженного
источника (рис. 1.2). Излучение на рисунках представлено в виде лучей, од-
нако в методе FSM нет никакой возможности явно задавать направление
иисточниклучей, так как считается, чтоизлучение ужеприсутствует в каждой
точке рассматриваемой области. Это вызывает определенные сложности при
необходимости визуализировать именно лучевую оптическую картину.
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𝑛0 = 𝑐𝑜𝑛𝑠𝑡

𝑅

X0

𝑛(𝑟)
x0

ray

𝛽

Рис. 1.1. Линза
с точечным источником

𝑛0 = 𝑐𝑜𝑛𝑠𝑡, 𝛽 = 0

𝑅

X0

𝑛(𝑟)

Рис. 1.2. Линза
с плоским источником

x0

X0

𝜃

Рис. 1.3. Точечный источник
относительно линзы

x0

X0

𝜃

Рис. 1.4. Точечный источник на
поверхности линзы

Показатель преломления вне линзы постоянен и равен 𝑛0, а внутри линзы
является функцией расстояния от центра линза до текущей точки 𝑛(𝑟), где
𝑟 = ‖𝐱 − 𝐗0‖. Для упрощения вычислений следует разместить центр линзы
в начале координат. Это особенно упрощает решение задачи в цилиндриче-
ских и сферических координатах.
Местоположение точечного источника может быть удобно задавать отно-

сительно линзы. Тогда его координаты определяются радиусом линзы 𝑅,
расстоянием от линзы до источника 𝑑 и у углом 𝜃, который откладывается
против часовой стрелки в правой системе координат, как показано на рисун-
ке 1.3. Тогда радиус вектор источника задается с помощью параметрического
уравнения окружности с радиусом 𝑅 + 𝑑

𝐱0 = 𝐗0 + (𝑑 + 𝑅)(cos 𝜃, sin 𝜃)𝑇.
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В частности, если источник лежит на линзе так, как это показано на рисун-
ке 1.4, то его координаты задаются радиус вектором

𝐱0 = 𝐗0 + 𝑅(cos 𝜃, sin 𝜃)𝑇.

Для работы численной схемы метода FSM не требуется знать производные
от функции показателя преломления 𝑛(𝐱), что можно рассматривать как пре-
имущество данного метода по сравнению с методом характеристик.

1.2.2. Линза Люнеберга

Линза Люнеберга [19; 68] представляет собой сферическую линзу радиуса
𝑅 с центром в точке (𝑋0, 𝑌0, 𝑍0) с коэффициентом преломления следующего
вида

𝑛(𝑟) =
⎧⎪
⎨
⎪⎩

𝑛0√2− (
𝑟
𝑅)

2
, 𝑟 ⩽ 𝑅,

𝑛0, 𝑟 > 𝑅,

где в декартовых координатах 𝑟(𝑥, 𝑦, 𝑧) = √(𝑥 − 𝑋0)2 + (𝑦 − 𝑌0)2 + (𝑧 − 𝑍0)2 —
расстояние от центра линзы до произвольной точки (𝑥, 𝑦, 𝑧). Из формулы сле-
дует, что коэффициент 𝑛 непрерывно меняется от 𝑛0√2 до 𝑛0 начиная от
центра линзы и заканчивая ее границей. Для вычислений удобнее переписать
выражение для 𝑟 в индексном виде:

𝑟(𝑥1, 𝑥2, 𝑥3) = √(𝑥1 − 𝑋1
0 )

2 + (𝑥2 − 𝑋2
0 )

2 + (𝑥3 − 𝑋3
0 )

2 =
√

3
∑
𝑖=1

(𝑥𝑖 − 𝑋 𝑖
0)

2.

1.2.3. Линза Максвелла

Линза Максвелла [3; 68] также представляет собой сферическую линзу ра-
диуса 𝑅 с центром в точке 𝐗0 с коэффициентом преломления следующего
вида:

𝑛(𝑟) =
⎧⎪
⎨
⎪
⎩

𝑛0

1 + (
𝑟
𝑅)

2 , 𝑟 ⩽ 𝑅,

𝑛0, 𝑟 > 𝑅.

На рисунке 1.5 представлены графики изменения коэффициента преломле-
ния для линз Максвелла и Люнеберга в зависимости от радиус вектора точки.



20

𝑟

𝑛(𝑟)

𝑅

Luneburg

Maxwell

Рис. 1.5. Коэффициент преломления для линз Максвелла и Люнеберга

X0

R 2R

Рис. 1.6. Схема линзы Итона

1.2.4. Линза Итона

В плоском случае линза Итона [66] представляет собой диск образованный
двумя кругами с радиусами 𝑅 и 2𝑅, что изображено на схеме линзы на рисун-
ке 1.6.

𝑛(𝑟) =
⎧⎪
⎨
⎪⎩

𝑛0√
2𝑅
𝑟 − 1, 𝑟 ∈ [𝑅, 2𝑅],

𝑛0 𝑟 ∉ [𝑅, 2𝑅].

1.2.5. Размещение источников

Оптические свойства линз проявляются наглядно, если разместить источ-
ник излучения в определенной точке.

— Для линзы Люнеберга точечный источник обычно размещается на
поверхности линзы, тогда исходящие лучи пройдя сквозь линзу рас-
полагаются параллельно друг-другу, как показано на рисунке 1.7.
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Рис. 1.7. Линза Люнеберга
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Рис. 1.8. Линза Максвелла
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Рис. 1.9. Линза Итона

X0x0

Рис. 1.10. Линза Люнеберга

X0x0

Рис. 1.11. Линза Максвелла

— Для линз Максвелла точечный источник также размещают на поверх-
ности линзы. В этом случае исходящие лучи фокусируются и сходятся
в диаметральной от источника точки, как это показано на рисунке 1.8.

— Для линзы Итона источник размещается внутри сферы (окружности)
малого диаметра 𝑅. В этом случае все излучение не выходит за пределы
линзыилучифокусируютсяв точке, симметричнойотносительноцентра
линзы, как это показано на рисунке 1.9.

Заметим, что ходлучейнарисунках1.7, 1.8и1.9 вычисленспомощьюметода
характеристик [43].
Если рассматривать вышеописанную конфигурацию источников, то неко-

торые области пространства будут полностью свободны от лучей. Так, для
линзы Итона все лучи будут заключены внутри большого круга линзы. Для
линз Люнеберга и Максвелла области, где могут проходить лучи, показаны
штриховкой на изображениях 1.10 и 1.11. В области белого цвета ни один луч
проникнуть не может.
Отметим, что рисунки 1.10 и 1.11 являются лишь схемами, условно пока-

зывающими области присутствия и отсутствия лучей. Внутри линзы, однако
траектории лучей не изображены.
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1.3. Численные методы на основе методов нейронных сетей

В последние годы наблюдается устойчивый рост интереса к использованию
методовмашинного обучения, в частностинейронных сетей, в областичислен-
ногомоделированияфизическихпроцессов. Это связанокак с теоретическими
достижениями в области глубинного обучения, так и с практическими вызова-
ми, с которыми сталкиваются традиционные численные подходы. Несмотря
на высокую точность и развитость классических методов решения дифферен-
циальных уравнений — таких как конечно-разностные, конечно-объёмные
и конечно-элементные схемы— они имеют ряд ограничений, особенно при
решении задач высокой размерности, в условиях сложной геометрии или при
наличии лишь частичных данных.
Нейросетевые методы позволяют по-новому взглянуть на моделирование

физических процессов [1; 16; 51]. Вместо явной дискретизации пространства
и времени, характерной для большинства традиционных подходов, нейросе-
ти аппроксимируют решение уравнения в виде непрерывной функции, что
особенно удобно для задач, где важны производные или гладкость решения.
Кроме того, современные архитектуры нейросетей способны обучаться на
основе ограниченного набора данных, комбинируя информацию, полученную
из наблюдений, с априорными физическими знаниями. В частности, подход
PINN (Physics-Informed Neural Networks) [51] предлагает включение диффе-
ренциального уравнения и граничных условий непосредственно в функцию
потерь, тем самым обеспечивая согласование с законами физики и устойчи-
вость к шумам и неполноте данных.
Особенно привлекательным применение нейросетей становится в задачах

инверсного моделирования — когда необходимо восстановить параметры сре-
ды, источники или граничные условия по результатам наблюдений [8; 16]. Эти
задачи, как правило, неустойчивы и плохо решаются классическими мето-
дами без регуляризации. Нейросети в этом контексте выступают не просто
как аппроксиматоры, а как адаптивные модели, способные уловить сложные
зависимости между параметрами задачи и её решением.
Ещё одно существенное преимущество нейросетевых методов — возмож-

ность многократного переиспользования обученной модели. Например, при
обучении универсального оператора (в архитектурах типа DeepONet или
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Fourier Neural Operator [20; 32]) можно один раз обучить нейросеть на множе-
стве решений задачи с различными начальными и граничными условиями,
после чего мгновенно получать предсказания для новых конфигураций без
повторного численного решения уравнения. Это открывает широкие пер-
спективы в задачах инжиниринга, оптимизации и инверсного дизайна, где
требуется проводить тысячи или миллионы моделирований при разных пара-
метрах.
Применение нейронных сетей в численном моделировании позволяет

сочетать преимущества физических моделей с гибкостью и обучающей спо-
собностью современных нейросетевых архитектур. Эти методы особенно
актуальны в тех случаях, когда традиционные численные подходы становятся
избыточно ресурсоёмкими, требуют чрезмерной детализации геометрии или
не справляются с неполными илишумными данными. Несмотря на сохраняю-
щиеся вызовы — такие как высокая чувствительность к выбору архитектуры
и сложности обучения — нейросетевые численные методы формируют новое
направление в вычислительной физике и инженерии, обеспечивая качествен-
но новый уровень адаптивности, обобщающей способности и интеграции
данных с физикой.
Нейросетевые подходы выигрывают у традиционных численных ме-

тодов прежде всего в тех задачах, где численные схемы сталкиваются
с фундаментальными ограничениями — как вычислительными, так и ме-
тодологическими [38; 59]. Одним из ключевых примеров являются задачи
с высокой размерностью, где стандартные методы страдают от так называе-
мого «проклятия размерности» [13; 32]. При увеличении числа переменных,
особенно в многопараметрических дифференциальных уравнениях в част-
ных производных или в системах с пространственно-временной динамикой,
объём вычислений при использовании сеточных методов растёт экспонен-
циально. Нейросети, напротив, сохраняют устойчивую аппроксимирующую
способность и позволяют эффективно работать в таких пространствах, обу-
чаясь на ограниченном количестве примеров и не требуя явного построения
сетки.
Другой важный класс задач — это те, где доступна только частичная или раз-

реженная информация. Например, в практических задачах оптики, акустики,
биофизики или геофизики мы зачастую имеем дело не с полным распределе-
нием поля, а с наблюдениями на границах или в ограниченном числе точек.
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Длячисленныхметодов такие условия создаютнеобходимостьискусственного
дополнения данных и могут приводить к нестабильным или нерелевантным
результатам. Нейросети, и особенно PINN, встраивая в процесс обучения как
дифференциальное уравнение, так и имеющиеся наблюдения, могут рекон-
струировать глобальное поведение решения из локальных данных, при этом
соблюдая физические законы [51].
Отдельно стоит отметить обратные задачи, в которых по известным вы-

ходным характеристикам системы необходимо восстановить её внутренние
параметры или начальные условия. Эти задачи в силу своей некорректной
постановки (неединственности, нестабильности) требуют регуляризации
и тонкой настройки. Нейросетевые методы встраивают априорную информа-
цию в архитектуру модели или функцию потерь, благодаря чему становятся
более устойчивыми кшуму, лучше справляются с недоопределённостьюи в ря-
де случаев дают решения, сопоставимые или превосходящие по точности
классические регуляризационные методы.
Существенное преимущество нейросетей проявляется и в ситуациях, когда

необходимо решать одну и ту же задачу многократно при разных входных
параметрах. Это особенно актуально в задачах инжиниринга и оптимиза-
ции, где приходится многократно пересчитывать модели при варьировании
параметров конструкции. Обученная нейросеть может выступать в роли уни-
версального решателя, мгновенно выдавая предсказания без необходимости
повторного численного решения. Такое поведение делает нейросетевые мо-
дели чрезвычайно ценными в реальном времени или в задачах, требующих
массового параллельного моделирования.
Есть и другие аспекты, в которых нейросетевые подходы демонстрируют

преимущество. Например, в задачах со сложной или плохо формализуемой
геометрией: при наличии острых углов, разрывов, интерфейсов. Классиче-
ские сеточные методы требуют специальной адаптации сетки, повышения
плотности узлов, ручной обработки краевых условий. Нейросети в подобных
условиях могут обучаться напрямую на исходной области, без необходимости
в явном построении сетки, и при этом сохранять высокую точность за счёт
гладкости аппроксимации.
Наконец, нейросетевые подходы находят применение в задачах, где важна

интерполяция или экстраполяция за пределами обучающей выборки. Там, где
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численные методы дают результат только на заранее заданной сетке и пара-
метрах, нейросети могут предсказывать поведение системы при новых, ранее
не встречавшихся конфигурациях, благодаря своей обобщающей способности.
Это особенно ценно, если модель используется как часть более сложной систе-
мы — например, в робототехнике, цифровом двойнике, или при разработке
систем управления в реальном времени.
Нейросетевые подходы оказываются наиболее выгодными в условиях

ограниченности данных, высокой размерности, необходимости инверсного
анализа или множественного моделирования. Их сила заключается в способ-
ности учиться на малых выборках, учитывать физику в структуре модели,
работать без сетки и обеспечивать быструю генерализацию. Конечно, они
не отменяют численные методы, а скорее дополняют их, расширяя границы
применимости вычислительных моделей и открывая новые возможности для
анализа сложных физических процессов.
Необходимость обхода ограничений традиционных численных методов

возникает тогда, когда сами принципы этих методов — основанные на дис-
кретизации, сеточных представлениях и строгой пошаговой аппроксимации
— становятся узким горлышком в решении задачи. Это бывает не всегда, но
в определённых условиях такие ограничения становятся критичными, и тогда
применение альтернативных подходов, включая нейросетевые, становится
не просто предпочтительным, а порой единственно возможным.
Во-первых, это задачи с высокой размерностью. Если задача описывает-

ся не просто двумя-тремя пространственными переменными, а десятками
параметров или временных моментов, то классические методы страдают от
экспоненциального роста числа узлов сетки. Например, при моделировании
многомасштабных процессов или при параметризации среды с переменными
физическими свойствами в пространстве и времени. Для трёхмерной задачи,
к примеру, с сеткой 100^3 и мелким шагом по времени требуется хранить
и обрабатывать миллионы, если не миллиарды точек — это приводит к чрез-
мерному потреблению памяти и времени, особенно если задача решается
многократно. Нейросетевые подходы, такие как PINN или операторные мо-
дели, могут эффективно представлять такие системы в компактной форме,
используя небольшое число параметров.
Во-вторых, сложности возникают в задачах с нерегулярной или динамиче-

ски изменяющейся геометрией. Построение адекватной сетки для подобных
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областей требует значительных усилий, адаптивных алгоритмов перестрое-
ния и ручной настройки. При этом возможны ошибки на границах, особенно
при наличии острых краёв, разрывов или подвижных интерфейсов. В нейро-
сетевых подходах, особенно тех, которые используют координаты как вход,
проблема сетки исчезает как класс — аппроксимация строится глобально,
и геометрия может быть задана, например, в виде маски или параметриче-
ской формы.
Третья категория — это обратные и плохо определённые задачи, где

количество наблюдений намного меньше количества неизвестных. Это
распространённая ситуация в задачах диагностики, томографии, парамет-
рической идентификации, когда мы имеем только выход системы, но не
знаем, какие входы или параметры его вызвали. Традиционные методы
требуют регуляризации, априорной информации, часто страдают от неустой-
чивости и множественности решений. Нейросетевые методы, обучающиеся
на множестве возможных сценариев или использующие физику в качестве
”направляющей” в обучении, дают более устойчивые и воспроизводимые ре-
зультаты, особенно в условиях шума и неполных данных [51].
Четвёртая группа ограничений — это требования к скорости расчёта при

многократных вызовах модели. Например, в задачах оптимизации формы ди-
фракционной решётки, где на каждомшаге требуется пересчитать волновое
поле, или при обучении цифрового двойника, который должен реагировать
на изменения параметров в реальном времени. Классические методы не
успевают пересчитывать задачу с нуля за миллисекунды или даже секун-
ды. Нейросеть, один раз обученная на множестве входных конфигураций,
способна выдавать решение мгновенно — без повторного решения системы
уравнений.
Также ограничения проявляются при неполных, разреженных или шум-

ных данных, особенно когда решение требуется продолжить за пределами
измеренной области. В классических численных схемах такая задача может
быть нерешаема или крайне нестабильна. Нейросети же хорошо приспособле-
ны к работе с такими типами данных, так как могут обучаться не только на
полном решении, но и на локальных наблюдениях, восполняя недостающую
информацию за счёт встроенного априорного знания (например, физического
уравнения).
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Наконец, обход ограничений требуется, когда необходимо не просто чис-
ленное решение, а обобщающая модель, способная переносить знания между
различными задачами. Например, обучив нейросеть на дифракции в одном
классе структур, можно использовать её для предсказаний в других, смежных
классах, без повторного численного моделирования. Это особенно полезно
в автоматизированном проектировании (inverse design), где требуется быст-
рый отклик модели на вариации входных параметров.
Обход ограничений численных методов необходим не из-за их недостатков

как таковых, а потому что в реальных задачах условия выходят за рамки иде-
ализированных, стационарных, хорошо определённых систем, под которые
изначально и проектировались традиционные схемы. Нейросетевые подходы
предлагают альтернативный путь — не замену, а расширение возможностей
численного анализа в условиях, где прямое применение классики становится
неэффективным, затратным или невозможным.
Численные методы на основе нейронных сетей формируют новую парадиг-

му вычислений, в которой традиционные подходы к решению дифференци-
альных уравнений уступают место или дополняются обучаемыми моделями,
способными учитывать физику, данные и априорные знания одновременно.
Рассмотрим некоторые из них.

1.3.1. Методы, основанныена вариационныхпринципах. DeepRitzMethod
(DRM)

Методы, основанные на вариационных принципах, применяемые в кон-
тексте нейронных сетей, представляют собой естественное развитие клас-
сических вариационных методов решения дифференциальных уравнений,
которые являются ключевым элементом современной прикладной математи-
ки, механики и физики. Эти методы предполагают, что решение уравнения
можно получить как экстремум некоторого функционала, обычно выражаемо-
го в виде интеграла [13; 15]. Они находят широкое применение при решении
обыкновенных и дифференциальных уравнений в частных производных, осо-
бенно в контексте физических и инженерных задач.
Текущие подходы берут за основу идею о том, что решение определённого

класса уравненийможет быть представлено какминимумили экстремумнеко-
торого функционала. В наиболее частом случае — это интеграл, зависящий от
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искомой функции и её производных, и задача сводится к нахождению такой
функции, которая минимизирует этот интеграл.
В традиционной постановке, например, при решении уравнения Пуассона,

мы ищем функцию 𝑢(𝑥), которая минимизирует функционал вида

𝐽(𝑢) = ∫
Ω
(
1
2|∇𝑢(𝑥)|2 − 𝑓 (𝑥)𝑢(𝑥)) 𝑑𝑥

где Ω— область, а 𝑓 (𝑥)— заданная функция. Этот функционал возникает из
вариационной формулировки соответствующего краевого уравнения и имеет
физический смысл энергии системы. Классический подход к решению та-
ких задач восходит к методу Ритца, в котором решение аппроксимируется
линейной комбинацией базисных функций, а задача сводится к минимиза-
ции функционала по коэффициентам этой комбинации. Метод Ритца был
подробно описан в работах Вальтера Ритца в начале 20 века и впоследствии
обоснован в рамках вариационного исчисления.
Нейросеть в этом случае выступает как универсальный аппроксиматор

искомой функции 𝑢(𝑥), минимизирующий интеграл от функционала, что
аналогично методам Ритца или Галёркина, но без явного задания базисных
функций. Такие методы особенно полезны в задачах с чётко выраженной ва-
риационной природой, например, при решении уравнения Пуассона [13; 15],
и позволяют легко переносить идею на произвольные геометрии или нели-
нейные задачи. Вместо разложения по жёстко заданному базису, нейросеть
принимает на вход координаты xxx и возвращает значение 𝑢(𝑥) а минимиза-
ция функционала 𝐽(𝑢) осуществляется путём настройки весов сети с помощью
градиентных методов. Это ключевое отличие от классического Ритца: здесь не
нужно явно выбирать базисные функции, и нейросеть может сама “научиться”
наиболее подходящей структуре решения. Такой подход получил название
Deep Ritz Method, и впервые был подробно описан в работе Weinan E и Bing Yu
в 2018 году [13].
Одним из преимуществ вариационного подхода с использованием нейросе-

тей является его естественная способность адаптироваться к произвольной
геометрии области и различным типам граничных условий. Поскольку
интеграл в функционале берётся по всей области определения, можно исполь-
зовать набор точек, равномерно или случайным образом распределённых
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внутри этой области. При необходимости граничные условия могут быть учте-
ны с помощью добавления специальных штрафных членов в функционал
или за счёт выбора архитектуры сети, автоматически удовлетворяющей этим
условиям. Такой подход особенно удобен при решении задач в геометрически
сложных или трудноформализуемых областях, где построение классической
расчётной сетки либо сопряжено со значительными трудностями, либо вовсе
невозможно.
Дополнительным достоинством является то, что обучение нейросети в дан-

ном случае осуществляется не на заранее известных значениях функции
в отдельных точках, а по глобальному критерию, связанному со значением
всего функционала. Это придаёт методу устойчивость к локальным ошибкам
ишуму, а также способствует получению сглаженных, физически осмыслен-
ных решений. В тех случаях, когда задача сводится к поиску собственных
значений, как, например, в задачах квантовой механики или волновых про-
цессов, вариационная постановка позволяет напрямую минимизировать
энергетический функционал и находить приближённые собственные зна-
чения и соответствующие собственные функции.
Следует отметить, что у методов, основанных на вариационных принципах

и реализованных с использованием нейросетей, есть и определённые осо-
бенности. В частности, вычисление функционала и его производных требует
численного интегрирования по области, что может быть особенно ресурсоём-
ким в задачах с высокой размерностью. Кроме того, обучение таких моделей
чувствительно к масштабу входных данных и параметров функционала: при
наличии резко различающихся по величине вкладов, например, от локальных
источников высокой интенсивности, может потребоваться дополнительная
нормализация или балансировка весов в функции потерь. Несмотря на эти
сложности, вариационные методы на базе нейросетей остаются мощным ин-
струментом численного моделирования, объединяющим строгуюфизическую
интерпретацию с гибкостью и аппроксимирующими возможностями совре-
менных алгоритмов машинного обучения.
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1.3.2. Нейросетевые операторы. Neural Operators (DeepONet, FNO)

Развивается такжеклассметодов, называемыхнейросетевымиоператорами.
Они представляют собой новое поколение численных алгоритмов, в кото-
рых основное внимание уделяется не построению конкретного решения
уравнения при заданных начальных или граничных условиях, а аппроксима-
ции самого оператора — отображения, сопоставляющего исходным данным
решение задачи. В классических численных методах решение уравнения
с частными производными предполагает фиксированную дискретизацию
области и решение соответствующей разностной или слабой формы задачи.
При этом каждый новый набор входных данных требует повторного реше-
ния уравнения, зачастую с нуля. В противоположность этому, нейросетевые
операторы стремятся обучить обобщённую модель, способную предсказывать
решение для любого допустимого входа без повторного пересчёта.
Одной из первых реализованных архитектур нейросетевых операторов

стала DeepONet, предложенная Л. Лу и Дж. Карниадакисом [32]. В её осно-
ве лежит теорема об универсальной аппроксимации операторов, согласно
которой можно приближать отображения между функциями с помощью ней-
росетей. АрхитектураDeepONet построена такимобразом, чтобыобрабатывать
информацию о входной функции и координате точки, в которой необходи-
мо получить значение решения, через два параллельных потока обработки
данных. Первый поток, называемый ветвью, принимает на вход значения
входной функции в ряде опорных точек, формируя параметрическое описа-
ние задачи. Второй поток, или ствол, получает координату интересующей
точки. Объединяя выходы этих двух компонентов, модель способна аппрокси-
мировать значение решения в любой точке области для заданной функции на
входе.
Другим важным направлением в развитии нейросетевых операторов стала

архитектура Fourier Neural Operator (FNO) [20], основанная на спектральном
подходе к обработке данных. В отличие от методов, которые работают напря-
мую с функциями в обычном пространстве, FNO использует преобразование
Фурье для перехода к частотному представлению, где выполнение операций
становится более эффективным. Это позволяет модели улавливать глобаль-
ные зависимости в решении, в том числе дальние связи между различными
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участками области. После обработки в спектральной области результат преоб-
разуется обратно в исходное пространство. Такая стратегия особенно хорошо
проявила себя в задачах с пространственно сложной динамикой, напри-
мер, при моделировании турбулентных потоков, атмосферных явлений или
биологических процессов. Благодаря своей универсальности и высокой вы-
числительной эффективности FNO может применяться к задачам различной
размерности и параметрическим уравнениям с высокой степенью обобщения.
Одним из ключевых достоинств нейросетевых операторов является их

универсальность: после обучения на наборе задач с различными входными
функциями онимогут быть применены к новым входам без переобучения, тем
самым обеспечивая мгновенное получение решения. Это делает такие методы
особенно актуальными в сценариях, где требуется многократный пересчёт мо-
дели при изменяющихся условиях, а также в задачах с высокой размерностью
входных параметров. Ещё одним преимуществом является их устойчивость
к шуму и способность восстанавливать гладкие и физически обоснованные
решения даже при наличии ошибок или неполных данных во входной инфор-
мации.
Однако, несмотря на высокую эффективность, нейросетевые операторы

остаются областью активных исследований. Важными остаются вопросы
о свойствах аппроксимации, стабильности, интерпретируемости и строго-
сти оценки ошибки. Тем не менее, уже сейчас можно утверждать, что методы
типа DeepONet и FNO открывают принципиально новый путь в численном
решении дифференциальных уравнений, обеспечивая сочетание вычисли-
тельной эффективности, адаптивности и способности к обобщению, которые
недостижимы в рамках традиционных подходов.

