ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (ФГБОУ ВО КУБГМУ МИНЗДРАВА РОССИИ)

На правах рукописи

Атажахова Маргарита Галимовна

ПРОГРАММА КОМПЛЕКСНОЙ ДИАГНОСТИКИ ДИСФУНКЦИЙ НЕЙТРОФИЛЬНЫХ ГРАНУЛОЦИТОВ У ПАЦИЕНТОВ С ПОСТКОВИДНЫМ СИНДРОМОМ, АССОЦИИРОВАННЫМ С АКТИВАЦИЕЙ ГЕРПЕСВИРУСНЫХ ИНФЕКЦИЙ

3.2.7. Иммунология Диссертация на соискание ученой степени кандидата медицинских наук

> Научный руководитель: Нестерова Ирина Вадимовна, доктор медицинских наук, профессор

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ5
ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ19
1.1 Проблема постковидного синдрома в современных реалиях
1.2 Механизм развития постковидного синдрома и его последствия
ассоциированные с активацией герпесвирусных инфекций24
1.3 Роль нейтрофильных гранулоцитов в развитии постковидного синдрома
ассоциированного с активацией герпесвирусных инфекций42
1.4 Иммунотерапевтические стратегии, направленные на дисфункции
нейтрофильных гранулоцитов при постковидном синдроме, ассоциированным с
активацией герпесвирусных инфекций47
ГЛАВА 2 МАТЕРИАЛЫ И МЕТОДЫ
2.1 Общая характеристика объекта исследования
2.2 Методы исследования
2.2.1 Клинические методы исследования
2.2.2 Лабораторные методы исследования
2.2.3 Иммунологические методы исследования
2.2.3.1 Определение концентрации сывороточных интерферонов, про-
противовоспалительных цитокинов
2.2.3.2 Определение концентрации общих иммуноглобулинов А, М, G58
2.2.3.3 Фенотипирование субпопуляций нейтрофильных гранулоцитов58
2.2.4 Оценка оксидазной активности нейтрофильных гранулоцитов59
2.2.5 Оценка фагоцитарной активности нейтрофильных гранулоцитов61
2.2.6 Молекулярно-генетические методы исследования: ИФА и ПЦР-РВ63
2.2.6.1 Методы выявления герпесвирусных инфекций
2.2.6.2 Серологическая диагностика перенесенного COVID-1964
2.2.7 Культуральные методы
2.2.8 Статистические методы

ГЛАВА 3 КЛИНИКО-ИММУНОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА
ФУНКЦИОНАЛЬНЫХ ОСОБЕННОСТЕЙ, ФЕНОТИПА И ЭФФЕКТОРНЫХ
ФУНКЦИЙ НЕЙТРОФИЛЬНЫХ ГРАНУЛОЦИТОВ ПРИ ПОСТКОВИДНОМ
СИНДРОМЕ, АССОЦИИРОВАННЫМ С АКТИВАЦИЕЙ ГЕРПЕСВИРУСНЫХ
ИНФЕКЦИЙ66
3.1 Клинико-иммунологические особенности пациентов с постковидным
синдромом, ассоциированным с активацией герпесвирусных инфекций66
3.2 Характеристика этиологической структуры герпесвирусных инфекций у
пациентов с постковидным синдромом, ассоциированным с активацией
герпесвирусных инфекций72
3.3 Содержание и фенотип субпопуляции CD16 ⁺ IFNα/βR1 ⁺ CD119 ⁺ ,
$CD16^{+}IFNα/βR1^{+}CD119^{-}$, $CD16^{+}IFNα/βR1^{+}CD119^{+}$ нейтрофильных гранулоцитов у
пациентов с постковидным синдромом, ассоциированным с активацией
герпесвирусных инфекций74
3.4 Дефекты эффекторных функций нейтрофильных гранулоцитов у пациентов с
постковидным синдромом, ассоциированным с активацией герпесвирусных
инфекций77
3.5 Особенности системы интерферонов, про- и противовоспалительных
цитокинов у пациентов с постковидным синдромом, ассоциированным с
активацией герпесвирусных инфекций88
3.6 Состояние гуморального иммунного ответа у пациентов с постковидным
синдромом, ассоциированным с активацией герпесвирусных инфекций92
ГЛАВА 4 ПЕРЕПРОГРАММИРОВАНИЕ IN VITRO ФЕНОТИПА
СУБПОПУЛЯЦИЙ НЕЙТРОФИЛЬНЫХ ГРАНУЛОЦИТОВ И ИХ
ЭФФЕКТОРНЫХ ФУНКЦИЙ У ПАЦИЕНТОВ С ПОСТКОВИДНЫМ
СИНДРОМОМ, АССОЦИИРОВАННЫМ С АКТИВАЦИЕЙ
ГЕРПЕСВИРУСНЫХ ИНФЕКЦИЙ95

4.1 Эффекты влияния гексапептида in vitro на нейтрофильные гранулоциты у
пациентов с постковидным синдромом, ассоциированным с активацией
герпесвирусных инфекций95
4.1.1 Эффекты влияния гексапептида на количество и фенотип субпопуляций
нейтрофильных гранулоцитов, экспрессирующих рецепторы к IFN I и II типов, и
CD16 при постковидном синдроме, ассоциированным с активацией
герпесвирусных инфекций96
4.1.2 Влияние гексапептида на эффекторные функции нейтрофильных
гранулоцитов при постковидном синдроме, ассоциированным с активацией
герпесвирусных инфекций100
4.2 Эффекты влияния рекIFNα2b in vitro на нейтрофильные гранулоциты у
пациентов с постковидным синдромом, ассоциированным с активацией
герпесвирусных инфекций103
4.2.1 Эффекты влияния рекIFNα2b на количество и фенотип субпопуляций
нейтрофильных гранулоцитов, экспрессирующих рецепторы к IFN I и II типов, и
CD16 при постковидном синдроме, ассоциированным с активацией
герпесвирусных инфекций104
4.2.2 Влияние рекIFNα2b на эффекторные функции нейтрофильных гранулоцитов
при постковидном синдроме, ассоциированным с активацией герпесвирусных
инфекций108
4.2.3 Алгоритм комплексной диагностики дисфункций НГ пациентов с ПКС,
ассоциированным с активацией герпесвирусных инфекций112
ЗАКЛЮЧЕНИЕ113
ВЫВОДЫ124
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ126
ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ127
СПИСОК СОКРАЩЕНИЙ128
СПИСОК ЛИТЕРАТУРЫ130

ВВЕДЕНИЕ

Актуальность темы исследования

Вспышка нового инфекционного заболевания COVID-19, начавшаяся в декабре 2019 года, стала глобальной чрезвычайной ситуацией в сфере общественного здравоохранения, имеющей статус международного значения [309] и была признана пандемией 11 марта 2020 года [311]. Впоследствии 5 мая 2023 года ВОЗ объявила об окончании чрезвычайной ситуации в области здравоохранения, вызванной COVID-19. Но новым вызовом практическому и научному сообществам стало состояние пациентов, которое развивается после перенесенной SARS-CoV-2 инфекции и осложняется развитием постковидного синдрома (ПКС), который отмечается у 10-20% реконвалесцентов и затрагивает множество органов и систем, оказывая негативное влияние на качество жизни пациентов.

ПКС проявляется разнообразными неспецифическими симптомами, при этом наиболее частыми жалобами являются одышка, усталость, трудности с переносимостью физических нагрузок, проблемы с концентрацией внимания, а также эмоциональные и когнитивные расстройства (КР), что приводит к социальной дисфункции. Симптомы могут варьировать, рецидивировать, сохраняться с момента первичного заражения или возникнуть впервые после перенесенного заболевания [307]. Пациенты с ПКС на протяжении всей последующей жизни подвержены инфекциям, как острым, так и хроническим, склонным к реактивации при любой стрессовой ситуации [27]. Наиболее часто ПКС сопровождается реактивацией хронических активных герпесвирусных инфекций (ГВИ), проявляющихся, в том числе когнитивными дисфункциями и синдромом хронической усталости (СХУ) и оказывающих значительное негативное влияние на повседневную жизнь, и ее продуктивность.

Было предложено несколько гипотез патогенеза ПКС, в том числе персистирующие резервуары SARS-CoV-2 в тканях [248], микрососудистое свертывание крови с эндотелиальной дисфункцией, нарушенная передача сигналов в стволе мозга и/или блуждающем нерве, негативное воздействие SARS-CoV-2 на микробиоту, иммунная дисрегуляция [94, 102, 244, 245].

Нейтрофильные гранулоциты (НГ) занимают ключевую роль в уничтожении инфекционных патогенов [17], применяя различные интра- и экстрацеллюлярные механизмы [18, 295]. Они образуют активные формы кислорода (АФК; ROS-Reactive oxygen species) и нейтрофильные внеклеточные ловушки (neutrophilic extracellular traps - NETs), состоящие из гистонов и ДНК, а также вырабатывают про- и противовоспалительные цитокины, и протеазы [55, 92, 265]. Многочисленными исследованиями была доказана важная роль НГ в иммунопатогенезе COVID-19.

Убедительно доказано, что развитие иммунотромбозов, возникновение тяжелого острого респираторного дистресс-синдрома (ОРДС) и нарушений свертывания крови в острый период COVID-19 ассоциированы с усилением нетоза [181, 182, 248]. Также представлены данные, о том, что NETs и их компоненты в сыворотке крови пациентов могут обнаруживаться еще в течение 6 месяцев после перенесенного COVID-19 [219].

Возникающие осложнения у пациентов, перенесших COVID-19, достаточно серьезны, однако, в настоящее время данные о состоянии иммунной системы (ИС) и особенностях функционирования НГ у пациентов с ПКС, чрезвычайно малы. Учитывая характер и сложность состояний, возникающих у пациентов после COVID-19, сопровождающихся реактивацией хронических активных ГВИ, крайне необходимо провести дополнительные исследования по изучению иммунопатологических процессов, что может лежать в основе дальнейшей разработки новых терапевтических стратегий. В связи с вышеизложенным, разработка программы комплексной диагностики дисфункций НГ у пациентов с

ПКС, ассоциированным с активацией ГВИ, является в настоящее время чрезвычайно перспективной и актуальной.

Степень разработанности темы исследования

COVID-19 Последствия пандемии гетерогенность И клинических проявлений ПКС явились новым стимулом для изучения состояния ИС и уточнения функционирования системы НГ в постковидном периоде. В настоящее время имеется достаточное количество литературных источников, в которых обсуждаются разнообразные факторы возможной иммунопатофизиологии развития ПКС, что подчеркивает важность и необходимость понимания возникающих хронических состояний после перенесенного COVID-19 [42, 124, 186, 216, 234, 264, 301, 313]. При этом проблемой мирового масштаба остаются ограниченные исследования по методам раннего выявления факторов риска развития ПКС и стратегиям иммунотерапевтического воздействия на данное состояние, что подчеркивает необходимость разработки новых клиникодиагностических маркеров.

Установлено, что в большей мере пациенты с ПКС предъявляют жалобы на выраженные проявления СХУ и стойкие КР, оказывающие негативное влияние на качество их жизни [26, 27, 112, 207, 231, 298, 312]. В настоящее время имеются многочисленные доказательства связи СХУ с перенесенной SARS-CoV-2 инфекцией, при этом вероятными этиологическими факторами поствирусного СХУ с формированием нейроиммуновоспаления, протекающим на фоне разнообразных нарушений ИС выделяют ассоциированную с ПКС активацию таких хронических ГВИ, как ВЭБ, ВЧГ6 и ЦМВ [56, 69, 78, 109, 125, 185, 237, 306].

