Пинаев Сергей Константинович

ПОПУЛЯЦИОННАЯ ЭКОЛОГО-ФИЗИОЛОГИЧЕСКАЯ ДИЗАДАПТАЦИЯ К ФАКТОРАМ КОСМИЧЕСКОЙ ПОГОДЫ И ДЫМУ ЛЕСНЫХ ПОЖАРОВ

1.5.15 экология (медицинские науки)

Автореферат диссертации на соискание ученой степени доктора медицинских наук Работа выполнена на кафедре онкологии с курсом хирургии и эндоскопии ДПО Федерального государственного образовательного учреждения высшего образования «Дальневосточный государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Хабаровск.

Научный консультант:

Чижов Алексей Ярославович - заслуженный деятель науки РФ, академик Российской экологической академии, доктор медицинских наук, профессор-консультант департамента «Экологии человека и биоэлементологии», Институт экологии Федерального государственного автономного образовательного учреждения высшего образования «Российский университет дружбы народов имени Патриса Лумумбы», г. Москва.

Официальные оппоненты:

Потиевская Вера Исааковна - доктор медицинских наук, руководитель Центра кардиоонкологии ФГБУ НМИЦ радиологии Минздрава России, руководитель научной группы кардиоонкологии, зав. отделением кардиологии и медицинской реабилитации МНИОИ им П.А.Герцена - филиала ФГБУ НМИЦ радиологии Минздрава России, профессор кафедры кардиологии Академии постдипломного образования ФГБУ «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий ФМБА России», г. Москва.

Мерабишвили Вахтанг Михайлович - заслуженный деятель науки Российской Федерации, доктор медицинских наук, профессор, руководитель научного отдела онкологической статистики, заведующий научной лабораторией онкологической статистики, Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова» Министерства здравоохранения Российской Федерации, г. Санкт-Петербург.

Апанасевич Владимир Иосифович - доктор медицинских наук, профессор, профессор института хирургии, Федеральное государственное бюджетное образовательное учреждение высшего образования «Тихоокеанский государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Владивосток.

Ходакова Ольга Владимировна - доктор медицинских наук, начальник отдела научных основ организации здравоохранения, Федеральное государственное бюджетное учреждение «Центральный научно-исследовательский институт организации и информатизации здравоохранения» Министерства здравоохранения Российской Федерации, г. Москва.

Защита диссертации состоится 25 декабря 2025 г. в 12 часов на заседании диссертационного совета ПДС 0800.002 ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы» по адресу: 115093, г. Москва, Подольское шоссе, д. 8/5, к. 1096.

С диссертацией можно ознакомиться в УНИБЦ (Научной библиотеке) ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы» по адресу: 117198, г. Москва, ул. Миклухо-Маклая, дом 6 и на сайте http://dissovet.rudn.ru

Объявление о защите и автореферат диссертации размещены на сайтах: http://vak2.ed.gov.ru и http://dissovet.rudn.ru

Автореферат разослан «»	2025 г.
Ученый секретарь	
диссертационного совета	
ПДС 0800.002	
кандидат биологических наук	Аникина Елизавета Вячеславовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

темы исследования. Адаптация К непрерывно меняющимся условиям окружающего мира является естественным свойством материи И абсолютным условием ee существования. взаимодействие человечества с природой путем техногенной экспансии естественный баланс, приводя деградации экосистем нарастающему валу болезней цивилизации, включая онкологическую патологию (Агаджанян Н.А. и др., 2003).

На способность адаптации к экологическим факторам неизбежно накладывают отпечаток сложные процессы саморазвития и самоорганизации на этапах онтогенеза. При этом критически значимыми в формировании особенно организма человека являются ранние этапы онтогенеза, проэмбриональный, поскольку в это время, помимо закладки и бурного развития органов и систем, происходит очень важный процесс – адаптация наследственной информации, полученной из родительских половых клеток, к реальным условиям предстоящей жизни (Баранов В.С., 2007). Также существуют этапы повышенной чувствительности к внешним воздействиям, обусловленные постнатальной инволюцией (Бурместер Г.-Р. и др., 2009).

Помимо этапа онтогенеза, на вероятность развития дизадаптации влияет интенсивность экологических факторов. Срыв адаптации может возникнуть как при воздействии фактора низкой интенсивности во время критической чувствительности к нему, так и при высокоинтенсивном воздействия на фоне нормального уровня резистентности. Воздействия последнего рода можно рассматривать как экологически обусловленные критические периоды. Совпадение по времени критических этапов онтогенеза с высокими уровнями воздействия факторов окружающей среды (ФОС) приводят к возникновению критических периодов адаптации с высоким риском исхода в дизадаптацию.

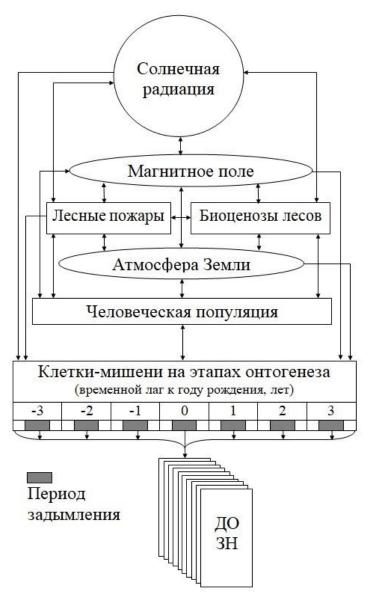
Универсальным следствием нарушения адаптации к ФОС является обусловленный окислительный стресс (EROS, environmentally related oxidative stress). К его возникновению приводит широкий спектр воздействий, в том числе дым различного происхождения и магнитные поля (Bono R. et al., 2019; Rabha R. et al., 2018; Consales C. et al., 2018). Развитие EROS сопровождается эпигеномными и геномными нарушениями, приводящими в свою очередь к опухолевой трансформации (Завьялова М.Г. и др., 2017). Трансплацентарное воздействие твердых микрочастиц вследствие загрязнения воздуха приводит к эпигенетическим изменениям в генах репарации ДНК и в генах супрессоров опухолей у плода (Neven K.Y. et al, 2018). Курение матерей приводит к эпигенетической модификации генов у новорожденных, связанных с различными сигнальными путями, в том числе вовлеченных в процесс раковой трансформации и регуляцию функции иммунной системы (Rotroff D.M. et al, 2016). При этом процесс генетической и эпигенетической модификации генома может начинаться образования зиготы в половых клетках будущих родителей, в первую очередь мужского пола (Jónsson H. et al, 2017; Капустина Е.А. и др., 2021).

Среди наиболее значимых ФОС, под воздействием которых находятся все процессы на Земле, следует указать космическую погоду. В качестве ее традиционно рассматривают излучение Солнца диапазонах, космические лучи, колебания магнитного поля гелиосферы, и обусловленные ими вторичные проявления во всех оболочках нашей планеты, от магнитосферы, верхней атмосферы и ионосферы до литосферы и биосферы (Рагульская М.В., 2017). Солнечная активность влияет на плазменные параметры и магнитное поле солнечного ветра, взаимодействующего с магнитосферой Земли (Смирнова А.С. и др., 2013). Солнечные космические лучи возникают в межпланетном пространстве после мощных взрывных событий на Солнце, при этом зависимость солнечных протонных событий от вспышек и корональных выбросов массы имеет достаточно сложный характер (Базилевская Г.А. и др., 2015). Галактические космические лучи, не имеющие прямого отношения к Солнцу, традиционно рассматриваются вместе с солнечными факторами (Петрукович А.А. и др., 2008). Когда космические лучи галактического и солнечного происхождения сталкиваются с атомами в атмосфере, они инициируют серию реакций, приводящих к возникновению потоков вторичных активных частиц, преимущественно протонов и нейтронов (Daglis I.A. et al., 2021).

Доказанным канцерогенным фактором любого является дым происхождения, в связи с наличием в нем полициклических ароматических углеводородов (ПАУ), формальдегида, микрочастиц (РМ) размером менее 10 мкм, и тяжелых металлов, относящихся к канцерогенам первой группы, таких как кадмий, мышьяк, никель и хром (IARC Monographs on the Identification of Carcinogenic Hazards to Humans, 2025). Переносчиком ПАУ, металлов и других канцерогенных веществ дыма в локальном и глобальном масштабе являются микрочастицы углерода (Kramer A.L. et al., 2020). Наиболее высокие уровни $PM_{2.5}$ загрязнения воздуха частицами углерода регистрируются высокоразвитых странах Европы и Америки (WHO Ambient (outdoor) air pollution database, 2018).

Особого внимания среди источников дыма заслуживают природные пожары. Ежегодно попадающие в атмосферу пыль и аэрозоли от лесных пожаров (20–150 млн т) равны по объему выбросам от деятельности вулканов (10–200 млн т), что делает лесные пожары одним из мощных факторов воздействия на природу. Самой значимой особенностью этого вида дыма является высокий уровень его загрязнения искусственными (90 Sr, 137 Cs) и природными (238 U) радиоактивными элементами вследствие их элиминации огнем из почвы и растительности (Щербов Б.Л. и др., 2015). Также специфика действия дыма лесных пожаров определяется наличием в нем большого количества сверхмелких частиц углерода $PM_{0.1}$ (Майорова Л.П. и др., 2013).

Роль экологических факторов в возникновении онкологической патологии в настоящее время общепризнана (Агаджанян Н.А. и др., 2003; Monti P. et al., 2023), при этом значительное число исследований указывает на их


поражающими неоплазиями, системы тканей сосудистой, связь кроветворной, лимфоидной, нервной, скелета и мягких тканей. Доля системных новообразований в структуре мировой онкологической заболеваемости менее 9% (Cancer Today - IARC. https://gco.iarc.fr/), однако в детском возрасте они преобладают, составляя 85% случаев (Steliarova-Foucher E. et al., 2017). Для разработки эффективных мер профилактики этой патологии необходимо знать, способствуют именно возникновению ФОС новообразований, каковы пороговые значения их интенсивности, и на каких этапах онтогенеза их воздействие наиболее опасно.

Степень разработанности темы исследования. Исходя из всеобъемлющего влияния Солнца на все процессы на Земле, возникает вопрос о характере и степени его связей с лесными пожарами, поскольку условием для их возникновения является жаркая и сухая погода, а главной причиной изменений климата является Солнце (Мазуркин П.М. и др., 2013). При этом проведенное в ряде регионов изучение прямого влияния солнечной активности на лесные пожары достоверных связей не выявило (Костырина Т.В., 1980; Копейкин М.А. и др., 2021).

Данные о влиянии дыма лесных пожаров на возникновение неоплазий немногочисленны. Имеются указания на связь между лесными пожарами и злокачественными новообразованиями органов дыхания (Добрых В.А. и др., 2009), на повышение риска рака легких у лиц, участвующих в тушении лесных пожаров (Navarro K.M. et al., 2019). Также установлено, что когорты, подвергавшиеся воздействию дыма на расстоянии в пределах 50 км от очагов лесных пожаров, имеют более высокую заболеваемость опухолями легких и головного мозга (Korsiak J. et al., 2022).

Имеются данные о прямой зависимости между частотой лейкоза у детей и воздействием ультрафиолетового излучения (УФИ) (Coste A. et al., 2017). С другой стороны, показано влияние УФИ на снижение риска острого лимфобластного лейкоза у детей младшего возраста (Lombardi C. et al., 2013), обнаружена обратная связь УФИ с миеломой, неходжкинской лимфомой (НХЛ) и хроническим лимфолейкозом (Chang E.T. et al., 2011; Wong K.Y. et al., 2012) Представляют интерес сообщения, свидетельствующие о росте частоты НХЛ по мере смещения от экватора к полюсу (van Leeuwen M.T. et al., 2013). Малоизученным, но потенциально чрезвычайно опасным ФОС являются космические лучи (McNeely E. et al., 2018). Таким образом, системные новообразования можно рассматривать как крайне неблагоприятное проявление эколого-физиологической дизадаптации. В настоящее время знания о причинах и путях возникновения экологически обусловленных опухолей являются недостаточными (Modonesi C. et al., 2017).

Концептуальной основой диссертационного исследования является использование системно-детерминированной функциональной балансовой динамической модели блочного типа (Рис. 1). Выбор параметров системы обусловлен тем, что балансовые динамические модели оценивают явления в их развитии как совокупность процессов переноса вещества и энергии, а функциональный характер модели дает возможность экстраполировать выявленные закономерности и осуществлять на их основе прогнозирование будущих состояний объектов системы (Хворова Л.А. и др., 2013).

Рис. 1. Функциональная балансовая динамическая модель экосистемы «Солнечная радиация – дым лесных пожаров – новообразования человека» (ДО – доброкачественные опухоли, ЗН – злокачественные новообразования)

Согласно разработанной модели, исследуемая экосистема состоит из следующих подсистем: солнечная радиация как комплексная основа факторов космической погоды; геомагнитное поле; биогеоценозы болот, полей и лесов;

атмосфера происходящие ней лесные пожары, приводящие В перераспределению перемещению горения биомассы; И продуктов человеческая популяция как субъект воздействия на окружающую среду; клетки-мишени родительских гонад, организма эмбриона, новорожденного, детей и взрослых как объект прямого и косвенного воздействия факторов окружающей среды. Отраженная в модели экосистема имеет высокий уровень сложности вследствие многоуровневой структуры, огромного числа связей между объектами на различных уровнях, нелинейного характера их взаимодействия и обусловленных этим задержек реакции и петель обратных связей.

Исходя из авторской концепции, воздействие Солнца и формируемой им человеческую популяцию реализуется космической погоды на непосредственно, так и опосредованно через магнитное поле Земли и атмосферу. Атмосфера, помимо этого, транслирует на популяцию людей различного рода химические загрязнения природного и антропогенного характера, в частности, дым лесных пожаров. Человечество, в свою очередь, также оказывает значительное влияние на электромагнитную обстановку на Земле и воздушный океан. Совокупность естественных и обусловленных деятельностью человека онкогенных факторов реализуется возникновением доброкачественных и злокачественных новообразований в популяции человека на всех этапах онтогенеза. Антропотехногенные факторы окружающей среды обычно характеризуются монотонными трендами, тогда как природным процессам чаще свойственны значительные годовые колебания интенсивности. В связи с этим представляется перспективным первоначальное изучение естественных потенциально онкогенных воздействий. Полученные выводы могут стать основой для выявления сходных экологических обусловленных деятельностью человека.

В своем подходе к изучению критических периодов адаптации мы исходим из того, что так называемые «спонтанные» колебания заболеваемости новообразованиями могут быть обусловлены факторами внешней среды. При этом изучение частоты новообразований в когортах детей младшего возраста 0-4 лет является весьма чувствительным индикатором экологических воздействий в силу пренатального происхождения большей части этой патологии и короткого периода между онкогенным воздействием и возникновением опухоли (Navarrete-Meneses M.D.P. et al., 2024). Особенностью нашего подхода является одновременное изучение в когортах детей младшего возраста частоты доброкачественных опухолей злокачественных новообразований, И позволяющее уточнить критические периоды адаптации для конкретных определение лага между пиковыми значениями ЭТОМ экологических факторов и повышением частоты новообразований в популяции детей, прежде всего младшего возраста, а также в полновозрастной популяции, позволяет выявить критические периоды адаптации на всех этапах онтогенеза, от преконцептивного до постнатального на всем его протяжении.