1.3.3. Гибридные подходы. Data-Driven Hybrid Models

Существуют и гибридные подходы, в которых нейросеть не полностью заме-
няет численную схему, а встраивается внутрь неё.
В подобных подходах нейросеть не заменяет численное решение целиком,

а встраивается в него как дополнительный элемент: уточняющий, допол-
няющий или аппроксимирующий. Это позволяет сохранять физическую
интерпретируемость вычислений и использовать при этом преимущества
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нейросетей — способность обучаться на данных, выявлять скрытые зависимо-
сти и компенсировать недостатки моделей [39; 55].
Наиболее естественное применение такие модели находят в задачах, где

физическая структура процесса хорошо известна, но некоторые параметры
— например, свойства среды, граничные условия или распределение источ-
ников — заданы неточно или вовсе неизвестны. В таких случаях нейросеть
может быть обучена на экспериментальных или численно полученных дан-
ных и использоваться для аппроксимации этих недостающих элементов, в то
время как основное уравнение решается традиционным методом, например
методом конечных элементов или конечных разностей. Подобная комбина-
ция обеспечивает более точное и устойчивое решение задачи, чем любой из
подходов по отдельности.
Другой важный пример использования гибридных методов — ускорение

вычислений в задачах, требующих многократного моделирования. Так, в оп-
тимизационных задачах или при построении цифровых двойников нейросеть
может быть обучена предсказывать поведение системы по ограниченному
числу параметров, существенно сокращая объём расчётов. При этом она опи-
рается не только на данные, но и на структуру уравнения, что позволяет
сохранять физическую обоснованность предсказаний.
Гибридные методы также находят применение в инверсных задачах, где

требуетсявосстановитьскрытыехарактеристикиобъектаилисредыподоступ-
ным наблюдениям. Нейросеть здесь играет роль аппроксиматора обратной
зависимости, а численный решатель проверяет корректность полученного
результата. Такая связка особенно полезна, например, в медицинской диагно-
стике, геофизике, анализе конструкций и дефектоскопии, где прямая модель
известна, но параметры измеряются косвенно или с шумом.
Основное достоинство гибридныхподходов заключается в их балансемежду

надёжностью и гибкостью: с одной стороны, они сохраняют строгую физиче-
скую основу, с другой — позволяют учесть реальные данные и эмпирические
особенности, которые трудно формализовать аналитически. Это делает их
особенно востребованными в инженерных и прикладных задачах, где важно
одновременно учитывать как теоретическую модель, так и поведение реаль-
ной системы.
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1.3.4. Моделирование динамики в латентном пространстве с использова-
нием автоэнкодеров. Latent Space Evolution via Autoencoders

Одним из наиболее оригинальных и активно развивающихся в примене-
нии нейронных сетей к численному моделированию является моделирование
динамики в скрытом (латентном) пространстве, получаемом с помощью ав-
тоэнкодеров. Основная идея заключается в том, чтобы не решать уравнение
в исходном пространстве напрямую, где оно может быть сложным, высокораз-
мерным или жёстким, а сначала преобразовать данные в более компактное
представление, отражающее основные характеристики системы. В дальней-
шем моделирование выполняется именно в этом сокращённом пространстве,
где динамика становится проще и вычислительно менее затратной [33; 64].
Автоэнкодер состоит из двух основных компонентов: энкодера, преобразую-

щего входные данные в сжатую форму — так называемый латентный вектор,
— и декодера, позволяющего восстановить исходную информацию по этому
вектору. Такое представление может эффективно устранять избыточность,
шум и второстепенные детали, сохраняя при этом структуру, необходимую
для точного описания поведения системы. В дальнейшем можно обучить до-
полнительную модель, которая будет моделировать, как именно эта скрытая
переменная изменяется во времени или в зависимости от других параметров
задачи.
Подобный подход особенно актуален в задачах, где численное моделирова-

ниеоказывается затрудненоиз-завысокойразмерности,жёсткостиуравнений
или необходимости многократного пересчёта решений. Вместо того чтобы
каждый раз выполнять полное моделирование в физическом пространстве,
можно предсказать, как будет изменяться компактное латентное представле-
ние, и затем восстановить искомое состояние системы при помощи декодера.
Это позволяет значительно снизить вычислительные затраты без существен-
ной потери точности.
Методы, основанныенаавтоэнкодерах, находятприменениев самыхразных

областях: от моделирования турбулентных течений и химических реакций до
задач биомеханики и материаловедения. Особенно они эффективны там, где
наблюдаются устойчивые повторяющиеся структуры, высокая степень кор-
реляции между параметрами, а также наличие неполных или зашумлённых
данных
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Главное преимущество такого подхода заключается в значительном сни-
жении размерности моделируемой задачи при сохранении физически
осмысленного поведения системы. Это делает его особенно ценным инстру-
ментом в тех случаях, когда классические численные методы либо слишком
затратны, либо вовсе неприменимы. Вместе с тем, такие модели требуют тща-
тельной настройки, а результаты — аккуратной валидации, особенно при
прогнозировании за пределами обучающего диапазона.

1.3.5. Графовые нейронные сети. Graph Neural Networks for PDEs

Графовыенейронные сети (GraphNeural Networks, GNN) представляют собой
перспективный класс моделей [14; 25; 36], способных обрабатывать данные,
заданные не на регулярных сетках, а на графах — структурах, отражающих
топологические и геометрические связи между объектами. В задачах чис-
ленного моделирования это особенно актуально, поскольку многие реальные
физические процессы происходят в средах со сложной, нерегулярной геомет-
рией, где построение традиционной координатной сетки либо затруднено,
либо приводит к значительным вычислительным затратам.
Суть подхода заключается в том, что рассматриваемая область моделирова-

ния представляется в виде графа, где узлы соответствуют отдельным точкам
(например, элементам сетки или наблюдаемым точкам), а рёбра отражают
физическую или геометрическую связь между ними. На узлы и рёбра могут
быть назначены значения интересующих величин — например, температуры,
давленияилиплотности. Графоваянейросеть обучается так, чтобыпередавать
информациюмежду связанными узлами, формируя аппроксимацию решения
уравнения за счёт многократного обновления представлений узлов с учётом
их окружения.
Подход с использованием GNN особенно эффективен при работе с неструк-

турированными или адаптивными сетками, где применение классических
численных методов требует трудоёмкой подготовки сетки и её постоянной
адаптации. В отличие от свёрточных нейросетей, которые хорошо работают
только на регулярных решётках, графовые сети адаптируются к произвольной
топологии, сохраняя при этом возможность учитывать локальные и глобаль-
ные зависимости в данных. Это делает их полезными в самых разных задачах:
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от моделирования процессов в пористых материалах до задач биомеханики,
гидродинамики и геофизики.
Дополнительным преимуществом графовых нейросетей является их спо-

собность к переносу обученной модели между задачами и геометриями.
Благодаря универсальному представлению входных данных в виде графов,
одну и тужемодельможно применять на различных объектах при сохранении
общей топологической структуры, что открывает путь к созданию универсаль-
ных моделей-приближений, не требующих повторного обучения.
На практике применяются различные архитектуры графовых сетей: от

базовых графовых свёрточных сетей до моделей с механизмами внимания
и специализированных физических архитектур, в которых учитываются осо-
бенности конкретных уравнений. В последних случаях физические законы
могут прямо включаться в функции агрегации или обновления состояний
узлов, что позволяет сохранять интерпретируемость модели и устойчивость
решений.
Однако, несмотря на явные преимущества, использование GNN в числен-

ном моделировании требует внимательного подхода. Необходимо обеспечить
согласование структуры графа с физикой задачи, а также учитывать вычис-
лительные сложности, возникающие при переходе к трёхмерным областям
или при моделировании многомасштабных процессов. Тем не менее, графо-
вые нейросети уже показали высокую эффективность в ряде прикладных
задач и заслуженно рассматриваются как одно из наиболее перспективных
направлений в области современных численных методов.

1.3.6. Физически информированные нейронные сети. Physics-Informed
Neural Networks, PINN

Но самым распространенным методом являются физически информиро-
ванные нейронные сети — Physics-Informed Neural Networks, PINN, где сама
структура задачи интегрируется в процесс обучения. . В отличие от клас-
сических нейросетей, которые обучаются исключительно на данных, PINN
позволяет учитывать уравнения, связывающие эти данные между собой. Это
делает возможным решение не только прямых, но и обратных задач даже при
ограниченной или неполной информации.
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В основе метода лежит идея аппроксимации решения дифференциального
уравнения с помощью нейросети, которая принимает на вход координаты
и время, а на выходе возвращает значение физической величины — напри-
мер, температуры, давления, напряжённости поля. Обучение осуществляется
таким образом, чтобы сеть не только приближала известные значения в от-
дельных точках, но и минимизировала невязку уравнения, которое должно
выполняться во всей области. Для этогоиспользуетсяфункцияпотерь, включа-
ющаяв себя как стандартнуюошибкумеждупредсказаниямиинаблюдениями,
так и специальные члены, отражающие соблюдение физического закона —
обычно в форме дифференциального уравнения. Производные, необходимые
для расчёта этих членов, вычисляются автоматически, что позволяет не ис-
пользовать явную сеточную дискретизацию [1; 45; 51].
Одним из главных достоинств PINN является возможность применять его

в условиях, когда наблюдаемые данные скудны, разрежены или зашумлены.
Даже в отсутствие полной информации о начальных или граничных условиях,
модель, обученная с учётом физики, может выдавать осмысленные, физиче-
ски обоснованные предсказания [49]. Это особенно важно в тех случаях, когда
традиционные численные методы становятся неустойчивыми, или когда по-
строение сетки требует чрезмерных вычислительных ресурсов [63].
PINN находят применение во многих научных и инженерных областях,

особенно там, где необходимо решать дифференциальные уравнения при
ограниченной информации или высокой сложности систем. Особую ценность
этот подход представляет в обратных задачах — например, когда необходимо
по экспериментальным данным восстановить параметры уравнения, гранич-
ные условия или внутреннюю структуру объекта. PINN позволяет объединить
решение таких задач в рамках единой модели, без этапов регуляризации и от-
дельного численного решателя.Недавние обзоры отмечают эффективность
PINN в задачах механики и теплопереноса [1; 16].
Вот где PINN особенно полезны:

1. Электромагнетизм. Используются для решения уравнений Максвелла,
моделирования распространения электромагнитных волн, взаимодей-
ствия света с наноструктурами, плазмы и дифракции, включая задачи
с труднодоступными или частично заданными граничными условиями.
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2. Гидродинамика и аэродинамика. Используются для моделирования
несжимаемых и сжимаемых течений, в том числе при больших чис-
лах Рейнольдса. Примеры включают задачи обтекания, турбулентности,
кавитации, а также потоков с переменными границами (fluid-structure
interaction).

3. Тепло- и массообмен. PINN применяются для задач теплопереноса, диф-
фузии, реактивныхпотоков, включаякаталитическиепроцессы, горение,
фазовые переходы и конвекцию.

4. Механика сплошных сред и материаловедение. PINN применяются для
моделирования напряжений, деформаций и повреждений в твёрдых
телах, включая нелинейные и анизотропные материалы. Это актуально
прианализекомпозитов,микромеханикиисложныхграничныхусловий,
особенно когда экспериментальные данные ограничены.

5. Биомедицинская инженерия. PINN применяются для моделирования
кровотока, теплопереноса в тканях, распространения лекарств, элек-
трической активности в сердце и головном мозге. Особенность —
возможность встраивания анатомических данных, полученных из МРТ
или КТ, прямо в физическую модель.

6. Геофизика и климатология. Используются для решения обратных задач
при сейсмической томографии, гидрогеологических моделях, модели-
ровании атмосферы и океана. Особенно ценны в задачах с неполными
измерениями и большими пространственными масштабами.

7. Финансовая математика. Моделирование процессов на основе сто-
хастических дифференциальных уравнений, например, в задачах
ценообразования опционов, оценки рисков, хеджирования, особенно
в условиях высокой волатильности и нехватки исторических данных.

8. Квантоваяфизика. PINNприменяютсядляприближённогорешенияурав-
нения Шрёдингера, расчёта собственных состояний, моделирования
туннелирования, а также в задачах квантовой химии (например, элек-
тронная плотность в молекулах).

9. Химическая кинетика и системная биология
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Используются для восстановления параметров реакций, предсказания
поведения сложных сетей с обратными связями и моделирования внутри-
клеточных процессов.
Космические и астрофизические расчёты. Моделирование гравитационных

волн, динамики аккреционных дисков, распространения излучения в звёзд-
ныхатмосферах, задачнебесноймеханикииобщегомоделированияэволюции
астрофизических систем.
Physics-Informed Neural Networks (PINNs) находят широкое применение

в электродинамике, особенно при решении уравнений Максвелла в сложных
условиях.

1.3.7. Решение нестационарных уравненийМаксвелла

Физически информированные нейронные сети активно применяются для
моделирования временной эволюции электромагнитных полей, описывае-
мой уравнениями Максвелл [42], а. Такой подход особенно полезен в задачах,
где требуется проследить поведение волн во времени, например, при их рас-
пространении в неоднородной среде или отражении от границ. В отличие
от традиционных методов, таких как метод конечных разностей во времен-
ной области (FDTD), PINN не требует явной сетки по пространству и времени.
Это позволяет решать задачи в непрерывной постановке, получая устойчи-
вые и физически обоснованные результаты, особенно там, где начальные или
граничные условия заданы неполно или приблизительно.

1.3.8. Моделирование электромагнитных процессов в неоднородных сре-
дах

PINN показывает высокую эффективность при моделировании взаимо-
действия электромагнитных волн с неоднородными средами, в которых
физические параметры — например, диэлектрическая или магнитная прони-
цаемость — резко меняются в пространстве [35]. В традиционных численных
схемах такие резкие переходы требуют очень мелкой сетки и специальной
обработки граничных условий. PINN же может «мягко» аппроксимировать
поведение на границах различных материалов, обеспечивая согласованность
решения на всём интервале. Это особенно актуально при работе с метаматери-
алами, наноструктурами и волноводами сложной формы [46; 47].
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1.3.9. Решение обратных задач и определение параметров среды

Одно из ключевых преимуществ PINN — возможность решения обратных за-
дач, то есть восстановлениенеизвестных свойств средыподаннымизмерений.
Например, по известному распределению электромагнитного поля можно вос-
становитьдиэлектрическуюпроницаемостьматериалаилиопределитьформу
внутренних неоднородностей. Такие задачи традиционно считаются плохо
обусловленными и требуют сложной регуляризации. Использование PINN
позволяет встроить физику напрямую в процесс обучения, что существен-
но упрощает решение и делает его более устойчивым к шуму и недостатку
данных [2].

1.3.10. Моделирование магнитных полей и микромагнитных структур

В задачах магнитостатики PINN применяется для вычисления распреде-
ления магнитного поля и потенциала, в том числе в магнитно активных
материалах со сложной геометрией. Особенно интересны приложения в мик-
ромагнетизме, где требуется высокая точность при моделировании доменных
структур и переходов между состояниями на микроуровне. Метод позволяет
получить непрерывное представление магнитного поля в пространстве без
необходимости вручную задавать сеточнуюаппроксимациюилииспользовать
специальные преобразования. Это облегчает расчёты в задачах проектирова-
ния магнитных сенсоров, систем хранения информации и других устройств.

1.3.11. Электростатические задачи и расчёт потенциалов

PINN также широко применяются для решения задач электростатики —
например, для расчёта потенциала вблизи заряженных тел, в присутствии
диэлектрических или проводящих границ. Такие задачи характерны для
электрохимии, микроэлектроники, биофизики и энергоёмких устройств. Пре-
имущество метода — возможность моделировать сложные граничные условия
и геометрии, сохраняя при этом физическую корректность распределения
потенциала. PINN способен учитывать как точечные источники, так и про-
странственно распределённые заряды, а также особенности материала, не
прибегая к ручному построению сетки.
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Тем не менее, как и любой метод, PINN имеет свои ограничения [8; 48; 65].
Прежде всего, обучение может быть длительным и требовать значительных
вычислительных ресурсов, особенно в задачах с большой размерностью или
сложной геометрией. Кроме того, важнуюрольиграет балансировка компонен-
товфункциипотерь: если веса выбранынеудачно, сетьможет сосредоточиться
либо на данных, игнорируя уравнение, либо наоборот. Также возможно воз-
никновение трудностей при обучении в жёстких системах или при сильной
нелинейности.
Также стоит отметить, что PINN не гарантирует сходимости к корректно-

му решению даже при формальном выполнении уравнений и граничных
условий. Итог может сильно зависеть от начальной инициализации сети, её
архитектурыи выбора параметров оптимизации. Это означает, что двемодели,
обученные на одинаковых данных, могут дать разные и не всегда физически
обоснованные результаты [8].
Сложность также представляет собой выбор архитектуры нейросети.

В отличие от традиционных численныхметодов, для которых существует усто-
явшаяся теория построения разностных или конечных элементов, в случае
PINN нет общепринятой методики определения глубины, ширины и других
характеристик сети. Выбор приходится осуществлять эмпирически, что по-
вышает риск переобучения или, наоборот, недостаточной выразительности
модели.
PINN чувствительны к масштабам переменных. Если входные и выходные

величины имеют различный порядок, это может привести к числовой неста-
бильности и нарушению баланса при обучении. Хотя существует практика
нормализации и введения адаптивных весов в функцию потерь, эти решения
не всегда универсальны и требуют ручной настройки.
Серьёзное ограничение связано с тем, что PINN плохо обобщают поведение

системы за пределами области, в которой производилось обучение. Если, на-
пример, геометрия задачи изменилась или параметры уравнения вышли за
пределы обучающего диапазона, модель может перестать работать коррект-
но. В таких случаях требуется полное переобучение, что делает метод менее
универсальным по сравнению с классическими схемами.
Особенность PINN в том, что они не обладают локальностью. В численных

методах результат в каждой точке зависит только от локального окружения,
и этопозволяетконтролировать точностьрешенияпосетке. ВPINNжевлияние
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каждого обучающего узла распространяется на всё решение, что затрудняет
локальный контроль ошибки и делает диагностику проблем в конкретных
областях более сложной.
Дополнительная трудность возникает при попытке аппроксимировать ре-

шения с высокочастотными компонентами, резонансами или осцилляциями.
Стандартные архитектуры PINN, основанные на классических функциях ак-
тивации, с такими задачами справляются плохо. Для их успешного решения
требуется использование специальных архитектур, например, с представле-
нием входных данных в спектральной области [7].
Если задача содержит разрывы, градиентные скачки или сингулярности,

PINN также показывает нестабильное поведение. Нейросеть, обученная на
гладких функциях, склонна сглаживать такие особенности, что искажает фи-
зическую картину процесса. Кроме того, как и любые нейросетевые модели,
PINN остаются трудно интерпретируемыми — сложно объяснить, почему мо-
дель приняла то или иное решение, и это снижает её доверие со стороны
исследователей и инженеров.
Эти ограничения не делают PINN непригодными, но требуют осознанного

и осторожного применения, особенно в задачах, где важна высокая точность,
надёжность и воспроизводимость.
Несмотря на это, физически информированные нейросети сегодня счи-

таются одним из наиболее универсальных и перспективных инструментов
интеграции машинного обучения и классического математического моде-
лирования. PINN не только расширяет границы применимости численных
методов, но и даёт новые возможности для анализа систем, о которых име-
ется неполная информация, или которые сложно описать исключительно
аналитически или численно.
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Метод Суть метода Тип задачи Особенности

PINN (Physics-
InformedNeural
Networks)

Минимизация
невязки PDE
и граничных
условий с помо-
щью нейросети

Прямые и об-
ратные задачи
ОДУ/ЧДУ

Автома-
тическое
дифферен-
цирование,
сложность
обучения

Deep Ritz
Method (DRM)

Решение ва-
риационной
задачи через
минимизацию
функционала
с помощью
нейросети

Задачи с вари-
ационной фор-
мой (например,
Пуассон)

Подходит для
задач с энер-
гетической
формулиров-
кой

Neural
Operators
(DeepONet,
FNO)

Аппрок-
симация
отображений
между функци-
ями (например,
начальные
условия →
решение)

Параметризо-
ванные PDE,
многоразовое
применение

Высокая ско-
рость после
обучения, неза-
висимость от
сетки

Data-Driven
Hybrid Models

Объединение
классических
PDE моделей
с ML для ап-
проксимации
коэффициен-
тов, условий
и т.п.