В остром периоде COVID-19 выявляются нарушения в функционировании системы НГ: повышение количества НГ, выработка АФК и формирование NETs, которые вызывают повреждение тканей [16, 71, 152]. Показано, что дефекты

эффекторных функций НГ, трансформация субпопуляций, экспрессирующих рецепторы к IFN I (IFN α / β R1) и II типов (IFN γ R - CD119), системный дисбаланс цитокинов, в частности высокий уровень провоспалительных цитокинов и дефицит IFN α и/или IFN γ предполагают, незавершенность иммуновоспалительного процесса и сигнализируют о риске возникновения ПКС [3, 7, 12, 19], в том числе ассоциированного с активацией ГВИ [20, 22, 29].

Изучение дисфункций НГ на молекулярном уровне, и разработка программы комплексной диагностики нарушений функционирования НГ для пациентов с ПКС, ассоциированным с активацией ГВИ может в дальнейшем предложить способы иммуномоделирования субпопуляций НГ, экспрессирующих функционально-значимые рецепторы, что является чрезвычайно актуальным, и представляет несомненный теоретический и практический интерес.

Цель исследования

Разработать программу комплексной диагностики дисфункций нейтрофильных гранулоцитов у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций.

Задачи исследования

- 1. На базе проведения ретроспективного анализа данных историй болезни пациентов, перенесших подтвержденную SARS-CoV-2 инфекцию разработать новые диагностические критерии, позволяющие прогнозировать формирование постковидного синдрома и оценивать тяжесть его течения.
- 2. Исследовать особенности частоты встречаемости различных герпесвирусных инфекций у пациентов с постковидным синдромом.
- 3. У пациентов с постковидным синдромом, ассоциированным с активацией различных герпесвирусных инфекций, уточнить наличие критериальных

- признаков иммунокомпрометированности с использованием модифицированной шкалы-опросника.
- 4. функций фенотипическую Оценить состояние эффекторных И субпопуляций $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, характеристику $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{+}$ нейтрофильных гранулоцитов, а также особенности профиля сывороточных нейтрофилассоциированных цитокинов у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций.
- 5. Исследовать в эксперименте *in vitro* эффекты влияний иммунотропных препаратов: рекомбинантного IFNα2b и синтетического тимического гексапептида аргинил-альфа-аспартил-лизил-валил-тирозил-аргинина на эффекторные функции и фенотип субпопуляций CD16⁺IFNα/βR1⁻CD119⁺, CD16⁺IFNα/βR1⁺CD119⁻, CD16⁺IFNα/βR1⁺CD119⁺ нейтрофильных гранулоцитов у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций.
- 6. Разработать алгоритм комплексной клинико-лабораторной диагностики дисфункций нейтрофильных гранулоцитов у пациентов, с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций.

Научная новизна исследования

- 1. Разработаны новые диагностические и прогностические критерии: «Интеграционный диагностический показатель прогноза развития постковидного синдрома» (ИДП-ПКС) и «Интеграционный диагностический критерий прогноза тяжести течения постковидного синдрома» (ИДК-ПКС), позволяющие прогнозировать формирование постковидного синдрома и оценивать тяжесть его течения.
- 2. Получены новые данные, свидетельствующие об активации микст герпесвирусных инфекций у пациентов с ПКС.

- 3. Для уточнения наличия критериев иммунокомпрометированности впервые использована модифицированная шкала-опросник для пациентов с ПКС, ассоциированным с активацией герпесвирусных инфекций.
- 4. Впервые выявлены дисрегуляторные нарушения эффекторных функций, фенотипических характеристик субпопуляций CD16⁺IFNα/βR1⁻CD119⁺, CD16⁺IFNα/βR1⁺CD119⁻ нейтрофильных гранулоцитов, а также изменения уровня сывороточных нейтрофилассоциированных цитокинов у пациентов с ПКС, ассоциированным с активацией герпесвирусных инфекций.
- 5. В эксперименте *in vitro* получены новые данные об особенностях влияний иммунотропных субстанций рекомбинантного IFNα2b и синтетического тимического гексапептида на фенотип субпопуляций CD16⁺IFNα/βR1⁻ CD119⁺, CD16⁺IFNα/βR1⁺CD119⁻ и эффекторные функции нейтрофильных гранулоцитов у пациентов с ПКС, ассоциированным с активацией герпесвирусных инфекций.
- 6. Разработан алгоритм комплексной клинико-лабораторной диагностики дисфункций нейтрофильных гранулоцитов у пациентов с ПКС, ассоциированным с активацией герпесвирусных инфекций.

Теоретическая и практическая значимость

При проведении ретроспективного анализа было показано, что у пациентов, выписанных из стационара в соответствии с критериями, актуальными на момент исследования "Временных клинических рекомендациях по диагностике и лечению новой коронавирусной инфекции», были выявлены диагностически значимые лабораторные изменения (лейкоцитоз, нейтрофилез, лимфопения, повышенный уровень СРБ), а также имели место некоторые клинические проявления (слабость, потливость, боли в груди, одышка, непереносимость

физической нагрузки, снижение работоспособности и т.д.), что сопровождалось высокой вероятностью развития ПКС в постковидном периоде.

Уточнены молекулярные механизмы и выявлены различные нарушения в функционировании системы НГ: дефекты эффекторных функций и негативная трансформация субпопуляций, которые экспрессируют рецепторы к IFNα/β и IFNγ: CD16⁺IFNα/βR1⁻CD119⁺HΓ, CD16⁺IFNα/βR1⁺CD119⁻HΓ, CD16⁺IFNα/βR1⁺CD119⁺, при этом отмечалось повышение плотности экспрессии изучаемых рецепторов НГ. В тоже время у пациентов с ПКС в ряде случаев наблюдалась гиперактивация НГ, о чем свидетельствовало появление в циркулирующей периферической крови НГ, сформировавших NETs и НГ, находящихся в состоянии апоптоза.

дисбаланс Выявленный В профиле сывороточных про-И противовоспалительных нейтрофил-ассоциированных цитокинов с повышением уровня IL1β, IL8, IL6 и IL17A на фоне дефицита сывороточных IFNα и IFNγ, сочетающихся с активацией различных ГВИ, таких как ВЭБ, ВПГ1/2, ВЧГ6, ЦМВ в микст вариациях, расширяет представление о механизмах иммунопатогенеза ПКС. Дисрегуляторные изменения цитокинового профиля способствуют возникновению длительного нетипично протекающего воспаления и косвенно являются основополагающими факторами в развитии нейроиммуновоспаления у пациентов с ПКС, ассоциированным с активацией ГВИ.

Практическую значимость представляет собой модифицированная шкалаопросник [22] для диагностики и выявления тяжести клинических проявлений ПКС в баллах, что позволяет выявить группу пациентов с наиболее вероятной активацией ГВИ и отдаленными последствиями перенесенного COVID-19.

Разработанные комплексные расчетные лабораторные маркеры, «Интеграционный диагностический показатель прогноза развития постковидного синдрома» (ИДП-ПКС) и «Интеграционный диагностический критерий прогноза тяжести течения постковидного синдрома» (ИДК-ПКС) могут быть применены в

клинической практике, поскольку позволяют выявить возможность развития ПКС после перенесенного заболевания COVID-19, а также оценить тяжесть течения ПКС. Данные маркеры зарегистрированы в Роспатенте в качестве компьютерных программ для ЭВМ, как методы клинико-математического анализа с целью предиктивной диагностики ПКС, ассоциированного с активацией ГВИ.

Результаты, полученные в системе *in vitro*, продемонстрировали положительные иммуномодулирующие эффекты рекомбинантного IFNα2b (рекIFNα2b) и синтетического тимического гексапептида (ГП) на негативно трансформированный фенотип субпопуляций и эффекторные функции НГ, что позволит в дальнейшем использовать полученные данные для разработки новых подходов к применению таргетной интерфероно- и иммуномодулирующей терапии в комплексном лечении пациентов с ПКС, ассоциированным с активацией ГВИ.

Разработан алгоритм клинико-лабораторной диагностики дисфункций НГ пациентов с ПКС, ассоциированным с активацией ГВИ, что имеет значение для клинической практики.

Методология и методы исследования

Для решения поставленных задач в работе использованы методы ретроспективного и проспективного когортного анализа, позволяющие выявить иммунопатогенез острого инфекционного процесса, вызванного SARS-CoV-2, оценить его последствия, выявить симптомы и тяжесть течения ПКС, а также определить наличие ГВИ в постковидном периоде и разработать программу комплексной диагностики дисфункций НГ у пациентов с ПКС, ассоциированным с активацией ГВИ.

В ходе исследования применялись клинические и статистические методы анализа, а также передовые лабораторные техники для изучения функционирования ИС. Исследование получило одобрение от локального

независимого этического комитета ФГБОУ ВО КубГМУ Минздрава России протокол № 93 от 13.10.2020 г. Методология исследования была разработана с учетом анализа как отечественных, так и зарубежных научных трудов, что способствовало выявлению важности и глубины рассматриваемой темы, а также четкому формулированию цели и задач данного исследования.

работе проводился сравнительный собственных анализ результатов клинических и экспериментальных иммунологических исследований, направленный на уточнение иммунопатогенеза и выявление дисфункций в работе ИС у пациентов с ПКС, ассоциированным с активацией ГВИ. Использование модифицированной шкалы-опросника позволило выявить характерные для ПКС клинические симптомы и степень их выраженности. Созданные интеграционные диагностические лабораторные маркеры ИДП-ПКС и ИДК-ПКС в качестве компьютерных программ для ЭВМ позволяют выявить пациентов из группы риска, нуждающихся в дополнительном иммунологическом исследовании и дальнейшем наблюдении целью необходимости проведения коррекции c ИС применением таргетной интерферонофункционирования иммуномодулирующей терапии.

Положения, выносимые на защиту

1. Ретроспективный анализ данных 1000 историй болезни пациентов, перенесших подтвержденную SARS-CoV-2 инфекцию и результаты клиниколабораторных исследований 60 пациентов с подтвержденным постковидным синдромом явились основой для создания новых прогностического и диагностического критериев: «Интеграционный диагностический показатель прогноза развития постковидного синдрома» (ИДП-ПКС) и «Интеграционный диагностический критерий прогноза тяжести течения постковидного синдрома» (ИДК-ПКС), позволяющих, как прогнозировать

- формирование постковидного синдрома, так и оценивать тяжесть его течения.
- 2. В основе иммунопатогенеза постковидного синдрома, ассоциированного с активацией герпесвирусных инфекций лежат нарушения противовирусной защиты: дефектность эффекторных и регуляторных функций нейтрофильных гранулоцитов, негативная трансформация их функционально-значимых субпопуляций CD16⁺IFNα/βR1⁻CD119⁺, CD16⁺IFNα/βR1⁺CD119⁻ и отсутствие субпопуляции CD16⁺IFNα/βR1⁺CD119⁺, циркуляция в периферической крови повышенного количества нейтрофильных гранулоцитов, вошедших в апоптоз и сформировавших нейтрофильные экстрацеллюлярные сети – NETs на фоне IFNγ, дефицита сывороточных IFNα дисбаланса нейтрофилассоциированных сывороточных цитокинов.
- 3. Рекомбинантный IFNα2b и синтетический тимический гексапептид аргинилальфа-аспартил-лизил-валил-тирозил-аргинин эксперименте vitro В продемонстрировали различные позитивные иммуномодулирующие эффекты, способствующие восстановлению эффекторных и регуляторных функций, фенотипических характеристик субпопуляций также $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$ нейтрофильных гранулоцитов пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций.
- 4. Созданный алгоритм комплексной клинико-лабораторной диагностики дисфункций нейтрофильных гранулоцитов при постковидном синдроме, ассоциированным с активацией герпесвирусных инфекций, включает также разработанные *de novo* лабораторные прогностические и диагностические маркеры: интеграционный диагностический показатель ИДП-ПКС и интеграционный диагностический критерий ИДК-ПКС, которые позволяют предсказать формирование постковидного синдрома, а также оценить степень его тяжести.