Цель исследования: Изучить ассоциации популяционной экологофизиологической дизадаптации к факторам космической погоды и дыму лесных пожаров с возникновением новообразований, для разработки методов выявления и коррекции.

Задачи исследования

- 1. Выявить взаимосвязи факторов космической погоды и лесных пожаров с позиции онкогенеза.
- 2. Изучить корреляцию факторов космической погоды с частотой системных новообразований в популяции Российской Федерации.
- 3. Исследовать ассоциации лесных пожаров с заболеваемостью системными новообразованиями населения России.
- 4. Провести сравнительный анализ связи лесных пожаров с онкологической заболеваемостью на территории регионов Дальнего Востока Российской Федерации.
- 5. Изучить особенности связей факторов космической погоды и лесных пожаров с различными нозологическими группами новообразований.
- 6. Провести сравнительный анализ связи факторов космической погоды и дыма лесных пожаров с частотой гемобластозов в России и за рубежом.

Объектом исследования явилось население регионов Дальнего Востока России, и Российской Федерации в целом, под воздействием факторов космической погоды и дыма лесных пожаров, предположительно связанных с возникновением новообразований. В качестве объектов сравнения использованы находящиеся в сходных климатогеографических условиях популяции США и Канады, а также ряда других стран.

Предметом исследования явились ассоциации популяционной экологофизиологической дизадаптации к факторам космической погоды и дыму лесных пожаров с новообразованиями.

Научная новизна

Впервые выявлены ассоциации между эколого-физиологической дизадаптацией к факторам космической погоды и дыму лесных пожаров в России с возникновением новообразований, поражающих системы тканей сосудистой, кроветворной, лимфоидной, нервной, мягких тканей и тканей скелета. Также впервые показано, что факторы космической погоды и лесные с позиции онкогенеза, вызывают популяционную физиологическую дизадаптацию, воздействуя на нее взаимосвязанный комплекс, динамически изменяющийся в соответствии с 11летним циклом солнечной активности. При этом число и площадь лесных пожаров связаны с циклом Швабе-Вольфа, а лаг в 7 лет обусловлен средней продолжительностью периода восстановления галактических космических лучей до максимума после пика солнечной активности.

Новым является обнаружение связи частоты новообразований с космическими лучами, имеющими в пределах 11-летнего цикла два пика: солнечных космических лучей – на максимуме показателей чисел Вольфа, и в

среднем через 7 лет — пик галактических космических лучей. Ежегодные «спорадические» колебания частоты в популяции России эмбриональных опухолей, лейкоза, сарком мягких тканей, опухолей центральной нервной системы (ЦНС) и неходжкинских лимфом коррелируют с космическими лучами. При этом длительные тренды частоты системных неоплазий связаны с многолетними циклами солнечной активности.

Впервые установлено, что в популяции России площадь лесных пожаров коррелирует с колебаниями частоты эмбриональных опухолей, неходжкинских лимфом, опухолей ЦНС, лейкоза и сарком мягких тканей. Сравнительный территориальный анализ связи лесных пожаров с онкологической заболеваемостью впервые обнаружил ее наличие в материковых регионах Дальнего Востока России.

Новым является установление ассоциации заболеваемости саркомами скелета и лимфомой Ходжкина в Российской популяции с геомагнитным индексом Кр (планетарный индекс субавроральной зоны), а также с числом лесных пожаров. Впервые показана связь факторов космической погоды и дыма лесных пожаров с частотой гемобластозов в находящихся в сходных с Россией климатогеографических условиях популяциях Соединенных штатов Америки и Канады.

Разработана концептуальная модель экологически обусловленного особенности Предложенная концепция объясняет спектра новообразований детей, заключающиеся преобладании среди доброкачественных опухолей гемангиом, детского возраста злокачественных новообразований – гемобластозов и опухолей нервной ткани. Также она позволяет приблизиться к пониманию причин и механизмов возникновения экологически обусловленных системных неоплазий у взрослых.

Практическая значимость работы

Большое практическое значение имеет установление связи 11-летнего цикла галактических космических лучей с природными возгораниями, поскольку последние, в случае возникновения вдали от поселений, приводят к выгоранию значительных площадей леса и загрязнению атмосферы высокими концентрациями канцерогенов. Дополнение существующих в настоящее время алгоритмов прогнозирования лесных пожаров (Глаголев В.А. и др., 2016; Пусь В.В. и др., 2015) данными нейтронных мониторов может повысить точность определения пожароопасных сезонов. В свою очередь, своевременно оповещать население об необходимости опасности И самообеспечения средствами защиты (воздухоочистители для помещений, индивидуальные респираторы). Особое внимание при этом оповещении следует уделять группам риска (молодые семьи, планирующие деторождение; беременные и кормящие женщины; дети раннего возраста). Целесообразно проведение диспансерного наблюдения за представителями групп риска, оказавшимися в зоне действия дыма лесных пожаров, с рекомендациями по профилактике эколого-физиологической дизадаптации.

Практическое значение установления связи риска дизадаптации с факторами космической погоды, с учетом негативного прогноза по фертильности и продолжительности жизни у родившихся в годы максимума активности Солнца (Skjærvø G.R. et al., 2015) заключается в необходимости диспансерного наблюдения за этими лицами и проведения с ними необходимых профилактических мероприятий.

Важное практическое значение имеет созданная на основе проведенного исследования на базе Института непрерывного профессионального образования ФГБОУ BO «Дальневосточного государственного аккредитации дополнительная медицинского университета» Минздрава России профессиональная программа повышения квалификации врачей по теме «Выявление и коррекция дизадаптации у онкологических пациентов в процессе химиотерапии», направленная на улучшения непосредственных и отдаленных результатов лечения.

Комплексная профилактика эколого-физиологической дизадаптации будет содействовать росту ожидаемой продолжительности здоровой жизни, как одной из ключевых целей Национальной программы «Продолжительная и активная жизнь».

Основные положения, выносимые на защиту

- 1. Существуют ассоциации между популяционной экологофизиологической дизадаптацией к факторам космической погоды и дыму лесных пожаров с возникновением новообразований, поражающих системы тканей — сосудистой, кроветворной, лимфоидной, нервной, мягких тканей и скелета.
- 2. Факторы космической погоды и лесные пожары, с позиции онкогенеза, вызывают популяционную эколого-физиологическую дизадаптацию, воздействуя на нее как единый взаимосвязанный комплекс, динамически изменяющийся в соответствии с 11-летним циклом солнечной активности. Число и площадь лесных пожаров связаны с циклом Швабе-Вольфа, при этом лаг в 7 лет обусловлен средней продолжительностью периода восстановления галактических космических лучей до максимума после пика солнечной активности.
- 3. Среди изученных факторов космической погоды наиболее значимым, с позиции онкогенеза, являются космические лучи, демонстрирующие в пределах 11-летнего цикла два пика: солнечных космических лучей на максимуме показателей чисел Вольфа, и в среднем через 7 лет пик галактических космических лучей. Ежегодные «спорадические» колебания частоты в популяции России эмбриональных опухолей, лейкоза, сарком мягких тканей, опухолей центральной нервной системы (ЦНС), неходжкинских лимфом коррелируют с космическими лучами. Длительные тренды частоты системных неоплазий связаны с многолетними циклами изменения магнитного поля Земли.

- 4. Вторым по значению среди изученных канцерогенных экологических факторов является дым лесных пожаров. Площадь лесных пожаров коррелирует в популяции России с колебаниями частоты эмбриональных опухолей, неходжкинских лимфом, опухолей ЦНС, лейкоза и сарком мягких тканей.
- 5. Сравнительный территориальный анализ связи лесных пожаров с онкологической заболеваемостью установил ее наличие в материковых регионах Дальнего Востока России.
- 6. Особенностью заболеваемости саркомами скелета и лимфомой Ходжкина в Российской популяции является отсутствие связи с космическими лучами при наличии ассоциации с геомагнитным индексом Кр (планетарный индекс субавроральной зоны). Также, в отличие от других новообразований, частота лимфомы Ходжкина и сарком скелета связана не с площадью, а с числом лесных пожаров.
- 7. Связь факторов космической погоды и дыма лесных пожаров с частотой гемобластозов имеет место в находящихся в сходных с Россией климатогеографических условиях популяциях Соединенных штатов Америки и Канады.

Степень достоверности и апробация результатов

Достоверность результатов диссертационного исследования обеспечена качеством первичных данных, соответствием статистических методов характеру обрабатываемого материала, и положением результатов расчетов в пределах границ, определенных заданным уровнем репрезентативности; утверждением дополнительной профессиональной программы повышения квалификации врачей по теме «Выявление и коррекция дизадаптации у онкологических пациентов в процессе химотерапии»; публикацией основных результатов исследования в Российских и международных рецензируемых изданиях, в том числе индексируемых в базах данных Scopus и Web of Science; докладами на международных научных конференциях.

Базовые положения диссертационной работы опубликованы в материалах, доложены и обсуждены на следующих научных конференциях:

- 1. XIX Российский национальный конгресс «ЧЕЛОВЕК И ЛЕКАРСТВО»: 23-27 апреля 2012 г., г. Москва;
- 2. Агаджаняновские чтения: II Всероссийская научно-практическая конференция, 26-27 января 2018 г., г. Москва;
- 3. IV Всероссийская Конференция с международным участием по молекулярной онкологии, 17-19 декабря 2018 г., г. Москва;
- 4. V Всероссийской Конференции по молекулярной онкологии, 16–18 декабря 2019 г., г. Москва;
- 5. Агаджаняновские чтения: III Всероссийская научно-практическая конференция с международным участием, 16–18 апреля 2020 г., Москва;

- 6. Актуальные проблемы экологии и природопользования: XXI Международная научно-практическая конференция: апрель сентябрь 2020 г., г. Москва;
 - 7. The 8th World integrative Medicine Congress, 3-6.12.2020, Wuhan, China;
- 8. Актуальные проблемы экологии и природопользования: XXII Международная научно-практическая конференция, 22–24 апреля 2021 г., г. Москва;
- 9. Актуальные проблемы экологии и природопользования: XXIII Международная научно-практическая конференция: 21–23 апреля 2022 г., г. Москва;
- 10.XIX Симпозиум «Эколого-физиологические проблемы адаптации», 1–2 июля 2022 г., г. Казань;
- 11.III Дальневосточный международный медицинский конгресс, 3-10 октября 2022 г., г. Хабаровск;
- 12. Агаджаняновские чтения: IV Всероссийская научно-практическая конференция с международным участием, 25–27 мая 2023 г., г. Москва;
- 13.VI Международный форум онкологии и радиотерапии, 11-15 сентября 2023 г., г. Москва;
- 14.IV Дальневосточный международный медицинский конгресс, 2-14 октября 2023 г., г. Хабаровск;
- 15. Актуальные проблемы экологии и природопользования: XXV Международная научно-практическая конференция, 26–28 апреля 2024 г., г. Москва.
- 16. Актуальные проблемы экологии и природопользования: XXVI Международная научно-практическая конференция, 25–27 апреля 2025 г., г. Москва.
- 17.III Конгресс Международного общества клинической физиологии и патологии (ISCPP2025), 12-14 мая 2025 г., г. Москва.

Соответствие диссертации паспорту научной специальности

Научные положения диссертационной работы соответствую паспорту специальности **1.5.15.** Экология (Медицинские науки) по пунктам:

- 1. Изучение общих законов взаимодействия человека и биосферы, исследование влияния условий среды обитания на людей (на уровне индивидуума и популяции).
- 3. Исследования по изучению общих закономерностей влияния факторов окружающей среды на популяционное здоровье.
- 4. Разработка методологических и методических подходов к исследованию системы «Среда обитания здоровье популяции».

Личный вклад автора

В диссертационной работе представлены результаты исследований, выполненных автором лично с 2012 по 2024 гг. Личный вклад автора состоял в формулировке цели и задач исследования, разработке методологии, сборе материала, его обработке, анализе и интерпретации данных, выдвижении и

обосновании гипотез, публикации основных результатов исследования в рецензируемых изданиях, подготовке и представлении докладов на международных научно-практических конференциях.

Публикации

По теме диссертационного исследования опубликовано 56 печатных работ, в том числе 20 статей в научных журналах, индексируемых в Международных базах цитирования (из них 17 с индексацией в Scopus и Web of Science, 3 статьи с индексацией в GeoRef), 5 публикаций в журналах, индексируемых в RSCI, 1 статья в журнале перечня ВАК, и еще 5 в других научных журналах. В сборниках материалов международных научнопрактических конференций размещено 23 тезиса (4 из них проиндексированы в Scopus). Опубликована глава в коллективной монографии. Получено авторское свидетельство на программу для ЭВМ.

МЕТОДОЛОГИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследование роли факторов окружающей среды (ФОС) в онкогенезе у взрослых затруднено тем, что время реализации канцерогенных воздействий может составлять многие годы и даже десятилетия. Новообразования у детей в большинстве случаев имеют пренатальное происхождение и развиваются в первом пятилетии жизни (Navarrete-Meneses M.D.P. et al., 2024), в связи с чем онкологическая патология этого возраста может рассматриваться чувствительный индикатор канцерогенного воздействия на популяцию. Исходя из этого, было проведено сравнительное исследование связей ФОС с онкологической заболеваемостью в трех возрастных срезах: 0-4 года, 0-14 лет, и полновозрастная популяция 0-85+ лет. Также, для получения расширенного представления об онкогенезе, в когортах детей младшего возраста 0-4 лет Хабаровского края проведено одновременное исследование взаимосвязи экологических факторов c частотой как доброкачественных, злокачественных новообразований (ЗН).