Обратные
задачи, сурро-
гатные модели

Гибкость, но
возможна
потеря интер-
претируемости

Graph Neural
Networks for
PDEs

Решение дис-
кретных PDE
через распро-
странение
информации
по графу

Сеточные
задачи (необя-
зательно
регулярные)

Естественная
работа с нере-
гулярными
сетками

Latent Space
Evolution via
Autoencoders

Сжатие поля
в латентное
пространство
и моделирова-
ние эволюции
в нём

Сложные ди-
намические
системы

Компрес-
сия данных,
ускорение мо-
делирования
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Глава 2. Моделирование оптических
трансформирующих сред на основе лучевой оптики

2.1. Формализм оптических лучей и уравнения эйконала

2.1.1. Методический вывод уравнения эйконала

Обычно при работе с уравнением эйконала ссылаются на его вывод в мо-
нографии Борна и Вольфа. Вывод этого уравнения выполнен достаточно
небрежно. Для того, чтобы разобраться в этом выводе требуется определённое
число имплицитных предположений. Для лучшего понимания приближения
эйконала и для методических целей авторы решили повторить вывод урав-
нения эйконала, эксплицировав все возможные допущения. Методически
предлагается следующий алгоритм вывода уравнения эйконала. Из уравне-
ния Максвелла выводится волновое уравнение. При этом явно вводятся все
условия, при которых это возможно сделать. Далее от волнового уравнения
осуществляется переход к уравнениюГельмгольца. От уравнения Гельмгольца,
при приложении определённых допущений, производится переход к уравне-
ниюэйконала.Послеразборавсехдопущенийишагов, реализуется собственно
переход от уравнений Максвелла к уравнению эйконала. При выводе урав-
нения эйконала используется несколько формализмов. В качестве первого
формализма используется стандартныйформализм векторного анализа. Урав-
нения Максвелла и уравнение эйконала записывается в виде трёхмерных
векторов. После этого и для уравнений Максвелла, и для уравнения эйконала
используется ковариантный 4-мерный формализм.
Одной из основ применяемой программы моделирования оптических яв-

лений является модель эйконала [6; 28]. Данная модель достаточно известна,
однако процесс вывода её несколько запутан [73; 75]. А в известной моно-
графии Борна и Вольфа [68] вывод вообще выглядит как некий вариант
физической магии (вот у нас уравнения Максвелла, немного волшебства,
и у нас уравнение эйконала).
Мы использовали аналитические методы для вывода уравнения эйконала

из уравнений Максвелла в среде без токов и зарядов. Процесс включает ана-
лиз дифференциальных уравнений и применение методов математического
анализа. Краткий план вывода приведён на схеме 2.1.
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Уравнения Максвелла

Уравнения Максвелла
 без токов и зарядов

Монохроматическое
гармоническое поле

Поиск решения
в виде плоской волны

Высокочастотная волна / 
коротковолновое излучение

Уравнение эйконала

Вывод волнового уравнения

Предположение
о колебании поля

Уравнение Гельмгольца
 при монохроматической

гармонической волне

Решение уравнения Гельмгольца
при

плоской волне

Рис. 2.1. План вывода уравнения эйконала
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2.1.2. Уравнения Максвелла

Рассмотрим уравнения Максвелла в векторно-дифференциальной форме:

∇ ×𝐇 −
1
𝑐
𝜕𝐃
𝜕𝑡 =

4𝜋
𝑐 𝐣, (2.1)

∇ × 𝐄 +
1
𝑐
𝜕𝐁
𝜕𝑡 = 𝟎, (2.2)

∇ ⋅ 𝐃 = 4𝜋𝜌, (2.3)

∇ ⋅ 𝐁 = 0. (2.4)

— 𝐄(𝐫, 𝑡) = 𝐄(𝑥, 𝑦, 𝑧, 𝑡)— вектор напряженности электрического поля;

— 𝐇(𝐫, 𝑡) = 𝐇(𝑥, 𝑦, 𝑧, 𝑡)— вектор напряженности магнитного поля;

— 𝐃(𝐫, 𝑡) = 𝐃(𝑥, 𝑦, 𝑧, 𝑡)— вектор индукции электрического поля;

— 𝐁(𝐫, 𝑡) = 𝐁(𝑥, 𝑦, 𝑧, 𝑡)— вектор индукции магнитного поля;

— 𝐣(𝐫) = 𝐣(𝑥, 𝑦, 𝑧) — плотность внешнего электрического тока (сила тока
через единицу площади);

— 𝜌(𝐫) = 𝜌(𝑥, 𝑦, 𝑧)— плотность электрического заряда;

— 𝑐— скорость света в вакууме;

— 𝐫 = (𝑥, 𝑦, 𝑧)𝑇 — радиус-вектор точки, записанный в декартовых коорди-
натах.

Кратко опишем физический смысл каждого из уравнений Максвелла.

— Уравнение (2.1) означает, что электрический ток и изменение электри-
ческой индукции порождают соленоидальное магнитное поле — то есть
такое поле, силовые линии которого закручиваются в вихрь вдоль векто-
ра, указывающего направление тока.

— Уравнение (2.2) означает, что изменение во времени магнитного поля
порождает электрическое поле.

— Уравнение (2.3) означает, что электрический заряд является источником
электрической индукции.
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— Уравнение (2.4) означает, что не существует свободных магнитных полю-
сов (опытным путем обнаружены только магнитные диполи, магнитные
монополи науке не известны).

Справедливы также следующие соотношения, называемые материальными
уравнениями:

𝐣 = 𝜎𝐄, 𝐃 = 𝜀𝐄, 𝐁 = 𝜇𝐇,

где 𝜎(𝐫) — удельная проводимость, 𝜀(𝐫) — диэлектрическая проницаемость
и 𝜇(𝐫) — магнитная проницаемость. В изотропной среде 𝜀 и 𝜇 — скалярные
величины, однако в общем случае являются тензорными.
Среда называется изотропной если ее физические свойства не зависят от

направления. Термин происходит от греческих слов «изос» (ισος) — равный,
одинаковый, подобный и «тропос» (τροπος) — направление, характер. В элек-
тродинамике изотропия среды связанна с одинаковостью величин 𝜀(𝐫) и 𝜇(𝐫)
во всех направлениях.
Магнитная проницаемость характеризует магнитные свойства среды (ве-

щества). Если 𝜇 ≠ 1, то вещество называется магнетиком, если 𝜇 > 1 —
парамагнетик, если 𝜇 < 1— диамагнетик.
Далее будем рассматривать среду, не проводящую электричество, то есть

𝜎 = 0, а такжесвободнуюоттоков, то есть 𝐣 = 𝟎и𝜌 = 0, то уравненияМаксвелла
несколько упрощаются:

∇ ×𝐇 −
1
𝑐
𝜕𝐃
𝜕𝑡

= 𝟎, (2.5)

∇ × 𝐄 +
1
𝑐
𝜕𝐁
𝜕𝑡 = 𝟎, (2.6)

∇ ⋅ 𝐃 = 0, (2.7)

∇ ⋅ 𝐁 = 0. (2.8)
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2.1.3. Волновое уравнение

2.1.4. Вывод волнового уравнения из уравненийМаксвелла

Будем предполагать, что 𝜌 = 0 и 𝐣 = 𝟎 и рассмотрим уравнения (2.5) и (2.6):

∇ ×𝐇 −
1
𝑐
𝜕𝐃
𝜕𝑡

= 𝟎,

∇ × 𝐄 +
1
𝑐
𝜕𝐁
𝜕𝑡 = 𝟎.

Используемматериальные уравнения𝐃 = 𝜀𝐄и𝐁 = 𝜇𝐇и учтем зависимость
диэлектрической и магнитной проницаемостей от координат: 𝜀 = 𝜀(𝑥, 𝑦, 𝑧)
и 𝜇 = 𝜇(𝑥, 𝑦, 𝑧).

∇ × 𝐄 +
1
𝑐

𝜕
𝜕𝑡(𝜇𝐇) = 𝟎 ⇒ ∇ × 𝐄 +

𝜇
𝑐
𝜕𝐇
𝜕𝑡 = 𝟎 ⇒

1
𝜇∇ × 𝐄 +

1
𝑐
𝜕𝐇
𝜕𝑡 = 𝟎.

Применим оператор ротора ∇× к получившемуся уравнению:

∇ × (
1
𝜇∇ × 𝐄)

| {z }
(I)

+
1
𝑐∇ ×

𝜕𝐇
𝜕𝑡

| {z }
(II)

= 𝟎.

Рассмотрим вначале слагаемое (II) данного уравнения. Производную по
времени можно вынести из под знака оператора ротора:

∇ ×
𝜕𝐇
𝜕𝑡 =

𝜕
𝜕𝑡(∇ ×𝐇).

В силу (2.5) получим:

𝜕
𝜕𝑡(∇ ×𝐇) =

𝜕
𝜕𝑡

1
𝑐
𝜕𝐃
𝜕𝑡 =

1
𝑐
𝜕2𝐃
𝜕𝑡2

.

Используем материальное уравнение𝐃 = 𝜀𝐄, запишем:

𝜕2𝐃
𝜕𝑡2

=
𝜕2(𝜀(𝐫)𝐄)

𝜕𝑡2
= 𝜀

𝜕2𝐄
𝜕𝑡2

⇒
1
𝑐∇ ×

𝜕𝐇
𝜕𝑡 =

𝜀
𝑐2

𝜕2𝐄
𝜕𝑡2

.

Для того, чтобы упростить слагаемое (I) используем соотношение ∇ × 𝑓 𝐯 =
𝑓∇ × 𝐯 + ∇𝑓 × 𝐯, где 𝑓 (𝑥, 𝑦, 𝑧) — скалярная функция, а 𝐯(𝑥, 𝑦, 𝑧) — векторное
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поле. Слагаемое (I) с помощью этого соотношения разлагается следующим
образом:

∇ × (
1
𝜇∇ × 𝐄) =

1
𝜇∇ × (∇ × 𝐄)

| {z }
(I.a)

+ (∇
1
𝜇,∇ × 𝐄)

| {z }
(I.b)

.

В свою очередь, для упрощения слагаемого (I.a) используем тождество ∇ ×
∇ × 𝐯 = ∇(∇ ⋅ 𝐯) − ∇2𝐯, где ∇2 — оператор Лапласа.

1
𝜇∇ × (∇ × 𝐄) =

1
𝜇∇(∇ ⋅ 𝐄) −

1
𝜇∇

2𝐄.

Для упрощения выражения ∇(∇ ⋅ 𝐄) применим тождество ∇ ⋅ (𝑓 𝐯) = 𝑓∇ ⋅ 𝐯 +
(∇𝑓 , 𝐯) к уравнениюМаксвелла (2.7), заменив индукцию𝐃 на напряженность
с помощью материального уравнения𝐃 = 𝜀𝐄:

∇⋅𝐃 = ∇⋅(𝜀𝐄) = 𝜀∇⋅𝐄+(𝐄,∇𝜀) = 0 ⇒ ∇⋅𝐄 = −
1
𝜀 (∇𝜀,𝐄) ⇒

1
𝜇∇(∇ ⋅ 𝐄) = −

1
𝜇∇(

1
𝜀 (∇𝜀,𝐄)).

В результате слагаемое (I.a) преобразовалось к следующему виду:

1
𝜇∇ × (∇ × 𝐄) = −

1
𝜇∇(

1
𝜀 (∇𝜀,𝐄)) −

1
𝜇∇

2𝐄.

Комбинируя (I) и (II) запишем:

−
1
𝜇∇

2𝐄 −
1
𝜇∇(

1
𝜀 (∇𝜀,𝐄))

| {z }
(I.a)

+ (∇
1
𝜇,∇ × 𝐄)

| {z }
(I.b)

+
𝜀
𝑐2

𝜕2𝐄
𝜕𝑡2

| {z }
(II)

= 0,

−∇2𝐄 − ∇(
1
𝜀 (∇𝜀,𝐄)) + 𝜇(∇

1
𝜇,∇ × 𝐄) +

𝜇𝜀
𝑐2

𝜕2𝐄
𝜕𝑡2

= 0,

∇2𝐄 −
𝜇𝜀
𝑐2

𝜕2𝐄
𝜕𝑡2

+ [∇(
1
𝜀 (∇𝜀,𝐄)) − 𝜇(∇

1
𝜇,∇ × 𝐄)] = 0,

Полностью аналогичное уравнение можно получить и для вектора напря-
женности магнитного поля𝐇.
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В случае изотропной среды, то есть 𝜀 = 𝜇 = const дополнительное слагае-
мое, взятое в квадратные скобки, обращается в ноль и мы получаем волновое
уравнение:

∇2𝐄 −
𝜀𝜇
𝑐2

𝜕2𝐄
𝜕𝑡2

= 𝟎,

∇2𝐇−
𝜀𝜇
𝑐2

𝜕2𝐇
𝜕𝑡2

= 𝟎.

Можно ввести величину 𝑣 = 𝑐/√𝜀𝜇 — скорость электромагнитной волны
в среде.

2.1.5. Случай плоской волны

Рассмотрим волновое уравнение:

∇2𝐔−
1
𝑣2

𝜕2𝐔
𝜕𝑡2

= 0.

Рассмотрим электромагнитную волну, которая распространяется в направ-
лении 𝐬, где 𝐬 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) — некоторый единичный вектор (‖𝐬‖ = 1)
фиксированного направления. Любое решение данного уравнения, имеющее
вид𝐔 = 𝐔((𝐫, 𝐬), 𝑡)представляет собой плоскую волну, так как в каждыймомент
времени вектор𝐔 постоянен в плоскости (𝐫, 𝐬) = −𝑑, где |𝑑|— расстояние от
плоскости до начала координат. Выражение (𝐫, 𝐬) = −𝑑 фактически является
нормальным уравнением плоскости, где вектор 𝐬 выступает в роли единично-
го вектора нормали. Запишем в декартовых координатах:

𝑠𝑥𝑥 + 𝑠𝑦𝑦 + 𝑠𝑧𝑧 + 𝑑 = 0.

Можно упростить волновое уравнение путем введения новой системы коор-
динат. Так как вектор напряженности плоской волны целиком зависит только
отрасстояния𝑑, томожновыбратьновуюсистемукоординат сосями𝑂𝜉,𝑂𝜂,𝑂𝜁
так, что ось 𝑂𝜁 направлена вдоль вектора 𝐬, а начало координат совпадает
с прежней декартовой системой 𝑂𝑥𝑦𝑧. Тогда, координата по оси𝑂𝜁 будет за-
висеть от прежних координат по формуле 𝜁(𝑥, 𝑦, 𝑧) = (𝐫, 𝐬) = 𝑠𝑥𝑥 + 𝑠𝑦𝑦 + 𝑠𝑧𝑧,
в то время как 𝜉 и 𝜂 от прежних координат не зависят и могут быть выбраны
произвольно, например так, чтобы координатная система𝑂𝜉𝜂𝜁 была правой.
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Рис. 2.2. Плоскость (𝐫, 𝐬) = const. Новые оси координат выбираются так, чтобы
вектор 𝐬 был ортом оси𝑂𝜁. Две другие оси𝑂𝜉 и𝑂𝜂 выбираются

произвольно и образуют правую систему координат𝑂𝜉𝜂𝜁

Замена дифференциальных операторов осуществляется с помощью матри-
цы Якоби следующим образом:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝜉
𝜕𝑥

𝜕𝜂
𝜕𝑥

𝜕𝜁
𝜕𝑥

𝜕𝜉
𝜕𝑦

𝜕𝜂
𝜕𝑦

𝜕𝜁
𝜕𝑦

𝜕𝜉
𝜕𝑧

𝜕𝜂
𝜕𝑧

𝜕𝜁
𝜕𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝜉
𝜕
𝜕𝜂
𝜕
𝜕𝜁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(
𝜕(𝜉, 𝜂, 𝜁)
𝜕(𝑥, 𝑦, 𝑧))

𝑇

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝜉
𝜕𝑥

𝜕𝜂
𝜕𝑥

𝜕𝜁
𝜕𝑥

𝜕𝜉
𝜕𝑦

𝜕𝜂
𝜕𝑦

𝜕𝜁
𝜕𝑦

𝜕𝜉
𝜕𝑧

𝜕𝜂
𝜕𝑧

𝜕𝜁
𝜕𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Так как 𝜉 = const и 𝜂 = const, а 𝜁 = (𝐫, 𝐬), то:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 0 𝑠𝑥
0 0 𝑠𝑦
0 0 𝑠𝑧

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝜉
𝜕
𝜕𝜂
𝜕
𝜕𝜁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑠𝑥
𝜕
𝜕𝜁

𝑠𝑦
𝜕
𝜕𝜁

𝑠𝑧
𝜕
𝜕𝜁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⟹

𝜕
𝜕𝑥 = 𝑠𝑥

𝜕
𝜕𝜁

,

𝜕
𝜕𝑦 = 𝑠𝑦

𝜕
𝜕𝜁

,

𝜕
𝜕𝑧 = 𝑠𝑧

𝜕
𝜕𝜁

.

Оператор Лапласа после замены координат преобразуется к следующему
виду:

∇2𝐔 = 𝑠2𝑥
𝜕2𝐔
𝜕𝜁2 + 𝑠2𝑦

𝜕2𝐔
𝜕𝜁2 + 𝑠2𝑧

𝜕2𝐔
𝜕𝜁2 = (𝑠2𝑥 + 𝑠2𝑦 + 𝑠2𝑧 )

𝜕2𝐔
𝜕𝜁2 =

𝜕2𝐔
𝜕𝜁2

Волновое уравнение упрощается:
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𝜕2𝐔
𝜕𝜁2 −

1
𝑣2

𝜕2𝐔
𝜕𝑡2

= 0.

Проведём еще одну замену𝑝 = 𝜁−𝑣𝑡и 𝑞 = 𝜁 +𝑣𝑡, что приведет к следующему
преобразованию дифференциальных операторов:

⎡
⎢
⎢
⎣

𝜕
𝜕𝜁
𝜕
𝜕𝑡

⎤
⎥
⎥
⎦

= (
𝜕(𝜁, 𝑡)
𝜕(𝑝, 𝑞))

𝑇 ⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑝
𝜕
𝜕𝑞

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝜕𝑝
𝜕𝜁

𝜕𝑞
𝜕𝜁

𝜕𝑝
𝜕𝑡

𝜕𝑞
𝜕𝑡

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑝
𝜕
𝜕𝑞

⎤
⎥
⎥
⎥
⎦

=

= [
1 1
−𝑣 𝑣

]
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑝
𝜕
𝜕𝑞

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑝 +

𝜕
𝜕𝑞

−𝑣
𝜕
𝜕𝑝 + 𝑣

𝜕
𝜕𝑞

⎤
⎥
⎥
⎥
⎦

⇒

⇒

𝜕
𝜕𝜁

=
𝜕
𝜕𝑝 +

𝜕
𝜕𝑞

𝜕
𝜕𝑡 = −𝑣

𝜕
𝜕𝑝 + 𝑣

𝜕
𝜕𝑞.

Вторые производные выражаются через новые переменные следующим
образом:

𝜕2

𝜕𝜁2 =
𝜕2

𝜕𝑝2 + 2
𝜕
𝜕𝑝

𝜕
𝜕𝑞 +

𝜕2

𝜕𝑞2 ,

𝜕2

𝜕𝑡2
= 𝑣2 (

𝜕2

𝜕𝑝2 − 2
𝜕
𝜕𝑝

𝜕
𝜕𝑞

+
𝜕2

𝜕𝑞2) .

При подстановке операторов в волновое равнение, оно упрощается следую-
щим образом:

𝜕2𝐔
𝜕𝜁2 −

1
𝑣2

𝜕2𝐔
𝜕𝑡2

=
𝜕2𝐔
𝜕𝑝2 + 2

𝜕2𝐔
𝜕𝑝𝜕𝑞 +

𝜕2𝐔
𝜕𝑞2 −

1
𝑣2𝑣

2 (
𝜕2𝐔
𝜕𝑝2 − 2

𝜕2𝐔
𝜕𝑝𝜕𝑞 +

𝜕2𝐔
𝜕𝑞2 ) =

= 4
𝜕2𝐔
𝜕𝑝𝜕𝑞 = 0 ⇒

𝜕2𝐔
𝜕𝑝𝜕𝑞 = 0

Общим решением преобразованного волнового уравнения служит функция
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𝐔 = 𝐔1(𝑝) + 𝐔2(𝑞) = 𝐔1((𝐫, 𝐬) − 𝑣𝑡) + 𝐔2((𝐫, 𝐬) + 𝑣𝑡).

Другойподход к решениюиспользует разделениепеременных. Будемискать
решение в комплексном виде

𝐔(𝐫, 𝑡) = 𝐔0(𝐫)𝑒−𝑖𝜔𝑡.

При подстановке в волновое уравнение получим:

𝜕2𝐔
𝜕𝑡2

= −𝜔2𝑒−𝑖𝜔𝑡𝐔0(𝐫), ∇2𝐔 = 𝑒−𝑖𝜔𝑡∇2𝐔0(𝐫).

∇2𝐔−
1
𝑣2

𝜕2𝐔
𝜕𝑡2

= 0 ⟹ ∇2𝐔0 +
𝜔2

𝑣2 𝐔0 = 0.

Введем некоторые скалярные величины: волновое число 𝑘 = 𝜔/𝑣, 𝑘0 = 𝜔/𝑐,
волновой вектор 𝐤 = 𝑘𝐬. Напомним, что 𝑐— скорость света в вакууме, 𝑣— ско-
рость электромагнитной волны в среде,𝑛 = √𝜀𝜇—коэффициент преломления
среды, 𝐬 — направление распространения волны. Скорости 𝑣 и 𝑐 связаны соот-
ношениями 𝑣 = 𝑐/√𝜀𝜇 = 𝑐/𝑛, поэтому волновое число можно также записать
в виде 𝑘 = 𝜔/𝑣 = 𝜔√𝜀𝜇/𝑐 = 𝑘0𝑛. Теперь уравнение для𝐔0 можно переписать
в виде:

(∇2 + 𝑘2)𝐔0 = 0.

Данное уравнениеноситназвание уравнения Гельмгольца (однородное уравне-
ниеГельмгольца). В общемслучае егорешениеможновыразитьв специальных
функциях, но в случае плоской волны общее решение можно записать в следу-
ющем виде:

𝐔0(𝐫) = 𝐮0(𝐫)𝑒𝑖𝑘(𝐬,𝐫) = 𝐮0(𝐫)𝑒𝑖𝑘0𝑛(𝐬,𝐫).
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2.1.6. Вывод уравнения эйконала

Теорема 1 Будем рассматривать монохроматическую гармоническую волну, век-
торы напряженности которой выражаются в следующем виде:

𝐄(𝐫, 𝑡) = 𝐄0(𝐫)𝑒−𝑖𝜔𝑡,
𝐇(𝐫, 𝑡) = 𝐇0(𝐫)𝑒−𝑖𝜔𝑡,

где 𝐫 = (𝑥, 𝑦, 𝑧)𝑇 — радиус вектор точки пространства в декартовой системе коор-
динат,𝜔—циклическая частота,𝑘0 = 𝜔/𝑐 = 2𝜋/𝜆0, где 𝜆0 — длина волны в вакууме,
а также предположим, что волна высокочастотная, то есть циклическая часто-
та𝜔 велика и, следовательно, велика и величина 𝑘0. Тогда, уравнение Гельмгольца
сводится к уравнению эйконала, которое имеет следующий вид:

‖∇𝑢‖2 = 𝑛2(𝐫),

Подставим выражения для монохроматической волны в уравнения Макс-
велла. Последовательно вычислим все дифференциальные операторы:

∇ ×𝐇 = ∇ × (𝐇0𝑒−𝑖𝜔𝑡) = 𝑒−𝑖𝜔𝑡∇ ×𝐇0,
∇ × 𝐄 = ∇ × (𝐄0𝑒−𝑖𝜔𝑡) = 𝑒−𝑖𝜔𝑡∇ × 𝐄0.

Используя материальные уравнения𝐃 = 𝜀𝐄 и𝐁 = 𝜇𝐇 заменим везде𝐃 и𝐁
через 𝐄 и𝐇, учитывая, что 𝜀(𝐫) = 𝜀(𝑥, 𝑦, 𝑧) и 𝜇(𝐫) = 𝜇(𝑥, 𝑦, 𝑧).