Внедрение результатов исследования в практику

Результаты исследований были успешно внедрены в учебный процесс: бюджетного образовательного государственного высшего образования «Кубанский государственный медицинский университет» Министерства здравоохранения Российской Федерации, в частности на кафедре лабораторной клинической иммунологии, аллергологии И диагностики факультета повышения квалификации и профессиональной переподготовки специалистов через проведение лекций и семинаров для студентов, ординаторов, аспирантов и слушателей циклов повышения квалификации по фундаментальной И клинической иммунологии, клинической лабораторной диагностике; федерального государственного бюджетного образовательного учреждения образования «Майкопский государственный технологический высшего университет» на кафедре физиологии и клинической патологии в форме лекций и семинаров для студентов и ординаторов по фундаментальной и клинической иммунологии.

Разработанный алгоритм комплексной диагностики дисфункций НГ у пациентов с ПКС применяется в научно-диагностической работе Центральной научно-исследовательской лаборатории федерального государственного бюджетного образовательного учреждения высшего образования «Кубанский государственный медицинский университет» Министерства здравоохранения Российской Федерации (г. Краснодар). Разработанные программы для ЭВМ и алгоритм комплексной диагностики дисфункций НГ у пациентов с ПКС внедрены в лечебно-диагностическую работу терапевтов и врачей общей практики на амбулаторном этапе оказания лечебно-профилактической помощи государственном бюджетном учреждении здравоохранения Республики Адыгея «Центральная районная больница Майкопского района» (г. Майкоп).

Личное участие автора

Автор диссертационного исследования принимал активное участие на всех этапах, проводил анкетирование и иммунологическое обследование пациентов, лично выполнял экспериментальную часть, а также анализ и статистическую обработку собранных данных. При ЭТОМ ПОД руководством научного руководителя была разработана методология и дизайн исследования, а также комплексной диагностики дисфункций НГ создан алгоритм при ПКС, ассоциированным с активацией ГВИ. Текст диссертации и его оформление были осуществлены самим автором под руководством и контролем научного руководителя.

Степень достоверности и апробация результатов исследования

Исследование подкреплено тщательным анализом теоретических основ, всесторонним рассмотрением данных, строгим методологическим подходом, а также корректным статистическим анализом, что обеспечивает надежность результатов. Применяемые клинические, иммунологические, культуральные и установленной статистические методы соответствуют цели задачам, обеспечивая обоснованность логичность И выводов И практических рекомендаций.

8-ой Всероссийской Материалы диссертации представлены на междисциплинарной научно-практической конференции с международным участием «Социально-значимые и особо опасные инфекционные заболевания» (г. 26.10-29.10.2021 г.); 15-ой научно-практической конференции «Актуальные вопросы инфекционной патологии Юга России» (г. Краснодар, 19.05-20.05.2022 г.); 8-ой научно-практической школе-конференции «Аллергология, и клиническая иммунология» (г. Сочи, 02.10-08.10.2022); 3-ем объединенном научном форуме физиологов, биохимиков и молекулярных биологов (г. Сочи, 03.10-07.10.2022 г.); 9-ой научно-практической школеконференции «Аллергология, клиническая иммунология и инфектология для практикующих врачей» (г. Сочи 01.10-07.10.2023); 1-ом Евразийском международном форуме «Адаптивная медицинская иммунология: реалии и перспективы» (г. Москва, 17.11-18.11.2023 г.).; Объединенном иммунологическом форуме – 2024 (Пушкинские Горы, 29.06-04.07.2024 г.).

Соответствие диссертации паспорту научной специальности

Диссертационная работа соответствует паспорту научной специальности 3.2.7. Иммунология.

Результаты проведенного исследования соответствуют области исследования специальности, пунктам 2, 3, 5, 6, 7 паспорта специальности Иммунология.

Публикации по теме диссертационной работы

Результаты диссертационного исследования опубликованы в 13 научных работах: 1 статья в рецензируемых журналах, рекомендованных ВАК по специальности 3.2.7. Иммунология, 7 статей в научных изданиях, входящих в базы данных SCOPUS, 3 тезисов в сборниках научно-практических конференций, Также получены 2 свидетельства о государственной регистрации программ для ЭВМ: № 2024661675 «Показатель прогноза развития постковидного синдрома» - ИДП-ПКС, и №2024666662 «Критерий прогноза тяжести течения постковидного синдрома» - ИДК-ПКС. Общий объем печатных страниц составил 84.

Структура и объём работы

Диссертационная работа изложена на 171 странице, имеет стандартную структуру изложения с таблицами и рисунками и состоит из введения, обзора

литературы, 2 глав собственных исследований, заключения, выводов, практических рекомендаций, перспектив дальнейшей разработки темы, списка сокращений, списка литературных источников, иллюстрирована 12 таблицами и 17 рисунками. Список литературы содержит 316 источников, из них 33 отечественных и 283 зарубежных авторов.

ГЛАВА 1 ОБЗОР ЛИТЕРАТУРЫ

С тех пор как во всем мире были зарегистрированы первые случаи COVID-19 (17 ноября 2019 года) глобальная пандемия, которая официально, по данным ВОЗ, длилась более 3-х лет (с 30 января 2020 по 5 мая 2023 года) оказала беспрецедентное воздействие на все страны мира. На 28 ноября 2024 года, согласно информации ВОЗ, в мире зафиксировано свыше 776 миллионов подтвержденных случаев заболевания и более 7 миллионов летальных исходов [310].

Однако основные проблемы и тенденции развития мировой пандемии оказались намного более фатальными, чем предполагалось. сфере здравоохранения были реализованы значительные изменения, целью которых являлось предотвращение распространения заболевания. Разные регионы и страны применяли различные стратегии для контроля над пандемией, включая новые подходы к диагностике и лечению. Следует подчеркнуть, что политика, направленная на учет основных причин смертности, а также изменяющаяся природа вируса COVID-19 способствовали тому, что реальные последствия для мирового общества стали совершенно непредсказуемыми. Широко известное, под общим термином как ПКС состояние относится к различным средне- и долгосрочным симптомам, которые проявляются примерно у 10-20% людей, перенесших SARS-CoV-2 инфекцию [181, 308]. Несмотря на то, что эти расстройства редко представляют угрозу для жизни пациента, они связаны со значительным пагубным влиянием на качество его жизни [34, 303], что в сочетании с его высокой распространенностью составляет большую долю общего воздействия на здравоохранение и общество, связанного с пандемией. Сохранение клинических проявлений в течение длительного времени после очевидного инфекции охватывает клинического выздоровления от широкий спектр гетерогенных болезненных состояний у выживших пациентов, которые отмечают

стойкие и выраженные симптомы [274]. Такие симптомы, включая когнитивную дисфункцию и СХУ, могут оказывать значительное, а в некоторых случаях и серьезное влияние на повседневную жизнь, и ее продуктивность. Учитывая характер и сложность состояний, возникающих после COVID-19, в ближайшие годы крайне необходимо провести дополнительные исследования для изучения патологических процессов и терапевтических подходов, связанных с этими симптомами. Также важно оценить реальное бремя болезни, сопряженное с не летальными последствиями длительного COVID и ассоциированных с ним постострых последствий [84].

1.1 Проблема постковидного синдрома в современных реалиях

До 2020 года большинство исследований, связанных с COVID-19, не рассматривали долгосрочные последствия перенесенного заболевания. В то же время у выздоравливающих людей все чаще выявлялись стойкие, длительные и часто изнурительные симптомы в постковидном периоде. На основании этого, по данным ВОЗ был сформирован отчет о не смертельных последствиях COVID-19 на национальном, региональном и глобальном уровнях, который был призван дать подробное представление о влиянии пандемии COVID-19 на последствия не смертельных исходов среди людей, ранее инфицированных вирусом SARS-CoV-2.

Обзор литературы выявил широкий спектр терминов для состояния после COVID-19 [277]. На основании проведенного дельфийского консенсуса от 6 октября 2021 года и клинического определения случаев состояния после COVID-19, был классифицирован ПКС, который упоминается под кодами U09.9 (МКБ-10), RA02 (МКБ-11), а также другими различными терминами: пост-COVID-19-синдром [178], хронический COVID-19 [47], долгосрочные последствия COVID-19 [166], длительный COVID-19 [203] и постострые последствия инфекции SARS-CoV-2 (PASC) [216]. Все эти и другие термины указывают на то, что после

заболевания COVID-19 у человека отсутствует возврат к исходному состоянию здоровья. Точная распространенность ПКС неизвестна, и определить частоту его проявления сложно из-за неспецифического характера клинических проявлений, различных поражений многих органов и отсутствия диагностических маркеров, а попытки ее оценить дали неоднозначные результаты [63]. Изученные обширные метаанализы показывают, что совокупная распространенность ПКС колеблется в широком диапазоне у людей, перенесших COVID-19 и примерно в шесть раз выше, чем при других поствирусных состояниях [172]. Крупный метаанализ, опубликованный в 2024 году и включавший 48 исследований определил, что предполагаемая объединенная распространенность ПКС во всем мире составила 41,8% [234].

Greenhalgh Т. и соавторы были первыми, кто определил пост-COVID-19, как продолжительное заболевание, продолжающееся более 3 недель после острого появления симптомов [190]. Некоторые исследователи и врачи расширили это определение, исключив время госпитализации, и начав послеострый период COVID-19 после выписки из больницы [233].

Согласно данным зарубежных и российских ученых, клинические проявления, возникшие после перенесенной новой коронавирусной инфекции, широко распространены не только среди пациентов, имеющих сопутствующие заболевания, но также и среди молодых, ранее здоровых людей, которые не имели жалоб до заражения COVID-19 [9, 37].

Ученые предложили обшие патофизиологические многочисленные механизмы синдрома после COVID-19, основанные на тяжести заболевания, органах, пораженных вирусом, иммунологических нарушениях и воспалительных повреждениях, специфичных для вируса патофизиологических изменениях и стрессе. Однако точный патофизиологический окислительном механизм посткоронавирусного синдрома до сих пор неясен, несмотря на множество гипотез, и исследований, предполагающих механизмы его действия. Поскольку

инфицированность SARS-CoV-2 продолжается, важно понимать состояние и потребности пациентов за пределами острой фазы, особенно механизмы, вызывающие стойкие симптомы спустя 3-4 и более недель от начала острого заболевания [231].

R. Perumal и др. выделили несколько ключевых патогенетических механизмов и связанных с ними факторов риска для развития ПКС: постоянная персистенция вируса и антигена SARS-CoV-2; образование микротромбов в сосудистом кровотоке; распространенный аутоиммунный процесс; реактивация латентных вирусов; активация тучных клеток; хроническое других слабовыраженное мультисистемное воспаление; значительные нарушения в желудочно-кишечном тракте, приводящие к дисбактериозу и дисфункции кишечного барьера; обширные изменения в центральной нервной системе (ЦНС); вегетативная и метаболическая дисфункции [51, 123]. Выявленные факторы риска определяют наличие более пяти симптомов, включая одышку, предшествующие психические расстройства и специфические биомаркеры, такие как Д-димер, СРБ и количество нейтрофилов и лимфоцитов [313]. Однако данные различаются: другие авторы выделяют женский пол, активное курение и сопутствующие заболевания в качестве факторов риска развития ПКС, в то время как возраст, повидимому, не является значимым фактором [104, 113, 270].