На первом этапе исследования была изучена заболеваемость ЗН в когортах детей младшего возраста 0-4 лет (ДМВ) 1972-1988 гг. рождения Хабаровского края путем анализа операционных и стационарных журналов, первичной медицинской документации детских отделений хирургического профиля, специализированных отделений, оказывающих также хирургическую помощь пациентам всех возрастов. Также изучались записи амбулаторного приема, операционных журналов, диспансерного наблюдения детских (или ведущих смешанный прием) хирургических, стоматологических и ЛОР-кабинетов поликлиник, краевого дерматологического диспансера и краевого консультативного детского онкологического кабинета. Анализировалась информация журналов биопсий, протоколов аутопсий четырех патологоанатомических отделений Хабаровска, журналов патогистологических и цитологических исследований морфологической лаборатории краевого онкологического диспансера,

цитологических журналов краевой детской больницы. Использовались данные врачебных свидетельств о смерти и актовых записей о смерти бюро ЗАГС. Сбор данных осуществлялся на основании существовавших в период его проведения (1990 – 1994 гг.) разрешительных документов. Дополнительно аналогичным методом была изучена заболеваемость доброкачественными опухолями (ДО) в когортах ДМВ 1976-1986 гг. рождения г. Хабаровска. Всего было выявлено 564 случая ЗН, и 529 ДО. На втором этапе исследования проведено изучение заболеваемости системными 3H (грубые стандартизованные показатели) в популяции России в 1990-2019 гг. в трех возрастных срезах (0–4 г, 0–14 лет, 0–85+ лет) на базе МНИОИ им. П.А. Герцена при помощи информационно-аналитической системы базы данных по онкологии на основе государственной статистической отчетности «ПО ИАС федеральной статистической отчетности ПО онкологии» (Свидетельство о государственной регистрации программ для ЭВМ № 2011617155). Для расчета показателей заболеваемости использованы данные Государственного статистического наблюдения по форме №7 «Сведения о злокачественных новообразованиях» таблица 2000 «Сведения о впервые выявленных злокачественных новообразованиях» и данные о среднегодовой численности населения, полученные из Федеральной службы государственной статистики за каждый год исследуемого периода (таблица № 2 РН «Численность населения по полу и возрасту»). Для расчета повозрастной частоты злокачественных новообразований в России использованы данные Федерального ракового регистра РФ «Канцер-регистр 6FB» о случаях заболевания, зарегистрированных в 2010–2019 гг. Информация о повозрастной численности населения в соответствующие годы получена на Федеральной службы государственной статистики. Общее число вошедших в анализ доброкачественных и злокачественных новообразований составило 939 828 случаев. Сведения о частоте гемобластозов в США и Канаде (возраст 0-85+ лет; мировой стандарт, на 100 тыс. населения в год) получены на сайте Международного агентства по изучению рака в разделе онлайн-анализа (International Agency for Research on Cancer. Cancer incidence in Five Continents Time Trends. Online analysis) путём интерактивного формирования отчёта. Данные о заболеваемости лейкозом детей в возрасте 0–14 лет в США взяты из Сети исследования статистики рака Национального института рака (Cancer Statistics Explorer Network), по Канаде – с портала Национального института рака и Статистического управления Канады (Statistics Canada), по Австралии из Австралийского детского канцер-регистра (Australian Childhood Cancer Statistics Online). Уровень заболеваемости детским лейкозом в Нью-Джерси взят из Ресурса данных общественного здравоохранения Нью-Джерси Департамента здравоохранения Нью-Джерси (New Jersey State Health Assessment Data).

Индексы активности Солнца (групповое среднегодовое число солнечных пятен – число Вольфа, и международное среднегодовое число солнечных

пятен) взяты на сайте Мирового центра данных по солнечно-земной физике. Использованы данные об общем ежегодном числе магнитных бурь, а также о количестве бурь с постепенным и внезапным началом из каталога Института Земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова Российской Академии наук (ИЗМИРАН). Показатели индексов геомагнитной активности получены из официальной базы данных NASA, США (NASA. Interface to produce plots, listings or output files from OMNI 2). Для изучения воздействия космических лучей на человека использованы сведения из глобальной базы данных нейтронных мониторов (NMDB: the Neutron Monitor Database). Показатели числа и площади лесных пожаров в Хабаровском крае в 1970 – 1991 гг. взяты из отчетов Дальневосточной базы авиационной охраны лесов, г. Хабаровск. Информация о площади лесных пожаров в Российской Федерации в 1990–1998 гг. взята из Третьего Национального сообщения Межведомственной комиссии Российской Федерации по проблемам изменения климата, сведения за 1999-2012 гг. – из отчета Росстата, за 2013-2019 гг. – с сайта Единой межведомственной информационно-статистической системы. Данные о числе лесных пожаров в России в 1990–1991 гг. взяты из отчета Межведомственной комиссии Российской Федерации по проблемам изменения климата, аналогичные показатели за 1992-2019 гг. получены на сайте Единой межведомственной информационно-статистической системы. Также использованы данные о территориях, затронутых пожарами в США, Национального межведомственного пожарного центра (Wildfires and Acres, USA); данные по Канаде получены из Национальной базы данных лесного хозяйства (Forest area burned and number of forest fires, Canada), данные по Австралии взяты из публикации Canadell J.G. et al., 2024. Глобальный анализ связи факторов окружающей среды с системными новообразованиями на примере детского лейкоза выполнен в сотрудничестве с в.н.с. ИЗМИРАН к.ф.м.н. О.В. Хабаровой.

Изучение возможности коррекции последствий хронической внутриутробной гипоксии регуляторными пептидами выполнено в составе исследовательской группы сотрудников Центральной исследовательской лаборатории и кафедры нормальной и патологической физиологии Дальневосточного государственного медицинского университета, г. Хабаровск. Проведено исследование влияния неонатального введения неопиатного аналога лей-энкефалина (пептида НАЛЭ) и синтетического аналога лей-энкефалина пептида даларгин на морфологические показатели печени и редокс-статус 60-суточных самцов белых крыс, подвергнутых антенатальной гипоксии. Контролем служило потомство беременных самок, не подвергавшихся гипоксическому воздействию. Оценивали абсолютную и относительную массу печени, определяли площадь гепатоцитов, площадь ядер и ядрышек гепатоцитов, подсчитывали среднее количество ядрышек в ядрах определяли долю двуядерных гепатоцитов. свободнорадикального окисления в гомогенатах печени и сыворотке крови оценивали методом хемилюминисценции. Общее количество животных, использованных в работе, составило 40 крыс.

Определение вида неспецифической адаптационной реакции организма (НАРО) и уровня реактивности с помощью программного «КИЦАТПАЦА» осуществлялось co y пациентов злокачественными новообразованиями, находящимися в процессе химиотерапии в КГБУЗ клинический онкологии" "Краевой (ККЦО) центр здравоохранения Хабаровского края. Данный раздел научно-исследовательской работы выполнен на основе решения этического комитета ФГБОУ ВО «Дальневосточный государственный медицинский университет» Министерства здравоохранения Российской Федерации (протокол №3 от 16.06.2020 г.). Распределение участников опытной и контрольной групп осуществлялось методом случайной выборки из числа пациентов, поступающих в отделение химиотерапии Комсомольского-на-Амуре подразделения ККЦО. Пациенты опытной группы получали для ознакомления и подписания «Информационный листок и форму информированного согласия пациента». Всем пациентам обеих групп выполнялся общий анализ крови с лейкоцитарной формулой перед началом курса химиотерапии, и повторно через три месяца. В исследование включались пациенты при наличии первого и повторного анализа. Выявление осуществлялось при помощи программного дизадаптации «АДАПТАЦИЯ», созданного в соавторстве с Л.В. Логиновым (Свидетельство о государственной регистрации программы для ЭВМ №2022669925). В основе комплекса лежат алгоритмы индивидуального определения типа и силы адаптационной реакции по данным общеклинического анализа крови и лейкоцитарной формулы (Гаркави Л.Х., 2006). Результаты анализов пациентов опытной и контрольной групп заносились в базу программы «АДАПТАЦИЯ» с последующим расчетом вида адаптационной реакции, уровня реактивности и десяти лейкоцитарных индексов. Коррекция адаптационных реакций пациентов опытной группы проводилась курсом препарата «4Life Трансфер Фактор Плюс производства Трай-Фактор формула» Biomedical компании LLC (Свидетельство Laboratories о государственной регистрации RU.77.99.11.003.E.012794.12.14 от 26.12.2014 г.) в течение 90 дней.

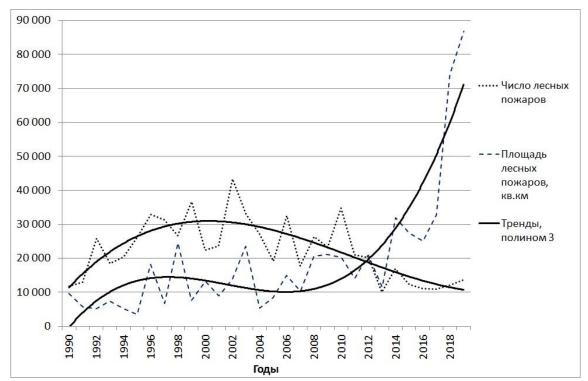
обработке При статистической заболеваемости данных новообразованиями для уточнения положения пиков возрастной частоты использован регрессионный анализ полиномом 5 степени. После разделения эмпирического графика по точке излома, проводилась дополнительная оценка диаграмм рассеяния для каждого возрастного фрагмента. Корреляционный анализ по Пирсону между динамическими рядами индексов факторов внешней среды и заболеваемостью новообразованиями осуществлялся в формате кросскорреляции, в 11 итерациях с временной задержкой (лагом) 0–10 лет с шагом в один год. Поскольку четные и нечетные циклы солнечной активности кардинально отличаются по своим параметрам (Ишков В.Н., 2020), при 1990-2019 изучении заболеваемости проводилось данных 0 за ΓΓ.

дополнительное исследование с разделением 30-летнего периода на отрезки по 10 лет, близкие к средней продолжительности цикла Швабе-Вольфа. Помимо работы с грубыми и стандартизованными показателями, для проведения корреляционного анализа также использованы предварительно подготовленные усредненные данные.

Анализ динамической статистической связи между заболеваемостью новообразованиями и числом лесных пожаров на территории Дальневосточного федерального округа России (ДВФО) В 1992-2019 проведен использованием критерия Крускала-Уоллиса при консультативном участии в.н.с. Южного научного центра Российской академии наук к.б.н. Веневского С.В. Выявление пространственно-временных закономерностей связей дыма лесных пожаров с новообразованиями на территории регионов ДВФО выполнено с применением модели Бокса — Дженкинса (авторегрессионная интегрированная скользящая средняя, англ. Autoregressive Integrated Moving Average, ARIMA) с комбинаторными агрегациями (Box G.E.P. et al., 2016) при участии PhD (Med) L. Tian из Университета Гонконга. U-критерий Манна-Уитни использован по стандартной методике (Corder G.W. et al., 2009) для статистической обработки данных, полученных в результате применения программного комплекса «АДАПТАЦИЯ», при оценке различий средних показателей возраста участников и величины лейкоцитарных индексов в группах «опыт / контроль». Критерий согласия Пирсона $\chi 2$ по стандартной методике (Corder G.W. et al., 2009) применен для сравнительной оценки динамики нормализации лейкоцитарных индексов, и достоверности различия в группах «опыт-контроль» показателей типа НАРО и уровня адаптационных реакций.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ОБСУЖДЕНИЕ Вызывающий популяционную эколого-физиологическую дизадаптацию

Вызывающий популяционную эколого-физиологическую дизадаптацию цикл изменения космической погоды и лесных пожаров


Исследование взаимосвязей факторов космической погоды показало, что наиболее значимым проявлением солнечной активности на Земле являются магнитные бури с внезапным началом, коррелирующие с числом солнечных пятен (r=0,695), связанные с ними колебания геомагнитных индексов, и космические лучи (КЛ), изменяющиеся в противофазе с циклом Швабе-Вольфа (r=-0,800). При этом число солнечных пятен является несколько более чувствительным параметром для выявления связей с индексами геомагнитной активности и космическими лучами в сравнении с числами Вольфа, однако различия между ними незначительны.

Сопоставление числа и площади лесных пожаров в России показало, что в период с 1990 по 2011 гг. оба ряда имели сходную динамику с периодическим совпадением экстремумов, однако в последующем их тренды стали развиваться во взаимно противоположном направлении. А с 2014 г. и далее отмечен бурный рост площадей лесных пожаров с многократным превышением показателей предыдущих лет (Рис.2). При этом на территории России в 1990–2019 гг.

обнаружена умеренная связь числа солнечных пятен с количеством лесных пожаров (r=0.392; p=0.032; лаг 7 лет) и отсутствие таковой с площадью выгорания, а также установлена значительная достоверная корреляция площади пожаров с КЛ (r=0.633; p<0.001; лаг 1 год).

В качестве объяснения опережающего роста площадей лесных пожаров в сравнении с их числом в России и в мире можно предположить следующее. После достижения максимума в 21 цикле активность Солнца постепенно снижается. Это закономерно сопровождается нарастанием интенсивности КЛ (Рис. 3). Поскольку КЛ являются главным источником ионизации на высотах от 100 км и менее от поверхности земли, и создают при своем движении через атмосферу ионизированные пути для молний, это приводит к значительному увеличению интенсивности грозовой активности и возникновению природных очагов пожаров (Янчуковский В.Л. и др., 2020; Хегай В.В. и др., 2021).

Таким образом, существует вызывающий популяционную экологофизиологическую дизадаптацию 11-летний цикл изменения параметров космической погоды и связанных с ними лесных пожаров, который можно представить следующим образом. На пике солнечной активности значительный вклад в количество КЛ вносят солнечные протоны, что приводит к положительной корреляции между КЛ и числами Вольфа в этот период в течение 2-3 лет, на фоне максимальных уровней геомагнитной активности (Рис. активности Солнца геомагнитные снижения уменьшаются до минимума, в спектре КЛ начинает увеличиваться доля лучей галактического происхождения, и далее эти показатели изменяются в противофазе. Это указывает на важную роль магнитосферы Земли в защите от КЛ, и дополнительно подтверждается полученными в исследовании данными о повышенной частоте детского лейкоза в странах, находящихся в области пониженной напряженности магнитного поля, а также в высоких широтах вблизи аврорального овала. Время восстановления КЛ до максимума после пика солнечной активности в четном 22-м цикле, как видно на Рис. 3, составляет три года, тогда как после нечетного 23-го цикла вследствие эффекта гистерезиса (Ross E. et al., 2019) оно увеличивается до восьми лет. При этом график площади пожаров в годы максимальных значений КЛ синхронизируется с ними (Рис. 3). После снижения числа солнечных пятен до минимума, в течение последующих 4 лет они вновь достигают пика, количество солнечных протонов увеличивается до максимума, повышается геомагнитная активность, и цикл повторяется. Таким образом, во время каждого цикла активности Солнца имеют место два пика высоких уровней потенциально опасных ФОС. В чисел Вольфа значительно увеличиваются максимума солнечных протонов и геомагнитная активность, а затем, в среднем через 7 лет, на минимуме цикла возрастает интенсивность галактических лучей, с пожаров. увеличением площади лесных Именно числа И продолжительность восстановления максимума галактических КЛ определяет лаг в 7 лет между активностью Солнца и лесными пожарами.

Рис. 2. Сравнительная динамика числа лесных пожаров в России и пройденной ими площади в 1990–2019 гг.