∇ ⋅ 𝐃 = ∇ ⋅ (𝜀(𝑥, 𝑦, 𝑧)𝐄) = 𝑒−𝑖𝜔𝑡∇ ⋅ (𝜀𝐄0),
∇ ⋅ 𝐁 = ∇ ⋅ (𝜇(𝑥, 𝑦, 𝑧)𝐇) = 𝑒−𝑖𝜔𝑡∇ ⋅ (𝜇𝐇0).

Заменим𝐃и𝐁 также в выражениях для производных, учитывая, что 𝜀и𝜇не
зависятотвремени, такжекаки𝐄0 с𝐇0 изформул𝐄(𝑥, 𝑦, 𝑧, 𝑡) = 𝐄0(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡,
𝐇(𝑥, 𝑦, 𝑧, 𝑡) = 𝐇0(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡.

𝜕𝐃
𝜕𝑡 =

𝜕
𝜕𝑡(𝜀𝐄0𝑒−𝑖𝜔𝑡) = 𝜀(𝑥, 𝑦, 𝑧)𝐄0(𝑥, 𝑦, 𝑧)

𝜕𝑒−𝑖𝜔𝑡

𝜕𝑡 = −𝑖𝜀𝜔𝐄0𝑒−𝑖𝜔𝑡,

𝜕𝐁
𝜕𝑡 =

𝜕
𝜕𝑡(𝜇𝐇0𝑒−𝑖𝜔𝑡) = 𝜇(𝑥, 𝑦, 𝑧)𝐇0(𝑥, 𝑦, 𝑧)

𝜕𝑒−𝑖𝜔𝑡

𝜕𝑡 = −𝑖𝜇𝜔𝐇0𝑒−𝑖𝜔𝑡.
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Подставим полученные выражения в уравнение (2.5):

∇ ×𝐇 −
1
𝑐
𝜕𝐃
𝜕𝑡 = 0 ⇒�

���𝑒−𝑖𝜔𝑡∇ ×𝐇0 + 𝑖𝜀
𝜔
𝑐 𝐄0����𝑒−𝑖𝜔𝑡 = 0 ⇒ ∇ ×𝐇0 + 𝑖𝜀𝑘0𝐄0 = 0 ,

затем в уравнение (2.6):

∇ × 𝐄 +
1
𝑐
𝜕𝐁
𝜕𝑡 = 0 ⇒����𝑒−𝑖𝜔𝑡∇ × 𝐄0 − 𝑖𝜀

𝜔
𝑐𝐇0����𝑒−𝑖𝜔𝑡 = 0 ⇒ ∇ × 𝐄0 − 𝑖𝜀𝑘0𝐇0 = 0 ,

в уравнение (2.7):

∇ ⋅ 𝐃 = 0 ⇒ 𝑒−𝑖𝜔𝑡∇ ⋅ (𝜀𝐄0) = 0 ⇒ ∇ ⋅ (𝜀𝐄0) = 0 ,

и, наконец, в уравнение (2.8):

∇ ⋅ 𝐁 = 0 ⇒ 𝑒−𝑖𝜔𝑡∇ ⋅ (𝜇𝐇0) = 0 ⇒ ∇ ⋅ (𝜇𝐇0) = 0

В результате система уравнений (2.5)–(2.8) принимает следующий упрощен-
ный вид:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∇ ×𝐇0 + 𝑖𝜀𝑘0𝐄0 = 0,
∇ × 𝐄0 − 𝑖𝜇𝑘0𝐇0 = 0,
∇ ⋅ (𝜀𝐄0) = 0,
∇ ⋅ (𝜇𝐇0) = 0.

(2.9)

Сделаем очередное упрощение, предположив, что

𝐄0(𝑥, 𝑦, 𝑧) = 𝐞(𝑥, 𝑦, 𝑧) exp(𝑖𝑘0𝑢(𝑥, 𝑦, 𝑧)) = 𝐞(𝐫) exp(𝑖𝑘0𝑢(𝐫)),
𝐇0(𝑥, 𝑦, 𝑧) = 𝐡(𝑥, 𝑦, 𝑧) exp(𝑖𝑘0𝑢(𝑥, 𝑦, 𝑧)) = 𝐡(𝐫) exp(𝑖𝑘0𝑢(𝐫)).

где 𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝐫) — скалярная вещественная функция, называемая опти-
ческим путем, а 𝐞 и 𝐡 — векторные функции положения. Вновь вычислим
дифференциальные операторы, на этот раз от 𝐄0 и 𝐇0, используя форму-
лы (C.2):

∇ ×𝐇0 = ∇ × (𝑒𝑖𝑘0𝑢(𝐫)𝐡(𝐫)) = 𝑒𝑖𝑘0𝑢(𝐫)∇ × 𝐡 + ∇(𝑒𝑖𝑘0𝑢(𝐫)) × 𝐡.

Градиент от функции 𝑒𝑖𝑘0𝑢(𝐫) вычисляется следующим образом:
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∇(𝑒𝑖𝑘0𝑢(𝐫)) = (
𝜕𝑒𝑖𝑘0𝑢(𝐫)

𝜕𝑥 ,
𝜕𝑒𝑖𝑘0𝑢(𝐫)

𝜕𝑦 ,
𝜕𝑒𝑖𝑘0𝑢(𝐫)

𝜕𝑧 ) =

= 𝑖𝑘0𝑒𝑖𝑘0𝑢(𝐫) (
𝜕𝑢(𝑥, 𝑦, 𝑧)

𝜕𝑥 ,
𝜕𝑢(𝑥, 𝑦, 𝑧)

𝜕𝑦 ,
𝜕𝑢(𝑥, 𝑦, 𝑧)

𝜕𝑧 ) = 𝑖𝑘0𝑒𝑖𝑘0𝑢(𝐫)∇𝑢(𝑥, 𝑦, 𝑧).

В результате слагаемое ∇ ×𝐇0 первого уравнения системы (2.9) принимает
вид:

∇ ×𝐇0 = (∇ × 𝐡 + 𝑖𝑘0∇𝑢 × 𝐡)𝑒𝑖𝑘0𝑢(𝐫). (2.10)

Полностьюаналогичнополучаемвыражениедля∇×𝐄0 вовторомуравнении
системы (2.9):

∇ × 𝐄0 = (∇ × 𝐞 + 𝑖𝑘0∇𝑢 × 𝐞)𝑒𝑖𝑘0𝑢(𝐫). (2.11)

Вычисление дивергенции несколько сложнее, потому что формулу (C.2)
придется применять дважды. Первый раз используем ее чтобы расписать
выражение ∇ ⋅ 𝜀𝐄0:

∇ ⋅ 𝜀𝐄0 = 𝜀(𝐫)∇ ⋅ 𝐄0 + (∇𝜀,𝐄0).

Далее используем ее же для вычисления ∇ ⋅ 𝐄0, где вместо 𝐄0 подставим
выражение 𝐄0 = 𝐞(𝐫) exp(𝑖𝑘0𝑢(𝐫)):

∇ ⋅ 𝐄0 = ∇ ⋅ [𝐞(𝐫)𝑒𝑖𝑘0𝑢(𝐫)] = 𝑒𝑖𝑘0𝑢(𝐫)∇ ⋅ 𝐞 + (∇(𝑒𝑖𝑘0𝑢(𝐫)), 𝐞) =
= 𝑒𝑖𝑘0𝑢(𝐫)∇ ⋅ 𝐞 + 𝑖𝑘0𝑒𝑖𝑘0𝑢(𝐫)(∇𝑢, 𝐞) = (∇ ⋅ 𝐞 + 𝑖𝑘0(∇𝑢, 𝐞))𝑒𝑖𝑘0𝑢(𝐫),

(∇𝜀, 𝐄0) = (∇𝜀, 𝐞)𝑒𝑖𝑘0𝑢(𝐫).

В итоге третье уравнение системы (2.9) принимает вид:

∇ ⋅ (𝜀(𝐫)𝐄0(𝐫)) = [𝜀(𝐫)∇ ⋅ 𝐞(𝐫) + 𝑖𝑘0𝜀(𝐫)(∇𝑢(𝐫), 𝐞(𝐫)) + (∇𝜀(𝐫), 𝐞(𝐫))]𝑒𝑖𝑘0𝑢(𝐫).

Полностью аналогично получаем выражение для напряженности магнит-
ного поля то есть четвертого уравнения системы (2.9):

∇ ⋅ (𝜇(𝐫)𝐇0(𝐫)) = [𝜇(𝐫)∇ ⋅ 𝐡 + (∇𝜇(𝐫), 𝐡) + 𝑖𝑘0𝜇(𝐫)(∇𝑢(𝐫), 𝐡)]𝑒𝑖𝑘0𝑢(𝐫).

После подстановки в уравнения Максвелла, получим:
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∇×𝐇0+𝑖𝜀𝑘0𝐄0 = 𝟎 ⇒ ∇ × 𝐡 + 𝑖𝑘0∇𝑢 × 𝐡
| {z }

(2.10)

+𝑖𝜀𝑘0𝐞 = 𝟎 ⇒ ∇𝑢×𝐡+𝜀𝐞 = −
1
𝑖𝑘0

∇×𝐡.

∇×𝐄0−𝑖𝜇𝑘0𝐇0 = 𝟎 ⇒ ∇ × 𝐞 + 𝑖𝑘0∇𝑢 × 𝐞
| {z }

(2.11)

−𝑖𝜇𝑘0𝐡 = 𝟎 ⇒ ∇𝑢×𝐞−𝜇𝐡 = −
1
𝑖𝑘0

∇×𝐞.

∇ ⋅ (𝜀𝐄0) = 0 ⇒ 𝜀∇ ⋅ 𝐞 + 𝑖𝑘0𝜀(∇𝑢, 𝐞) + (∇𝜀, 𝐞) = 0

𝑖𝑘0𝜀(∇𝑢, 𝐞) = −(∇𝜀, 𝐞) − 𝜀∇ ⋅ 𝐞 = 0 ⇒ (∇𝑢, 𝐞) = −
1
𝑖𝑘0

[(
1
𝜀∇𝜀, 𝐞) + ∇ ⋅ 𝐞]

Так как

∇(ln 𝜀) = (
𝜕 ln 𝜀
𝜕𝑥 ,

𝜕 ln 𝜀
𝜕𝑦 ,

𝜕 ln 𝜀
𝜕𝑧 ) =

1
𝜀(

𝜕𝜀
𝜕𝑥,

𝜕𝜀
𝜕𝑦,

𝜕𝜀
𝜕𝑧) =

1
𝜀∇𝜀,

(∇𝑢, 𝐞) = −
1
𝑖𝑘0

((∇(ln 𝜀), 𝐞) + ∇ ⋅ 𝐞).

Полностью аналогично проводятся вычисления для магнитного поля, в ре-
зультате получаем четвертое уравнение:

(∇𝑢,𝐡) = −
1
𝑖𝑘0

((∇(ln 𝜇), 𝐡) + ∇ ⋅ 𝐡).

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

∇𝑢 × 𝐡 + 𝜀𝐞 = −
1
𝑖𝑘0

∇ × 𝐡,

∇𝑢 × 𝐞 − 𝜇𝐡 = −
1
𝑖𝑘0

∇ × 𝐞,

(∇𝑢, 𝐞) = −
1
𝑖𝑘0

((∇(ln 𝜀), 𝐞) + ∇ ⋅ 𝐞),

(∇𝑢,𝐡) = −
1
𝑖𝑘0

((∇(ln 𝜇), 𝐡) + ∇ ⋅ 𝐡).

(2.12)

Третье и четвертое уравнения из данной системы следуют из первых двух.
Это можно доказать умножив скалярно первые два уравнения на ∇𝑢 и исполь-
зовать тот факт, что результат векторного произведения ортогонален обоим
его сомножителям:
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(∇𝑢,∇𝑢 × 𝐡)
| {z }

=0

+𝜀(∇𝑢, 𝐞) = 0 ⇒ (∇𝑢, 𝐞) = 0.

Будем рассматривать только первые два уравнения. Выразим 𝐡 из второго
уравнения через 𝑢 и 𝐞 и подставим в первое:

𝐡 =
1
𝜇∇𝑢 × 𝐞 ⇒ ∇𝑢 × (

1
𝜇∇𝑢 × 𝐞) + 𝜀𝐞 = 𝟎 ⇒ ∇𝑢 × ∇𝑢 × 𝐞 + 𝜀𝜇𝐞 = 0.

Для векторного произведения справедливо тождество 𝐚 × 𝐛 × 𝐜 = 𝐛(𝐚, 𝐜) −
𝐜(𝐚, 𝐛) из которого следует

∇𝑢 × ∇𝑢 × 𝐞 = ∇𝑢(∇𝑢, 𝐞) − 𝐞(∇𝑢,∇𝑢) = ∇𝑢(∇𝑢, 𝐞) − 𝐞‖∇𝑢‖2

∇𝑢(∇𝑢, 𝐞) − 𝐞‖∇𝑢‖2 + 𝜀𝜇𝐞 = 0.

Из третьего уравнения системы (2.12) следует, что (∇𝑢, 𝐞), поэтому

−𝐞‖∇𝑢‖2 + 𝜀𝜇𝐞 = 0 ⇒ 𝐞‖∇𝑢‖2 = 𝜀𝜇𝐞,

Приравнивая коэффициенты перед вектором 𝐞 и учитывая, что 𝑛(𝐫) =
√𝜀(𝐫)𝜇(𝐫) запишем уравнение:

‖∇𝑢‖2 = 𝑛2(𝐫), (2.13)

которое и есть уравнение эйконала.�
Функция 𝑢(𝐫) = 𝑢(𝑥, 𝑦, 𝑧) также называется эйконалом, а поверхности

𝑢(𝑥, 𝑦, 𝑧) = const — геометрическими волновыми фронтами. В компонентном
виде в декартовых координатах уравнение (2.13) принимает вид:

(
𝜕𝑢
𝜕𝑥)

2

+ (
𝜕𝑢
𝜕𝑦)

2

+ (
𝜕𝑢
𝜕𝑧)

2

= 𝜀(𝑥, 𝑦, 𝑧)𝜇(𝑥, 𝑦, 𝑧) = 𝑛2(𝑥, 𝑦, 𝑧),

‖∇𝑢‖2 = (∇𝑢,∇𝑢) = (
𝜕𝑢
𝜕𝑥)

2

+ (
𝜕𝑢
𝜕𝑦)

2

+ (
𝜕𝑢
𝜕𝑧)

2

.
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2.1.7. Вывод эйконала в ковариантной форме

Продемонстрируем вывод уравнения эйконала в тензорном формализме.

2.1.8. Векторные операторы в ковариантном виде

Векторные операторы в ковариантном виде:

— ∇𝑉⃗ — ковариантная производная по векторному полю 𝑉⃗;

— 𝑒⃗𝑖 =
𝜕

𝜕𝑥𝑖 — координатный базис, ∇ 𝑒⃗𝑖 = ∇𝑖;

— 𝜀𝑖𝑗𝑘 = 𝜀𝑖𝑗𝑘 — символы Леви-Чивиты;

— 𝑒𝑖𝑗𝑘 = √|𝑔| 𝜀𝑖𝑗𝑘, 𝑒𝑖𝑗𝑘 = 1
√|𝑔|

𝜀𝑖𝑗𝑘 — альтернирующие тензоры (тензоры
Леви-Чивиты);

— ∇𝑓 = ∇𝑖𝑓 = 𝜕𝑖𝑓, 𝑓— скалярное поле;

— ∇ ⋅ 𝑓 = ∇𝑖𝑉 𝑖 = 1
√𝑔𝜕𝑖(√𝑔𝑉 𝑖);

— 𝑥⃗ = (𝑥1, 𝑥2, 𝑥3)𝑇 — контравариантный вектор;

— ∇ × 𝑉⃗ = 𝑒𝑖𝑗𝑘∇𝑗𝑉𝑘 = 𝑒𝑖𝑗𝑘𝜕𝑗𝑉𝑘 = 1
√𝑔𝜀

𝑖𝑗𝑘𝜕𝑗𝑉𝑘.

2.1.9. Уравнения Максвелла без токов и зарядов

Напряжённость электрического и магнитного полей в виде ковектора (обо-
значается над буквой, возможно изменение обозначений), а D и B — векторы:

𝐸̃ = (𝐸1, 𝐸2, 𝐸3), 𝐻̃ = (𝐻1, 𝐻2, 𝐻3), 𝐷⃗ = (𝐷1, 𝐷2, 𝐷3)𝑇, 𝐵⃗ = (𝐵1, 𝐵2, 𝐵3)𝑇.

Материальные уравнения:

𝐵𝑖 = 𝜇𝑖𝑗𝐻𝑗, 𝐷𝑖 = 𝜀𝑖𝑗𝐸𝑗.

Векторные, ковекторные поля:

𝐸̃(𝑥⃗, 𝑡), 𝐻̃(𝑥⃗, 𝑡), 𝐷⃗(𝑥̃, 𝑡), 𝐵⃗(𝑥̃, 𝑡).
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Тензорные поля:

𝜇𝑖𝑗(𝑥⃗), 𝜀𝑖𝑗(𝑥⃗).

2.1.10. Векторно-дифференциальнаяформа записи уравненийМаксвелла

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

∇ × 𝐻⃗ −
1
𝑐
𝜕𝐷⃗
𝜕𝑡

= 0,

∇ × 𝐸⃗ +
1
𝑐
𝜕𝐵⃗
𝜕𝑡 = 0,

∇ ⋅ 𝐷⃗ = 0,
∇ ⋅ 𝐵⃗ = 0.

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

1
√𝑔

𝜀𝑖𝑗𝑘𝜕𝑗𝐸𝑘 +
1
𝑐
d𝐵𝑖

d𝑡
= 0,

1
√𝑔

𝜀𝑖𝑗𝑘d𝑗𝐻𝑘 −
1
𝑐
d𝐷𝑖

d𝑡
= 0,

1
√𝑔

𝜕𝑖(√𝑔𝐷𝑖) = 0,

1
√𝑔

𝜕𝑖(√𝑔𝐵𝑖) = 0.

2.1.11. Монохроматическая гармоническая волна

Сформулируем и докажем следующую теорему о ковариантном виде уравне-
ния эйконала.

Теорема 2 Длямонохроматической волны уравнение эйконала в ковариантнойфор-
ме принимает следующий вид:

𝑔𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢 = 𝜀𝑖𝑗𝜇𝑖𝑗,

где 𝜀𝑖𝑗 —тензор диэлектрической проницаемости среды, 𝜇𝑖𝑗 —тензор магнитной
проницаемостисреды,𝑔𝑖𝑗—компонентыметрическоготензора евклидовапростран-
ства с поднятыми верхними индексами.

Будем рассматривать монохроматическую гармоническую волну.
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𝐸𝑘 = 𝐸0𝑘𝑒−𝑖𝜔𝑡, 𝐻𝑘 = 𝐻0𝑘𝑒−𝑖𝜔𝑡, 𝐷𝑘 = 𝜀𝑘𝑙𝐸𝑙 = 𝜀𝑘𝑙𝐸0𝑙𝑒−𝑖𝜔𝑡,
𝐵𝑘 = 𝜇𝑘𝑙𝐻𝑙 = 𝜇𝑘𝑙𝐻0𝑘𝑒−𝑖𝜔𝑡,

d𝐷𝑖

d𝑡
=

d
d𝑡(

𝜀𝑖𝑗𝐸0𝑗𝑒−𝑖𝜔𝑡) = −𝑖𝜔𝜀𝑖𝑗𝐸0𝑗,

d𝐵𝑖

d𝑡
=

d
d𝑡(

𝜇𝑖𝑗𝐻0𝑗𝑒−𝑖𝜔𝑡) = −𝑖𝜔𝜇𝑖𝑗𝐻0𝑗,

𝜕𝑖(√𝑔𝐷𝑖) = 𝜕𝑖(√𝑔𝜀𝑖𝑗𝐸0𝑗𝑒−𝑖𝜔𝑡) = 𝑒−𝑖𝜔𝑡𝜕𝑖(√𝑔𝜀𝑖𝑗𝐸0𝑗),
𝜕𝑖(√𝑔𝐵𝑖) = 𝜕𝑖(√𝑔𝜇𝑖𝑗𝐻0𝑗𝑒−𝑖𝜔𝑡) = 𝑒−𝑖𝜔𝑡𝜕𝑖(√𝑔𝜇𝑖𝑗𝐻0𝑗).

Формулы:

1
√𝑔

𝜀𝑖𝑗𝑘𝜕𝑗𝐸0𝑘 − 𝑖𝑘0𝜇𝑖𝑗𝐻0𝑗 = 0, (2.14)

1
√𝑔

𝜀𝑖𝑗𝑘𝜕𝑗𝐻0𝑘 + 𝑖𝑘0𝜀𝑖𝑗𝐸0𝑗 = 0, (2.15)

𝜕𝑖(√𝑔𝜀𝑖𝑗𝐸0𝑗) = 0, (2.16)

𝜕𝑖(√𝑔𝜇𝑖𝑗𝐻0𝑗) = 0. (2.17)

Предположение№2: 𝐸0𝑘 = 𝑒𝑘𝑒𝑖𝑘0𝑢(𝑥⃗),𝐻0𝑘 = ℎ𝑘𝑒𝑖𝑘0𝑢(𝑥⃗), где 𝑢(𝑥⃗)— эйконал.

𝜕𝑗𝐸0𝑘 = (𝜕𝑗𝑒𝑘)𝑒𝑖𝑘0𝑢 + 𝑒𝑘𝑒𝑖𝑘0𝑢𝑖𝑘0𝜕𝑗𝑢 = (𝜕𝑗𝑒𝑘 + 𝑖𝑘0𝑒𝑘𝜕𝑗𝑢)𝑒𝑖𝑘0𝑢,
𝜕𝑗𝐻0𝑘 = (𝜕𝑗ℎ𝑘)𝑒𝑖𝑘0𝑢 + ℎ𝑘𝑒𝑖𝑘0𝑢𝑖𝑘0𝜕𝑗𝑢 = (𝜕𝑗ℎ𝑘 + 𝑖𝑘0ℎ𝑘𝜕𝑗𝑢)𝑒𝑖𝑘0𝑢.

Из уравнения (2.16):

𝜕𝑖(√𝑔𝜀𝑖𝑗𝑒𝑗𝑒𝑖𝑘0𝑢) =
𝜕√𝑔
𝜕𝑥𝑖

𝜀𝑖𝑗𝑒𝑗𝑒𝑖𝑘0𝑢+√𝑔
𝜕𝜀𝑖𝑗

𝜕𝑥𝑖
𝑒𝑗𝑒𝑖𝑘0𝑢+√𝑔𝜀𝑖𝑗 𝜕𝑒𝑗

𝜕𝑥𝑖
𝑒𝑖𝑘0𝑢+√𝑔𝜀𝑖𝑗𝑒𝑗𝑖𝑘0𝑒𝑖𝑘0𝑢 𝜕𝑢

𝜕𝑥𝑖
=

= (𝜕𝑖√𝑔𝜀𝑖𝑗𝑒𝑗 + √𝑔𝜕𝑖𝜀𝑖𝑗𝑒𝑗 + √𝑔𝜀𝑖𝑗𝜕𝑖𝑒𝑗 + 𝑖𝑘0√𝑔𝜀𝑖𝑗𝑒𝑗𝜕𝑖𝑢)𝑒𝑖𝑘0𝑢 = 0.