Множество симптомов, которые наблюдаются у пациентов с ПКС и сохраняются более 4 недель, часто обусловлены поражением дыхательной, сердечно-сосудистой, неврологической, желудочно-кишечной и других систем. Примерно 70% людей с этими симптомами до заболевания были физически здоровы и из-за тяжести симптомов стали вести малоподвижный образ жизни [60].

ПКС проявляется мультисистемным поражением органов, включающим множество иммунопатофизиологических механизмов: синдром хронической усталости (СХУ), когнитивные расстройства (КР), миалгический энцефаломиелит,

гиперактивация иммунной системы (ИС), а также развитие иммунотромбозов и коагулопатий, опосредованных через процессы образования NETs и развитие нетоза [181, 182, 248]. Разнообразные жалобы при ПКС могут быть определены в зависимости от симптомов [177, 315], степени их выраженности [116] или времени, когда они возникают [255]. Вероятность развития ПКС зависит от многих факторов, в том числе и от типа инфицированного варианта SARS-CoV-2, при этом предполагается, что вероятность развития ПКС снижается при заражении омикронного варианта SARS-CoV-2 по сравнению с дельта-вариантом [4, 30].

Было отмечено, что наиболее распространенными симптомами в течение 3— 6 месяцев, которые могут влиять на повседневную деятельность были: усталость (32%), одышка (25%), нарушение сна (24%) и трудности с концентрацией внимания (22%) [243, 305]. В другом же исследовании сообщалось, что наиболее частыми симптомами были усталость, туман в голове, беспокойство, бессонница и депрессия, при этом у женщин вероятность возникновения постоянных симптомов была на 58% выше, чем у мужчин [176]. По данным еще одного крупного метаанализа наиболее распространенными симптомами были усталость (58%), головная боль (44%), нарушение внимания (27%), выпадение волос (25%) и (24%)[223]. Усталость является наиболее одышка частым симптомом длительного и острого течения COVID-19 [224, 287] и может присутствовать даже через 100 дней после первых признаков заболевания [79].

Кроме того, после таких состояний, как ОРДС, более двух третей пациентов сообщали о клинически значимых симптомах усталости даже через год [112, 312]. СХУ сопровождается выматывающей усталостью, нейрокогнитивной и вегетативной дисфункцией, нарушением сна и ухудшением общего самочувствия после незначительного увеличения физической и/или когнитивной активности [163, 203, 204, 205, 298].

Нарушения когнитивных функций проявляются в снижении способностей к запоминанию, усвоению новой информации, пониманию, воспроизведению услышанного, прочитанного или увиденного. Одновременно отмечаются и проблемы с концентрацией внимания, снижения умственной работоспособности, забывчивости, ощущении «тумана в голове» и путаницы в мыслях, нарушениях сна и засыпания. Пациенты начинают испытывать трудности в общении с окружающими и при исполнении повседневных задач. Также реконвалесцентов беспокоят проявления различных вегетативных расстройств (головные боли, головокружения, изменения артериального давления и пульса, аритмии, тахикардии), а также боли в суставах и мышцах.

Активация воспалительных процессов, являющихся частью рецепторов врожденной ИС, может быть связана с цитокиновым штормом и гиперкоагулопатией у инфицированного человека. Таким образом, пациент с ПКС может быть подвержен инфекциям на протяжении всей жизни, которые могут реактивироваться при любой стрессовой ситуации, которая ослабляет ИС и является показателем иммунокомпрометированности [27].

У многих пациентов также наблюдается рекуррентное возникновение респираторных инфекций, учащение обострений хронических и медленно прогрессирующих бактериальных и грибковых заболеваний, а также развитие ко-инфекций разнообразной этиологии и локализации, включая такие состояния, как хронические пансинуситы, фарингиты, ларингиты, отиты, циститы, уретриты и вульвовагиниты [44].

1.2 Механизм развития постковидного синдрома и его последствия, ассоциированные с активацией герпесвирусных инфекций

Основной особенностью COVID-19 является его гетерогенность, включающая разнообразные патофизиологические и иммунологические процессы [269] Данные, свидетельствуют о том, что высокая контагиозность COVID-19

может быть связана не только с уникальными вирусологическими особенностями SARS-CoV-2, но также и с факторами хозяина, которые играют решающую роль в развитии болезни и определяют тяжесть заболевания [85, 165, 299].

SARS-CoV-2 В При организме отмечается стойкая чрезмерная воспалительная реакция, направленная на уничтожение вируса, главным образом в дыхательной системе. Но помимо основных, легочных проявлений в остром периоде заболевания, COVID-19 затрагивает и другие системы: эндокринную, сердечно-сосудистую, нервную, желудочно-кишечную, почечную и др., и это объясняется тем, что рецептор АСЕ2 экспрессируется в органах человека с различной плотностью. При этом наибольшая экспрессия АСЕ2 находится в тонкой кишке, легких, яичках и семенниках, сердце, щитовидной и островках поджелудочных желез, гипоталамо-гипофизарной зоне, почках и надпочечниках, что делает эти ткани особенно восприимчивыми к данной инфекции. Различная плотность рецепторов АСЕ2 в органах и тканях может объяснять разнообразие и тяжесть клинических симптомов и проявлений, вплоть до полиорганной недостаточности в остром периоде COVID-19 с последующим развитием тяжелого ПКС в постковидном периоде [87, 192, 238].

Патогенез инфекции SARS-CoV-2 у человека может проявляться как в виде форме тяжелой незначительных симптомов, И В дыхательной так недостаточности. При связывании с эпителиальными клетками дыхательных путей вирус начинает активно реплицироваться и продвигается вниз по дыхательным путям, достигая альвеолярных клеток легких, вызывая микроангиопатию с тромбозом мелких сосудов и в некоторых случаях, может осложниться ДВС-синдромом [193].

Быстрая репликация SARS-CoV-2 в легких может спровоцировать мощный иммунный ответ и возникающий при этом синдром ЦШ стремительно приводит к ОРДС и дыхательной недостаточности, что и является основной причиной летального исхода у пациентов с COVID-19 [70].

Легочные симптомы, включая одышку, кашель и боль в грудной клетке отмечаются у значительной части пациентов с длительным течением COVID-19 [59, 236] и могут коррелировать [134, 276] или не коррелировать [142] с SARS-CoV-2. предшествующей тяжестью течения Проведенные инструментальные исследования выявили снижение диффузионной способности легких, что коррелировало с лучевыми изменениями у 42% выживших после COVID-19 через три месяца после выписки из больницы, независимо от тяжести перенесенного заболевания [76]. Даже спустя шесть месяцев после появления симптомов продолжали выявляться рентгенологические первых легочных изменения (матово-стеклянные затемнения, фиброз, консолидация), связанные с сохраняющимися симптомами, которые все еще присутствовали примерно у половины пациентов, перенесших COVID-19 [316]. Также было показано, что, используя более совершенную ксеноновую гиперполяризованную МРТ для изучения функции легких, удалось выявить дефектную функцию газообмена среди реконвалесцентов со средней степенью тяжести COVID-19, что не было диагностировано с помощью стандартной КТ грудной клетки [91].

Проведенные протеомные исследования образцов крови и дыхательных путей у пациентов с ПКС с сохраняющимися КТ изменениями в легочной ткани через 3-6 месяцев после выписки выявили специфические для дыхательных путей протеомы (CASP3, EPCAM, KRT19 и TGFA), что указывает на повреждение апоптоз. Кроме отмечалось повышенное эпителия τογο, количество цитотоксических лимфоцитов, что было связано с повреждением эпителия и нарушением функции легких и еще раз подчеркивает роль ИС в легочных фенотипах [66, 145]. Еще одно исследование также продемонстрировало, что легочная дисфункция при ПКС через 4 месяца после заражения была связана с увеличенной регуляцией хемотаксических путей фагоцитов, лейкоцитов и сердечной дисфункцией, а также с повышенным уровнем хемокина CXCL9 во время острого COVID-19 [67, 88].

Была показана и нейроэндокринная тропность вируса SARS-CoV-2, так как рецепторы ACE2, которые облегчают проникновение патогена в клетки, экспрессируются в пределах гипоталамо-гипофизарной оси [57]. Молекула мРНК ACE2 широко распространена в различных органах и тканях, что объясняет системную инфекцию, которая может быстро поражать органы за пределами дыхательной системы [110]. В частности, ACE2 активно функционирует в гипоталамусе и гипофизе, причем гипоталамус отмечается более высокой экспрессией этого фермента [43]. В связи с этим некоторые авторы предполагают участие гипофиза в дальнейшем развитии ПКС [181].

В одном из исследований при клиническом наблюдении и проведении МРТ у пациентов через три месяца после острого COVID-19 были зарегистрированы структурные и метаболические нарушения мозга, которые коррелировали с сохраняющимися неврологическими симптомами [62]. Эти данные вызывают обеспокоенность, поскольку у большинства участников исходно была легкая форма COVID-19, что позволяет предположить, что даже легкое течение инфекционного процесса может оказывать стойкое воздействие на мозг. Также имеются доказательства, подтверждающие нейротропизм и способность SARS-CoV-2 к репликации в нейрональных культурах, органоидах мозга, мышах и аутопсиях человеческого мозга [95, 261]. В частности, предполагается, что повреждение кардиореспираторного центра ствола мозга ухудшает симптомы COVID-19 [159, 169]. Поскольку нейроны редко регенерируют, а возникающая дисфункция ствола мозга может быть длительной, то, скорее всего это и приводит к неврологическим и кардиореспираторным последствиям, которые могут лежать в основе ПКС [314]. При этом ствол мозга экспрессирует более высокие уровни АСЕ2, чем другие области мозга [314]. В отчетах по вскрытию также были обнаружены доказательства наличия генов и белков SARS-CoV-2, а также патологической иммунной и сосудистой активации в стволе мозга умерших жертв COVID-19 [207]. Таким образом, продолжающиеся нейроиммуновоспалительные

процессы могут быть причиной неврологических симптомов и повреждений при ПКС.

Пашиенты иминжктве неврологическими психиатрическими И ПКС обычно сообщают последствиями хронической усталости, физических непереносимости умственных нагрузок, когнитивных И расстройствах, нарушениях сна, обонятельных и вкусовых нарушениях [83, 217, 236, 316]. Кроме того, у пациентов, перенесших острый COVID-19, описаны нейродегенеративные расстройства, такие как болезнь Паркинсона [115] и когнитивные нарушения от мозгового тумана до ускорения болезни Альцгеймера [139]. Также у лиц с ПКС регистрируется целый ряд психических расстройств, включая впервые поставленный психиатрический диагноз таких состояний, как депрессия, тревожность и посттравматическое стрессовое расстройство [49].

Поражение миокарда, миокардит, острая сердечная недостаточность, кардиомиопатия и нарушения ритма были зарегистрированы во время острого периода COVID-19 [58]. Тем самым было показано, что пациенты, которые перенесли тяжелый или длительный COVID, предъявляют жалобы на боль и стеснение в груди, учащенное сердцебиение и перебои в работе сердца, повышение и понижение артериального давления, обморочные состояния [59, 201, 316]. Многочисленные систематические обзоры и метаанализы показывают, что перенесенная инфекция COVID-19 является причиной прогрессирования коронарного атеросклероза, сердечной недостаточности, инфаркта миокарда и кардиогенного шока, тем самым повышая риск сердечных аритмий, при этом стоит отметить, что повышенный риск развития этих осложнений наблюдался даже у лиц, которые не подлежали госпитализации с острым COVID-19 [42, 135, 184, 280].