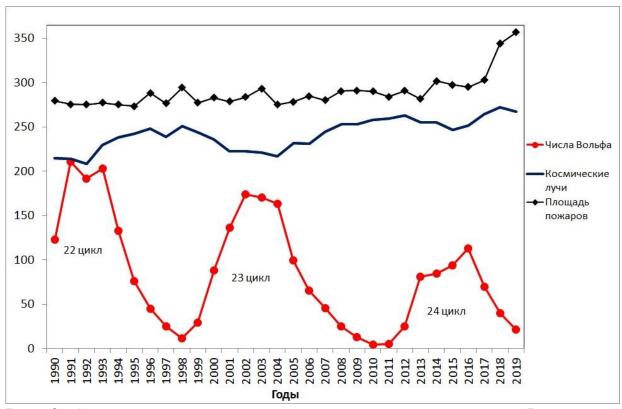
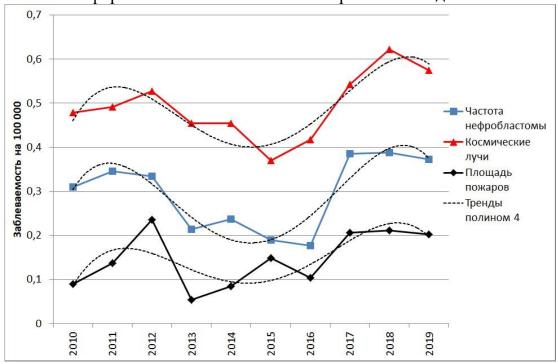


Рис. 3. Сравнительная динамика площади лесных пожаров в России в 1990—2019 гг. (кв. км х $10^{-3} + 270$), солнечной активности (среднегодовые числа Вольфа, лаг 1) и космических лучей (нейтронный монитор, г. Москва, число лучей/с без корректировки, лаг 1).

Известно, что в 80–90% случаев причиной лесных пожаров является человек. Поэтому в потенциально более подверженные горению годы сезон пожаров начинается раньше, а заканчивается позже, поскольку при прочих равных условиях вероятность воспламенения определяется готовностью к этому лесной подстилки и других горючих материалов (Лескинен П. и др., 2020; Матвеева А.Г., 2021). Таким образом, число лесных пожаров отражает продолжительность сезона горения, и является количественным показателем длительного хронического воздействия дыма на популяцию.

Площадь пожаров, как показано выше, преимущественно связана с КЛ. Выгорание обширных лесных массивов при отсутствии возможности их тушения вследствие возникновения в безлюдных местах приводит к массивным выбросам продуктов горения в атмосферу и значительному превышению пороговых концентраций канцерогенов в дыме. Поэтому площадь лесных пожаров является качественной характеристикой острого воздействия дыма на население. Обнаружение внутренней связи солнечной цикличности лесных пожаров дает возможность лучше понять сложную картину колебаний частоты новообразований, вызванных как прямым, так и сочетанным действием этих факторов окружающей среды. Очевидно, может иметь место их прямое наложение либо последовательное влияние, а также проявления следовых эффектов предшествующих циклов активности Солнца.


Связь «спорадических» колебаний частоты системных новообразований с космической погодой и лесными пожарами

Способность гибко приспосабливаться к изменяющиеся факторам окружающей среды (ФОС) присуща всему живому. Одним из следствий дизадаптации к ним являются новообразования, поражающие системы тканей – гемобластозы, опухоли нервной системы, саркомы скелета и мягких тканей.

В результате проведенного комплекса исследований установлено, что так называемые «спорадические» колебания частоты системных новообразований тесно связаны с 11-летним циклом активности Солнца и обусловленными им изменениями параметров ФОС.

изученных факторов Среди экологических наиболее значимые новообразованиями космические ассоциации имеют лучи (КЛ). Максимальной силой связи с ними характеризовалась частота нефробластомы у детей 0—4 лет в России (r = 0.907). Далее в этой возрастной подгруппе в порядке уменьшения корреляции следуют лейкоз (r = 0,711), саркомы мягких тканей (СМТ; r = 0,711), нейробластома (r = 0,640) и опухоли центральной нервной системы (ЦНС; r = 0,639). В когортах детей младшего возраста Хабаровского имела место сильная связь ΚЛ c заболеваемостью доброкачественными герминогенными опухолями (r = 0,857), опухолями мягких тканей (r = 0,706), гемангиомами (r = 0,657) и лимфангиомами (r = 0,664). В детской популяции 0–14 лет России корреляция с КЛ установлена при лейкозе (r = 0.762), CMT (r = 0.693) и опухолях ЦНС (r = 0.653). Полновозрастная популяция России также характеризовалась сильной связью КЛ с частотой НХЛ (r=0,789), опухолей ЦНС (r=0,772), лейкоза (r=0,741) и СМТ (r=0,686). Лаг между повышением уровня КЛ и увеличением заболеваемости во всех нозологических группах наиболее часто был нулевым, либо равным одному году.

Наибольшая сила связи с площадью лесных пожаров отмечена для частоты гемангиом (r = 0.885) и лимфангиом (r = 0.817) в когортах детей 0-4лет в Хабаровском крае, несколько меньшая обнаружена у детей младшего возраста в России при таких эмбриональных опухолях, как ретинобластома (r = 0,745), нейробластома (r = 0,713) и нефробластома (r = 0,709). Сильная корреляция с площадью пожаров установлена также с заболеваемостью НХЛ (г = 0,745) и опухолями ЦНС (r = 0,699) в полновозрастной популяции России, более слабая обнаружена при лейкозе (r = 0.696) и СМТ (r = 0.652), средней силы — при НХЛ (r = 0.522) и опухолях ЦНС (r = 0.495) в детской популяции. Максимальный лаг между площадью лесных пожаров новообразований в России отмечен при нефробластоме (9 лет), при других нозологических формах наиболее часто он был равен 2-4 годам.

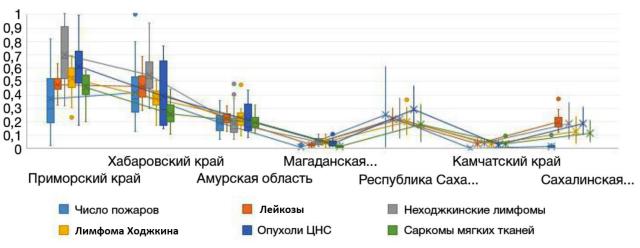
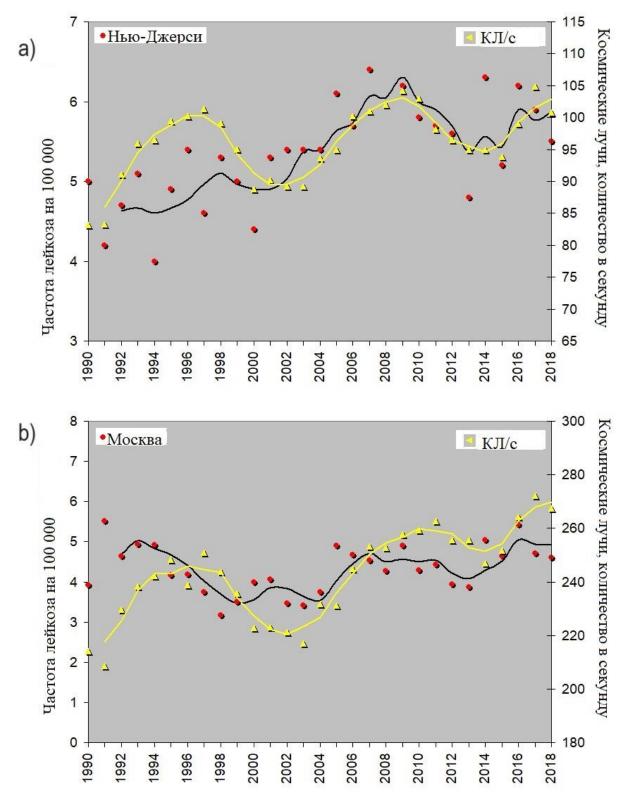


Рис. 4. Сравнительная динамика частоты нефробластомы у детей младшего возраста 0—4 лет в России (грубый показатель на 100~000, оба пола), космических лучей (нейтронный монитор г. Москва, нескорректированное число/сек х 10^{-2} -2,1; лаг 1) и площади лесных пожаров (кв. км х 10^{-5} ; лаг 9)

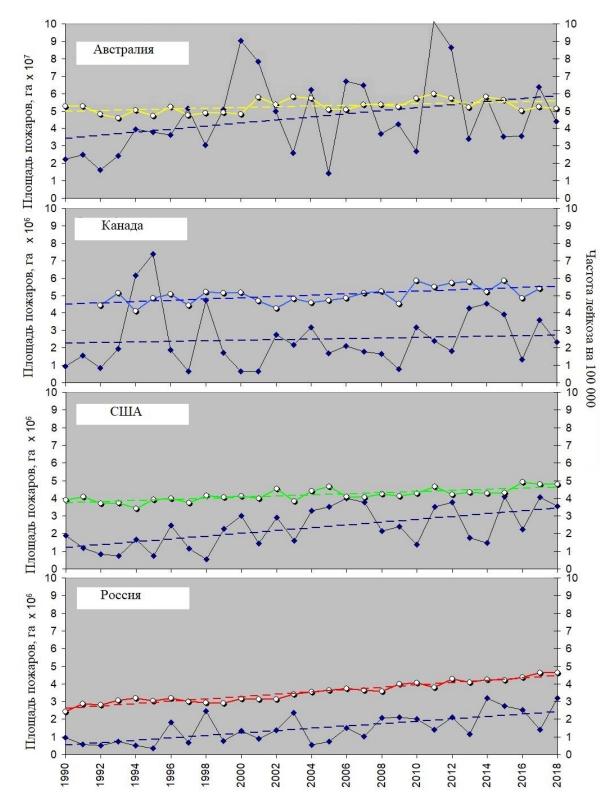
В качестве иллюстрации связей частоты опухолей с ФОС приведена динамика частоты нефробластомы в России (Рис. 4). На этой диаграмме отчетливо видны два раздельных пика КЛ солнечного и галактического происхождения, а также высокая конгруэнтность полиномиальных трендов заболеваемости, космических лучей и площади лесных пожаров.

Лимфома Ходжкина (ЛХ) и саркомы скелета (СС) имеют два важных отличия от других новообразований. Прежде всего, это наличие достоверных трендов снижения заболеваемости, тогда как частота прочих системных новообразований растет. Во-вторых, у них выраженный имеется заболеваемости в молодом возрасте (СС – 16 лет, ЛХ – 24 года). В отношении СС это объясняется активным участием андрогенов в их патогенезе (Дегтярь В.Г. и др., 2005), тогда как возможная роль эстрогенов в возникновении ЛХ пока обсуждается (Głuszko Rю et al., 2011; Pierdominici M. et al., 2017). Картина связей с факторами окружающей среды ЛХ и СС также имеет кардинальное отличие от других нозологических форм. При этих новообразованиях полностью отсутствует корреляция с площадью лесных пожаров, однако есть связь с их числом во всех возрастных подгруппах. Максимальная сила связи установлена при СС в подгруппе 0–14 лет, при ЛХ в популяции 0–85+ лет, что соответствует наибольшей близости к этим периодам возрастных пиков заболеваемости. Другой важной особенностью данных опухолей является корреляция их частоты с циклами солнечной и геомагнитной активности с весьма протяженным лагом (5-10 лет) при отсутствии связи с КЛ.

Исследование влияния лесных пожаров на возникновение новообразований на территории Дальневосточного Федерального округа России (ДВФО) с применением метода ARIMA установило, что колебания заболеваемости гемобластозами, саркомами мягких тканей и опухолями ЦНС в детской популяции 0–14 лет, и у населения ДВФО в целом, связаны с лесными пожарами (Рис. 5).


Рис. 5. Сравнение распределений нормированных показателей заболеваемости новообразованиями и числа пожаров для административных единиц ДВФО. Возрастная группа 0–85+ лет при взвешивании по соотношению численности населения в каждой административной единице к общей численности населения в ДФО (Влияние лесных пожаров на онкологические заболевания у населения Дальнего востока / С.К. Пинаев [и др.] // Вестник РГМУ. – 2023. - № 4. – С. 22-33).

Применение нормированного и взвешенного по численности населения показателя числа пожаров в год показало свою эффективность для решения подобного рода задач. Наиболее чувствительной к влиянию числа пожаров на онкологическую заболеваемость оказалась полновозрастная популяция 0–85+ лет. Выявлена тесная связь с лесными пожарами частоты лейкоза, неходжкинских лимфом и лимфомы Ходжкина. Статистически значимые временные связи новообразований с числом лесных пожаров обнаружены в районах, включающих в себя климатически однородные географические материковые регионы с максимальной плотностью населения.


Компаративное исследование показало, что колебания частоты лейкоза и неходжкинских лимфом в полновозрастных популяциях России, США и Канады имеют сильную положительную связь с солнечной активностью. При лимфоме Ходжкина и множественной миеломе сила связи варьирует от умеренной до значительной. В России и Канаде обнаружены однонаправленные достоверные линейные тренды роста заболеваемости неходжкинскими лимфомами. Также во всех изученных странах зафиксировано увеличение частоты множественной миеломы и лейкоза. Тренд заболеваемости лимфомой Ходжкина в России и Канаде имеет достоверную тенденцию к снижению.

Поскольку системные новообразования представляют подавляющее большинство новообразований детского возраста, среди которых, трети случаев приходится на лейкоз, свою очередь, ДО нозологическую группу можно рассматривать как интегральный индикатор давления канцерогенных экологических факторов на популяцию человека. Исходя из этого, для выявления глобальных закономерностей и региональных особенностей проведен сравнительный анализ связей лейкоза у детей с факторами окружающей среды в России, и в находящихся в сходных климатогеографических условиях США и Канады. Ситуация в странах Южного полушария исследована на примере Австралии. Исследование выполнено в сотрудничестве с в.н.с. ИЗМИРАН к.ф.-м.н. О.В. Хабаровой и др. (Trends in childhood leukemia incidence in urban countries and their relation to environmental factors, including space weather / O. Khabarova, S.K. Pinaev, V.V. Chakov [et al.] // Front. Public Health. – 2024. – Vol. 12. – P. 1295643).

Сравнительный анализ заболеваемости лейкозом в детских популяциях Нью-Джерси (США) и г. Москвы с пригородами показал возможную причастность к развитию лейкемии у детей эффектов космической погоды, проявляющихся в усилении интенсивности космических лучей (Рис. 6). Были проверены возможные связи заболеваемости с локальными характеристиками атмосферы, на которые могут влиять вариации потока космических лучей. В Москве и Нью-Джерси не обнаружено связи заболеваемости лейкемией с атмосферным давлением, влажностью, температурой и УФ-индексом, но сравнение кривой заболеваемости с концентрацией озона дало положительный результат.

Рис. 6. Динамика частоты детского лейкоза (грубые показатели, оба пола) и космических лучей (космические лучи без корректировки/сек) (Trends in childhood leukemia incidence in urban countries and their relation to environmental factors, including space weather / O. Khabarova, S.K. Pinaev, V.V. Chakov [et al.] // Front. Public Health. – 2024. – Vol. 12. – P. 1295643). Красные точки — частота лейкоза, желтые треугольники — космические лучи. Скользящее среднее за 3 года показано желтым цветом для космических лучей и черным для лейкемии.