𝜕𝑖√𝑔𝜀𝑖𝑗𝑒𝑗 + √𝑔𝜕𝑖𝜀𝑖𝑗𝑒𝑗 + √𝑔𝜀𝑖𝑗𝜕𝑖𝑒𝑗 + 𝑖𝑘0√𝑔𝜀𝑖𝑗𝑒𝑗𝜕𝑖𝑢 = 0

√𝑔𝜀𝑖𝑗𝑒𝑗𝜕𝑖𝑢 =
−1
𝑖𝑘0

(𝜕𝑖√𝑔𝜀𝑖𝑗𝑒𝑗 + √𝑔𝜕𝑖𝜀𝑖𝑗𝑒𝑗 + √𝑔𝜀𝑖𝑗𝜕𝑖𝑒𝑗).

Аналогично из уравнения (2.17):
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√𝑔𝜇𝑖𝑗ℎ𝑗𝜕𝑖𝑢 = −
1
𝑖𝑘0

(𝜕𝑖√𝑔𝜇𝑖𝑗ℎ𝑗 + √𝑔𝜕𝑖𝜇𝑖𝑗 + √𝑔𝜇𝑖𝑗𝜕𝑖ℎ𝑗)

Из условия того, что величина 𝜆 мала и𝜔— велика, следует 𝑘0 — велико, а 1
𝑘0

— мало. Как следствие:

{
√𝑔𝜀𝑖𝑗𝑒𝑗𝜕𝑖𝑢 = 0,

√𝑔𝜇𝑖𝑗ℎ𝑗𝜕𝑖𝑢 = 0,

{
𝜀𝑖𝑗𝑒𝑗𝜕𝑖𝑢 = 0,
𝜇𝑖𝑗ℎ𝑗𝜕𝑖𝑢 = 0.

Первые два уравнения (2.14) и (2.15) преобразуется проще:

1
√𝑔

𝜀𝑖𝑗𝑘(𝜕𝑗𝑒𝑘 + 𝑖𝑘0𝑒𝑘𝜕𝑗𝑢) − 𝑖𝑘0𝜇𝑖𝑗ℎ𝑗 = 0

⇒

−
1
√𝑔

𝜀𝑖𝑗𝑘𝑒𝑘𝜕𝑗𝑢 + 𝜇𝑖𝑗ℎ0 =
1
𝑖𝑘0

1
√𝑔

𝜀𝑖𝑗𝑘𝜕𝑗𝑒𝑘

1
√𝑔

𝜀𝑖𝑗𝑘𝜕𝑗ℎ𝑘 +
1
√𝑔

𝜀𝑖𝑗𝑘𝑖𝑘0ℎ𝑘𝜕𝑗𝑢 + 𝑖𝑘0𝜀𝑖𝑗𝑒𝑗 = 0

1
√𝑔

𝜀𝑖𝑗𝑘ℎ𝑘𝜕𝑗𝑢 + 𝜀𝑖𝑗𝑒𝑗 = −
1
𝑖𝑘0

1
√𝑔

𝜀𝑖𝑗𝑘𝜕𝑗ℎ𝑘.

Уравнения Максвелла приводятся к следующему виду:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜀𝑖𝑗𝑘𝑒𝑘𝜕𝑗𝑢 − √𝑔𝜇𝑖𝑗ℎ𝑗 = 0,
𝜀𝑖𝑗𝑘ℎ𝑘𝜕𝑗𝑢 + √𝑔𝜀𝑖𝑗𝑒𝑗 = 0,
𝜀𝑖𝑗𝑒𝑗𝜕𝑖𝑢 = 0,
𝜇𝑖𝑗ℎ𝑗𝜕𝑖𝑢 = 0.

,

где 𝜀𝑖𝑗𝑘 — символ Леви-Чивиты, 𝜀𝑖𝑗 — диэлектрическая проницаемость, при
условии 𝑘0 → ∞.
Из первого уравнения выразим ℎ𝑗 и подставим во второе:

𝜇−1
𝑙𝑖 𝜀𝑖𝑗𝑘𝑒𝑘𝜕𝑗𝑢 − √𝑔𝜇−1

𝑙𝑖 𝜇𝑖𝑗ℎ𝑗 = 0.
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Выполним замену: 𝜇−1
𝑙𝑖 𝜇𝑖𝑗 = 𝑔𝑗

𝑙 :

𝜇−1
𝑙𝑖 𝜀𝑖𝑗𝑘𝑒𝑘𝜕𝑗𝑢 − √𝑔𝑔𝑗

𝑙ℎ𝑗 = 0 ⇒ √𝑔ℎ𝑙 = 𝜇−1
𝑙𝑖 𝜀𝑖𝑗𝑘𝑒𝑘𝜕𝑗𝑢 ⇒ ℎ𝑙 =

1
√𝑔

𝜇−1
𝑙𝑖 𝜀𝑖𝑗𝑘𝑒𝑘𝜕𝑗𝑢.

Преобразуем индексы, чтобы подставить во второе уравнение:

ℎ𝑘 =
1
√𝑔

𝜇−1
𝑘𝑙 𝜀

𝑙𝑚𝑛𝑒𝑛𝜕𝑚𝑢,

𝜀𝑖𝑗𝑘 1
√𝑔

𝜇−1
𝑘𝑙 𝜀

𝑙𝑚𝑛𝑒𝑛𝜕𝑚𝑢𝜕𝑗𝑢 + √𝑔𝜀𝑖𝑗𝑒𝑗 = 0,

𝜀𝑖𝑗𝑘𝜇−1
𝑘𝑙 𝜀

𝑙𝑚𝑛𝑒𝑛𝜕𝑚𝑢𝜕𝑗𝑢 + 𝑔𝜀𝑖𝑗𝑒𝑗 = 0,
𝜀𝑖𝑗𝑘𝜇−1

𝑘𝑙 𝜀
𝑙𝑚𝑛𝜕𝑚𝑢𝜕𝑗𝑢𝑒𝑛 + 𝑔𝜀𝑖𝑛𝑒𝑛 = 0.

Уравнение эйконала (2.13) принимает вид:

𝑔𝑖𝑗𝜕𝑖𝑢𝜕𝑗𝑢 = 𝜀𝑖𝑗𝜇𝑖𝑗.

�

2.2. Символьные исследования уравненийМаксвелла
в формализме пространственно-временной алгебры

2.2.1. Геометрическая алгебра пространства-времени

Основные понятия геометрической алгебры

Геометрическая алгебра является реализацией абстрактной алгебры
Клиффорда [10], где элементами являютсямультивекторы, а операцией «умно-
жения» — операция геометрического умножения.
Мультивектор является градуированным объектом, представляющим со-

бой линейную комбинацию разложимых 𝑝-векторов (кососимметричных
ковариантных тензоров). Сами 𝑝-векторы совместно с операцией внешне-
го произведения ∧ представляют собой реализацию абстрактной алгебры
Грассмана [22]. Основным отличительным свойством внешнего произведения
векторов является свойство кососимметричности: 𝐯 ∧ 𝐯 = 0. Более подробно
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о внешней алгебре можно прочитать в фундаментальных работах [9; 11; 12;
30; 53; 54; 56].
Рассмотрим четырехмерное пространство Минковского (пространство-

время) 𝐸4
1,3 с базисом ⟨𝐞0, 𝐞1, 𝐞2, 𝐞3⟩, метрическим тензором 𝑔 =

diag(1, −1, −1, −1) (иначе говоря с сигнатурой (+, −, −, −)):

(𝐞0, 𝐞0) = 1, (𝐞0, 𝐞𝑖) = 0, (𝐞𝑖, 𝐞𝑗) = −𝛿𝑖𝑗.

Операцию геометрического умножения для двух векторов 𝐮, 𝐯 ∈ 𝐸4
1,3 можно

определить конструктивно с помощью формулы:

𝐮𝐯 = (𝐮, 𝐯) + 𝐮 ∧ 𝐯,

где сама операция не обозначается никаким знаком. Результатом действия
геометрического произведения является элемент градуированной алгебры
Клиффорда, называемой геометрической алгеброй.
Работа с геометрической алгеброй упрощается, если введен ортогональный

базис. В случае пространства Минковского из определения геометрического
умножения выводятся два ключевых свойства для базисных векторов:

𝐞𝛼𝐞𝛽 = −𝐞𝛽𝐞𝛼, 𝛼 ≠ 𝛽 и 𝐞𝑖𝐞𝑖 = −1, 𝐞0𝐞0 = +1.

Также 𝐞𝛼 ∧ 𝐞𝛽 = 𝐞𝛼𝐞𝛽, 𝐞𝛼 ∧ 𝐞𝛽 ∧ 𝐞𝛾 = 𝐞𝛼𝐞𝛽𝐞𝛾 и т.д. Часто используют обозна-
чение 𝐞𝛼𝐞𝛽 = 𝐞𝛼𝛽 и т.д.
В пространстве-времени операция внешнего произведения порождает че-

тыре внешние алгебры:

— алгебру 1-векторов с базисом ⟨𝐞0, 𝐞1, 𝐞2, 𝐞3⟩;

— алгебру 2-векторов (бивекторов) c базисом
⟨𝐞0𝐞1, 𝐞0𝐞2, 𝐞0𝐞3, 𝐞1𝐞2, 𝐞1𝐞3, 𝐞2𝐞3⟩;

— алгебру 3-векторов с базисом ⟨𝐞012, 𝐞013, 𝐞023, 𝐞123⟩;

— алгебру 4-векторов (квадривекторов) с одним базисным 4-вектором
𝐞0123, который обычно обозначают как 𝐈.

Шесть бивекторных базисов распадаются на два класса — пространственно-
временной базис {𝐞0𝐞1, 𝐞0𝐞2, 𝐞0𝐞3} и чисто пространственный базис
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𝐞1𝐞2, 𝐞1𝐞3, 𝐞2𝐞3. Пространственно-временные базисы обладают свойством
гиперболической мнимой единицы, т.е. 𝐞0𝑖𝐞0𝑖 = 1, а чисто пространствен-
ные — свойством эллиптической мнимой единицы, т.е. 𝐞𝑖𝑗𝐞𝑖𝑗 = −1.
Можно составить следующие таблицы геометрического умножения:

𝐞01 𝐞02 𝐞03

𝐞01 1 −𝐈𝐞03 𝐈𝐞02

𝐞02 𝐈𝐞03 1 −𝐈𝐞01

𝐞03 −𝐈𝐞02 𝐈𝐞01 1

𝐞12 𝐞13 𝐞23

𝐞12 −1 𝐞23 −𝐞13

𝐞13 −𝐞23 −1 𝐞12

𝐞23 𝐞13 −𝐞12 −1

Из первой таблицы видно, что пространственно-временные базисы изо-
морфны матрицам Паули (с точности до знаков), поэтому в [11, стр. 135] для
обозначения 𝐞0𝑖 используется буква сигма 𝜎𝑖.

Дифференциальные операторы

Введем оператор векторной производной (vector derivative) [11, стр. 168], опре-
деляемый следующей формулой:

∇ = 𝐞𝑖 𝜕
𝜕𝑥𝑖

= 𝐞1 𝜕
𝜕𝑥1 +… + 𝐞𝑛 𝜕

𝜕𝑥𝑛 ,

где {𝐞𝑖} — взаимный базис (reciprocal frame), векторы которого определяются
следующим образом:

(𝐞𝑖, 𝐞𝑗) = 𝛿𝑖
𝑗 .

Для произвольного вектора 𝐱 выполняется равенство

(𝐞𝑖, 𝐱) = (𝐞𝑖, 𝑥𝑗𝐞𝑗) = 𝑥𝑗(𝐞𝑖, 𝐞𝑗) =
= 𝑥𝑗𝛿𝑖

𝑗 = 𝑥𝑖 ⇒ 𝑥𝑖 = (𝐞𝑖, 𝐱).



65

В случае ортонормированного евклидова пространства 𝐞𝑖 = 𝐞𝑖. В случае
трехмерного или двумерного ортонормированного евклидова пространства
оператор∇ совпадает с классическимдифференциальнымоператором∇. С по-
мощью ∇ и геометрического умножения можно записать операции градиента,
дивергенции и ротора классического векторного анализа, а также обобщить
их на большие размерности и метрики, отличные от ортонормированной.
Умножив геометрически ∇ на скалярную функцию 𝑓 (𝐱), где 𝐱 = 𝑥𝑖𝐞𝑖 =

𝑥1𝐞1 +… + 𝑥𝑛𝐞𝑛, получим формулу для градиента:

∇𝑓 (𝐱) = 𝐞𝑖 𝜕𝑓
𝜕𝑥𝑖

= (
𝜕𝑓
𝜕𝑥1 , … ,

𝜕𝑓
𝜕𝑥𝑛) ,

который представляет собой вектор, записанный в взаимном базисе
⟨𝐞1, … , 𝐞𝑛⟩.
Умножим ∇ на векторное поле 𝐮(𝐱) и получим сумму скалярной и бивектор-

ной частей:
∇𝐮 = (∇,𝐮) + ∇ ∧ 𝐮.

Скалярная часть является обобщением оператора дивергенции. Используем
равенство 𝑥𝑖 = (𝐞𝑖, 𝐱) и запишем:

(∇, 𝐮(𝐱)) = (
𝜕

𝜕𝑥𝑖
𝐞𝑖, 𝐮) =

=
𝜕

𝜕𝑥𝑖 (𝐞
𝑖, 𝐮) =

𝜕𝑢𝑖

𝜕𝑥𝑖
=

𝜕𝑢1

𝜕𝑥1 +… +
𝜕𝑢𝑛

𝜕𝑥𝑛 .

Бивекторная часть обобщает операцию ротора:

∇ ∧ 𝐮 = 𝐞𝑖 ∧
𝜕𝐮
𝜕𝑥𝑖

=
𝜕𝑢𝑗

𝜕𝑥𝑖
𝐞𝑖 ∧ 𝐞𝑖.

2.2.2. Мультивекторная запись уравненийМаксвелла

Получим мультивекторную запись вакуумных уравнений Максвелла.
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Уравнения Максвелла в дифференциальной форме в системе СИ имеют
следующий вид:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

∇ ×𝐇 =
𝜕𝐃
𝜕𝑡 + 𝐣,

∇ × 𝐄 = −
𝜕𝐁
𝜕𝑡 ,

∇ ⋅ 𝐃 = 𝜌,
∇ ⋅ 𝐁 = 0.

(2.18)

Здесь𝐁— вектор индукции магнитного поля,𝐄— вектор напряженности элек-
трического поля,𝐇 — напряжённость магнитного поля,𝐃 — электрическая
индукция, 𝐣— вектор плотности внешнего электрического тока, 𝜌— плотность
электрического заряда.

Уравнения Максвелла в дифференциальной форме для изотропной среды

Диэлектрическую и магнитную проницаемости положим равными единице,
т.е. 𝜀 = 𝜇 = 1 (вакуум). Кроме того, будем считать, что

𝐇 = 𝐁,
𝐃 = 𝐄.

Тогда вакуумные уравнения Максвелла в дифференциальной форме (2.18)
приобретают вид:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

∇ × 𝐁 =
𝜕𝐄
𝜕𝑡 + 𝐣,

∇ × 𝐄 = −
𝜕𝐁
𝜕𝑡 ,

∇ ⋅ 𝐄 = 𝜌,
∇ ⋅ 𝐁 = 0.

(2.19)

При этом для плотностей тока 𝐣 и заряда 𝜌 выполняется уравнение непре-
рывности:

∇ ⋅ 𝐣 +
𝜕𝜌
𝜕𝑡 = 0.

Символом ∇ в данной системе обозначен оператор набла, с помощью кото-
рого записаны операторы ротора ∇× и дивергенции ∇⋅. Далее данный символ
будет выступать только в роли оператора векторной производной.



67

Отметим, что все векторы в данной записи уравненийМаксвелла являют-
ся векторами трехмерного Евклидова пространства (а точнее векторными
полями, зависящими явно от трех координат и неявно от времени 𝑡). Их ком-
поненты обозначаются с нижними индексами 𝑥, 𝑦, 𝑧, например 𝐸𝑥, 𝐸𝑦, 𝐸𝑧.

МультивекторФарадея

Рассмотрим теперь необходимые элементы, с помощью которых можно
записать уравнения Максвелла в мультивекторном виде. Для этого введем
пространство Минковского с сигнатурой (+, −, −, −) и базисными векторами
⟨𝐞0, 𝐞1, 𝐞2, 𝐞3⟩. Оператор векторной производной в этом базисе записывается
следующим образом:

∇ = 𝐞0
𝜕

𝜕𝑥0 − 𝐞1
𝜕

𝜕𝑥1 − 𝐞2
𝜕

𝜕𝑥2 − 𝐞3
𝜕

𝜕𝑥3 ,

так как взаимный базис {𝐞𝛼}, 𝛼 = 0, 1, 2, 3 имеет вид ⟨𝐞0, −𝐞1, −𝐞2, −𝐞3⟩, в чем
можно убедится вычислив скалярные произведения:

(𝐞0, 𝐞0) = 1,
(𝐞1, −𝐞1) = 1,
(𝐞2, −𝐞2) = 1,
(𝐞3, −𝐞3) = 1.

Единичный элемент объема 𝐞0𝐞1𝐞2𝐞3 обозначим как 𝐈.
Напряженность электрическогополя𝐄представимввиде бивектора с тремя

пространственно-временными компонентами:

𝐄 = 𝐸10𝐞1𝐞0 + 𝐸20𝐞2𝐞0 + 𝐸30𝐞3𝐞0.

Бивекторныекомпоненты𝐸10,𝐸20,𝐸30 соответствуют координатамвектора
𝐸𝑥, 𝐸𝑦, 𝐸𝑧 классической векторной записи. Хотя у бивектора в четырехмерном
пространстве Минковского может быть 6 ненулевых компонент, бивектор 𝐄
имеет только три указанные ненулевые компоненты.
Аналогично представим индукцию магнитного поля𝐁:

𝐁 = 𝐵10𝐞1𝐞0 + 𝐵20𝐞2𝐞0 + 𝐵30𝐞3𝐞0 =
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= 𝐵𝑥𝐞1𝐞0 + 𝐵𝑦𝐞2𝐞0 + 𝐵𝑧𝐞3𝐞0.

Объединим плотность электрического заряда 𝜌 (скаляр) и плотность
внешнего электрического тока 𝐣 (вектор) в четырехмерный пространственно-
временной вектор 𝐉. Вектор 𝐉 будем называть пространственно-временной
плотностью электрического тока [11, стр. 230] и запишем его в следующем
виде:

𝐉 = 𝜌𝐞0 + 𝑗1𝐞1 + 𝑗2𝐞2 + 𝑗3𝐞3 = 𝜌𝐞0 + 𝑗𝑥𝐞1 + 𝑗𝑦𝐞2 + 𝑗𝑧𝐞3.

Если умножить 𝐉 справа на 𝐞0, то получим мультивектор со скалярной и би-
векторной частями:

𝐉𝐞0 = 𝜌 + 𝑗𝑥𝐞1𝐞0 + 𝑗𝑦𝐞2𝐞0 + 𝑗𝑧𝐞3𝐞0.

Следовательно, плотность электрического тока 𝐣 можно представить в ви-
де бивектора 𝑗10𝐞1𝐞0 + 𝑗20𝐞2𝐞0 + 𝑗30𝐞3𝐞0 с пространственно-временными
компонентами (по аналогии с представлением 𝐄 и𝐁).
Наконец составим бивектор Фарадея 𝐅 как сумму бивекторов 𝐄 и 𝐈𝐁:

𝐅 = 𝐄 + 𝐈𝐁.

При умножении на 𝐈 пространственно-временные бивекторные базисы
𝐞0𝐞1, 𝐞0𝐞2, 𝐞0𝐞3 превращаются в чисто пространственные:

𝐈𝐞1𝐞0 = −𝐞2𝐞3, 𝐈𝐞2𝐞0 = +𝐞1𝐞3, 𝐈𝐞3𝐞0 = −𝐞1𝐞2,

из-за чего бивектор Фарадея имеет шесть компонент — максимально возмож-
ное количество компонент в четырехмерном пространстве Минковского:

𝐅 = 𝐸10𝐞1𝐞0 + 𝐸20𝐞2𝐞0 + 𝐸30𝐞3𝐞0 −
− 𝐵10𝐞2𝐞3 + 𝐵20𝐞1𝐞3 − 𝐵30𝐞3𝐞2.

Теперь уравнения Максвелла можно записать в очень компактной форме:

∇𝐅 = 𝐉.
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2.2.3. Вывод дифференциальной формы уравнений Максвелла из мульти-
векторной с помощью символьных вычислений

Используем библиотеку Galgebra для того, чтобы вычислить компоненты
мультивектора ∇𝐅 − 𝐉 в декартовых координатах.
Вначале импортируем все необходимые модули:

1 import sympy as sp

2 from galgebra.ga import Ga

3 # Функция для распечатки исходного кода LaTeX формул:

4 from galgebra.printer import latex

5 # Функции для отображения обработки и отображения LaTeX формул:

6 from IPython.display import Math, DisplayObject

Все вычисления мы будем проводить в интерактивной оболочке Jupyter
Notebook [62]. Настроим отображение формул с помощью вызова следующей
функции:

8 sp.init_printing(latex_printer=latex, use_latex='mathjax', use_unicode=True)

После всех настроек зададим пространство Минковского и структуру гео-
метрической алгебры на нем:

10 m4d = Ga('e', g=[1,-1,-1,-1], coords=sp.symbols('t, x, y, z',real=True))

Здесь мы указываем символ e, который будет использоваться для обо-
значения базисного вектора, а также символы t, x, y, z, используемые для
обозначения индексов. Также в параметре g указывается метрика, которая
может быть только диагональной, но не обязательно нормированной.
Далее в отдельные переменные записываем базисные векторы,

пространственно-временную часть бивекторного базиса и квадривекторный
базисный элемент 𝐈:

14 # Векторный базис:

15 e0, e1, e2, e3 = m4d.mv()

16 # Пространственно-временная часть бивекторного базиса:

17 σ1 = e10 = e1*e0

18 σ2 = e20 = e2*e0

19 σ3 = e30 = e3*e0

20 I = e0*e1*e2*e3
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Греческие буквы можно вводить в блокноте Jupyter с помощью их обозна-
чений в формате LATEX. Для этого следует набрать, например, \sigma и нажать
клавишу Tab.
Для использования оператора векторной производной следует вызвать ме-

тод grads объекта m4d класса Ga:

1 (grad, rgrad) = o3d.grads()

Этот метод возвращает правый и левый операторы векторной производной,
так как геометрическое умножение не коммутативно и при умножении слева
следует использовать grad, а справа rgrad. Их значения равны соответствен-
но:

𝐞𝑡
𝜕
𝜕𝑡 − 𝐞𝑥

𝜕
𝜕𝑥 − 𝐞𝑦

𝜕
𝜕𝑦 − 𝐞𝑧

𝜕
𝜕𝑧,

𝜕
𝜕𝑡𝐞𝑡 −

𝜕
𝜕𝑥𝐞𝑥 −

𝜕
𝜕𝑦𝐞𝑦 −

𝜕
𝜕𝑧𝐞𝑧.