Кроме того, предшествующее воздействие SARS-CoV-2 повышает риск развития относительно редких аутоиммунных васкулитов, что подтверждается несколькими систематическими обзорами [150, 254, 273].

Период острого COVID-19 связан протромботическими коагуляционными состояниями, которые могут привести к повреждению эндотелия сосудов [77, 249] и активации тромбоцитов [227], и напрямую, и/или обуславливает опосредовано, активацию иммунокомпетентных Механизмы иммунотромбовоспаления характеризуются активацией системы комплемента [73, 140], тромбоцитов и их взаимодействием с лейкоцитами [227, 228], образованием NETs [75, 209, 210], высвобождением провоспалительных цитокинов [124]. Хотя основная доля тромботического повреждения приходится на легкие, выделяют и другие органопатии, связанные с тромботическими последствиями инфекции SARS-CoV-2 [170]. У пациентов, переживших COVID-19, имеется вероятность возникновения новых тромбоэмболических осложнений или ухудшения ранее существующих состояний. Эти лица подвержены высокому риску тромбоэмболии легочной артерии, сердечной недостаточности, остановки сердца, инсульта, инфаркта, а также развитию флебита и тромбофлебита, что в конечном итоге может привести к летальному исходу [179, 194, 267, 284].

Еще одним из возможных источников незавершенного воспаления при ПКС может быть желудочно-кишечный тракт. Известно, что из-за высокой экспрессии АСЕ2 на щеточной каемке слизистой оболочки тонкого кишечника SARS-CoV-2 продолжает реплицироваться в клетках желудка и кишечника что приводит к его выделению с фекалиями [107, 122, 157, 247, 262, 288]. Распространенность желудочно-кишечных симптомов, включающих диарею, тошноту, рвоту, боли в животе и потерю аппетита в различных исследованиях варьируется: по одним данным они встречаются у 15–50% пациентов [191], по другим такие же желудочно-кишечные проявления затрагивают 10–20% пациентов с COVID-19 [156], а патологические показатели функции печени выявляются у 20% пациентов во время острого COVID-19 [175, 191, 252].

Аналогично, были зарегистрированы и случаи экспрессии рецепторов и последовательного эндокринного повреждения щитовидной железы, гонад и

островков поджелудочной железы [81] у пациентов с COVID-19. Самым распространённым лабораторным маркером в крови являлась гипергликемия [39, 40, 137], что говорило о повышенном риске неблагоприятного исхода COVID-19, а повышенный уровень гликозилированного гемоглобина (HbA1c), при сахарном диабете, был связан с воспалением, гиперкоагуляцией и высокой смертностью [13, 213, 302]. Впервые выявленный диабет и диабетический кетоацидоз были зарегистрированы у пациентов с острым COVID-19 как через прямые, так и через косвенные механизмы [114, 153, 214]. Эндокринные и метаболические нарушения могут встречаться в следующих органах: головной мозг, поджелудочная и щитовидная железы, печень, жировая ткань, яичники и семенники. Данные органы могут быть повреждены вирусной инфекцией прямым или косвенным способом и способствовать манифестации гипергликемии или резистентности к инсулину после COVID-19, развитию подострого тиреоидита или тиреоидного шторма [13]. Важно отметить, что гормоны играют ключевую роль в модуляции и регуляции иммунитета, а их взаимодействие с иммунной системой создает сложную и постоянно меняющуюся картину эндокринопатий, связанных с COVID-19 и в дальнейшем сопровождающих ПКС.

Как было показано, предполагаемая распространенность синдрома после COVID составила 47,2% у мужчин и 52,8% у женщин [234]. Женщины были более восприимчивы к развитию длительного COVID, демонстрируя более широкий спектр симптомов, чем мужчины. Они, как правило, испытывают более серьезные симптомы, такие как усталость и нейропсихиатрические проблемы, которые сохраняются в течение более длительного времени по сравнению с мужчинами. Кроме того, женщины более склонны к различным проблемам со здоровьем, включая нарушение менструального цикла, проблемы с фертильностью, развитие сексуальной дисфункции и повышенный психологический стресс в результате длительного COVID [180, 183, 188, 271, 283, 300]. Дальнейшие нарушения в работе иммунной системы могут сопровождаться развитием аутоиммунных

механизмов, различных фенотипов аллергических заболеваний, истощением и функциональной неполноценностью клеток врожденного и адаптивного иммунитета [22, 144]. При этом у данных пациентов с продолжительными симптомами наблюдаются усиленные иммунные реакции, специфичные для SARS-CoV-2, а особенно выраженная иммунная дисрегуляция [141, 189, 231, 260, 293].

Инфекция SARS-CoV-2 связана с повышенным риском развития различных аутоиммунных заболеваний (АИЗ) после острой фазы болезни [273]. В некоторых исследованиях было отмечено, что COVID-19 может вызывать целый ряд органоспецифических распространенных состояний. И аутоиммунных органоспецифическим относят АИЗ щитовидной железы, сахарный диабет 1 типа, псориаз, рассеянный склероз и синдром Гийена-Барре. Распространенные системные АИЗ включают: ревматоидный артрит, анкилозирующий спондилит, системная красная волчанка, дерматополимиозит, системный склероз, синдром Шегрена, болезнь Бехчета, ревматическая полимиалгия, васкулит, псориаз, воспалительные заболевания диабет кишечника. целиакия, типа антифосфолипидный синдром [168, 254].

Предложено множество теорий, которые помогают понять молекулярные механизмы иммунной дисрегуляции, связанной с COVID-19. Они включают молекулярную мимикрию, вызванную вирусными белками, системные повреждение, обусловленное повсеместной проявления полиорганное экспрессией рецептора АСЕ2. Кроме того, активация иммунных клеток, высвобождение аутоантигенов тканей, поврежденных вирусом, ИЗ распространение эпитопов SARS-CoV-2 также играют важную роль в этом процессе [264]. Одним из классических примеров молекулярной мимикрии при аутоиммунных заболеваниях является иммунный ответ на ВЭБ инфекцию у пациентов с СКВ [99, 174]. Другие исследования также выявили аутоантитела против IFNα, HΓ, соединительной ткани, циклических цитруллинированных

пептидов (АЦЦП) и антинуклеарные антитела (ANA) у 10–50% пациентов с COVID-19 [45, 46, 65, 162].

Накопленные за последние годы, данные продемонстрировали негативное влияние инфекции COVID-19 на течение аллергических заболеваний, как в остром периоде болезни, так и в долгосрочной перспективе. Установлено, что у людей, ранее не имевших аллергии, наблюдается высокая частота аллергических реакций после перенесенной новой коронавирусной инфекции. Аллергические фоне инфекции, реакции, возникающие на ΜΟΓΥΤ ухудшать течение сопутствующих заболеваний. В некоторых больших когортных исследованиях было выявлено значительное увеличение новых случаев атопического дерматита (АД), аллергического ринита (АР) и бронхиальной астмы (БА), связанных с худшими клиническими исходами COVID-19 у пациентов в остром периоде болезни и в постковидном периоде [41, 149, 164, 256].

Также у пациентов с ПКС, имеющих дерматологические проявления предполагались такие причины иммунной дисрегуляции, как вирусная персистенция, постоянно активированная система комплемента, сохранение нерегулируемых иммунных реакций, проявляющихся устойчивыми высокими уровнями цитокинов IL1 β , IL6 и TNF и хемокинов МСР1 и IL8 в плазме крови примерно через 12 месяцев после заражения COVID-19. Другая группа исследователей также сообщала о устойчиво высокой экспрессии IFN I типа и IFN III типа (IFN λ 1), активированных миелоидных клеток, Т-клеток и низких наивных Т- и В-клеток [143, 173, 202, 222]. Кожные проявления COVID-19 обычно проявлялись одновременно с другими симптомами COVID-19 или после них [286].

IFN играют ведущую роль в иммунной системе, образуя первую линию защиты человека в ответ на вторжение патогенов. IFN I типа (IFN α , IFN β , IFN α , IFN ϵ ,

иммунитете [160]. Они связываются с рецептором IFNα (IFNαR), который состоит из двух субъединиц: IFNαR1 и IFNαR2, после чего происходит активация киназы семейства Janus (JAK1 и TYK2), что впоследствии приводит к фосфорилированию STAT1/STAT2. Активированные STAT-белки димеризуются, перемещаются в ядро и регулируют экспрессию генов, индуцируемых IFN I типа, стимулируя выработку цитокинов и повышая уровень противовирусных эффекторных белков [257].

IFN II типа (IFNγ) в основном вырабатываются естественными клеткамикиллерами (NK). Кроме того, NKT-клетки играют ключевую роль в защите организма от внутриклеточных патогенов, участвуя в презентации антигена, дифференцировке и активации макрофагов, продукцией провоспалительных цитокинов, клеточной гибели, а также в иммунитете к опухолям и аутоиммунных реакциях [50]. Рецептор IFNγ (IFNγR) обнаруживается практически во всех видах клеток, кроме зрелых эритроцитов. Аналогично IFN I типа, после связывания с IFNγR, IFNγ активирует путь JAK-STAT, что приводит к различным биологическим реакциям.

IFN III типа (IFN -λ) секретируются преимущественно эпителиальными клетками, и действуют в основном на их поверхностях из-за ограниченной экспрессии рецепторов. Рецепторы IFN III располагаются на эпителиальных клетках желудочно-кишечного тракта, дыхательных путях и урогенитальном тракте, а также в тканевых барьерах, включая гематоэнцефалический барьер и плаценту. Хотя многие действия IFN I и III имеют схожие эффекты, различия в их реакциях позволяют IFN III типа обеспечивать барьер на первом уровне проникновения патогенов в местах локализации его рецепторов, минимизируя активацию системного ответа с привлечением IFN I типа. IFN III типа [138, 167].

При COVID-19 активируется множество одновременно действующих факторов, связанных с присутствием про- и противовоспалительных цитокинов, что в конечном итоге влияет на результат болезни. При заражении вирусом, в

зависимости от иммунного состояния и наличия сопутствующих заболеваний, могут развиться чрезмерные воспалительные процессы.

Эти процессы проявляются через избыточное выделение провоспалительных цитокинов, таких как IL1, 6, 8, 17 и 1β, а также моноцитарный хемоаттрактантный белок-1 (MCP-1) и TNFα, что может привести к так называемому "цитокиновому шторму" (ЦШ) [36]. Подавление воспалительного процесса позволяет пациенту избежать начального этапа ЦШ с последующим развитием острого респираторного дистресс-синдрома (ОРДС), но при этом переходя к более длительному периоду иммуносупрессии. Этот период характерен для синдрома системного длительного воспаления, который обычно возникает после сепсиса и может стать одной из причин выраженного ПКС [44, 127, 282].

При острой форме COVID-19 у пациентов с тяжелой пневмонией или ОРДС наблюдается парадоксальное увеличение количества НГ и снижение количества лимфоцитов, не характерных для течения типичных вирусных инфекций, с чрезмерным повышением уровня цитокинов [12, 33].

Метаанализ Espín и др. показал, что повышенные уровни цитокинов (IL2, 4, 6, 10, 17, IFNγ, CCL5, CCL3) во время острой фазы COVID-19 могут предсказать высокий риск развития и тяжесть течения ПКС [61].