Рис. 7. Среднегодовая заболеваемость детей лейкемией и ее возможная связь с дымом лесных пожаров (Trends in childhood leukemia incidence in urban countries and their relation to environmental factors, including space weather / O. Khabarova, S.K. Pinaev, V.V. Chakov [et al.] // Front. Public Health. — 2024. — Vol. 12. — Р. 1295643). Площадь лесных пожаров - темно-синие ромбы, черная линия. Заболеваемость лейкозом: желтая линия — Австралия, голубая — Канада, зеленая — США, красная — Россия.

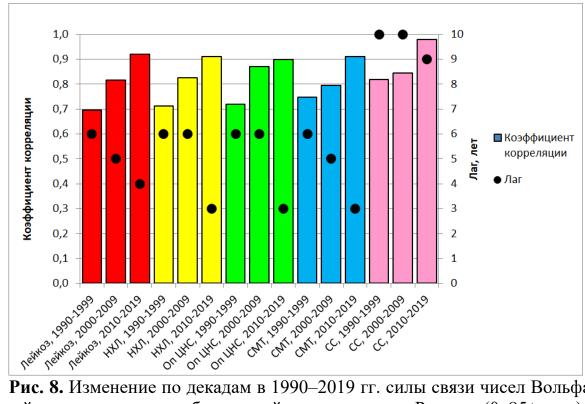
На Рис. 7 показано сравнение площади, пострадавшей от лесных пожаров (как показатель концентрации обусловленных пожарами канцерогенных газов), с уровнем заболеваемости детской лейкемией. Площадь, пострадавшая от лесных пожаров, растет в Австралии быстрее, чем в других странах, с коэффициентом наклона 0,087 против 0,080 в США, 0,067 в России и всего 0,016 в Канаде (Табл. 1). Важно отметить, что наклоны многолетнего тренда заболеваемости лейкозами и площади лесных пожаров в России точно совпадают. Коэффициент корреляции между кривыми заболеваемости детским лейкозом в России и площадями лесных пожаров составляет 0,638 (Табл. 1), являясь наибольшим среди соответствующих пар кривых.

Таблица 1. Анализ тенденций и вариаций частоты детского лейкоза, площади лесных пожаров и числа автомобилей в России, США, Австралии и Канаде

(Trends in childhood leukemia incidence in urban countries and their relation to environmental factors, including space weather / O. Khabarova, S.K. Pinaev, V.V. Chakov [et al.] // Front. Public Health. – 2024. – Vol. 12. – P. 1295643)

Страна	1. Наклон, частота лейкоза	2. Наклон, площадь пожаров	3. Наклон, число машин	4. Корреляция: площадь пожаров / частота лейкоза	5. Корреляция: число автомобилей / частота лейкоза
Россия	0,0668	0,0668	0,0939	0,638	0,961
США	0,0321	0,0798	0,0264	0,569	0,669
Австралия	0,0208	0,0869	0,0760	0,362	0,429
Канада	0,0366	0,0160	0,1097	0,115	0,611

Это может свидетельствовать о сильном влиянии газов, выделяющихся при пожарах, на здоровье детей в России. Между тем, уровень заболеваемости лейкемией в Канаде не показывает никакой возможной связи с пожарами. Последнее может указывать на то, что порог содержания канцерогенных газов в дыме лесных пожаров, имеющий решающее значение для развития детской лейкемии, в Канаде, скорее всего, не превышен. Потенциально это связано с относительно стабильной ситуацией с лесными пожарами в стране, судя по величине уклона, в сочетании с низкой плотностью населения.


Таким образом, большинства ДЛЯ исследованных доброкачественных И злокачественных неоплазий характерна сильная корреляция с площадью природных пожаров и космическими лучами. Исключение лимфома Ходжкина саркомы скелета, составляют заболеваемость которыми связана с числом пожаров, а также с циклом Вольфа и геомагнитными индексами.

В целом можно прийти к заключению, что ежегодные колебания заболеваемости чувствительных к ФОС новообразований в значительной степени связаны с космическими лучами и дымом лесных пожаров, тогда как

тренды отражают многолетние полиномиальные ИХ частоты Солнца. При наиболее активности ЭТОМ чувствительным изменения воздействий индикатором такого рода является возникновение доброкачественных опухолей и эмбриональных неоплазий у детей до 5 лет.

Адаптирующее воздействие космической погоды

Исследование раздельно по декадам связей с числами Вольфа выявило для всех системных новообразований в России, за исключением лимфомы Ходжкина, общую закономерность. Она касалась полновозрастной популяции (0–85+ лет), и заключалась в нарастающем увеличении корреляции с достижением в 2010–2019 гг. уровня очень сильной, при одновременном уменьшении величины лага (Рис. 8). В детской субпопуляции данное явление отсутствовало.

Рис. 8. Изменение по декадам в 1990–2019 гг. силы связи чисел Вольфа с частотой системных новообразований в популяции России (0–85+ лет) и величины лага (лет). Примечание: НХЛ – неходжкинские лимфомы, Оп ЦНС – опухоли центральной нервной системы, СМТ – саркомы мягких тканей, СС – саркомы скелета.

Необычно здесь то, что активность Солнца в указанный период, напротив, снижается. Причиной обнаруженного явления не может быть увеличение потока космических лучей, поскольку заболеваемость саркомами скелета, имеющая самую высокую корреляцию с числами Вольфа (r = 0.980), с ними не связана. Более того, частота данной патологии на фоне нарастания интенсивности космических лучей снижается. При этом в России в 2003-2019 гг. отмечен устойчивый тренд снижения стандартизованного коэффициента

смертности от всех причин (Андреев Е.М. и др., 2022), что свидетельствует о повышении неспецифической резистентности населения. В сочетании с усилением связи частоты системных новообразований с солнечной активностью, можно предположить, что обнаруженное явление отражает формирование адаптационных реакций в масштабе популяции.

современным представлениям, Согласно сложные биологические системы не находятся в состоянии устойчивого равновесия, а непрерывно осуществляют самоорганизацию в неустойчивом динамическом равновесии потоков массы, энергии и информации вблизи состояний фазовых переходов. Факторы космической погоды являются синхронизатором общих ритмов биосферы с внешней средой, как отдельного человека, так и популяции в целом (Рагульская М.В., 2017). Данный процесс реализуется благодаря гипоталамусу, который высоко чувствителен к колебаниям электромагнитных полей (Гаркави электромагнитные При ЭТОМ поля ΜΟΓΥΤ стабилизирующее действие, либо напротив дестабилизировать патологические процессы (Гаркави Л.Х., 2006; Мартынюк В.С. и др., 2007). У детей в связи с экспозицией в пределах одного цикла развитие подобной сенсибилизации не наблюдается, что подтверждено нашими данными. При отсутствии магнитных субъективное объективное состояние месяца И обследуемых ухудшается.

Другим адаптирующим фактором космической погоды могут являться космические лучи, поскольку малые дозы радиации стимулируют системы антиоксидантной защиты и репарации с активацией иммунитета и повышением устойчивости клеток к генотоксическим факторам. Предполагается, что при этом благоприятно изменяется баланс между линейным нарастанием уровня повреждений ДНК и активацией защитных механизмов. Адаптивное действие радиации наблюдается в широком диапазоне от 5 до 500 мГр (Михайлов В.Ф. и др., 2020).

Живые организмы на разных уровнях организации, от клеток до популяций, демонстрируют подстройку под динамику солнечной активности, которая выступает в качестве слабого тренирующего фактора для адаптационно устойчивых членов и одновременно служит каналом отбраковки нежизнеспособных особей (Рагульская М.В., 2017).

Авторами периодической системы состояний организма (Гаркави Л.Х, Уколова М.А., Квакина Е.Б., 1996) установлено, что в организме существует логарифмическая, и обратная к ней экспоненциальная зависимость между величиной воздействия и ответной реакцией на него (стресс, тренировка, активация, переактивация). Данными исследователями получен выраженный лечебный эффект при опухолях путем использования как химических (адаптогены, мумие, сок подорожника), так и физических (переменное магнитное поле) методов воздействия в логарифмическом режиме дозирования, с целью развития в организме реакций тренировки или активации (Гаркави Л.Х., 2006). Как отмечено Л.Х. Гаркави с соавт. (1996), выявленные

коэффициенты логарифмического режима воздействия соответствуют комплексу частот мировой гармонии, в частности, отражающейся в музыке, то есть носят всеобъемлющий характер. Переход с одного уровня адаптационной реакции на другой происходит с теми же коэффициентами, что и переход из ноты в ноту разных октав (Гаркави Л.Х., 2006).

Проведенное в нашем исследовании изучение трендов нисходящих ветвей циклов Швабе-Вольфа за последние 30 лет показало, что наиболее высокая степень аппроксимации (выше 0,99) соответствует именно функции логарифма. натурального Это онжом расценить как действие адаптирующем влиянии солнечной активности на популяцию тех универсальных законов мировой гармонии, что, в свою очередь, предполагает их фрактальный характер с проявлением как на сверхкоротких, так и сверхдлинных временных отрезках.

Таким образом, можно сделать предположение, что главный результат воздействия активности Солнца на биосферу в целом, и человеческую популяцию в частности, заключается в ее гармонизации с космическими ритмами и повышении неспецифической резистентности у здоровых людей, с декомпенсацией минорной преморбидной субпопуляции и последующим развитием у ее представителей различных патологических процессов, в том числе системных новообразований.

Концепция экологически обусловленного онкогенеза

проведенных основании исследований литературы обусловленного разработана концепция экологически онкогенеза, предполагающая единый механизм возникновения опухолей под воздействием различных ФОС. Указанная концепция логически объединяет все звенья этого процесса от воздействия ФОС до опухолевой трансформации, объясняет спектра новообразований детского возраста, возникновения системных новообразований в целом. Ключевую роль в разработанной концепции играет взаимодействие экологически обусловленного окислительного стресса (EROS - от англ. Environmentally related oxidative stress), гема и семафоринов.

Гем является простетической группой белков семейства глобинов и ферропротеинов. В основе гема находится тетрапиррольная ароматическая структура протопорфирина IX, в состав которого входит двухвалентный ион железа Fe²⁺ (Бисалиева Р.А. и др., 2016). 90% железа содержится в геме клеток крови, макрофагов и печени (Лукина Е.А. и др., 2015). После эритроцитов наибольшее количество железа содержат клетки головного мозга (Иванов С.Д., 2013). Наиболее распространенным среди гем-содержащих белков является гемоглобин. На него приходится 62% железа в организме (Лукина Е.А. и др., 2015). Помимо клеток красной крови, гемоглобин содержится также в эндотелии, клетках центральной нервной системы и глаза, сосудистой стенки, легких, желудочно-кишечного тракта, печени, почек и женских половых

органов (Керрпег А. et al., 2020). До 8% общего количества железа в организме человека содержится в миоглобине (Лукина Е.А. и др., 2015). Помимо скелетной мускулатуры, миоглобин присутствует также в сердце, аорте, эндотелии, в сосудистой стенке и в центральной нервной системе (Керрпег А. et al., 2020). Также в группу глобинов у человека входят цитоглобин, нейроглобин и андроглобин (Korolnek T. et al., 2014; Paul B.T. et al., 2017).

являться индуктором И усилителем экологически обусловленного окислительного стресса (environmentally related oxidative stress, EROS). Токсичность гема определяется его пероксидазной активностью и способностью генерировать активные кислородные метаболиты (АКМ), а также интеркалировать в мембраны и неспецифически связывать многие белки (Korolnek T. et al., 2014). Через реакцию Фентона железо катализирует образование гидроксильных радикалов (Ying J.F. et al., 2021). Вследствие этого избыточное количество железа в организме несет опасность цитотоксических эффектов в связи с запуском цепных свободнорадикальных реакций, приводящих к перекисному окислению липидов биологических мембран, токсическому повреждению белков и нуклеиновых кислот (Лукина Е.А. и др., 2015) с последующей гибелью клеток (Thévenod F., 2018). В целом образование АКМ тесно связано с железом во всем организме (Ying J.F. et al., 2021). В крови взрослого человека ежедневно окисляется около 3% циркулирующего гемоглобина (Созарукова Интенсивность образования M.M., 2017). метгемоглобина существенно возрастает в условиях гипоксии (Созарукова М.М., 2017), окислительного стресса (Коношенко С.В. и др., 2018; Садвакас А.С., 2014) и при повышении температуры (Коношенко С.В. и др., 2019). образования Неблагоприятным следствием метгемоглобина возникновение супероксидного радикала (Муравлёва Л.Е. и др., 2013; Сергунова В.А. и др., 2016) и генерация липофильных радикалов (Созарукова M.M., 2017).

Присутствие в мембранах эритроцитов полиненасыщенных жирных кислот, в сочетании с содержащей железо богатой кислородом средой, делает эритроциты весьма подверженными окислительному стрессу, приводя к активации перекисного окисления липидов и окислительному повреждению белков (Муравлёва Л.Е. и др., 2013). Вследствие того, что фетальный гемоглобин, по сравнению со взрослыми формами, в значительно большей степени склонен к окислению в метгемоглобин (Fugazza C. et al., 2021), этот процесс особенно выражен в организме плода и детей раннего возраста. Также установлено, что в процессе старения происходит возрастное истощение антиоксидантной системы эритроцитов, что приводит к усилению гемолиза эритроцитов и нарастанию свободнорадикальных процессов в позднем онтогенезе (Нестеров Ю. В. и др., 2015).

Помимо этого, гему присущи специфические потенции, обусловленные ферромагнитными свойствами входящего в его состав железа (Александров Б.Л. и др., 2017). Электромагнитные поля оказывают влияние на организм

преимущественно через гем глобинов и ферропротеинов митохондрий (Агаджанян Н.А. и др., 2005; Korolnek T. et al., 2014; Paul B.T. et al., 2017). В условиях внешнего магнитного поля меняется ориентация эритроцитов в направлении силовых линий этого поля (Александров Б.Л. и др., 2017), причем при усилении обменных процессов эритроцит становится более чувствительным к указанному воздействию (Павлов А.Н. и др., 2006).

Всеобъемлющим источником электромагнитных полей является Солнце. Возмущения солнечного ветра вызывают ответные колебания магнитного поля Земли, в наибольшей степени выраженные в области полярного овала, куда преимущественно высыпаются протоны солнечного ветра (Обридко В.Н. и др., Низкочастотные вариации плотности солнечного стимулировать развитие вариаций геомагнитного поля широкого частотного диапазона, резонирующие на уровне организма с собственными частотами органов и систем (Khabarova O.V. et al., 2009). Эти воздействия могут являться биоэффективными для головного мозга и эндокринной системы человека и провоцировать активизацию «гипоталамус-гипофиз-кора цепи надпочечников», что приводит к развитию стресса (Khabarova O.V., 2004).