Такое разграничение двух операторов имеет смысл только в рамках модуля
Galgebra в силу ограничений синтаксиса языка Python.
Далее задаем компоненты электрического и магнитного полей, вектор тока

и плотность заряда как функции от переменных 𝑡, 𝑥, 𝑦, 𝑧:

23 Ex = sp.Function('E_1')(t,x,y,z)

24 Ey = sp.Function('E_2')(t,x,y,z)

25 Ez = sp.Function('E_3')(t,x,y,z)

26 Bx = sp.Function('B_1')(t,x,y,z)

27 By = sp.Function('B_2')(t,x,y,z)

28 Bz = sp.Function('B_3')(t,x,y,z)

29 jx = sp.Function('j_1')(t,x,y,z)

30 jy = sp.Function('j_2')(t,x,y,z)

31 jz = sp.Function('j_3')(t,x,y,z)

32 ρ = sp.Function('ρ')(t,x,y,z)

После этого можно записать 𝐄,𝐁, 𝐣 и 𝜌:

37 # Напряженность электрического поля:

38 E = Ex*σ1 + Ey*σ2 + Ez*σ3

39 # Индукция магнитного поля:

40 B = Bx*σ1 + By*σ2 + Bz*σ3

41 # Плотность внешнего электрического тока:
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42 j = jx*σ1 + jy*σ2 + jz*σ3

43 # Пространственно-временной вектор тока:

44 J = ρ*e0 + jx*e1 + jy*e2 + jz*e3

Теперь можно составить бивектор Фарадея:

47 F = E + I*B

В результате получим следующий бивектор с полнымнабором как простран-
ственных, так и пространственно–временных компонент:

𝐅 = −𝐄𝑥𝐞𝑡𝑥 − 𝐄𝑦𝐞𝑡𝑦 − 𝐄𝑧𝐞𝑡𝑧 − 𝐁𝑧𝐞𝑥𝑦 + 𝐁𝑦𝐞𝑥𝑧 − 𝐁𝑥𝐞𝑦𝑧.

Запишем теперь уравнения Максвелла в виде мультивектора:

53 Eq = grad*F - J

Данный мультивектор имеет ненулевую векторную и тривекторную части.
Прировняв весь мультивектор к нулю, мы получим дифференциальную фор-
му уравнений Максвелла, если распишем отдельные компоненты данного
мультивектора.
Векторную часть можно вычленить, вызвав метод grade:

1 Eq.grade(1)

Эта часть обладает следующими компонентами:

−𝜌 +
𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑧
,

−𝑗𝑥 −
𝜕𝐵𝑦

𝜕𝑧 +
𝜕𝐵𝑧

𝜕𝑦 −
𝜕𝐸𝑥

𝜕𝑡 ,

−𝑗𝑦 +
𝜕𝐵𝑥

𝜕𝑧 −
𝜕𝐵𝑧

𝜕𝑥 −
𝜕𝐸𝑦

𝜕𝑡 ,

−𝑗𝑧 −
𝜕𝐵𝑥

𝜕𝑦 +
𝜕𝐵𝑦

𝜕𝑥 −
𝜕𝐸𝑧

𝜕𝑡 .

Приравнивание полученных компонент векторной части к нулю даст нам
первое и третье уравнения из системы (2.19). В свою очередь, тривекторная
часть получается вызовом метода Eq.grade(3) и также имеет четыре компо-
ненты:

−
𝜕𝐵𝑧

𝜕𝑡 +
𝜕𝐸𝑥

𝜕𝑦 −
𝜕𝐸𝑦

𝜕𝑥 ,
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𝜕𝐵𝑦

𝜕𝑡 +
𝜕𝐸𝑥

𝜕𝑧 −
𝜕𝐸𝑧

𝜕𝑥 ,

−
𝜕𝐵𝑥

𝜕𝑡 +
𝜕𝐸𝑦

𝜕𝑧 −
𝜕𝐸𝑧

𝜕𝑦 ,

𝜕𝐵𝑥

𝜕𝑥
+

𝜕𝐵𝑦

𝜕𝑦
+

𝜕𝐵𝑧

𝜕𝑧
,

прировняв которыекнулюмыполучимвтороеичетвертое уравненияиз (2.19).
Взяв повторно векторную производную:

∇∇𝐅 − ∇𝐉 = 0, (2.20)

получиммультивектор со скалярной иполной бивекторной частями (сшестью
компонентами).
Равенство нулю скалярной части выражения (2.20) даёт уравнение

непрерывности. Равенство нулю пространственно–временных компонент
в выражении (2.20) даёт волновое уравнение для электрического поля. Ра-
венство нулю чисто пространственных компонент выражения (2.20) даёт
волновое уравнение для магнитного поля.

2.3. Численный метод FSM (Fast Sweeping Method)

Можно выделить два подхода к численному решению уравнения эйконала.

— Преобразование к системе обыкновенных дифференциальных уравне-
ний (системе уравнений Гамильтона) методом характеристик [71; 72],
а затем применение одного из многочисленных методов численного
решения таких уравнений.

— Подход к задаче как с стационарной краевой задаче. Разработка эф-
фективного численного алгоритма решения системы нелинейных
уравнений, получившихся при дискретизации. К этому типу методов
относится, например, метод быстрой прогонки (fast marching method).

Название метода FSM — Fast Sweeping Method [23; 27; 29; 43; 67] можно пе-
ревести на русский как метод быстрого подметания. Автору не известен
стандартный перевод названия данного метода, поэтому везде в тексте ис-
пользуется аббревиатура FSM.
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O 𝑥1 𝑥𝐼

𝑦1

𝑦𝐽

𝑥𝑖

𝑦𝑗

Рис. 2.3. Различные точки сетки разбиения
области интегрирования

𝑢𝑖𝑗
𝑢𝑖−1,𝑗

𝑢𝑖,𝑗+1

𝑢𝑖+1,𝑗

𝑢𝑖,𝑗−1

Рис. 2.4. Шаблон
численной схемы

Метод был предложен в 2000 году [67]. Основная идея метода заключается
в использовании противопотоковой разностной схемы Годунова и итераци-
онной схемы Гаусса–Зейделя с переменным порядком прохода узлов сетки.
Подробное описанием численной схемы приведено в разделе 2.3.
FSM прост в реализации и требует конечного числа итераций. Сложность

алгоритма𝑂(𝑁) для𝑁 точек сетки. Число итераций не зависит от числа узлов
сетки (от размера сетки). FSM метод можно распространить на общий случай
уравнения Гамильтона–Якоби.

2.3.1. FSM для двумерного уравнения эйконала

Перейдем к описанию численной схемы. Разобьем всю области интегриро-
вания на дискретные узлы с помощью прямоугольной сетки, показанной на
рисунке 2.3, где

— по оси𝑂𝑥 имеем 𝐼 точек разбиения 𝑥1 < 𝑥2 < 𝑥3 < … < 𝑥𝐼−1 < 𝑥𝐼,

— по оси𝑂𝑦 имеем 𝐽 точек разбиения 𝑦1 < 𝑦2 < 𝑦3 < … < 𝑦𝐽−1 < 𝑦𝐽.

Сетка будет состоять из 𝐼 × 𝐽 узлов с координатами (𝑥𝑖, 𝑦𝑗), где 𝑖 = 1,… , 𝐼, а 𝑗 =
1,… , 𝐽.
Предположим, что разбиение выбрано так, что шаг сетки ℎ одинаков для

обеих осей. Сеточная функция 𝑢𝑖𝑗 аппроксимирует функцию 𝑢(𝑥, 𝑦) в узлах
сетки, т.е.𝑢𝑖𝑗 ≈ 𝑢(𝑥𝑖, 𝑦𝑗) и только в точке (𝑥0, 𝑦0) выполняется точное равенство.
Все точки сетки можно разделить на три группы, которые выделены на

рисунке 2.3 разными цветами:
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1. Внутренние точки сетки с индексами 𝑖 = 2,… , 𝐼 − 1 и 𝑗 = 2,… , 𝐽 − 1
показаны на схеме 2.3 черным цветом.

2. Точки четырех границ сетки со следующими индексами

— левая граница: 𝑖 = 1, 𝑗 = 2,… , 𝐽 − 1,

— правая граница: 𝑖 = 𝐼, 𝑗 = 2,… , 𝐽 − 1,

— нижняя граница 𝑖 = 2,… , 𝐼 − 1, 𝑗 = 1,

— верхняя граница 𝑖 = 2,… , 𝐼 − 1, 𝑗 = 𝐽,

показаны на схеме 2.3 синим цветом.

3. Угловые точки со следующими фиксированными индексами:

— левая нижняя угловая точка 𝑖 = 1, 𝑗 = 1,

— левая верхняя угловая точка 𝑖 = 1, 𝑗 = 𝐽,

— правая нижняя угловая точка 𝑖 = 𝐼, 𝑗 = 1,

— правая верхняя угловая точка 𝑖 = 𝐼, 𝑗 = 𝐽,

обозначены на схеме 2.3 красным цветом.

Перейдем к изложению алгоритма. В качестве схемы дискретизации ис-
пользуется схема Годунова (противоточная разностная схема) для внутренних
точек области. Введем следующие обозначения:

𝑢𝑥𝑚𝑖𝑛 = min(𝑢𝑖−1,𝑗, 𝑢𝑖+1,𝑗), 𝑢𝑦𝑚𝑖𝑛 = min(𝑢𝑖,𝑗−1, 𝑢𝑖,𝑗+1), 𝑛𝑖𝑗 = 𝑛(𝑥𝑖, 𝑦𝑗),

а также индикаторную функцию:

(𝑥)+ = {
𝑥, 𝑥 > 0,
0, 𝑥 ⩽ 0.

Для инициализации вычислений в первую очередь следует задать значения
сеточной функции 𝑢𝑖𝑗 = 0 на границе Γ. Эти значения в последующих вычис-
лениях останутся неизменными. Для всех остальных точек сеточной функции
𝑢𝑖𝑗 следует присвоить достаточно большие положительные значения, которых
она заведомо достичь не может. В ходе работы численной схемы эти значения
будут пересчитываться.
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Вычислительный процесс состоит из четырех заметаний всей прямоуголь-
ной области. Каждое такое заметание представляет собой два вложенных
цикла, где индексы пробегают в следующем порядке:

— 𝑖 = 1,… , 𝐼 и 𝑗 = 1,… , 𝐽— прямой порядок,

— 𝑖 = 𝐼,… , 1 и 𝑗 = 1,… , 𝐽— смешанный порядок,

— 𝑖 = 𝐼,… , 1 и 𝑗 = 𝐽,… , 1— обратный порядок,

— 𝑖 = 1,… , 𝐼 и 𝑗 = 𝐽,… , 1— смешанный порядок.

На каждом шаге следует решить нелинейное уравнение, коэффициенты кото-
рого для каждой группы точек будут немного изменяться.

Группа I Точки 𝑖 = 2,… , 𝐼 − 1 и 𝑗 = 2,… , 𝐽 − 1

[(𝑢𝑖𝑗 − 𝑢𝑥𝑚𝑖𝑛)+]2 + [(𝑢𝑖𝑗 − 𝑢𝑦𝑚𝑖𝑛)+]2 = 𝑛2
𝑖𝑗ℎ

2

Группа II К этой группе относятся следующие точки:

— левая граница: 𝑖 = 1, 𝑗 = 2,… , 𝐽 − 1:

[(𝑢1𝑗 − 𝑢2𝑗)+]2 + [(𝑢1𝑗 − 𝑢𝑦𝑚𝑖𝑛)+]2 = 𝑛2
1𝑗ℎ

2,

— правая граница: 𝑖 = 𝐼, 𝑗 = 2,… , 𝐽 − 1:

[(𝑢𝐼𝑗 − 𝑢𝐼−1,𝑗)+]2 + [(𝑢𝐼𝑗 − 𝑢𝑦𝑚𝑖𝑛)+]2 = 𝑛2
𝐼𝑗ℎ

2,

— нижняя граница 𝑖 = 2,… , 𝐼 − 1, 𝑗 = 1:

[(𝑢𝑖1 − 𝑢𝑥𝑚𝑖𝑛)+]2 + [(𝑢𝑖1 − 𝑢𝑖2)+]2 = 𝑛2
𝑖1ℎ

2,

— верхняя граница 𝑖 = 2,… , 𝐼 − 1, 𝑗 = 𝐽:

[(𝑢𝑖𝐽 − 𝑢𝑥𝑚𝑖𝑛)+]2 + [(𝑢𝑖𝐽 − 𝑢𝑖,𝐽−1)+]2 = 𝑛2
𝑖𝐽ℎ

2.

Группа III К этой группе относятся следующие точки:
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— левая нижняя угловая точка 𝑖 = 1, 𝑗 = 1:

[(𝑢11 − 𝑢21)+]2 + [(𝑢11 − 𝑢12)+]2 = 𝑛2
11ℎ

2,

— левая верхняя угловая точка 𝑖 = 1, 𝑗 = 𝐽:

[(𝑢1𝐽 − 𝑢2𝐽)+]2 + [(𝑢1𝐽 − 𝑢1,𝐽−1)+]2 = 𝑛2
1𝐽ℎ

2,

— правая нижняя угловая точка 𝑖 = 𝐼, 𝑗 = 1:

[(𝑢𝐼1 − 𝑢𝐼−1,1)+]2 + [(𝑢𝐼1 − 𝑢𝐼2)+]2 = 𝑛2
𝐼1ℎ

2,

— правая верхняя угловая точка 𝑖 = 𝐼, 𝑗 = 𝐽:

[(𝑢𝐼𝐽 − 𝑢𝐼−1,𝐽)+]2 + [(𝑢𝐼𝐽 − 𝑢𝐼,𝐽−1)+]2 = 𝑛2
𝐼𝐽ℎ

2.

Каждое из этих уравнений различается лишь числовыми коэффициентами
и имеет следующий вид:

[(𝑥 − 𝑎)+]2 + [(𝑥 − 𝑏)+]2 = 𝑛2
𝑖𝑗ℎ

2.

Его можно свести к квадратному уравнения и записать решение в виде

𝑥 =
⎧⎪
⎨
⎪
⎩

min(𝑎, 𝑏) + 𝑛𝑖𝑗ℎ, |𝑎 − 𝑏| ⩾ 𝑛𝑖𝑗ℎ,

𝑎 + 𝑏 +√2𝑛2
𝑖𝑗ℎ

2 − (𝑎 − 𝑏)2

2 , |𝑎 − 𝑏| < 𝑛𝑖𝑗ℎ.

Структура вычислительного процесса метода быстрого заметания приведе-
на на рисунке 2.5.

2.4. Нейронные сети, основанные на физике

Нейронные сети, основанные на физике (Physics-informed neural networks,
PINN), становятся все более эффективным способом решения дифференци-
альных уравнений и создания нейронных аналогов физических моделей.
Классические нейронные сети выводят решения исключительно на основе
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Рис. 2.5. Блок-схема алгоритма быстрого заметания FSM (Fast Sweeping Method)
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данных, представленных набором пар «состояние-значение». Особенностью
PINN является то, что они изначально учитывают физику проблемы, лежа-
щую в основе уравнений в частных или обыкновенных производных. То есть
функция потерь включает в себя ODE/PDE и начальные/граничные условия.
Термин PINN был введён в [52], где PINN описан как новый класс универ-
сальных аппроксиматоров функций, которые способны кодировать любые
основные физические законы и которые могут быть описаны уравнениями
в частных производных.

2.4.1. Общее описание

Рассмотрим дифференциальное уравнение в следующей форме:

𝐹(𝑢(𝑥); 𝜆) = 0,

где 𝐹 - дифференциальный оператор, 𝑢 - решение ДУ, 𝜆 — параметры урав-
нения, а 𝑥 = 𝑥1, … , 𝑥𝑛 ∈ Ω - n-мерный вектор координат, принадлежащий
области Ω.
Пусть 𝐵 - граничный оператор, а функция 𝑢 удовлетворяет граничным усло-

виям:

𝐵(𝑢(𝑥); 𝜆) = 0

И так же пусть 𝐼 - оператор начальных условий, а функция 𝑢 удовлетворяет
начальным условиям:

𝐼(𝑢(𝑥); 𝜆) = 0.

Нейронные сети, основанные на физике (PINN), решают УЧП, используя
теорему универсального приближения(Universal Approximation Theorem) [26],
которая утверждает, что для любой измеримой 𝑢 существует достаточно боль-
шая нейронная сеть𝑁 с весами𝑤, такими, что ||𝑁(𝑥,𝑤) − 𝑢(𝑥) < 𝜀|| для всех
𝑥 ∈ Ω. Это предполагает, что произвольное ДУ можно решить, заменив неиз-
вестное решение 𝑢(𝑥) нейронной сетью 𝑁(𝑥;𝑤) и найдя веса 𝑤 такие, что
𝐹(𝑁; 𝜆) ≈ 0 по всем 𝑥 ∈ Ω. Формально это условие можно записать в одном
уравнении, суммируя разность в каждой точке 𝑥,
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𝐿(𝑤) = ∫
Ω

||𝐹(𝑁(𝑥;𝑤); 𝜆)||𝑑𝑥, (2.21)

где мы хотим найти веса нейронной сети 𝑤, которые минимизируют 𝐿(𝑤).
В этом отличие от точного решения, где если 𝐿(𝑤) = 0, то по определению
нейронная сеть является решением дифференциального уравнения.
Поскольку граничные условия должны удовлетворяться только на некото-

ром подмножестве 𝜕Ω, полезно отделить граничные и начальные условия
в свое собственное уравнение. Таким образом, получим:

𝐿(𝑤) = ∫
Ω\𝜕Ω

||𝐹(𝑁(𝑥,𝑤); 𝜆)||𝑑𝑥 + ∫
𝜕Ω

||𝐵(𝑁(𝑥,𝑤); 𝜆)||𝑑𝑥 + ||𝐼(𝑁(𝑥,𝑤); 𝜆)||. (2.22)

Уравнение (2.21) эквивалентно (2.22), ноонопоясняетреализацию.Запишем
его в следующих обозначениях:

𝐿(𝑤) = 𝐿𝑟 + 𝐿𝑖𝑐 + 𝐿𝑏𝑐,

где 𝐿𝑟 - невязка ДУ, 𝐿𝑖𝑐 - ошибка в начальных условиях, 𝐿𝑏𝑐 - ошибка в гранич-
ных условиях.

2.4.2. Общий алгоритм работы

Алгоритм работы PINN включает следующие основные шаги.

1. Определение задачи, основанной на физических законах, и формулиров-
ка управляющих уравнений, описывающих рассматриваемую систему.

2. Сбор данных, представляющих поведение системы, из экспериментов,
симуляций или других источников.

3. Выбор архитектуры нейронной сети и инициализация её параметров.

4. Формулировка функции потерь, которая включает в себя как соответ-
ствие экспериментальным данным, так и удовлетворение физических
уравнений.

5. Обучение нейронной сети путём минимизации функции потерь.
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6. Проверка условий остановки обучения (например, достижение заданно-
го количества эпох или минимизация потерь).

7. Анализ результатов и их интерпретация.

Или более развёрнуто.

1. Определение физики-ориентированной задачи:

— формулировка управляющих уравнений, которые описывают пове-
дение исследуемой системы (эти уравнения могут быть получены
из фундаментальных принципов, таких как законы сохранения или
конститутивные соотношения);

— определение граничных и начальных условий для задачи.

2. Сбор данных:

— получение данных, характеризующих поведение системы, — из экс-
периментов, симуляций или других источников;

— подготовка данных для обучения: выбор точек (координат или вре-
менных значений), в которых будут оцениваться предсказания
и потери.

3. Выбор и настройка архитектуры нейронной сети:

— определение типа нейронной сети (например, полносвязная сеть);

— выбор количества слоёв и нейронов в каждом слое;

— подбор функций активации;

— инициализация параметров сети (весов и смещений).

4. Формулировка функции потерь:

— включение в функцию потерь двух основных компонентов:

— data fidelity term — мера расхождения между предсказаниями
сети и наблюдаемыми данными;

— physics-informed term — обеспечение выполнения физических
уравнений, выступающих в роли ограничений;
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— настройка весов компонентов функции потерь для баланса между
соответствием данным и удовлетворением физических законов.

5. Обучение нейронной сети:

— подача данных на вход сети и вычисление предсказаний;

— расчёт потерь на основе сформулированной функции потерь;

— обновление параметров сети с помощью оптимизатора (алгоритма
оптимизации);

— использование автоматического дифференцирования для вычисле-
ния производных, необходимых для обучения.

6. Проверка условий остановки обучения:

— контроль достижения заданного количества эпох (итераций) обуче-
ния;

— отслеживаниеминимизациифункциипотерь или других критериев
остановки;

— проверка стабильности и качества предсказаний.

7. Итеративное повторение этапов обучения и проверки до выполнения
условий остановки. Этот процесс можно описать в виде блок-схемы
(рис. 2.6)

8. Оценка результатов:

— анализ предсказаний сети на соответствие как экспериментальным
данным, так и физическим законам;

— оценка точности и интерпретируемости полученного решения.

9. Интерпретация результатов и их применение:

— использование обученной модели для предсказания поведения си-
стемы в новых условиях;

— применение модели для решения прямых и обратных задач, асси-
миляции данных и других целей.

10. Оптимизация и доработка модели при необходимости:
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Рис. 2.6. Схема обучения PINN

— корректировка архитектуры сети, функции потерь или процесса
обучения для улучшения результатов;

— повторение цикла обучения с изменёнными параметрами при
неудовлетворительных результатах.

2.4.3. Общая характеристика пакета NeuralPDE

Пакет NeuralPDE [41] для языка Julia входит в коллекцию пакетов и утилит
SciML [57]. В этой коллекции собраныпакеты, которые позволяют обсчитывать
математические модели на основе дифференциальных уравнений разного
вида, причем численные методы сочетаются с машинным обучением.
В частности NeuralPDE основывается на нейросетях, функция потерь ко-

торых строится с учетом дифференциальных уравнений математической
модели, что позволяет обучать нейросеть с учетом решаемой физической
задачи. Собственно это и есть Physics-Informed Neural Networks (PINN) [5].
NeuralPDE используются для решения трех объемных групп задач:

— аппроксимация решений систем обыкновенных дифференциальных
уравнений (ОДУ);

— аппроксимация решений уравнений в частных производных (УрЧП);

— решение обратных задач, которые заключаются в определении коэффи-
циентов ОДУ и УрЧП по известным решениям.

Пакет NeuralPDE разрабатывается с 2019 года [58]. Пакет можно установить
стандартными средствами Julia, выполнив команду add NeuralPDE в режиме
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управленияпакетами.Стоитотметить, чтоприустановке скачивается большое
количество зависимостей — как дополнительных пакетов, так и артефактов.
Артефактами в Julia называются сторонние бинарные файлы библиотек или
дополнительных утилит, которые используются в том или ином устанавливае-
мом пакете.
По умолчанию NeuralPDE производит все расчеты силами центрального

процессора. Для использования видеокарты необходимо дополнительно уста-
новить пакет Flux.jl [18] или Lux.jl [34].
Для задания ОДУ или УрЧП используется синтаксис пакета

ModelingToolkit.jl [40], который также входит в коллекцию SciML. Согласно
официальному описанию, ModelingToolkit.jl фреймворк для высокопроизво-
дительных символьно-численных вычислений в области математического
моделирования и наукоемкого машинного обучения. Он позволяет задать
высокоуровневое описание задачи в символьном виде, для дальнейших
расчетов и анализа. Символьное описание основывается ещё на одном пакете
Julia — Symbolics.jl [24], который позиционируется как система компьютерной
алгебры (CAS).

2.4.4. Решение ОДУ на Julia

Математически, ODEProblem определяет проблему:

𝑢′ = 𝑓 (𝑢, 𝑝, 𝑡)

для интервала 𝑡 ∈ (𝑡0, 𝑡𝑓) с начальным условием 𝑢(𝑡0) = 𝑢0.
Решим простое ОДУ:

𝑢′ = 𝑐𝑜𝑠(2𝜋𝑡)

для 𝑡 ∈ (0, 1) и 𝑢0 = 0 с помощью NNODE и численным методом, затем сравним
результат.
Чтобы решить эту задачу, мы определяем тип задачи, задавая ей уравнение,

начальное условие и временной интервал, используя метод ODEProblem.