В систематическом обзоре Lai Y.J и др. были выявлены основные иммунологические маркеры в крови при различных вариантах ПКС, которые включали повышенные уровни цитокинов (IL6, TNFα, IFNα, IFNγ, CCL2, CCL3, CXCL10); белков острой фазы (СРБ, фибриногена, ферритина); и маркеров эндотелиоза и паракоагуляции (VEGF, sVEGFR, sVCAM-1, Д-димера), фактора роста гепатоцитов (HGF) [52]. Кроме того, отдельные критерии эндотелиоза, наблюдаемые у некоторых пациентов с симптомами ПКС, также включали признаки тромбофилии и системной активации тучных клеток [279, 313] и повышение уровня в крови других цитокинов (IL1β, 2, 10) [133, 186].

Индикаторами слабовыраженного воспаления являются умеренные признаки системного воспалительного ответа при отсутствии классического воспаления: повышенный уровень СРБ и фибриногена, а также повышенное соотношение нейтрофилов и лимфоцитов, обнаруживаемых при ПКС даже после легкой или бессимптомной инфекции COVID-19 [232, 235].

С целью определения биологического разнообразия ПКС было проведено широкомасштабное протеомное исследование, при котором была выявлена его гетерогенность, имеющая диагностическую ценность для дифференциации воспалительного и невоспалительного характеров течения ПКС. При этом пациенты с воспалительным ПКС (более 60%) разделялись на две группы: в первой отмечалось наличие общих признаков системной воспалительной реакции с повышением уровня сывороточных провоспалительных цитокинов (IL1, 6, TNFα), хемокинов, интерферона-γ (IFN II типа) и активацией NF-кβ в лейкоцитах, в то время как во второй группе также отмечались признаки продолжающегося воспаления, но с более высоким сигналингом TNFα и выраженной активацией и дегрануляцией НГ с последующим развитием нетоза, предположительно, вызванного повышенным уровнем IFNα (IFN I типа) [225].

Давно известна взаимосвязь между постоянной стимуляцией IFN и активацией НГ, что описано при многочисленных воспалительных заболеваниях и тем самым может объяснить чрезмерную дегрануляцию НГ и образование NETs, которые были выявлены у некоторых пациентов с воспалительным вариантом течения ПКС.

В то же время часть исследований демонстрирует различную степень недостаточности системы интерферонов I и III типов, как при COVID-19 в разгар болезни, так и в постковидном периоде [38, 294]. В некоторых из них было показано, что при среднетяжелой форме коронавирусного заболевания анализ состояния системы интерферонов не выявил динамики изменения или восстановления продукции IFNα и IFNγ на фоне противовирусной терапии, как в

остром периоде, так и при выздоровлении в период реконвалесценции. При этом параллельно наблюдались повышенные уровни нейтрофил-ассоциированных цитокинов IL8, IL18, IL17A, VEGFA, что в свою очередь провоцировало активированные НГ к формированию NETs и индуцировало тромбоциты к образованию иммунотромбов [3, 220].

Также имеются данные о том, что недостаточная индуцированная продукция IFN I и II типов у пациентов с атипичными хроническими ГВИ на фоне инфицирования COVID-19 может быть ассоциирована с пониженным уровнем экспрессии ядерного фактора NF-kB и его вариативными изменениями [20, 29].

После вспышки COVID-19, в нескольких исследованиях было обнаружено, что ранее существовавшие аутоантитела против IFN I типа связаны с тяжестью COVID-19, которая вызвала большой интерес в академических кругах [171, 239]. Были предприняты многочисленные попытки выяснения этиологии интерферонопатии при COVID-19, одна из причин указывала на врожденные ошибки продукции и амплификации IFN I типа с потерей их функций, зависящие от TLR3 и IRF7, что лежит в основе развития тяжелой для жизни пациентов пневмонии, вызванной SARS-CoV-2 [148]. Мутации с потерей сигналинга в генах IFN показали, что нейтрализующие аутоантитела класса IgG, способные нейтрализовать высокие концентрации IFNα, IFNβ и IFNω, и присутствовали примерно у 10% пациентов с критической пневмонией COVID-19, но при этом отсутствовали у пациентов с легкими или бессимптомными формами инфекции [45]. Их присутствие также было связано с более высоким риском смертности при COVID-19, было так показано, циркулирующие аутоантитела, что нейтрализующие IFNα, IFNω и/или IFNβ, были выявлены примерно у 20% умерших пациентов во всех возрастных категориях. В общей популяции такие антитела обнаруживаются у около 1% людей младше 70 лет и более чем у 4% лиц старше 70 лет [239, 285, 291, 292]. Другая причина наличия аутоантител к IFN I

типа может обнаруживаться у пациентов, получавших лечение IFN α или IFN β [155].

Нейтрализующие аутоантитела к IFN I типа могут препятствовать его связыванию с IFN α / β R и активации сигнального пути, блокировать противовирусный эффект IFN I типа и приводить к опасным для жизни случаям COVID-19. Независимо от типа IFN, высокие титры аутоантител к IFN в сыворотке крови препятствуют активации нисходящего ответного пути, блокируя взаимодействие между IFN и их рецепторами. Это, в свою очередь, приводит к увеличению частоты возникновения инфекционной и аутоиммунной патологии в постковидном периоде. У пациентов с ПКС наблюдается серьезное аутоиммунное поражение, связанное с повышенной частотой образования аутоантител, включая аутоантитела к IFN [10].

Наличие антител к IFNα, способных частично или полностью нейтрализовать биологических эффекты этого цитокина либо путем блокирования его рецепторов на поверхности эффекторных клеток, либо за счет связывания и блокирования противовирусной активности как эндогенного IFNα, так и препаратов рекIFNα, является неблагоприятным прогностическим признаком.

Учитывая лабораторные и аутопсийные исследования, были предложены несколько механизмов поражения ЦНС: непосредственное инфицирование периферических отделов нейронов, и продвижение вируса в ЦНС по аксональным путям [206], а также проникновение вируса через гематоэнцефалический барьер в воспаления фоне [196]. результате повышения его проницаемости на Инфламмасомы вызывают воспаление в ответ на инфекционные патогены, но воспаление может привести к хроническим или системным воспалительным заболеваниям. Часть ученых выдвинули гипотезу, что симптомы посткоронавирусного синдрома связаны со схожими патофизиологическими событиями, такими как развитие и поддержание боли за счет высвобождения микроглией провоспалительных медиаторов и инициации воспалительных процессов [111].

Было рассмотрено несколько гипотез патогенеза ПКС связанного с СХУ, в том числе и персистирующие резервуары SARS-CoV-2 в тканях с замедленным клиренсом белка или РНК [70, 204], микрососудистое свертывание крови с эндотелиальной дисфункцией, нарушенная передача сигналов в стволе мозга и/или блуждающем нерве, негативное воздействие SARS-CoV-2 на микробиоту, иммунная дисрегуляция с реактивацией основных патогенов или без нее, включая герпесвирусы, такие как ВЭБ и ВЧГ 6 и другие [29, 246].

Следует отметить, что в постковидном периоде при развитии ПКС в отдельных органах и тканях отмечаются остаточные локальные проявления вялотекущего воспаления и усиление физиологического провоспалительного тканевого стресса без характерных признаков системного воспаления, что особенно важно учитывать у относительно молодых лиц, не имеющих хронических заболеваний.

СХУ может быть отметить. ЧТО вызван локализованным слабовыраженным воспалением в определенных частях центральной нервной системы, включая латентные хронические вирусные инфекции и поствирусные состояния. В настоящее время имеются многочисленные доказательства связи СХУ с ПКС, при этом вероятными этиологическими факторами поствирусного СХУ выделяют такие герпесвирусы, как ВЭБ, ВЧГ6 и ЦМВ [56, 69, 80, 109, 125, 185, 237, 242, 306]. Таким образом, следует предположить, что SARS-CoV-2 можно добавить к списку вирусных инфекций, вызывающих СХУ и КР. Данные последних лет сообщают об увеличении случаев реактивации герпесвирусов у больных COVID-19 и вакцинированных лиц. Коинфекция SARS-CoV-2 и ГВИ, вакцинация могут усугубить заболевания, связанные с герпевирусом, за счет реактивации вирусов в латентно инфицированных клетках-хозяина.

Проведенное ретроспективное исследование 100 пациентов с тяжелой степенью COVID-19 показало, что 56,1% пациентов перенесли вирусную реактивацию герпесвируса через 10 дней после заболевания, в том числе 12% для ВПГ, 58% для ВЭБ и 19% для ЦМВ соответственно [130]. Все больше данных подтверждают связь между реактивацией ВЭБ и COVID-19. В начале пандемии COVID-19 в нескольких отчетах описывались случаи коинфекции ВЭБ и SARS-CoV-2 у пациентов [105, 120, 121, 263]. В другом исследовании было показано, что воспаление, связанное с COVID-19 способствовало реактивации ВЭБ, и, по всей видимости, было основной причиной ПКС у пациентов, перенесших COVID-19, хотя основные патофизиологические механизмы не были определены [158]. Очередное исследование, проведенное в Китае, показало, что в ходе клинического исследования у 67 пациентов с COVID-19 из Уханя была отмечена взаимосвязь между реактивацией ВЭБ и SARS-CoV-2 инфекцией, при этом сообщалось, что 55,2% пациентов с инфекцией ВЭБ в анамнезе имели положительный тест на ВЭБ. Выявление Ig M и Ig G вирусного капсидного антигена - VCA, маркер реактивации ВЭБ, в течение 2 недель после заражения SARS-CoV-2 [230]. Еще одно исследование, проведенное во Франции, подтвердило, что пациенты в критическом состоянии с COVID-19, пребывающие в отделениях интенсивной терапии были предрасположены к реактивации ГВИ вирусов, включая ВЭБ, ЦМВ и ВЧГ6. Было отмечено, что у 82% таких больных выявлялась реактивация ВЭБ, а частота реактиваций ЦМВ и ВЧГ6 составила 15% и 22% соответственно. Тем самым авторы пришли к выводу, что реактивация ВЭБ произошла после поступления в стационар и была связана с более длительным пребыванием в отделении интенсивной терапии [131].

Длительная реактивации COVID-19 и ВЭБ оказывает негативное влияние на функции митохондрий, которые важны для полноценного и адекватного иммунного ответа, исследователи предположили, что реактивация ВЭБ у пациентов с длительным COVID может представлять собой второй удар по

митохондриям после острой инфекции COVID-19, который способствует возникновению более долгосрочных симптомов [96, 161, 240, 259].

Исследование французских авторов показало, что пациенты с реактивацией ГВИ имели большую продолжительность ИВЛ, чем пациенты без реактивации, при этом 18% пациентов имели микст реактивацию ВПГ, ЦМВ и ВЧГ6 [129]. Еще одно исследование с участием 80 пациентов с COVID-19 легкой и средней степени тяжести показало, что у 78% респондентов отмечалась одна реактивации ВПГ, у 14% было два приступа, а у 7% было три приступа, при этом приступы были более тяжелыми у 42% пациентов по сравнению с предыдущей реактивацией ВПГ, не связанной с COVID-19. Интересно, что у 35,7% пациентов отмечались начальные клинические проявления ВПГ во время инфекции COVID-19, что между COVID-19 предположительно указывает на связь И первичным [272]. реактивацией ВПГ инфицированием ИЛИ Также нескольких исследованиях сообщалось о потенциальной литической реактивации ВПГ во время лечения или после вакцинации против COVID-19 [253, 289, 301].