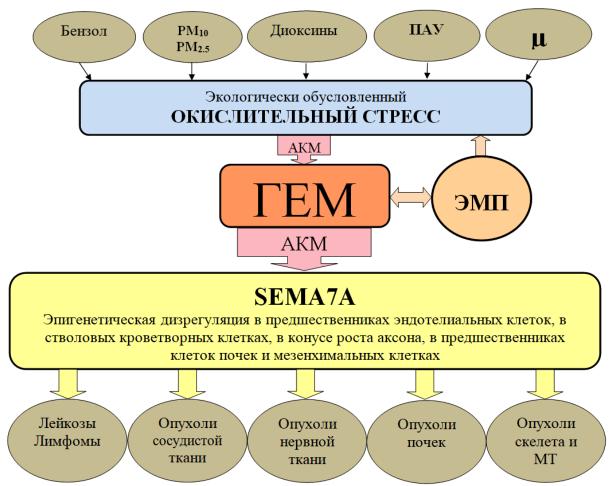
Движение ионов внутри организма, вызванное внешними электромагнитными естественного полями антропотехногенного И происхождения, индуцирует слабое магнитное поле, сопоставимое по своему значению с собственными магнитными полями человеческого организма (Гришин А. Н. и др., 2009). Электрические и магнитные поля образуются в биологических субстратах на разных уровнях рецепции: субмолекулярном, молекулярном, структурном и органном (Агаджанян Н.А. и др., 2005). Помимо этого, в организме происходит генерация собственных электромагнитных волн, связанная с кровотоком. Один из механизмов данного явления обусловлен движением эритроцитов путем вращения в радиальной плоскости сосудов (Чижевский А.Л., 1959). Установлено, что эритроциты катятся вдоль сосудистой стенки, вращаясь со скоростью 10 оборотов в секунду, при этом электрические заряды на их мембранах генерируют магнитное поле в окружающем пространстве (Копыльцов А.В., 2017). А поскольку кровеносная система с точки зрения физики является приемным контуром (Агаджанян Н.А. и др., 2005), воздействие на нее внешних магнитных полей в соответствии с законом электромагнитной индукции Фарадея приводит к генерации вторичных электрических токов.

Гем способствует усилению электромагнитных волн на клеточном и тканевом уровнях. Воздействие магнитного поля изменяет проводимость клеточных мембран, увеличивает электрическое сопротивление и емкость эритроцитов. Магнитные моменты молекул гемоглобина в эритроците упорядочиваются и подстраиваются друг под друга, образуя магнитный момент эритроцита (Бондарь Г.В. и др., 2011). Ориентация эритроцитов в направлении внешнего магнитного поля приводит к их объединению в кластеры с формированием магнитных доменов, при этом возникающее магнитное поле

доменов во много раз превышает породившее его внешнее поле (Александров Б.Л. и др., 2017). В случае совпадения частотных характеристик магнитного поля с собственными колебаниями молекул клеток происходит значительное увеличение биологического воздействия (Агаджанян Н.А. и др., 2005).

Установлено, что потребление красного мяса связано с повышенным риском развития рака (Fonseca-Nunes A. et al., 2014). Это подтверждает важную роль железа гема в канцерогенезе (Fonseca-Nunes A. et al., 2014; Torti S.V. et al., 2020). Об этом же свидетельствует уменьшение вероятности возникновения злокачественного новообразования при снижении уровня железа в организме путем его хелатирования (Иванов С.Д., 2013), кровопускания, либо диеты с низким содержанием железа (Fanzani A. et al., 2017; Иванов С.Д., 2013). Таким образом, персистирующий окислительный стресс, катализируемый железом гема, играет существенную роль в индукции опухолей, приводя к повреждению ДНК и трансформации клеток (Thévenod F., 2018).

Оксидативный стресс может запустить эпигенетические механизмы регуляции экспрессии генов без изменения последовательности ДНК. В норме геном в целом гиперметилирован, что имеет существенное значение в поддержании стабильности хромосом. Для злокачественного перерождения, напротив, характерно гипометилирование генома в целом, что приводит к его нестабильности и активизации протоонкогенов, с одновременным гиперметилированием генов-супрессоров опухолей и нарушением их функции (García-Guede Á. et al., 2020; Волков Н.М., 2022).


Одним из критически важных последствий воздействия EROS является эпигеномная дизрегуляция семафоринов. К семафоринам относится семейство мембранных и плазматических белков, обеспечивающих аксональное наведение в эмбриональном периоде, развитие сосудистых и нейронных сетей сетчатки и почки (Neufeld G. et al., 2016), формирование иммунной системы и гомеостаз костной ткани. Наряду с этим, отмечена причастность семафоринов к опухолевой трансформации и прогрессированию (Song Y. et al., 2021).

Особое место в семействе семафоринов занимает Семафорин 7А (SEMA7A). Этот гликопротеин состоит из 666 аминокислот, и прикреплен к мембране клетки посредством гликозилфосфатидилинозитола (Song Y. et al., 2021). Уникальность SEMA7A заключается в том, что он, единственный из всех семафоринов, является антигеном системы группы крови. Данная система носит название Джона Милтона Хагена (John Milton Hagen), а ее антиген SEMA7A, известный также как CDw108, определяется на эритроцитах у 100 % лиц во всех обследованных популяциях (Донсков С.И. и др., 2011). SEMA7A обнаружен во многих иммунных клетках, в том числе на поверхности активированных Т-клеток (Song Y. et al., 2021), естественных киллеров и моноцитов, а также в эндотелии сосудов кожи, кератиноцитах, фибробластах, меланоцитах, плаценте, яичках, яичниках, селезенке, мозге, спинном мозге, легких, сердце, надпочечниках, лимфатических узлах, тимусе, кишечнике и почках (UniProt: the Universal Protein Knowledgebase in 2025; Донсков С.И. и

др., 2011). В качестве иммунного семафорина SEMA7A модулирует различные взаимодействия иммунных клеток, выработку включая провоспалительных цитокинов моноцитами и макрофагами, воспалительную инфильтрацию в опосредованных Т-клетками иммунных реакциях (UniProt: the Universal Protein Knowledgebase in 2025; Song Y. et al., 2021), а через управление актиновым цитоскелетом SEMA7A влияет на миграцию дендритных клеток (Garcia-Areas R. et al., 2017). Корреляция между экспрессией SEMA7A и метилированием ДНК отмечена при 15 типах рака, при этом она связана с экспрессией генов иммунных контрольных точек и обилием инфильтрирующих опухоль иммунных клеток (Yang L. et al., 2024). Через ТGFβ-зависимый путь SEMA7A активизирует эпителиально-мезенхимальный переход, управляет подвижностью и адгезией опухолевых клеток, способствует ангиогенезу и ремоделированию внеклеточного матрикса (Song Y. et al., 2021). Установлено участие SEMA7A в активации протеинкиназы РТК2/FAK1 и последующем фосфорилировании МАРК1 и МАРК3, что способствует возникновению и прогрессированию опухолей (UniProt: the Universal Protein Knowledgebase in 2025; Ren Z. et al., 2025). При гипоксии отмечена положительная корреляция HIF-1α-позитивных клеток с экспрессией SEMA7A в очагах поражения и клетках эндотелия (He M. et al., 2017; Morote-Garcia J.C. et al., 2012).

силу изложенного органы и ткани c высокой активностью семафоринов, имеющие тесный контакт с гемом, весьма подвержены воздействию экологически обусловленного окислительного стресса (англ. environmentally related oxidative stress, EROS). К таковым, в частности, можно отнести эндотелий сосудов, костный мозг, печень, почки, глаз, все виды нервной ткани. В связи с этим указанные органы и ткани являются наиболее уязвимыми мишенями EROS.

Концептуальную схему пяти этапов экологически обусловленного онкогенеза можно представить следующим образом (Рис.9). На первом этапе происходит индукция EROS факторами окружающей среды, такими как бензол автомобилей, микрочастицы газов углерода, выхлопных диоксины, полициклические ароматические углеводороды, электромагнитные поля, и многие другие (IARC Monographs on the Identification of Carcinogenic Hazards to Humans, 2025). Суть второго этапа заключается в многократном усилении железом гема окислительного стресса, приводящего в результате циклической реакции $\langle\langle AKM \rightarrow \Gamma EM \rightarrow AKM \rangle\rangle$ к лавинообразному количества образующихся агрессивных радикалов. Параллельно со вторым разворачивается третий, процессе которого, этапом благодаря ферромагнитным свойствам входящего в состав гема железа, происходит прием, индукция и усиление электромагнитных полей, с формированием петли обратной связи и дополнительной стимуляцией окислительного стресса. На четвертом этапе под воздействием EROS происходит эпигенетическая дизрегуляция семафоринов в тканях, имеющих наибольший контакт с гемом: в эндотелии, в активно пролиферирующих клетках конуса роста аксона, в костном мозге, в стволовых мезенхимальных клетках и в предшественниках клеток почек. Вследствие этого на пятом этапе запускается опухолевая трансформация, приводящая к возникновению новообразований в тканяхмишенях. В результате возникают доброкачественные опухоли эндотелия (гемангиомы), лейкозы, лимфомы, доброкачественные и злокачественные опухоли периферической и центральной нервной системы, скелета и мягких тканей.

Рис. 9. Схема экологически обусловленного альтернативного онкогенеза (PM_{10} и $PM_{2.5}$ — микрочастицы углерода размером 10 и 2,5 микрометра соответственно; ΠAY — полициклические ароматические углеводороды, μ — космические лучи, AKM — активные кислородные метаболиты, $ЭM\Pi$ — электромагнитные поля, SEMA7A — семафорин 7A, MT — мягкие ткани).

Таким образом, роль гема в экологически обусловленном онкогенезе определяется как его неспецифической потенцией к увеличению интенсивности свободнорадикальных процессов, так и обусловленной ферромагнитными свойствами входящего в его состав железа специфической способностью к приему, индукции и усилению электромагнитных волн. А запуск опухолевой трансформации вследствие эпигеномной дерепрессии SEMA7A по своей сути является патологической активацией эмбриональных молекулярнобиологических процессов вне временных и пространственных физиологических

рамок. Предложенная концепция объясняет особенности спектра новообразований У детей, заключающиеся преобладании среди В доброкачественных опухолей возраста гемангиом, среди детского злокачественных новообразований – гемобластозов и опухолей нервной ткани. Также она позволяет приблизиться к пониманию причин и механизмов возникновения экологически обусловленных системных неоплазий у взрослых.

ВЫВОДЫ

- 1. Популяционная эколого-физиологическая дизадаптация к факторам космической погоды и дыму лесных пожаров ассоциирована с возникновением новообразований, поражающих системы тканей сосудистой, кроветворной, лимфоидной, нервной, скелета и мягких тканей. Колебания заболеваемости системными неоплазиями не случайны, они обусловлены изменениями интенсивности и продолжительности воздействия факторов окружающей среды. При этом ежегодные изменения частоты опухолей связаны с космическими лучами, а также с числом и/или площадью лесных пожаров, тогда как длительные многолетние тренды заболеваемости новообразованиями имеют высокую конгруэнтность с циклами солнечной и геомагнитной активности.
- 2. С позиции онкогенеза, факторы космической погоды и лесные пожары вызывают популяционную эколого-физиологическую дизадаптацию с возможным исходом в новообразования, воздействуя как единый взаимосвязанный комплекс, динамически изменяющийся в соответствии с 11-летним циклом солнечной активности. Число и площадь лесных пожаров связаны с циклом Швабе-Вольфа, при этом лаг в 7 лет обусловлен средней продолжительностью периода восстановления галактических космических лучей до максимума после пика солнечной активности.
- 3. Среди исследованных экологических факторов наиболее значимая ассоциация с новообразованиями характерна для космических лучей. Обнаружена очень сильная корреляция космических лучей с частотой возникновения у детей младшего возраста 0—4 лет в России нефробластомы (r = 0,907), также установлена сильная связь с заболеваемостью в полновозрастной популяции 0—85+ лет неходжкинскими лимфомами (r = 0,789), лейкозом (r = 0,741), опухолями ЦНС (r = 0,772) и саркомами мягких тканей (r = 0,686). Лаг между повышением уровня космических лучей и увеличением заболеваемости во всех нозологических группах был нулевым, либо равным одному году.
- 4. Вторым по значению среди изученных канцерогенных экологических факторов является дым лесных пожаров. Сильная связь с площадью лесных пожаров обнаружена в России у детей 0–4 лет при таких эмбриональных опухолях, как нефробластома (r=0,709), нейробластома (r=0,713) и ретинобластома (r=0,745), а в полновозрастной популяции при неходжкинских лимфомах (r=0,745), несколько меньшая при опухолях ЦНС (r=0,699), лейкозе (r=0,696) и саркомах мягких тканей (r=0,652).

Наибольший лаг между площадью лесных пожаров и заболеваемостью отмечен при нефробластоме (9 лет) и ретинобластоме (7 лет), при неходжкинских лимфомах он был равен нулю, при нейробластоме одному году, при прочих новообразованиях составлял 2 года.

- 5. Сравнительное исследование влияния лесных пожаров на возникновение новообразований на обширной территории Дальневосточного Федерального округа, сопоставимого по размерам с Австралией, методом авторегрессионной интегрированной скользящей средней (ARIMA) установило, что колебания частоты гемобластозов, опухолей ЦНС и сарком мягких тканей у населения материковой части региона тесно связаны с лесными пожарами.
- 6. Частота сарком скелета в полновозрастной популяции России, в отличие от других опухолей, не ассоциирована с космическими лучами, однако установлена ее сильная корреляция с колебаниями планетарного субаврорального индекса Кр (r=0,762; лаг 8 лет). Несколько меньшая связь индекса Кр установлена с заболеваемостью лимфомой Ходжкина (r=0,580; лаг 6 лет). Также выявлено, что заболеваемость лимфомой Ходжкина в полновозрастной популяции России связана не с площадью, а с числом лесных пожаров (r=0,623; лаг 0). Аналогичная корреляция установлена для частоты сарком скелета в детской популяции 0–14 лет (r=0,766; лаг 1).
- 7. Компаративный анализ показал наличие связей факторов космической погоды и дыма лесных пожаров с частотой гемобластозов в находящихся в сходных с Россией климатогеографических условиях популяциях Соединенных штатов Америки и Канады.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

АЕ – административные единицы

АНГ – антенатальная гипоксия

ГКЛ – галактические космические лучи

ДИ – доверительный интервал

ДМВ – дети младшего возраста

ДНК – дезоксирибонуклеиновая кислота

ДО – доброкачественные опухоли

3Н – злокачественные новообразования

3P – заболеваемость раком (в широком смысле, подразумевая все 3H)

КЛ – космические лучи

КПА – критический период онтогенеза

ЛХ – лимфома Ходжкина

НАЛЭ– неопиатный аналог лей-энкефалина

нТл – нанотесла

НХЛ – неходжкинские лимфомы

ОЛЛ – острый лимфолейкоз

ОМЛ – острый миелолейкоз

ПАУ – полициклические ароматические углеводороды

ПП – площадь лесных пожаров

РНК – рибонуклеиновая кислота

СКЛ – солнечные космические лучи

СМТ – саркомы мягких тканей

СРО – свободнорадикальное окисление

СС – саркомы скелета

УФИ – ультрафиолетовое излучение

ФОС – факторы окружающей среды

ХМЛ – хемолюминисценцция

ЦНС – центральная нервная система

ЧП – число лесных пожаров

ЭМП – электромагнитные поля

ASR – заболеваемость, мировой стандарт

EROS – экологически обусловленный окислительный стресс (от англ. Environmentally related oxidative stress)

nT – нанотесла

OR – отношение шансов (от английского "odds ratio")