1 linear(u, p, t) = cos(t * 2 * pi)

2 tspan = (0.0, 1.0)

3 u0 = 0.0

4 prob = ODEProblem(linear, u0, tspan)
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Рис. 2.7. График сравнения решений
на интервале [0, 1]

Рис. 2.8. График сравнения решений
на интервале [0, 15]

Зададим NeuralPDE.NNODE()— алгоритм решения обыкновенных дифференци-
альных уравнений с помощьюнейронной сети. Это специализациянейронной
сети, основанной на физике, которая используется в качестве решателя стан-
дартной задачи ОДУ. Также мы должны выбрать архитектуру нейронной сети.
Для этого мы будем использовать Lux.jl, чтобы определить многослойный
персептрон (MLP) с одним скрытым слоем из 5 узлов и сигмоидной функцией
активации. Это выглядит как:

1 rng = Random.default_rng()

2 Random.seed!(rng, 0)

3 chain = Chain(Dense(1, 5, σ), Dense(5, 1))

4 ps, st = Lux.setup(rng, chain) |> Lux.f64

Вызываем метод solve, чтобы решить заданную проблему. В качестве метода
решения задаем Tsit5() с шагом 0.01 (см. рис. 2.7):

1 sol_num = solve(prob, Tsit5(), saveat = 0.01)

Аналогичным образом построим график на временном интервале [0, 15]
(рис. 2.8).

2.4.5. Модель Лотки–Вольтерры

Описание модели Лотки–Вольтерры

Рассмотрим математическую модель Лотки–Вольтерры (модель хищник–
жертва), которая описывает взаимодействие двух видов животных. Причем
одинизних охотится за другими, которые обеспеченынеисчерпаемымипище-
вымиресурсами [61; 70].Модель описывается следующей системой уравнений:
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⎧⎪
⎨
⎪
⎩

𝑑𝑥
𝑑𝑡

= 𝛼𝑥(𝑡) − 𝛽𝑥(𝑡)𝑦(𝑡),

𝑑𝑦
𝑑𝑡

= −𝛾𝑦(𝑡) + 𝛿𝑥(𝑡)𝑦(𝑡).

В этой модели 𝑥— число жертв, 𝑦 - число хищников. Коэффициент 𝑎 описы-
вает скорость естественного прироста числа жертв в отсутствие хищников,
𝑐 - естественное вымирание хищников, лишенных пищи в виде жертв. Веро-
ятность взаимодействия жертвы и хищника считается пропорциональной
как количеству жертв, так и числу самих хищников. Каждый акт взаимодей-
ствия уменьшает популяцию жертв, но способствует увеличению популяции
хищников (члены −𝑏𝑥𝑦 и 𝑑𝑥𝑦 в правой части уравнения).
Первый интеграл системы имеет вид [69]:

𝛼 log𝑦 − 𝛽𝑦 + 𝛾 log𝑥 − 𝛿𝑥 = 𝐶, 𝐶 = const.

Для решения системы мы задали параметры: 𝛼 = 1.5, 𝛽 = 1.0, 𝛾 = 3.0, 𝛿 =
1.0. Будем решать задачу Коши с начальными условиями:

{
𝑥(0) = 1,

𝑦(0) = 1.

2.4.6. Численное исследование

Решим систему численнымметодом Tsit5() с шагом 0.01, используя библио-
теку DifferentialEquations.jl [50]. Рассмотрим временной интервал [0, 4]. При
использовании численного метода получаем следующие графики (рис. 2.9,
2.10).
Из (рис. 2.9) видно, что траектория численного решения замкнута, следо-

вательно объем фазового портрета сохраняется, как и при аналитическом
решении.

Решение модели с использованием PINN

Теперь решим эту систему с помощью библиотеки NeuralPDE.jl. Для этого за-
дадим архитектуру нейронной сети с помощью библиотеки Lux.jl. Используем
трехслойную нейронную сеть, на входе расположим 1 нейрон, на выходе — 2,
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Рис. 2.9. Фазовый портрет модели
Лотки-Вольтерры при

решении
численным методом

Рис. 2.10. График численного
решения

модели Лотки-Вольтерры

Рис. 2.11. Фазовый портрет модели
Лотки-Вольтерры при

решении
с использованием PINN

Рис. 2.12. График решения модели
Лотки-Вольтерры

с использованием PINN
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Рис. 2.13. Графики ошибок решений

на промежуточном слое – 16. Активационная функция, заданная на первых
двух слоях, – гиперболический тангенс. Также используем алгоритм Брой-
дена — Флетчера — Гольдфарба —Шаннооптимизатор (BFGS) из библиотеки
OptimizationOptimJL.jl. ЗададимNeuralPDE.NNODE() – алгоритм решения обык-
новенных дифференциальных уравнений с помощью нейронной сети. Это
специализация нейронной сети, основанной на физике, которая используется
в качестве решателя стандартной задачи ОДУ:

1 chain = Lux.Chain(Lux.Dense(1, 16, tanh), Lux.Dense(16, 16,tanh),

Lux.Dense(16, 2))↪

2 opt = OptimizationOptimJL.BFGS()

3 alg = NeuralPDE.NNODE(chain, opt)

Далее мы вызываем solve точно так же, как с любыми другими ODEProblem.
Включим verbose, чтобы можно было видеть потери с течением времени в про-
цессе обучения. Поставим максимальное количество эпох (итераций) равным
1000:

1 sol = solve(prob, alg, verbose = true, abstol=1e-8, maxiters = 1000)

В результате получаем следующие графики (рис. 2.11, 2.12).

Сравнение методов

Сравним фазовую траекторию, полученную с помощью численного реше-
ния и с помощью нейронной сети с первым интегралом системы. Для этого
построим графики квадратов ошибок (рис. 2.13).
Из графика видно, что решение рассматриваемой системы, полученное

численными методами, более точное по сравнению с решением с помощью
PINN.
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Также сравним производительности обоих методов. Для этого использу-
ем пакет BenchmarkTools.jl. Оценим производительность численного метода,
посмотрев время и память, затраченные на вычисления:

1 233.154 μs (7052 allocations: 567.62 KiB)

Выполним аналогичную оценку для библиотеки NeuralPDE.jl:

1 2463.046 s (3569138613 allocations: 2682.28 GiB)

Нейронные сети требуют гораздо больше ресурсов и времени по сравнению
с численными методами.

2.4.7. Модель SIR

Рассмотрим систему ДУ, решения которых являются апериодическими.
Компартментальные модели — это очень общий метод моделирования. Их

часто применяют для математического моделирования инфекционных за-
болеваний. Популяция распределяется по отсекам с метками, например S,
I или R (восприимчивый, инфекционный или выздоровевший). Люди могут
перемещаться между отсеками.
Модель SIR — одна из самых простых компартментальных моделей [69],

и многие модели являются производными от этой базовой формы. Модель
состоит из трех отделений:

— 𝑆: Число восприимчивых людей. Когда восприимчивый и заразный че-
ловек вступают в «инфекционный контакт», восприимчивый человек
заражается болезнью и переходит в инфекционный отсек.

— 𝐼: Число заразных. Это лица, которые были инфицированы и способны
заразить восприимчивых лиц.

— 𝑅: Количество удаленных (и неуязвимых) или умерших особей. Это лица,
которые были инфицированы и либо выздоровели от болезни и попали
в удаленный отсек, либо умерли. Предполагается, что число смертей
незначительно по отношению к общей численности населения. Этот
отсек также можно назвать «восстановленным» или «устойчивым».
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До того, как число заболевших не превышает критического значения 𝐼∗, счи-
таем, что все больные изолированы и не заражают здоровых. Когда 𝐼(𝑡) > 𝐼∗,
тогда инфицирование способны заражать восприимчивых к болезни особей.
Система SIR без динамики жизнедеятельности (рождения и смерти, ино-

гда называемой демографией) может быть выражена следующей системой
обыкновенных дифференциальных уравнений:

⎧
⎪
⎨
⎪
⎩

𝑑𝑆
𝑑𝑡 = −𝛽𝐼𝑆

𝑁 ,
𝑑𝐼
𝑑𝑡 = 𝛽𝐼𝑆

𝑁 − 𝛾𝐼,
𝑑𝑅
𝑑𝑡 = 𝛾𝐼,

где 𝑆 – численность восприимчивой популяции, 𝐼 – численность инфици-
рованных, 𝑅 – численность удаленной популяции (в результате смерти или
выздоровления), и𝑁— это сумма этих трёх, а 𝛽 и 𝛾 - это коэффициенты заболе-
ваемости и выздоровления соответственно.
Решим систему численным методом Tsit5() с шагом 0.1, используя биб-

лиотеку DifferentialEquations.jl [50]. Рассмотрим временной интервал [0, 50]
и начальные значения 𝑆 = 990.0, 𝐼 = 10.0, 𝑅 = 0.0. В результате получаем
следующий график решения (рис. 2.14.
Теперь решим эту систему с помощью библиотеки NeuralPDE.jl. Используем

трехслойнуюнейронную сеть, на входе расположим1нейрон, на выходе – 3, на
промежуточном слое – 32. Активационная функция, заданная на первых двух
слоях, – сигмоида. Также используем алгоритм Бройдена — Флетчера — Гольд-
фарба —Шаннооптимизатор (BFGS) из библиотеки OptimizationOptimJL.jl.

1 chain = Lux.Chain(Lux.Dense(1, 32, σ), Lux.Dense(32, 32, σ), Lux.Dense(32, 3))

2 opt = OptimizationOptimJL.BFGS()

3 alg = NeuralPDE.NNODE(chain, opt)

При установленном максимальном количестве эпох равном 1000 получим
следующий график решения (рис. 2.15).
В случае с простой моделью эпидемии решение с помощью нейронной сети

основанной на физике показало низкую точность, в связи с чем мы не можем
рекомендовать этот инструмент для решения рассмотренной задачи.
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Рис. 2.14. График решения модели
SIR при решении

численным методом

Рис. 2.15. График решения модели
SIR

с использованием PINN
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Глава 3. Моделирование трансформирующих
оптических сред

3.1. Реализация метода эйконала на основе численного
метода FSM

3.1.1. Расчет методом FSM на языке Julia

Для численного моделирования линз методом FSM мы использовали па-
кет Eikonal [17] для языка программирования Julia [21; 31; 44]. Пакет Eikonal
представляет собой небольшую библиотеку, в которой реализованы методы
быстрого заметания (Fast Sweeping) и и быстрой прогонки (Fast Marching). Па-
кет зарегистрирован в официальном репозитории пакетов Julia и может быть
установлен стандартными методами.
Оба метода реализованы для произвольной размерности и их исходный

код умещается в одном исходном файле. Для такого небольшого пакета доку-
ментации довольно подробная и позволяет сравнительно быстро разобраться
в функционале пакета. Также в наличии набор тестов, которые также могут
послужить иллюстративными примерами.
Рассмотрим использование библиотеки Eikonal для вычисления фронтов

в случае плоских линз Максвелла и Люнеберга. Кроме данной библиотеки бу-
дем использовать наш модуль Lenses, описанный выше, а также пакет SVector.
Вначале импортируем все необходимые модули. Исходный код модуля

Lenses считываем с помощью include, а затем добавляем в общую область
имен с помощью using. Модули из официального репозитория импортируем
сразу с помощью using.

1 include("../src/lense.jl")

2 # Используем метод FSM, реализованный в библиотеке Eikonal

3 using Eikonal

4 using StaticArrays: SVector

5 using .Lenses

Нам понадобится параметрическое уравнение окружности, которое воз-
вращает координаты в виде целых чисел так как модуль Eikonal использует
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целочисленную сетку. Зададим его в виде однострочнойфункции. Использова-
ние синтаксиса точки с оператором или функцией (например, .+), позволяет
применить функцию и оператор сразу ко всем элементам массива или корте-
жа.

9 # Параметрическое уравнение окружности

10 circle_xy(center, R, φ) = round.(Int, center .+ (R*cos(φ), R*sin(φ)))

Зададим необходимые параметры в виде констант. Каждая константа снаб-
жена строкой документации, поэтому дополнительные комментами и не
требуются. Тип линзы выбирается с помощьюфункции select_lense из моду-
ля Lenses, что позволяет выбирать для какой линзы производить вычисления
непосредственно при запуске программы на выполнение.

14 # Центр линзы

15 const center = (500, 500)

16 # Радиус линзы

17 const R = 300

18 # Коэффициент преломления среды

19 const n0 = 1.0

20 # Позиция источника относительно линзы

21 const source = circle_xy(center, R, pi)

22 const LENSE = select_lense(length(ARGS)>=1 ? ARGS[1] : "")(R, n0,

SVector(center..., 0.0))↪

23 const RAYS = false

Далее настраиваем размер сетки (𝐼, 𝐽) для аппроксимирующей функции 𝑢𝑖𝑗,
инициализируемметод спомощьюфункции FastSweepingиинициализируем
массив v, который в данной библиотеки обозначает значения коэффициен-
та преломления 𝑛𝑖𝑗 в узлах сетки. Для вычисления значений 𝑛𝑖𝑗 используем
функцию n из Lenses.

29 const tsize = (1000, 1000)

30 fsm = FastSweeping(Float64, tsize)

31 # Вычисление коэффициента преломления в точках сетки

32 for x=1:tsize[1], y=1:tsize[2]

33 fsm.v[x, y] = Lenses.n(SVector(x, y, 0.0), LENSE)

34 end
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На следующемшаге запускаем вычисления. Функция init! позволяет за-
дать граничные значения, которые в нашем случае состоят из единственной
точки — источника лучей. Результат вычислений запишется в атрибут fsm.t,
в наших обозначениях это аппроксимирующая сеточная функция 𝑢𝑖𝑗.

38 init!(fsm, source)

39 println("Подметание")

40 sweep!(fsm, verbose=false)

После получения результатов вычислений остается визуализировать фрон-
тыилучи.МыиспользуембиблиотекуMakie, в товремякаквпримерахкпакету
Eikonal используется библиотека Plots. Создаем изображения, оси на нем, кон-
тур линзы в виде окружности и отображаем его на координатной плоскости.
Источник изображаем в виде точки. Фронты визуализируются тривиально,
с помощью функции contour!, которая отображает линии уровня для функ-
ции от двух переменных 𝑢𝑖𝑗. Массивы координат𝑥 и 𝑦 ейможно не передавать,
так как они совпадают с индексами 𝑖 и 𝑗 поскольку мы задали целочисленную
сетку.

44 using CairoMakie

45 fig01 = Figure(fontsize=18, pt_per_unit=1)

46 ax01 = Axis(fig01[1, 1], xlabel = L"$x_n$", ylabel = L"$y_n$")

47 ax01.aspect = DataAspect()

48 ax01.autolimitaspect = 1

49 # colsize!(fig01.layout, 1, Aspect(1, 1))

50 rowsize!(fig01.layout, 1, Aspect(1, 1))

51 # Контур линзы виде окружности

52 const lense_contour = Circle(Point2(center .|> Float64), R)

53 # Рисуем контур линзы

54 lines!(ax01, lense_contour, color=:blue)

Визуализация лучей уже менее тривиальная задача. Автор библиотеки
Eikonal предусмотрел функцию ray, которая вычисляет точки лучей с по-
мощью метода наискорейшего градиентного спуска. Для ее использования
следует задать конечную точку луча. За начало луча будет выбран его источ-
ник.



94

0 500 1000

0

500

1000

Рис. 3.1. Фронты для
линзы Люнеберга
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Рис. 3.2. Фронты для
линзыМаквелла

61 contour!(ax01, fsm.t, levels=100, colormap=:grays)

62 # Источник в виде точки

63 scatter!(ax01, source..., color=:red)

64 # Вычисление лучей

65 if RAYS

Следует отметить, что функция ray работает не стабильно, так как зачастую
ее выполнение сопровождается выходом за границымассива fsm.t, даже если
конечная точка луча указывается внутри прямоугольной области.
Результат визуализации показан на рисунках 3.1 и 3.2. Здесь следует отме-

тить, что в случае линзыМаксвелла применение функции ray наталкивается
на проблему, которая заключается в следующем.
Исходящие из источника на поверхности линзы лучи должны фокусиро-

ваться в точку (фокус), расположенную на диаметрально противоположной от
источника стороне линзы и могут выйти из линзы только пройдя эту точку,
как это показано на рисунке 3.3. Таким образом при моделировании электро-
магнитного излучения в виде лучей, вне линзы могут существовать только
лучи, прошедшие линзу и вышедшие из точки фокуса. Следует оговорится,
что мы рассматриваем пучок лучей, вышедших из точечного источника под
углом из интервала (−𝜋/2, 𝜋/2).
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Рис. 3.3. Корректное изображение
лучей линзыМаксвелла
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Рис. 3.4. Условно корректное
изображение лучей
линзыМаксвелла

Так как метод FSM аппроксимирует функцию эйконала 𝑢(𝐱) в каждой точке
сетки, то при таком моделировании электромагнитное излучение будет при-
сутствовать повсюду вне линзы, что можно видеть по изображению фронтов.
Поэтому, если задать при вызове функции ray параметр pos в виде точки за
поверхности линзы, то лучи будут нарисованы некорректно, как это показано
на рисунке 3.5.
Можно добиться условно корректного изображения, если задавать в виде

конечной позиции только те точки сетки, которые лежат исключительно на
поверхности линзы.

3.1.2. Обсуждение

При решении уравнения эйконала методом характеристик, оно сводится
к системе ОДУ. Каждое решение системы дает траекторию одного луча. Для по-
лучения пучка лучей, следует многократно решить полученную систему ОДУ,
изменяя каждый раз начальные значения. Можно сказать, что такой подход
большесоответствует геометрическойоптике, чемволновой. Вычислить точки
волновых фронтов непосредственно методом характеристик не представляет-
ся возможны и требует дополнительной манипуляции с координатами точек
траектории лучей.
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Рис. 3.5. Ошибочное изображение лучей линзыМаксвелла,
моделируемой методом FSM

Метод FSM, напротив, работает сразу с уравнением эйконала, не требует его
преобразования в какую-либо другую форму. Также не требуются вычисления
производных от функции коэффициента преломления 𝑛(𝐱). Результатом рабо-
ты метода являются аппроксимированные значения функции 𝑢(𝐱) для всех
точек сетки. Имея эти значения довольно просто визуализировать фронты
путем изображения линий уровня, а вот с визуализацией лучей возникают
проблемы, описанные нами выше.
Еще одной особенностью метода FSM является тот факт, что изначально

предполагается присутствие электромагнитного поля в каждой точке модели-
руемойобласти. Как былопоказанонарисунках1.10и1.11приинтерпретации
электромагнитного излучения в виде лучей, существуют области, куда излу-
чение не проникает.
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3.2. Реализация метода эйконала на основе численного
метода PINN

3.3. Уравнение эйконала

3.3.1. Уравнение Пуассона

В официальной документации пакета NeuralPDE есть пример кода для ре-
шения двумерного уравнения Пуассона

𝜕2𝑢(𝑥, 𝑦)
𝜕𝑥2 +

𝜕2𝑢(𝑥, 𝑦)
𝜕𝑦2 = −sin(𝜋𝑥) sin(𝜋𝑦),

в прямоугольной области, задаваемой отрезками 𝑥 ∈ [0, 1] и 𝑦 ∈ [0, 1] и с гра-
ничными условиями следующего вида:

𝑢(0, 𝑦) = 0,𝑢(1, 𝑦) = 0,
𝑢(𝑥, 0) = 0,𝑢(𝑥, 1) = 0.

Вычисления продлились около 30–40 минут и в результате были получены
графики, совпадающие с теми, что приведены в официальной документации
(рис. 3.6).

3.3.2. Решение уравнение эйконала средствами NeuralPDE

Запишем уравнение эйконала [6; 28; 37; 60] в декартовых координатах на
плоскости

(
𝜕𝑢
𝜕𝑥)

2

+ (
𝜕𝑢
𝜕𝑦)

2

= 𝑛2(𝑥, 𝑦).

Функция 𝑛(𝑥, 𝑦) является кусочно-непрерывной.
Для данного примера была взята функция для линзы Максвелла для дву-

мерного случая [4]:

𝑛(𝑟) =
⎧
⎪
⎨
⎪
⎩

𝑛0

1 + (
𝑟
𝑅)

2 , 𝑟 ⩽ 𝑅,

𝑛0, 𝑟 > 𝑅,



98

Рис. 3.6. Решение уравнения Пуассона с официального сайта
документации NeuralPDE

где 𝑟 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 — расстояние от центра координат до точек
линзы, которая имеет форму круга. Центр линзы находится в точке с коор-
динатами (𝑥0, 𝑦0) = (0, 0). Радиус линзы 𝑅 = 1, коэффициент преломления
среды 𝑛0 = 1.
Пример из официальной документации был модифицирован путем замены

уравнения Пуассона и его граничных условий на уравнение эйконала. Пер-
вая правка заключалась в замене вторых производные на квадраты первых
производных:

1 Dx = Differential(x)

2 Dy = Differential(y)

Также для линзыМаксвелла:

1 eq = Dx(u(x, y))*Dx(u(x, y)) + Dy(u(x, y))*Dy(u(x, y)) ~ n(x, y)

Символ ^ при использовании с функцией Differential имеет смысл поряд-
ка производной, а не степени, поэтому его пришлось заменить умножением
производной самой на себя.
Также были изменены граничные условия и диапазоны значений 𝑥, 𝑦:

1 # Граничное условие (означает, что точечный источник находится в центре

координат)↪
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2 bcs = [

3 u(-1, 0) ~ 0.0

4 ]

5 # Область (x, y)

6 domains = [x in (-1.0, 2.0), y in (-1.0, 2.0)]

Функция n(x, y)—после ряда упрощенийи удаления почти всех внутренних
переменных — выглядела следующим образом:

1 function n(x, y)

2 r = hypot(x, y)

3 if r <= 1

4 return 1 / (1 + r^2)

5 else

6 return 1

7 end

8 end

Однако в таком виде программа не заработала. После инициализации ней-
ронной сети (процесс занимал в среднем около 10 минут) программа падала
с ошибкой о не булевых переменных в булевом контексте ERROR: TypeError:

non-boolean (Num) used in boolean context.
В официальной документации данная ошибка описывается и удалось уста-

новить две причины ошибки:

— функции hypot в символьном виде не существует, то есть она не опреде-
лена в пакете Symbolics.jl;

— инструкция if-else-end также для символьных значений не поддержи-
вается и её следует заменить на функцию Base.ifelse из стандартной
библиотеки.

После исправлений функция преломления следующий вид:

1 n(x, y) = ifelse(sqrt(x^2+y^2) <= 1, 1 / (1 + (x^2 + y^2))^2, 1)

После чего программа заработала.
Получившиеся результаты после некоторой обработки изображены на ри-

сунке 3.7.
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Рис. 3.7. Фронты для линзыМаксвелла

3.4. Сравнение методик FSM и PINN

В ходе работы с NeuralPDE были обнаружены следующие недостатки.

— Пакет имеет внушительное количество зависимостей (более сотни).
В зависимости входят как другие пакеты Julia, так и сторонние би-
нарные файлы (утилиты, библиотеки). Прямым следствием является
повышенные требования к свободному дисковому пространству и время
установки в систему. Однако основная проблема большого количества
зависимостей заключается в понижении надежности работы пакета.

— Решаемое уравнение и граничные условия записываются в символьном
виде, которыйкрайнеограниченноподдерживаетдаже стандартныекон-
струкции языка. Даже в случае простой функции 𝑛(𝑥, 𝑦) не заработала
инструкция if-else-end и стандартная функция hypot. Особенно неоче-
видным выглядит необходимость замены if-else-end на Base.ifelse.