Реактивация ЦМВ обычно наблюдается у пациентов в критическом состоянии и неудивительно, что она была зарегистрирована у лиц с тяжелой формой COVID-19 и потенциально связана с ко-инфекцией SARS-CoV-2 [200, 215]. Ретроспективное исследование, проведенное в Германии, показало, что у 9% пациентов была выявлена реактивация ЦМВ, из которых более половины получали системное лечение кортикостероидными препаратами, что предположительно доказывает высокий риск активации ЦМВ в остром периоде COVID-19 и на фоне проводимой терапии [72, 251].

Также было отмечено, что у пациентов, госпитализированных в отделение интенсивной терапии в связи с дыхательной недостаточностью с тяжелой формы COVID-19, во время стационарного лечения проявлялись симптомы реактивации ЦМВ, тем самым ученые предположили, что подавление иммунного ответа,

вызванное тяжелой формой COVID-19, может быть основной причиной реактивации ЦМВ [198, 200].

Еще один клинический случай, описанный Amaral P.H. и др. описывает коинфекцию COVID-19 и реактивацию ЦМВ на фоне лечения глюкокортикоидными препаратами и проведением иммунобиологического метода лечения [80].

Подавляющее большинство детского и взрослого населения в латентной форме инфицировано ВЧГ6 и ВЧГ7, латентная реактивация которых обычно вызывает розовый лишай и может индуцироваться в условиях иммуносупрессии или при В сообщалось об стрессе. некоторых клинических исследованиях пациентов с COVID-19, которые могут экзантематозных высыпаниях У собой кожные проявления инфекции COVID-19, фоне представлять реактивации ВЧГ6 и ВЧГ7 [97, 98, 103, 195, 296].

Еще одна группа исследователей сообщала о реактивации ВЧГ6 у нескольких пациентов с COVID-19, что было подтверждено наличием генома SARS-CoV-2, ВЧГ6 и ВПГ1 в мазках из глаз этих пациентов с применением технологии секвенирования нового поколения [229].

Drago F и др. также сообщали о пациенте с розовым лишаем после перенесенного COVID-19, с последующим выявлением ВЧГ6, ВЧГ7 и ВЭБ серологическими методами диагностики и детекция вирусных ДНК ВЧГ6 и ВЭБ, без ВЧГ7 [136]. Следует отметить, что в постковидном периоде при развитии ПКС в отдельных органах и тканях отмечаются остаточные локальные проявления вялотекущего воспаления и усиление физиологического провоспалительного тканевого стресса без характерных признаков системного воспаления, что особенно важно учитывать у относительно молодых лиц, не имеющих хронических заболеваний.

1.3 Роль нейтрофильных гранулоцитов в развитии постковидного синдрома, ассоциированного с активацией герпесвирусных инфекций

На сегодняшний день накоплено значительное количество достоверной информации о строении, функциях и работе НГ. Эти клетки, являющиеся частью иммунной системы, составляют самую крупную группу лейкоцитов, циркулирующих в крови. Они играют ключевую роль в первичной защите организма, обладая выраженным микробицидным и регуляторным потенциалом. НГ способны уничтожать различные патогены (бактерии, вирусы, грибы, одноклеточные организмы) в очагах воспаления, используя разнообразные интрацеллюлярные и экстрацеллюлярные механизмы. НГ при взаимодействии с патогенами образуют внеклеточные сетеподобные структуры, содержащие ДНК, ферментные и неферментные белки [5, 32, 304].

Открытие нетоза показало ранее никем не описанную способность НГ к образованию NETs, как способ борьбы НГ с различными патогенами. Под воздействием различных стимулов *in vivo*, таких как патогены, компоненты бактерий, активированные тромбоциты, аутоантитела, перекись водорода, IL8, кристаллы уратов и молекулярные паттерны, связанные с опасностью (DAMP), нейтрофилы могут образовывать NETs [89, 151, 211].

В зависимости от различных стимулов, NETs образуются по различным сигнальным путям, они могут быть активированы через рецепторы, связанные с G-белком (GPCR), хемокиновые и цитокиновые рецепторы, Toll-подобные рецепторы и Fc-рецепторы (CD64 (FcγRI), CD32 (FcγRII), CD16 (FcγRIII) [53, 31]. Эти сигналы проникают внутрь клетки, вызывая выход ионов кальция Ca2⁺ из эндоплазматического ретикулума и стимулируя активацию NADPH-оксидазы (NOX), активация которой приводит к образованию ROS. Однако исследования *in vitro* показали, что ROS, помимо NOX, также происходят из митохондрий и играют важную роль в образовании NETs [197]. ROS воздействуют на

азурофильные гранулы, что приводит к высвобождению нейтрофильной эластазы (NE) и миелопероксидазы (MPO) в цитозоль клетки. NE в цитоплазме разрушает актин и мембраны ядер нейтрофилов, после чего вместе с МРО проникает в ядро. Под воздействием ROS также активируется фермент PAD4, который провоцирует цитруллинирование гистонов в нейтрофильной ДНК. Происходит деконденсации хроматина ядра под действием NE, MPO и цитруллинированием гистонов. В дальнейшем происходит разрушение ядерной оболочки НГ, что приводит к выходу деконденсированного хроматина в цитозоль, внутри которого происходит его связывание с цитоплазматическими белками и ферментами. Образование **NETs** цитоплазматической мембраны ΗГ заканчивается разрывом ПОД воздействием гасдермина D, что приводит к выходу хроматина из клетки [93, 128].

Гистоны MPO, NE и катепсин G в составе NETs обладают выраженным микробицидным действием, уничтожая внеклеточно расположенные микроорганизмы, но при этом они, при определенных условиях, могут являться компонентами деструкции тканей. первичными негативно физиологическую функцию клеток, в том числе эндотелиальных, вызывая воспаление [90, 92, 275]. Значимость НГ в развитии COVID-19 очевидна, поскольку они активно рекрутируются в очаги воспаления, активируются и способствуют образованию NETs, в соответствии с описанным выше механизмом.

Ретроспективное исследование, проведенное в группе пациентов с COVID-19, показало, что нейтрофилез и интенсивность образования NETs коррелируют со степенью тяжести и высоким процентом поражения легочной паренхимы, выявленного при проведении компьютерной томографии [108]. Также известно, что неуправляемая активация НГ, вызванная РАМР и DAMP, может привести к интенсивной активации макрофагов с высвобождением большого количества провоспалительных цитокинов [54, 82, 86]. Таким образом, при коронавирусной инфекции иммунные механизмы нацелены на развитие острого воспаления,

направленного на уничтожение SARS-CoV-2, однако чрезмерно гиперактивное иммунное реагирование приводит к необратимому повреждению тканей [275]. ЦШ при COVID-19 приводит к развитию ОРДС, полиорганной недостаточности и может стать причиной летального исхода [187].

НГ способны фагоцитировать вирионы и апоптотические клетки, содержащие вирус, что способствует удалению вируса, предотвращая его репликацию и инфицирование соседних клеток. Современные исследования, доказывающие многофункциональность НГ указывают на существование различных субпопуляций этих клеток, как при физиологических, так и при патологических состояниях [48, 64, 126].

Субпопуляции НГ могут демонстрировать различную функциональную активность, которая напрямую зависит от их фенотипических характеристик, функционально-значимых мембранных включая количество И плотность экспрессируемых рецепторов, таких как CD11b, CD62L, CD66, CD63, CD64, CD32 и CD16 и др. НГ могут переключать свои фенотипы в зависимости от микроокружения, что приводит к формированию различных субпопуляций, способных оказывать как положительное регуляторное влияние на инфекционного процесса, так и проявлять супрессорный эффект, противоречащий НГ, обычным эффекторным функциям наоборот или же обладать гиперэргическим повреждающим воздействием [21, 22, 23, 32].

По данным литературы известно, что CD16 (FcγRIIIb) — низкоаффинный наиболее распространенный на поверхности НГ рецептор, взаимодействующий с FcγRIIa и FcγRIIIb, инициирует сигнальные каскады, которые приводят к активации различных эффекторных механизмов, таких как антителозависимая клеточная цитотоксичность, фагоцитоз, дегрануляция, образование ROS и выработка цитокинов [100, 117].

Повышенная экспрессия CD16 рецептора на НГ свидетельствует о чрезмерной активации клетки, а сниженная экспрессия или полное отсутствие СD16 рецептора характеризует незрелость или несостоятельность НГ, что наблюдается при тяжелых бактериальных и/или вирусных инфекциях или некрозах тканей [12, 16].

Было показано, что экспрессия CD16 обеспечивала дегрануляцию и цитотоксичность, опосредованную иммунными комплексами, которая не зависела от рецепторов различных Т-клеток, что не наблюдалось ранее при других заболеваниях. Т-клетки, несущие CD16 у пациентов с COVID-19, способствовали повреждению эндотелиальных клеток микрососудистого русла и высвобождению хемоаттрактантов для НГ и моноцитов. Клоны CD16 Т-клеток сохранялись после острого периода заболевания, при этом они продолжали сохранять свой цитотоксический фенотип [74]. Одним из наиболее вероятных последствий вовлечения CD16 при тяжелом COVID-19 является усиленная дегрануляция Т-клеток во время их взаимодействия с эндотелиальными клетками [35, 101].

На поверхности большинства клеток человека находятся поверхностные рецепторы к интерферонам I и II типа, такие как IFNAR1 для IFNα/β и CD119 для IFNγ (IFNGR). Эти рецепторы играют ключевую роль в регуляции врожденных противовирусных ответов, включая и систему НГ [147]. В настоящее время установлено, что НГ экспрессируют мембранные рецепторы к IFNα и IFNγ, образуя субпопуляции с характерным фенотипом. Связываясь с этими рецепторами, IFNα и IFNγ могут реализовывать свои регуляторные функции и модулировать функциональную активность НГ [8].

По было выявлено, литературным данным ЧТО пациентов co среднетяжелыми и тяжелыми формами COVID-19 наблюдается изменение фенотипа субпопуляций НГ, которые экспрессируют рецепторы к IFN а и IFN а, а также активационный CD16 рецептор, отвечающий за цитотоксическую по отношению к клеткам, инфицированным Выявленные трансформации фенотипа в представленных субпопуляциях $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{+}$

свидетельствуют о готовности активированных НГ воспринимать и отвечать на цитокиновые и интерфероновые сигналы, что является важным для назначения дальнейшей таргетной иммунотерапии [12, 19].

В некоторых работах также отмечалось снижением уровня CD3⁺CD4⁺ Т-лимфоцитов, CD3⁺CD8⁺ Т-лимфоцитов, TNK-лимфоцитов, некоторый рост Т-хелперов, увеличение соотношения CD4 и CD8 клеток, уровней В-лимфоцитов, за счет В-общих и В1-, В2-лимфоцитов не клеток памяти, относящихся к плазмоцитам. Выявленные нарушения, возможно, свидетельствуют о том, что у таких пациентов в большей степени формируется иммунный ответ по Th2-типу, что может способствовать возникновению или обострению аллергических и аутоиммунных процессов за счет гиперактивации В-клеточного звена иммунной системы [4, 6, 24].

Ранее другими авторами было показано, что в течение первых 3 месяцев после выздоровления у пациентов с легкой и средней тяжестью течения острого COVID-19 наблюдалось значительное снижение общего количества NK-клеток [146]. Также фиксируется уменьшение количества, СD19⁺ В-лимфоцитов и CD16⁺CD56⁺ NK-клеток крови, наряду c бактериально-вирусной что, коинфекцией, является причиной развития бактериальных пневмоний и приводит к утяжелению состояния и, зачастую, к смерти пациента [68]. Снижение Тсклеток и нарушение регуляции Th1/Th2 ответов также может способствовать обострению заболеваний, вызванных хроническими персистирующими вирусами, такими как герпесвирусы. Многие авторы связывают подобные нарушения в функционировании этих клеток со снижением противовирусной активности иммунной системы. Это может приводить как к недостаточному ответу на новые вирусные антигены, так и к активации хронических вирусных инфекций [68].