γ - нанотесла

μ – космические лучи

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ Журналы, индексируемые в Международных базах цитирования (Scopus, Web of Science, GeoRef)

- 1. Влияние антенатальной гипоксии на некоторые показатели тканевого гомеостаза печени белых крыс / О.Г. Пинаева, О.А. Лебедько, Д.В. Яковенко, С.С. Тимошин, С.К. Пинаев, Е.Н. Сазонова // Бюллетень экспериментальной биологии и медицины. 2014. Т. 157, № 3. С. 301—304. (Scopus, WoS)
- 2. Чижов, А.Я. Системный анализ влияния солнечной радиации и дыма лесных пожаров на риск лейкоза у детей / А.Я. Чижов, С.К. Пинаев // Радиация и риск. 2018. Т. 27, № 4. С. 87–94. (Scopus)
- 3. Гепатопротективное влияние неонатального введения неопиатного аналога лей-энкефалина на половозрелых белых крыс, перенесших антенатальную гипоксию / О.Г. Пинаева, О.А. Лебедько, С.К. Пинаев, Е.Н. Сазонова // Бюллетень экспериментальной биологии и медицины. 2019. Т. 167, № 4. С. 409–412. (Scopus, WoS)
- 4. **Пинаев, С.К.** Риск развития эмбриональных опухолей у детей в зависимости от радиации Солнца и дыма лесных пожаров / С.К. Пинаев, А.Я. Чижов // Радиация и риск. 2020. Т. 29, № 1. С. 68–78. (**Scopus**)
- 5. **Pinaev, S.K.** About the role of environmental factors in carcinogenesis / S.K. Pinaev, O.G. Pinaeva, A.Ya. Chizhov // Actual Problems of Ecology and Environmental Management: Cooperation for Sustainable Development and Environmental Safety (APEEM 2020): E3S Web of Conferences. Vol. 169. URL: https://doi.org/10.1051/e3sconf/202016904003. (**Scopus, WoS**)

- 6. **Pinaev, S.K.** Environmentally-induced alternative oncogenesis: EROS arrows / S.K. Pinaev, O.G. Pinaeva, A.Ya. Chizhov // Actual Problems of Ecology and Environmental Management: Cooperation for Sustainable Development and Environmental Safety (APEEM 2020): E3S Web of Conferences. 2020. Vol. 169. URL: https://doi.org/10.1051/e3sconf/202016904006. (**Scopus, WoS**)
- 7. **Пинаев, С.К.** Критические периоды адаптации к дыму и солнечной активности на этапах онтогенеза (обзор литературы) / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Экология человека. 2021. № 11. С. 4–11. (**Scopus**)
- 8. Экологические факторы, связанные с колебаниями частоты новообразований у детей / **С.К. Пинаев**, В.И. Торшин, И.В. Радыш, А.Я. Чижов, О.Г. Пинаева // Экология человека. 2021. №6. С. 49–57. (**Scopus**)
- 9. **Пинаев, С.К.** Связь активности Солнца и дыма с трендами гемобластозов в России / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Радиация и риск. 2022. Т. 31, № 3. С. 100–110. (**Scopus**)
- 10. **Пинаев, С.К.** Связь дыма и солнечной активности с новообразованиями человека / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Казанский медицинский журнал. -2022. Т. 103, № 4. С. 650–657. (**Scopus**)
- 11. Сравнительный анализ связи трендов гемобластозов в России, Соединённых Штатах Америки и Канаде с солнечной активностью / С.К. Пинаев, А.Я. Чижов, А.М. Гржибовский, О.Г. Пинаева // Казанский медицинский журнал. -2022. Т. 103, № 6. С. 1005–1012. (**Scopus**)
- 12. **Пинаев**, **С.К.** Роль гема в экологически обусловленном онкогенезе (обзор литературы) / С.К. Пинаев // Экология человека. 2023. Т. 30, № 1. С. 5–15. (**Scopus**)
- 13. **Пинаев**, **С.К.** Связь активности Солнца и лесных пожаров с позиций онкогенеза / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Радиация и риск. -2023. Т. 32, № 4. С. 35 43. (**Scopus**)
- 14. Possible links of wildfires with oncological diseases of children and adults in the Russian Far East / **S.K. Pinaev**, S. Venevsky, V.V. Chakov, L. Tian, P. Gong, A.D. Kaprin, V.V. Starinsky, A.Ya. Chizhov, O.G. Pinaeva // Bulletin of RSMU. 2023. Vol. 4. P. 21–31. (**Scopus, WoS**)
- 15. Связь солнечной активности и дыма лесных пожаров с частотой опухолей центральной нервной системы в России / С.К. Пинаев, А.Д. Каприн, В.В. Старинский, А.Я. Чижов, О.Г. Пинаева // Казанский медицинский журнал. -2023. -T. 104, № 6. -C. 927–933. (Scopus)
- 16. Сравнительный анализ связи трендов лейкоза с лесными пожарами и активностью Солнца в различных возрастных группах / С.К. Пинаев, В.В. Старинский, А.Я. Чижов, О.Г. Пинаева // Казанский медицинский журнал. 2024. Т. 105, № 3. С. 433–442. (Scopus)
- 17. Trends in childhood leukemia incidence in urban countries and their relation to environmental factors, including space weather / O. Khabarova, **S.K. Pinaev**, V.V. Chakov, A.Y. Chizhov, O.G. Pinaeva // Front. Public Health. 2024. Vol. 12. P. 1295643. (**Scopus, WoS**)

- 18.Связь вариаций геомагнитной и солнечной активности с саркомами мягких тканей в России / С.К. Пинаев, В.В. Старинский, А.Я. Чижов, О.Г. Пинаева, О.П. Грецова // Международный научно-исследовательский журнал. − 2024. № 12 (150). C. 1–11. (GeoRef)
- 19. Связь индексов солнечной и геомагнитной активности с заболеваемостью неходжкинскими лимфомами в различных возрастных субпопуляциях России / С.К. Пинаев, В.В. Старинский, А.Я. Чижов, О.Г. Пинаева, О.П. Грецова // Международный научно-исследовательский журнал. − 2024. № 10 (148). C. 1–10. (GeoRef)
- 20. Связь дыма лесных пожаров с частотой лимфомы Ходжкина в различных возрастных популяциях России / С.К. Пинаев, В.В. Чаков, В.В. Старинский, А.Я. Чижов, О.Г. Пинаева, О.П. Грецова // Международный научно-исследовательский журнал. 2025. № 1 (151). С. 1–11. (GeoRef)

Журналы RSCI

- 21. Чижов, А.Я. Экологически обусловленный оксидативный стресс как фактор онкогенеза / А.Я. Чижов, С.К. Пинаев, С.З. Савин // Технологии живых систем. -2012. № 1. С. 47–53. (**RSCI**)
- 22. **Пинаев, С.К**. Первый опыт терапии рака пищевода с использованием иммунокорректора Трансфер Фактор[™] / С.К. Пинаев, О.Г. Пинаева, А.Я. Чижов // Технологии живых систем. 2014. № 4. С. 59–62. (**RSCI**)
- 23. Чижов, А.Я. Системный анализ связи дыма лесных пожаров и опухолей центральной нервной системы у детей / А.Я. Чижов, С.К. Пинаев, О.Г. Пинаева // Технологии живых систем. 2019. № 1. С. 53–58. (**RSCI**)
- 24. **Пинаев, С.К**. Сравнительный анализ связи трендов детского лейкоза в России, США и Канаде с солнечной активностью и дымом / С.К. Пинаев, А.Я. Чижов, Р.С. Пинаев // Технологии живых систем. 2023. Т. 20, № 1. С. 27—35. **(RSCI)**
- 25. **Пинаев, С.К.** Критические периоды адаптации к солнечной активности и дыму на этапах онтогенеза при гемобластозах у детей / С.К. Пинаев, А.Я. Чижов, Р.С. Пинаев // Технологии живых систем. 2024. Т. 21, № 4. С. 63–71. **(RSCI)**

Журналы перечня ВАК

26. **Пинаев, С.К.** Особенности канцерогенного действия различных видов дыма / С.К. Пинаев, О.Г. Пинаева, А.Я. Чижов // Ульяновский медикобиологический журнал. -2024. - № 1. - С. 6–27.

Другие журналы

- 27. **Пинаев, С.К.** Регрессия рака пищевода при использовании Трансфер Фактора / С.К. Пинаев, В.В. Попов, О.Г. Пинаева // Пятиминутка : научнопрактический журнал для врачей. 2011. № 3. С. 58–60.
- 28. **Пинаев, С.К.** Роль пренатальной экспозиции дыма лесных пожаров в онкогенезе у детей / С.К. Пинаев, О.Г. Пинаева, А.Я. Чижов // Биомедицинская радиоэлектроника. 2018. № 4. С. 13–17.
 - 29. Влияние неонатального введения даларгина на морфометрические

- показатели гепатоцитов и свободнорадикальное окисление в организме белых крыс, перенесших антенатальную гипоксию / О.Г. Пинаева, О.А. Лебедько, С.К. Пинаев, Е.Н. Сазонова // Дальневосточный медицинский журнал. 2017. № 3. С. 67–71.
- 30. **Пинаев**, **С.К.** Связь солнечной активности и дыма с гемобластозами детского возраста / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Вестник Российского университета дружбы народов. Серия: Экология и безопасность жизнедеятельности. 2022. Т. 30, № 4. С. 597–605.
- 31.Combinatorial aggregations and ARIMA modelling analysis in environmental spatio-temporal epidemiology / S.V. Venevsky, **S.K. Pinaev**, L. Tian, P. Gong, O.P. Gretsova // Ecology. Economy. Informatics. System analysis and mathematical modeling of ecological and economic systems. -2024. Vol. 1, N 9. P. 166–172.

Патенты

32. Свидетельство о государственной регистрации программы для ЭВМ № 2022669925 Российская Федерация. Адаптация: опубликовано 26.10.2022/ Л.В. Логинов, С.К. Пинаев.—Зарегистрировано в Реестре программ для ЭВМ.

Монографии

33.**Пинаев, С.К.** Системный анализ влияния дыма лесных пожаров и активности Солнца на риск развития новообразований у детей / С.К. Пинаев, А.Я. Чижов // Лесные и лесоболотные экосистемы Приамурья, их роль в социально-экономическом развитии региона. Глава VI. - Хабаровск: АО «Хабаровская краевая типография», 2020. - С. 314–351.

Конференции

- 34. Трансфер фактор в терапии рака пищевода / С.К. Пинаев, О.Г. Пинаева, А.В. Васильев, А.И. Егоров // Человек и лекарство. XIX Российский национальный конгресс: сборник материалов конгресса (тезисы докладов), г. Москва, 23-27 апреля 2012 г. М., 2012. С. 180.
- 35. **Пинаев, С.К.** Альтернативный онкогенез. Системная динамика экологических факторов при новообразованиях у детей / С.К. Пинаев, А.Я. Чижов // Успехи молекулярной онкологии : материалы IV Всероссийской Конференция с международным участием по молекулярной онкологии, 17-19 декабря 2018 г. Москва, 2018. Т. 5, № 4. Приложение. С. 18–19.
- 36. **Пинаев, С.К.** Системный анализ влияния солнечной радиации и дыма лесных пожаров на риск развития злокачественных новообразований у детей / Пинаев С.К., Чижов А.Я. // Успехи молекулярной онкологии / Материалы IV Всероссийской Конференция с международным участием по молекулярной онкологии, 17-19 декабря 2018 г., Москва.-2018.-Том 5, №4.-Приложение. С.9.
- 37. **Пинаев, С.К.** Системный анализ связи активности Солнца и частоты неходжкинских лимфом у детей / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Фундаментальная наука и технологии перспективные разработки : материалы XVII международной научно-практической конференции, 26-27 ноября 2018 г. USA: North Charleston, 2018. Т. 2. С. 14—17.
 - 38. Пинаев, С.К. Эколого-физиологические аспекты антенатального

- онкогенеза в детской популяции г. Хабаровска / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Агаджаняновские чтения : материалы II Всероссийской научно-практической конференции, г. Москва, 26-27 января 2018 г. Москва, 2018. С. 196–198.
- 39. **Пинаев, С.К.** Экологически обусловленный окислительный стресс в онкогенезе у детей/С.К. Пинаев, А.Я. Чижов // Успехи молекулярной онкологии: материалы V Всероссийской Конференции по молекулярной онкологии, 16–18 дек. 2019 г., Москва. 2019. Т.6, №4. Приложение. С. 73.
- 40. **Пинаев, С.К.** Значение экологических факторов в возникновении гемобластозов у детей / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Евразийский онкологический журнал : Тезисы XI Съезда онкологов и радиологов стран СНГ и Евразии, 23-25 апреля 2020 г., Казань. 2020. − Т. 8, № 2. Приложение. С. 239–240.
- 41. **Пинаев**, С.К. Критические периоды адаптации к факторам внешней среды на модели онкогенеза / С.К. Пинаев, О.Г. Пинаева, А.Я. Чижов // Агаджаняновские чтения : материалы III Всероссийской научно-практической конференции с международным участием. Москва, 16–18 апреля 2020 г. Москва: РУДН, 2020. С. 166–168.
- 42. **Пинаев, С.К.** Методические подходы к оценке влияния факторов внешней среды на онкогенез у детей / С.К. Пинаев, О.Г. Пинаева, А.Я. Чижов // Агаджаняновские чтения : материалы III Всероссийской научно-практической конференции с международным участием. Москва, 16–18 апреля 2020 г. Москва: РУДН, 2020. С. 168–169.
- 43. **Пинаев**, **С.К.** О роли факторов внешней среды в канцерогенезе / С.К. Пинаев, О.Г. Пинаева, А.Я. Чижов // Актуальные проблемы экологии и природопользования : сборник научных трудов XXI Международной научнопрактической конференция: в 3 т., Москва, апрель сентябрь 2020 г. Москва: РУДН, 2020. Т. 1. С. 29–34.
- 44. **Пинаев, С.К.** О связи факторов внешней среды с нейрогенными опухолями у детей / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Евразийский онкологический журнал: Тезисы XI Съезда онкологов и радиологов стран СНГ и Евразии, 23-25 апреля 2020 г. Казань, 2020. Т. 8, № 2. Приложение. С. 27.
- 45. **Пинаев, С.К.** Экологически обусловленный альтернативный онкогенез: стрелы EROSa / С.К. Пинаев, О.Г. Пинаева, А.Я. Чижов // Актуальные проблемы экологии и природопользования : сборник научных трудов XXI Международной научно-практической конференция: в 3 т., Москва, апрель сентябрь 2020 г. Москва: РУДН, 2020. Т. 2. С. 307–313.
- 46. **Pinaev, S.K.** System analysis of the linkage of sporadic fluctuations in the incidence of childhood cancer with environmental factors: book of abstracts / S.K. Pinaev, A.Ya. Chizhov, O.G. Pinaeva // Eighth International Conference on Radiation in Various Fields of Research, Virtual Conference. 2020. Vol. 8. P. 49. URL: https://www.rad-conference.org/Book_of_Abstracts-RAD_2020.pdf. (**Scopus**)