— На порядки большее время вычислений по сравнению с классическими
методами. Время работы программы с NeuralPDE измеряется десятками
минут, в то время как вычисления по классическим численным схемам
занимают лишь десятки секунд.
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Заключение

Внастоящейнаучно-квалификационнойработе быларассмотренапроблема
моделирования трансформирующих оптических сред, в частности дифрак-
ционных решёток, с использованием численных методов. Работа включала
аналитический обзор предметной области, разработку математического ап-
парата и реализацию двух подходов к численному моделированию — метода
быстрого распространения (FSM) и методов, основанных на нейронных сетях
(PINN).
Основные результаты работы:

1. Разработанмультимодельныйподход кмоделированиюдифракционных
систем в трансформирующих средах, основанный на сочетании числен-
ного метода быстрого распространения фронта (Fast Sweeping Method,
FSM)ифизическиинформированныхнейронныхсетей (Physics-Informed
Neural Networks, PINN) в инфраструктуре библиотеки NeuralPDE.jl.

2. Сформулирована математическая постановка задачи моделирования
распространения лучей в трансформирующих средах на основе уравне-
ния эйконала, адаптированная для использования в среде PINN с учётом
физических ограничений и профиля показателя преломления.

3. Выполненапрограммнаяреализацияиметодикавизуализациирезульта-
тов моделирования в виде полей распространения и волновых фронтов
для типовых оптических систем (линзы Люнеберга, Максвелла, Итона).

4. Выполнен сравнительный анализ классических численных и нейро-
сетевых подходов (FSM и PINN), демонстрирующие их применимость
к различным классам задач моделирования дифракционных систем,
включая оценку вычислительных затрат, устойчивости и визуальной
интерпретируемости решений.

5. Выработаны практические рекомендации по выбору и комбинированию
численных и нейросетевых методов для решения задач лучевой оптики
в трансформирующих средах, основанные на обобщении проведённых
экспериментов.
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Практическая значимостьработызаключаетсявразработке универсального
вычислительного подхода, который может быть использован для моделирова-
ния оптических компонентов сложной структуры. Полученные результаты
обладают как теоретической, так и практической значимостью и могут быть
использованы в задачах проектирования оптических элементов, фотонных
структур и компонентов радиолокационных систем. В дальнейшем планиру-
ется расширить предложенный метод на задачи обратного проектирования
и векторной электродинамики, а также интегрировать разработанные алго-
ритмы в автоматизированные системы синтеза и оптимизации оптических
устройств.
Направления дальнейших исследований включают:

1. Расширение моделей на более сложные многослойные и анизотропные
оптические структуры.

2. Оптимизацию методов обучения PINN для повышения точности и сни-
жения вычислительных затрат.

3. Интеграцию разработанных методов в комплексные системы проекти-
рования оптических приборов.

Таким образом, выполненное исследование способствует развитию методов
математического моделирования в области оптики и открывает перспективы
для дальнейшего совершенствования вычислительных технологий в этой
области.
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Приложение A. Аннотированный код реализации
численного метода FSM

A.1. Реализация метода FSM

1 module FSM

2 export fsm

3 using Base.Iterators: countfrom, takewhile

4 """Решение уравнения на каждом шагу

5 n — значение коэффициента преломления,

6 h — шаг метода,

7 a, b —

8 """

9 function gauss_seidel(n, h, a, b)

10 if abs(a - b) >= n * h

11 return min(a, b) + n * h

12 else

13 return 0.5(a + b) + 0.5sqrt(2(n*h)^2 - (a - b)^2)

14 end

15 end

16 # Один проход метода, модифицирует массив u

17 function sweep!(u, n, G, i, j, Nx, Ny, h)

18 if G[j, i]

19 u[j, i] = u[j, i]

20 # I группа

21 elseif 2<=i<=(Nx-1) && 2<=j<=(Ny-1)

22 u_xmin = min(u[j, i-1], u[j, i+1])

23 u_ymin = min(u[j-1, i], u[j+1, i])

24 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u_xmin, u_ymin))

25 # II группа, левая граница

26 elseif i==1 && 2<=j<=(Ny-1)

27 u_ymin = min(u[j-1, i], u[j+1, i])

28 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u[j, 2], u_ymin))

29 # II группа, правая граница

30 elseif i==Nx && 2<=j<=(Ny-1)

31 u_ymin = min(u[j-1, i], u[j+1, i])

32 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u[j, Nx-1], u_ymin))
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33 # II группа, нижняя граница

34 elseif 2<=i<=(Nx-1) && j==1

35 u_xmin = min(u[j, i-1], u[j, i+1])

36 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u_xmin, u[2, i]))

37 # II группа, верхняя граница

38 elseif 2<=i<=(Nx-1) && j==Ny

39 u_xmin = min(u[j, i-1], u[j, i+1])

40 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u_xmin, u[Ny-1, i]))

41 # III группа, левая нижняя угловая точка

42 elseif i==1 && j==1

43 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u[1, 2], u[2, 1]))

44 # III группа, левая верхняя угловая точка

45 elseif i==1 && j==Ny

46 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u[Ny, 2], u[Ny-1, 1]))

47 # III группа, правая нижняя угловая точка

48 elseif i==Nx && j==1

49 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u[1, Nx-1], u[2, Nx]))

50 # III группа, правая верхняя угловая точка

51 elseif i==Nx && j==Ny

52 u[j,i] = min(u[i,j], gauss_seidel(n[j, i], h, u[Ny, Nx-1], u[Ny-1, Nx]))

53 end

54 end

55 """

56 Аргументы функции

57 nf — коэффициент преломления в уравнении эйконала в виде функции.

58 u — сеточная функция.

59 G — логический массив, задающий сетку. В граничных точках принимает

60 значение 1, во всех остальных 0

61 Nx, Ny — число узлов сетки по осям x и y.

62 Gx, Gy — координаты границы сетки по осям Ox и Oy.

63 N — число итераций метода.

64 """

65 function fsm(nf, G, h, NSweeps)

66 println("Инициализация")

67 # число столбцов — количество точек по x

68 # число строк — количество точек по y

69 Ny, Nx = size(G)

70 n = Matrix{Float64}(undef, Ny, Nx)

71 X = collect(takewhile(<=((Nx-1)*h), countfrom(0, h)))

72 Y = collect(takewhile(<=((Ny-1)*h), countfrom(0, h)))
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73 u = Matrix{Float64}(undef, Ny, Nx)

74 # Для граничных точек сетки «замораживаем» значение u[i, j]

75 for i=1:Nx, j=1:Ny

76 if G[j, i]

77 u[j, i] = 0.0

78 else

79 # Остальным присваиваем некоторое, достаточно большое значение

80 u[j, i] = 1000.0

81 end

82 n[j, i] = nf(X[i], Y[j])

83 end

84 println("Вычисления")

85 for s = 1:NSweeps

86 println("Проход №$s")

87 for i=1:1:Nx, j=1:1:Ny

88 sweep!(u, n, G, i, j, Nx, Ny, h)

89 end

90 for i=Nx:-1:1, j=1:1:Ny

91 sweep!(u, n, G, i, j, Nx, Ny, h)

92 end

93 for i=Nx:-1:1, j=Ny:-1:1

94 sweep!(u, n, G, i, j, Nx, Ny, h)

95 end

96 for i=1:1:Nx, j=Ny:-1:1

97 sweep!(u, n, G, i, j, Nx, Ny, h)

98 end

99 end

100 return X, Y, u

101 end

102 end #module fsm

1 include("../src/parameters.jl")

2 include("../src/lense.jl")

3 include("../fsm/fsm.jl")

4 using StaticArrays: SVector
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5 using .FSM: fsm

6 using .Lenses

7 # Используем собственную реализацию FSM

8 const h = 0.01

9 const NSweeps = 10

10 const G = zeros(Bool, 1000, 1000)

11 # Центр линзы

12 const centre = (5.0, 5.0)

13 const R = 3.0

14 # Положение точечного источника

15 const source = (centre .- R / sqrt(2))

16 const LENSE = Maxwell(R, 1.0, SVector(centre..., 0.0))

17 # Точечный источник, на диагонали

18 # чтобы получить индексы мы делим на шаг h

19 G[round.(Int, (centre .- R / sqrt(2)) ./ h)...] = true

20 function nf(x, y)

21 return Lenses.n(SVector(x, y, 0.0), LENSE)

22 end

23 X, Y, u = fsm(nf, G, h, NSweeps)

24 using CairoMakie

25 fig01 = Figure(size=(500, 500))

26 ax01 = Axis(fig01[1, 1])

27 # Рисуем контур линзы виде окружности

28 const lense_contour = Circle(Point2(centre...), R)

29 lines!(ax01, lense_contour, color=:blue)

30 contour!(ax01, X, Y, u, levels=100)

31 scatter!(ax01, source..., color=:red)

32 save("fsm.png", fig01)

33 #=

34 Получаемая картинка совпадает с библиотекой fsm

35 но происходит дублирование источников, с чем надо разобраться.
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36 Также возникло сомнение в правильности рисования фронтов

37 при решении методом характеристик

38 =#

A.2. Решение уравнения эйконала с помощью модуля Eikonal

1 include("../src/lense.jl")

2 # Используем метод FSM, реализованный в библиотеке Eikonal

3 using Eikonal

4 using StaticArrays: SVector

5 using .Lenses

6 # Параметрическое уравнение окружности

7 circle_xy(center, R, φ) = round.(Int, center .+ (R*cos(φ), R*sin(φ)))

8 # Все координаты задаем в виде целых чисел, так как используется целочисленная

сетка↪

9 # Центр линзы

10 const center = (500, 500)

11 # Радиус линзы

12 const R = 300

13 # Коэффициент преломления среды

14 const n0 = 1.0

15 # Позиция источника относительно линзы

16 const source = circle_xy(center, R, pi)

17 const LENSE = select_lense(length(ARGS)>=1 ? ARGS[1] : "")(R, n0,

SVector(center..., 0.0))↪

18 const RAYS = false

19 println("Выбрана линза $(LENSE.name)")

20 # Размер сетки

21 const tsize = (1000, 1000)

22 fsm = FastSweeping(Float64, tsize)

23 # Вычисление коэффициента преломления в точках сетки

24 for x=1:tsize[1], y=1:tsize[2]

25 fsm.v[x, y] = Lenses.n(SVector(x, y, 0.0), LENSE)
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26 end

27 init!(fsm, source)

28 println("Подметание")

29 sweep!(fsm, verbose=false)

30 println("Рисование")

31 using CairoMakie

32 fig01 = Figure(fontsize=18, pt_per_unit=1)

33 ax01 = Axis(fig01[1, 1], xlabel = L"$x_n$", ylabel = L"$y_n$")

34 ax01.aspect = DataAspect()

35 ax01.autolimitaspect = 1

36 # colsize!(fig01.layout, 1, Aspect(1, 1))

37 rowsize!(fig01.layout, 1, Aspect(1, 1))

38 # Контур линзы виде окружности

39 const lense_contour = Circle(Point2(center .|> Float64), R)

40 # Рисуем контур линзы

41 lines!(ax01, lense_contour, color=:blue)

42 # Фронты в виде контуров функции от двух переменных u(x, y)

43 contour!(ax01, fsm.t, levels=100, colormap=:grays)

44 # Источник в виде точки

45 scatter!(ax01, source..., color=:red)

46 # Вычисление лучей

47 if RAYS

48 #for θ = [-pi/6, -pi/24, -pi/48, -pi/960, 0, pi/960, pi/300, pi/200, pi/48,

pi/24, pi/6]↪

49 # pos = circle_xy(center, R, θ)

50 for pos in ((900, 300), (900, 400), (900, 500),

51 (900, 600), (900, 700), (900, 800))

52 r1 = ray(fsm.t, pos)

53 lines!(ax01, r1, color=:green)

54 end

55 end

56 println("Сохранение")
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57 if RAYS

58 save("img/FSM/Линза_$(LENSE.name)_фронты_и_лучи.pdf", fig01)

59 else

60 save("img/FSM/Линза_$(LENSE.name)_фронты.pdf", fig01)

61 end

1 include("../src/lense.jl")

2 # Используем метод FSM, реализованный в библиотеке Eikonal

3 # для расчета линзы Итона. Местоположение источников и сама

4 # конфигурация линзы для Итона настолько отличается, что

5 # имеет смысл написать отдельную программу

6 using Eikonal

7 using StaticArrays: SVector

8 using .Lenses

9 # Параметрическое уравнение окружности

10 circle_xy(center, R, φ) = round.(Int, center .+ (R*cos(φ), R*sin(φ)))

11 # Все координаты задаем в виде целых чисел, так как используется целочисленная

сетка↪

12 # Размер сетки

13 const tsize = (1000, 1000)

14 # Центр линзы

15 const center = (500, 500)

16 # Радиус линзы

17 const R = 250

18 # Коэффициент преломления среды

19 const n0 = 1.0

20 # Позиция источника относительно центра линзы

21 const source = (center[1]+125, center[2])

22 # Местонахождение фокуса (симметрично относительно центра линзы)

23 const focus = (center[1]-125, center[2])

24 const LENSE = Eaton(R, n0, SVector(center..., 0.0))

25 const RAYS = true

26 println("Выбрана линза $(LENSE.name)")

27 fsm = FastSweeping(Float64, tsize)

28 # Вычисление коэффициента преломления в точках сетки
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29 for x=1:tsize[1], y=1:tsize[2]

30 fsm.v[x, y] = Lenses.n(SVector(x, y, 0.0), LENSE)

31 end

32 init!(fsm, source)

33 println("Подметание")

34 sweep!(fsm, verbose=false)

35 println("Рисование")

36 using CairoMakie

37 fig01 = Figure(fontsize=18, pt_per_unit=1)

38 ax01 = Axis(fig01[1, 1], xlabel = L"$x_n$", ylabel = L"$y_n$")

39 ax01.aspect = DataAspect()

40 ax01.autolimitaspect = 1

41 # colsize!(fig01.layout, 1, Aspect(1, 1))

42 rowsize!(fig01.layout, 1, Aspect(1, 1))

43 # Контур линзы виде окружности

44 const lense_contour01 = Circle(Point2(center .|> Float64), R)

45 const lense_contour02 = Circle(Point2(center .|> Float64), 2R)

46 # Рисуем контур линзы

47 lines!(ax01, lense_contour01, color=:blue)

48 lines!(ax01, lense_contour02, color=:blue)

49 # Фронты в виде контуров функции от двух переменных u(x, y)

50 contour!(ax01, fsm.t, levels=100, colormap=:grays)

51 # Для линзы Итона адекватно восстановить лучи не получается

52 if RAYS

53 #for θ = [-pi/6, -pi/24, -pi/48, -pi/960, 0, pi/960, pi/300, pi/200, pi/48,

pi/24, pi/6]↪

54 # pos = circle_xy(center, R, θ)

55 for pos in ((400, 300), (400, 400), (400, 500),

56 (400, 600), (400, 700), (400, 800))

57 r1 = ray(fsm.t, pos)

58 lines!(ax01, r1, color=:green)

59 end

60 end

61 # Источники в виде точек
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62 scatter!(ax01, source..., color=:red)

63 scatter!(ax01, focus..., color=:blue)

64 println("Сохранение")

65 if RAYS

66 save("img/FSM/Линза_$(LENSE.name)_фронты_и_лучи.pdf", fig01)

67 else

68 save("img/FSM/Линза_$(LENSE.name)_фронты.pdf", fig01)

69 end
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Приложение B. Аннотированный код реализации
численного метода PINN

1 using NeuralPDE, Lux, Optimization, OptimizationOptimJL, LineSearches, Plots

2 using ModelingToolkit: Interval

3 @parameters x y

4 @variables u(..)

5 Dx = Differential(x)

6 Dy = Differential(y)

7 #=

8 function n(x, y)

9 r = hypot(x, y)

10 if r <= 1

11 return 1 / (1 + r^2)

12 else

13 return 1

14 end

15 end

16 =#

17 # Работает данная версия

18 n(x, y) = ifelse(sqrt(x^2+y^2) <= 1, 1 / (1 + (x^2 + y^2))^2, 1)

19 # Эйконал с линзой Максвелла

20 eq = Dx(u(x, y))*Dx(u(x, y)) + Dy(u(x, y))*Dy(u(x, y)) ~ n(x, y)

21 bcs = [

22 u(-1, 0) ~ 0.0

23 ]

24 # Область (x, y)

25 domains = [x ∈ (-1.0, 2.0), y ∈ (-1.0, 2.0)]

26 # Создание нейронной сети

27 dim = 2 # размерность

28 chain = Chain(Dense(dim, 16, σ), Dense(16, 16, σ), Dense(16, 1))

29 # Дискретизация

30 discretization = PhysicsInformedNN(

31 chain, QuadratureTraining(; batch = 200, abstol = 1e-6, reltol = 1e-6))

32 @named pde_system = PDESystem(eq, bcs, domains, [x, y], [u(x, y)])

33 prob = discretize(pde_system, discretization)
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34 #Функция обратного вызова (Callback)

35 callback = function (p, l)

36 println("Current loss is: $l")

37 return false

38 end

39 # Оптимизатор

40 opt = LBFGS(linesearch = BackTracking())

41 res = solve(prob, opt, maxiters = 1000)

42 phi = discretization.phi

43 # Массив значений функции аналитического решения

44 dx = 0.05

45 xs, ys = [infimum(d.domain):(dx / 10):supremum(d.domain) for d in domains]

46 u_predict = reshape([first(phi([x, y], res.u)) for x in xs for y in ys],

47 (length(xs), length(ys)))
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Приложение C. Сведения из векторного анализа

C.1. Основные определения

Если в каждой точке 𝑃 определённой пространственной области евклидова
пространстваℝ𝑛 связанна некоторая скалярная или векторная величина, то
говорят, что задано поле (скалярное или векторное).

— Примерами векторных полей могут служить поле скоростей 𝐯(𝑥, 𝑦, 𝑧),
поле сил 𝐅(𝑥, 𝑦, 𝑧), поле электрической напряженности 𝐄(𝑥, 𝑦, 𝑧).

— Примеры скалярных полей: поле температур 𝑇(𝑥, 𝑦, 𝑧), поле электриче-
ского потенциала 𝜑(𝑥, 𝑦, 𝑧).

Везде далее рассматривается трёхмерное точечное евклидово пространство,
на котором введена декартова система координат. Орты (базисные векто-
ры) этой системы координат обозначим как ⟨𝐞𝑥, 𝐞𝑦, 𝐞𝑧⟩. Координаты точки
задаются радиус-вектором 𝐫 = (𝑥, 𝑦, 𝑧)𝑇, который откладывается от нача-
ла координат 𝑂. Наряду с обозначениями координат 𝑥, 𝑦, 𝑧 иногда удобно
пользоваться индексами: 𝑥1, 𝑥2, 𝑥3, а также записывать радиус-вектор в виде
𝐱 = (𝑥1, 𝑥2, 𝑥3)𝑇. Индексные обозначения дают возможность кратко записы-
вать формулы с помощью знака суммирования Σ, что особенно удобно, если
используется неединичная метрика.
Скалярное поле в некоторой области пространстваℝ3 представляет собой

вещественнозначную функцию 𝑓:

𝑓∶ ℝ3 → ℝ, 𝑓 (𝑥, 𝑦, 𝑧) = 𝑓 (𝐫) ∈ ℝ.

Всвоюочередьвекторноеполе вобластипространстваℝ3—этовекторознач-
ная функция𝐕:

𝐕∶ ℝ3 → ℝ3, 𝐕(𝑥, 𝑦, 𝑧) = 𝐕(𝐫) = 𝑉𝑥(𝐫)𝐞𝑥 + 𝑉𝑦(𝐫)𝐞𝑦 + 𝑉𝑧(𝐫)𝐞𝑧 ∈ ℝ3.

Градиентом скалярного поля 𝑓 (𝐫) называется вектор, вычисляемый в декар-
товых координатах следующим образом:

∇𝑓 (𝑥, 𝑦, 𝑧) = grad𝑓 (𝑥, 𝑦, 𝑧) = (
𝜕𝑓
𝜕𝑥,

𝜕𝑓
𝜕𝑦,

𝜕𝑓
𝜕𝑧), ∇ = (

𝜕
𝜕𝑥,

𝜕
𝜕𝑦,

𝜕
𝜕𝑧) .
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С помощью знака набла ∇ обозначен векторный дифференциальный опе-
ратор Гамильтона. Для того, чтобы подчеркнуть его «векторность», символ 𝛁
записан полужирнымшрифтом.
Для упрощения изложения нами допущены некоторые неточности в изло-

жении, о которых следует сказать отдельно.

— Строго говоря, градиент является ковектором. В нашем определении это
отражено тем, что компоненты вектора записаны в строку, а не в столбец.

— Определение градиента опирается на декартову систему координат. Бо-
лее общее определение должно быть дано в безкомпонентном виде.

Скалярное поле 𝑓 (𝐫) порождает векторное поле ∇𝑓, которое характеризует
направление наибольшего изменения скалярного поля 𝑓 (𝐫).
Дивергенция векторного поля𝐕 = (𝑉𝑥, 𝑉𝑦, 𝑉𝑧)𝑇 есть скаляр, в декартовых коор-

динатах вычисляемый следующим образом:

∇ ⋅ 𝐕 = div𝐕 =
𝜕𝑉𝑥
𝜕𝑥 +

𝜕𝑉𝑦
𝜕𝑦 +

𝜕𝑉𝑧
𝜕𝑧 =

3
∑
𝑖=1

𝜕𝑉 𝑖

𝜕𝑥𝑖
.

Здесь через «⋅» обозначена операция скалярного умножения ∇ ⋅ 𝐕 = (𝛁,𝐕).
Ротором векторного поля𝐕 называют вектор, вычисляемый в декартовых

координатах следующим образом:

∇×𝐕 =

|
|
|
|
||

𝐞𝑥 𝐞𝑦 𝐞𝑧

𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑧
𝑉𝑥 𝑉𝑦 𝑉𝑧

|
|
|
|
||

= (
𝜕𝑉𝑧
𝜕𝑦 −

𝜕𝑉𝑦
𝜕𝑧 )𝐞𝑥 +(

𝜕𝑉𝑥
𝜕𝑧 −

𝜕𝑉𝑧
𝜕𝑥 )𝐞𝑦 +(

𝜕𝑉𝑦
𝜕𝑥 −

𝜕𝑉𝑥
𝜕𝑦 )𝐞𝑧.

Отметим также, ротор не является вектором в строгом смысле. В класси-
ческом векторном анализе его называют псевдовектором, но более глубокий
геометрический смысл раскрывается только при привлечении тензорной
алгебры, где ротор можно представить или в виде 2–формы или в виде бивек-
тора.
Также, при записи волнового уравнения, будет использоваться оператор

Лапласа, который записывается в следующем виде:

∇2 = (∇,∇) =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 .
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Также нам понадобятся следующие два соотношения [68]:

∇ × 𝑓𝐕 = 𝑓∇ × 𝐕 + ∇𝑓 × 𝐕,
∇ ⋅ 𝑓 𝐕 = 𝑓∇ ⋅ 𝐕 + (∇𝑓 ,𝐕).

(C.1)

∇ × 𝑓𝐕 = 𝑓∇ × 𝐕 + ∇𝑓 × 𝐕,
∇ ⋅ 𝑓 𝐕 = 𝑓∇ ⋅ 𝐕 + (∇𝑓 ,𝐕).

(C.2)

C.2. Векторно-дифференциальные выражения второго
порядка

Векторное поле называется потенциальным, если существует скалярное поле
𝑓 (𝑥, 𝑦, 𝑧) такое, что

𝐕 = ∇𝑓 = (
𝜕𝑓
𝜕𝑥,

𝜕𝑓
𝜕𝑦,

𝜕𝑓
𝜕𝑧) ,

d𝑓 = 𝑉𝑥 d𝑥 + 𝑉𝑦 d𝑦 + 𝑉𝑧 d𝑧 .

В свою очередь векторное поле называется солиноидальным (трубчатым),
если существует векторное поле𝐔, такое что

𝐕 = ∇ ×𝐔.
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