- 47. **Pinaev, S.K.** Environmentally related oxidative stress (EROS) in children carcinogenesis: An overview and own data / S.K. Pinaev // RAD Conf. Proc. -2020. Vol. 4. P. 85–89. URL: http://doi.org/10.21175/RadProc.2020.18. (**Scopus**)
- 48. **Pinaev, S.K.** The influence of solar radiation and forest fires smoke on sporadic fluctuations of neoplasms incidence in children / S.K. Pinaev // RAD Conf. Proc. 2020. Vol. 4. P. 69–71. URL: http://doi.org/10.21175/RadProc.2020.14. (**Scopus**)
- 49. **Pinaev, S.K.** Critical periods of adaptation to oncogenic environmental factors at the stages of ontogenesis / S.K. Pinaev, A.Ya. Chizhov, O.G. Pinaeva // Actual Problems of Ecology and Environmental Management (APEEM 2021): E3S Web of Conferences. 2021. Vol. 265. URL: https://doi.org/10.1051/e3sconf/202126506006. (**Scopus**)
- 50.**Пинаев, С.К.** Критические периоды адаптации к онкогенным факторам внешней среды на этапах онтогенеза / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Актуальные проблемы экологии и природопользования: сборник научных трудов XXII Международной научно-практической конференции: в 3 т. Москва, 22–24 апреля 2021 г.- Москва: РУДН, 2021.— Т. 2. С. 319–324.
- 51. **Пинаев, С.К.** Дезадаптация к солнечной активности и дыму в генезе гемобластозов у детей / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Экологофизиологические проблемы адаптации : материалы XIX Симпозиума. М.: Изд-во РУДН, 2022. С. 144–146.
- 52. **Пинаев, С.К.** Связь солнечной активности и дыма с гемобластозами у детей / С.К. Пинаев, А.Я. Чижов, О.Г. Пинаева // Актуальные проблемы экологии и природопользования : сборник научных трудов XXIII Международной научно-практической конференции: в 3 т. Москва, 21–23 апреля 2022 г. Москва: РУДН, 2022. Т. 2. С. 405–408.
- 53. **Пинаев, С.К.** Критические периоды эколого-физиологической адаптации к дыму и солнечной активности на этапах онтогенеза / С.К. Пинаев, А.Я. Чижов // Агаджаняновские чтения : материалы IV Всероссийской научно-практической конференции с международным участием. Москва, 25–27 мая 2023 г. Москва: РУДН, 2023. С. 332–335.
- 54. Связь активности Солнца и дыма лесных пожаров с частотой сарком скелета в России / С.К. Пинаев, В.В. Старинский, А.Я. Чижов, Р.С. Пинаев // Злокачественные опухоли. -2024. Т. 14, № 3S1. С. 95-96.
- 55. **Пинаев, С.К.** Роль гема и семафоринов в экологически обусловленном канцерогенезе: Стрелы EROSa / С.К. Пинаев, А.Я. Чижов, Р.С. Пинаев // Актуальные проблемы экологии и природопользования: сборник трудов XXV Международной научно-практической конференции. В 2-х томах, Москва, 26—28 апреля 2024 года. Москва: Российский университет дружбы народов им. П. Лумумбы, 2024. С. 219—223.
- 56. **Пинаев, С.К.** Экологически обусловленный альтернативный онкогенез и системные новообразования / С.К. Пинаев, А.Я. Чижов, Р.С. Пинаев // Актуальные проблемы экологии и природопользования : сборник трудов XXV

Международной научно-практической конференции. В 2-х томах, Москва, 26—28 апреля 2024 года. — Москва: Российский университет дружбы народов им. П. Лумумбы, 2024. — С. 214—218.

Благодарность

Приношу огромную благодарность за всестороннее содействие, ценные советы и замечания моему научному консультанту профессору Чижову А.Я., а также профессору Каприну А.Д., профессору Старинскому В.В., профессору Русакову И.Г., к.м.н. Грецовой О.П., к.ф.-м.н. Хабаровой О.В., к.б.н. Чакову В.В., к.б.н. Веневскому С.В., профессору Gong P., PhD (Med) Tian L.

Пинаев Сергей Константинович (Российская Федерация) Популяционная эколого-физиологическая дизадаптация к факторам космической погоды и дыму лесных пожаров

Адаптация к непрерывно меняющимся условиям окружающего мира является естественным свойством живой материи и абсолютным условием ее существования. Дизадаптация ведет к возникновению заболеваний, в том числе онкологических. Диссертационное исследование направлено на изучение популяционной эколого-физиологической дизадаптации ассоциаций факторам космической погоды и дыму лесных пожаров с новообразованиями поражающими системы тканей (сосудистой, кроветворной, лимфоидной, нервной, скелета и мягких тканей) для разработки методов ее выявления и коррекции.

Объектом исследования явилось население регионов Дальнего Востока России и Российской Федерации в целом под воздействием факторов космической погоды и дыма лесных пожаров, предположительно связанных с новообразований. качестве объектов сравнения возникновением В использованы находящиеся в сходных климатогеографических условиях популяции США и Канады. Корреляционный анализ по Пирсону между динамическими рядами индексов факторов внешней среды и заболеваемостью новообразованиями осуществлялся в формате кросс-корреляции, итерациях с временной задержкой (лагом) 0–10 лет, с шагом в один год. Анализ динамической статистической заболеваемостью связи между новообразованиями и числом лесных пожаров на территории Дальневосточного федерального округа России проведен с применением модели Бокса — Дженкинса (ARIMA).

Установлено, что число и площадь лесных пожаров связаны с циклом Швабе-Вольфа, при этом лаг в 7 лет обусловлен средней продолжительностью периода восстановления галактических космических лучей до максимума после пика солнечной активности. Среди исследованных экологических факторов наиболее значимая ассоциация с новообразованиями характерна для космических лучей. Обнаружена очень сильная корреляция космических лучей с частотой возникновения в России нефробластомы (r = 0,907), также установлена сильная связь между их интенсивностью и заболеваемостью

неходжкинскими лимфомами (r=0,789), лейкозом (r=0,741), опухолями центральной нервной системы (ЦНС, r=0,772), саркомами мягких тканей (r=0,686). Лаг между повышением уровня космических лучей и увеличением заболеваемости во всех нозологических группах был нулевым, либо равным одному году.

Вторым по значению среди изученных канцерогенных экологических факторов является дым лесных пожаров. Сильная связь с площадью лесных пожаров обнаружена в популяции России при таких эмбриональных опухолях, как нефробластома (r = 0.709), нейробластома (r = 0.713) и ретинобластома (r = 0.713) 0,745), а также при неходжкинских лимфомах (r = 0,745), несколько меньшая при опухолях ЦНС (r = 0.699), лейкозе (r = 0.696) и саркомах мягких тканей (r = 0.696) 0,652). Наибольший лаг между площадью лесных пожаров и заболеваемостью отмечен при нефробластоме (9 лет) и ретинобластоме (7 лет), неходжкинских лимфомах он был равен нулю, при нейробластоме - одному году, при прочих новообразованиях составлял 2 года. Сравнительное исследование влияния лесных пожаров на возникновение новообразований методом авторегрессионной интегрированной скользящей средней (ARIMA) на обширной территории Дальневосточного Федерального округа, сопоставимого по размерам с Австралией, установило, что колебания частоты гемобластозов, опухолей ЦНС и сарком мягких тканей у населения материковой части региона тесно связаны с лесными пожарами.

Частота сарком скелета в России, в отличие от других опухолей, не ассоциирована с космическими лучами, однако установлена ее сильная корреляция с колебаниями планетарного субаврорального индекса Кр (r=0,762; лаг 8 лет). Несколько меньшая связь индекса Кр установлена с заболеваемостью лимфомой Ходжкина (r=0,580; лаг 6 лет). Также выявлено, что заболеваемость лимфомой Ходжкина в полновозрастной популяции России связана не с площадью, а с числом лесных пожаров (r=0,623; лаг 0). Аналогичная корреляция установлена для частоты сарком скелета в детской популяции 0–14 лет (r=0,766; лаг 1). Компаративный анализ показал наличие связей факторов космической погоды и дыма лесных пожаров с частотой гемобластозов в находящихся в сходных с Россией климатогеографических условиях популяциях Соединенных штатов Америки и Канады.

Разработана концептуальная модель экологически обусловленного онкогенеза, в основе которой находится эпигенетическая дизрегуляция семафоринов под воздействием окислительного стресса, усиленного гемом вследствие его неспецифической потенции к стимуляции свободнорадикальных процессов, и обусловленной ферромагнитными свойствами входящего в его состав железа специфической способностью к приему, индукции и усилению электромагнитных волн. Предложенная концепция объясняет особенности спектра новообразований у детей, заключающиеся в преобладании среди доброкачественных опухолей детского возраста гемангиом, а среди злокачественных новообразований — гемобластозов и опухолей нервной ткани.

Также она позволяет приблизиться к пониманию причин и механизмов возникновения экологически обусловленных системных неоплазий у взрослых.

Авторская программа для ЭВМ «АДАПТАЦИЯ» позволяет эффективно неспецифической вид адаптационной реакции реактивности на основании общего анализа крови с лейкоцитарной формулой. Подтверждена эффективность коррекции дизадаптации иммуномодулятором Трансфер Фактор^{ТМ}. Внедрена дополнительная профессиональная программа повышения теме «Выявление квалификации врачей ПО дизадаптации у онкологических пациентов в процессе химиотерапии», направленная на улучшения непосредственных и отдаленных результатов лечения.

Pinaev Sergey Konstantinovich (Russian Federation) Population ecological and physiological disaptation to space weather factors and forest fire smoke

Adaptation to continuously changing conditions of the surrounding world is a natural property of living matter and an absolute condition for its existence. Disadaptation leads to the occurrence of diseases, including oncological ones. The dissertation research is aimed at studying the associations of population ecological and physiological disadaptation to space weather factors and forest fire smoke with human neoplasms affecting tissue systems (vascular, hematopoietic, lymphoid, nervous, skeletal and soft tissues) to develop methods for its detection and correction.

The object of the research was the population of the regions of the Russian Far East, and the Russian Federation in total under the influence of space weather factors and forest fire smoke, presumably associated with the occurrence of neoplasms. Populations of the USA and Canada in similar climatic and geographical conditions were used as objects of comparison. Pearson correlation analysis between the dynamic series of environmental factor indices and neoplasm incidence was performed in the cross-correlation format, in 11 iterations with a time lag of 0–10 years with a lag of one year. The analysis of the dynamic statistical relationship between neoplasm incidence and the number of forest fires in the Far Eastern Federal District of Russia was carried out using the Box-Jenkins model (ARIMA).

It was found that the number and area of forest fires are associated with the Schwabe-Wolf cycle, while the lag of 7 years is due to the average duration of the restoration period of galactic cosmic rays to the maximum after the peak of solar activity. Among the studied environmental factors, the most significant association with neoplasms is characteristic of cosmic rays. A very strong correlation was found between cosmic rays and the incidence of nephroblastoma in Russia (r = 0.907), and a strong connection was also established with the incidence of non-Hodgkin's lymphomas (r = 0.789), leukemia (r = 0.741), tumors of the central nervous system (CNS, r = 0.772), and soft tissue sarcomas (r = 0.686). The lag between the increase in the level of cosmic rays and the increase incidence in all nosological groups was, as a rule, zero or equal to one year.

The second most important studied carcinogenic environmental factor is smoke from forest fires. A strong correlation with the forest fire area was found in the Russian population for such embryonic tumors as nephroblastoma (r=0.709), neuroblastoma (r=0.713), and retinoblastoma (r=0.745), as well as non-Hodgkin's lymphomas (r=0.696), and soft tissue sarcomas (r=0.652). The largest lag between the forest fire area and incidence was noted for nephroblastoma (9 years) and retinoblastoma (7 years), for non-Hodgkin's lymphomas it was zero, for neuroblastoma it was one year, and for other neoplasms it was two years.

A comparative study of the impact of forest fires on the occurrence of neoplasms in the Far Eastern Federal District, comparable in size to the continent, using the autoregressive integrated moving average (ARIMA) method, found that fluctuations in the incidence of hemoblastoses, CNS tumors and soft tissue sarcomas in the population of the continental part of the region are closely associated with forest fires. The incidence of skeletal sarcomas in Russia, unlike other tumors, is not associated with cosmic rays, but a strong correlation has been established with fluctuations in the planetary subauroral index Kp (r = 0.762; lag 8 years). A somewhat smaller relationship between the Kp index and the incidence of Hodgkin's lymphoma (r = 0.580; lag 6 years). It was also found that the incidence of Hodgkin's lymphoma at adult population of Russia is associated not with the area, but with the number of forest fires (r = 0.623; lag 0). A similar correlation was found for the incidence of skeletal sarcomas in the pediatric population aged 0-14 years (r = 0.766; lag 1). Comparative analysis showed the presence of links between space weather factors and forest fire smoke with the incidence of hemoblastoses in the populations of the United States of America and Canada, which are located in climatic and geographical conditions similar to those of Russia.

A conceptual model of environmentally conditioned oncogenesis has been developed, based on the epigenetic dysregulation of semaphorins under the influence of oxidative stress, enhanced by heme due to its nonspecific potency to stimulate free-radical processes, and due to the ferromagnetic properties of the iron included in its composition, the specific ability to receive, induce and amplify electromagnetic waves. The proposed concept explains the features of the spectrum of neoplasms in children, consisting in the prevalence of hemangiomas among benign tumors of childhood, and hemoblastoses and tumors of the nervous tissue among malignant neoplasms. It also allows us to come closer to understanding the causes and mechanisms of the occurrence of environmentally conditioned systemic neoplasia in adults. The author's software package "ADAPTATION" allows you to effectively determine the type of non-specific adaptation reaction and the level of reactivity based on a general blood test with a leukocyte formula. The effectiveness of the correction of maladaptation by the immunomodulator Transfer FactorTM has been confirmed.

Пинаев Сергей Константинович (Россия)

Популяционная эколого-физиологическая дизадаптация к факторам космической погоды и дыму лесных пожаров

Автореферат диссертации на соискание ученой степени доктора медицинских наук

Подписано в печать 22.10.2025. Формат 60 x 84/16. Бумага офсетная. Тираж 100 экз. Усл. печ. л. 2,67. Уч.-изд. л. 2,86. Заказ № 407.

Издательство ФГБОУ ВО ДВГМУ. 680000, г. Хабаровск, ул. Пушкина, 31.

Отпечатано в типографии издательства ФГБОУ ВО ДВГМУ. 680000, г. Хабаровск, ул. Муравьева- Амурского, 35.