Опираясь на полученные, ранее данные в сочетании с появлением новых исследований и знаний о фенотипах НГ и их иммуномодулирующих функциях, ориентируясь на механизмы, регулирующие эти функции, представляется

возможным своевременное выявление дефектов функционирования НГ при иммунозависимых заболеваниях, и разработка новых таргетных иммунотерапевтических подходов.

1.4 Иммунотерапевтические стратегии, направленные на дисфункции нейтрофильных гранулоцитов при постковидном синдроме, ассоциированным с активацией герпесвирусных инфекций

По данным литературы имеется положительный опыт использования во время пандемии COVID-19 в Китае иммуномодулирующего пентапептида тимопентина (Arg-Lys-Asp-Val-Tyr, RKDVY, TP5), являющегося активным центром гормона тимуса тимопоэтина [218]. В России же зарегистрирован лекарственный иммуномодулирующий препарат, активной субстанцией которого является Гексапептид: Arginyl-alpha-Aspartyl-Lysyl-Valyl-Tyrosyl-Arginine (ГП) представляет собой синтетический аналог активного центра гормона тимуса – тимопоэтина, сохраняющий все биологические функции исходного гормона тимуса [11, 31]. Этот пептид обладает положительным иммунорегулирующим эффектом на нарушенную функцию иммунной системы, способствуя восстановлению Т-клеточной активности, увеличению численности и активности НГ и моноцитов, а также нормализации синтеза цитокинов. Кроме того, отмечены его гепатопротекторные и антиоксидантные свойства, а также способность эффективность антибактериальной терапии и препятствовать увеличивать развитию множественной лекарственной устойчивости организма [11, 22].

Изучение молекулярных механизмов нарушений в системе НГ у пациентов с проявлениями ПКС, в частности регуляторных субпопуляций экспрессирующих IFN α / β R, IFN γ R (CD119) и CD16 рецепторов на мембране НГ, обеспечивающих взаимодействие между врожденным и адаптивным иммунитетом, является

актуальным и представляет несомненный интерес, а изучение эффектов влияния ГП на фенотип и функции НГ может помочь в поиске терапевтических стратегий. Нарушения в работе иммунной системы в противовирусной защите при ПКС могут сопровождаться истощением и функциональной неполноценностью клеток врожденного и адаптивного иммунитета с последующим прогрессированием нарушений молекулярных механизмов, связанных с продукцией интерферона (IFN) возникших при остром COVID-19 [30]. В частности, было показано, что при COVID-19 отмечается подавление выработки IFNα и IFNγ, увеличение концентрации сывороточных цитокинов, связанных с активацией НГ, изменение состава и характеристик субпопуляций нейтрофилов, а также изменение их функций [19]. Также продемонстрированы эффекты позитивного влияния рекIFNα2b in vitro на количественные и фенотипические характеристики субпопуляций НГ [33]. Также были обнаружены различные дисрегуляторные нарушения в системе противовирусной иммунной защиты и системе IFN у пациентов с атипичными хроническими активными ГВИ, что приводит к развитию состояния иммунокомпрометированности у пациентов с ПКС. Эти нарушения могут проявляться как локально, так и системно, и считаются одним из основных признаков постковидного периода [22].

 $H\Gamma$, как эффекторные и регуляторные клетки ИС, экспрессируют на своей поверхности мембранные рецепторы к IFNα и IFNγ, что позволяет формировать субпопуляции с определенным фенотипом. Взаимодействуя с указанными рецепторами, IFN I и II типов способны осуществлять свои регуляторные функции и влиять на функциональную активность $H\Gamma$ [212]. Таким образом, изучение молекулярных механизмов нарушений не только в остром периоде COVID-19, но и в постковидном периоде, особенно у пациентов с проявлениями ПКС, связанных с продукцией IFN, рецепторной функцией $H\Gamma$ – $IFN\alpha/\beta R$, CD119 (IFNγ) на мембране $H\Gamma$ периферической крови (ПК), является актуальным и представляет несомненный интерес, что может помочь в поиске терапевтических

стратегий, с целью восстановление и усиление врожденного иммунного ответа против перенесенного SARS-CoV-2.

ГЛАВА 2 МАТЕРИАЛЫ И МЕТОДЫ

2.1 Общая характеристика объекта исследования

Исследование было проведено в период с 2020 по 2024 год на кафедре клинической иммунологии, аллергологии и лабораторной диагностики ФПК и ППС ФГБОУ ВО КубГМУ Минздрава России, а также в отделе клинико-экспериментальной иммунологии централизованной научно-исследовательской лаборатории, на базе государственного бюджетного учреждения здравоохранения Республики Адыгея "Центральная районная больница Майкопского района". Проведение исследования в рамках диссертационной работы было одобрено независимым этическим комитетом ФГБОУ ВО КубГМУ Минздрава России (протокол № 93 от 13.10.2020 г.).

Для достижения поставленной цели и задач было проведено обследование 120 человек, которые были поделены на две группы: 60 условно здоровых добровольцев - группа сравнения (ГС) и 60 пациентов сопоставимых по полу и возрасту (28 женщин и 32 мужчин), после перенесенной SARS-CoV-2 инфекции среднетяжелой (п=46) и тяжелой (n=14) степени тяжести давностью от 3 до 6 месяцев с наличием характерных жалоб и клинических проявлений ПКС - группа исследования (ГИ) (Таблица 2.1.1).

В качестве объекта исследования использовали данные историй болезни, выписных эпикризов и амбулаторных карт, временные методические рекомендации и протоколы по лечению пациентов с новой коронавирусной инфекцией актуальные на момент исследования, периферическую кровь (ПК) пациентов, перенесших SARS-CoV-2 инфекцию, образцы слюны, соскобов с миндалин и задней стенки глотки.

В ходе исследования строго соблюдались этические нормы, описанные в Хельсинкской декларации Всемирной медицинской ассоциации (WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects, 2013). Прежде чем включить пациентов в исследование, от каждого было получено письменное согласие на использование их биологических материалов, проведение анализов, а также на сбор, обработку и публикацию результатов. Критерии включения пациентов в исследование:

- возраст пациентов от 18 до 65 лет;
- пациенты обоего пола, перенесшие подтвержденную SARS-CoV-2 инфекцию;
- наличие у пациентов в остром периоде COVID-19 положительного результата лабораторного исследования на наличие PHK SARS-CoV-2, характерных изменений в легочной ткани по данным лучевых исследований органов грудной клетки и клинических жалоб на различные проявления ПКС;
- информированное согласие пациента, а также условно-здоровых добровольцев на исследование ПК, взятие образцов слюны, соскобов с миндалин и задней стенки глотки, работу с данными историй болезни, выписных эпикризов и амбулаторных карт.

Критерии исключения пациентов из исследования:

- возраст до 18 и более 65 лет;
- пациенты, страдающие от хронических заболеваний в стадии суб- и декомпенсации, включая патологию эндокринной, пищеварительной и дыхательной систем, почек и других внутренних органов, а также аутоиммунные расстройства;
- пациенты, проходящие лечения иммуносупрессивной терапией;
- пациенты с аллергическими заболеваниями в анамнезе, такими как бронхиальная астма, поллиноз, аллергический риноконъюнктивит, крапивница, атопический дерматит;
- пациенты в остром периоде инфекционных заболеваний;
- отказ пациента от проведения исследования.

Таблица 2.1.1 – Структура объектов исследования и проведенных исследований

Исследуемые группы							
Группа	Количество пациентов	Возраст	Проведенные исследования	Кол-во исследова ний			
			Методы исследования				
Ретроспективная группа	1000	18-65 лет	Изучение медицинской документации: данные историй болезни, выписных эпикризов и	1000			
Проспективная группа: пациенты, перенесшие подтвержденную SARS-CoV-2 инфекцию	60	18-65 лет	амбулаторных карт. Анализ протекания особенностей инфекционного процесса COVID-19 в остром периоде и в период реконвалесценции. Наличие хронических заболеваний и синдромов, выявление симптомов постковидного синдрома				
V			Гемограмма	120			
Условно-здоровые добровольцы (группа сравнения)	60	18-65 лет	Определение фагоцитарной и микробицидной активности НГ, NETs, и клеток в апоптозе	360			
			Определение цитокинов IL1β, TNFα, IL4, IL6, IL8, IL10, IL17A, IL18, IFNα, IFNγ	1200			
			Содержание общего количества иммуноглобулинов (A, M, G)	360			
Пациенты, перенесшие SARS- CoV-2 инфекцию (группа исследования)	60	18-65 лет	Исследование функционально- значимых мембранных рецепторов субпопуляций НГ с уточнением уровня их экспрессии: CD16 ⁺ IFN α / β R1 ⁻ CD119 ⁺ , CD16 ⁺ IFN α / β R1 ⁺ CD119 ⁻ , CD16 ⁺ IFN α / β R1 ⁺ CD119 ⁺	360			
Пациенты, перенесшие SARS-	60	18-65 лет	Детекция генома герпесвирусов ВЭБ, ЦМВ, ВЧГ6, ВЧГ8, ВПГ1/2 (слюна, соскоб с миндалин/задней стенке глотки)	190			
CoV-2 инфекцию (группа исследования)			Выявление антител герпесвирусных инфекций - IgG к антигенам VCA ВЭБ, EBNA ВЭБ, ВЧГ6, ВЧГ8, ЦМВ, ВПГ1/2 типов				

			Серодиагностика перенесенного COVID-19 - IgG, IgM, IgA к SARS-CoV-2	180		
Экспериментальные группы в системе in vitro						
Пациенты, перенесшие SARS- CoV-2 инфекцию (группа исследования)	60	18-65 лет	Изучение влияния иммунотропного ГП и рекIFNα2b на плотность экспрессии функциональнозначимых мембранных рецепторов и количество НГ: CD16 ⁺ IFNα/βR1 ⁻ CD119 ⁺ , CD16 ⁺ IFNα/βR1 ⁺ CD119 ⁻	360		
			Определение фагоцитарной и микробицидной активности НГ, NETs, и клеток в апоптозе	300		
Всего				4910		

Пациенты исследуемой группы, подлежали диспансерному наблюдению в соответствии с Приказом Министерства здравоохранения РФ от 1 июля 2021 г. № 698н "Об утверждении Порядка направления граждан прохождение углубленной диспансеризации, включая категории проходящих граждан, углубленную диспансеризацию в первоочередном порядке", где поясняется, что углубленную диспансеризацию вправе пройти граждане, переболевшие новой коронавирусной инфекцией COVID-19; планируемая дата проведения углубленной диспансеризации устанавливается не ранее 60 календарных дней после выздоровления гражданина, перенесшего коронавирусную новую инфекцию COVID-19, при оказании ему медицинской помощи в амбулаторных условиях или в условиях стационара.

Дизайн исследования:

І этап исследования

Ретроспективный анализ и формирование групп обследуемых, сбор информации и данных по их клинико-лабораторному обследованию, изучение лабораторных особенностей, клинического течения и исхода заболевания у пациентов с постковидным синдромом

ІІ этап исследования

Изучение количественного состава и фенотипических характеристик субпопуляций НГ $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{+}$, функциональных свойств НГ, определение цитокинового профиля и маркеров герпесвирусных инфекций

Условно-здоровые добровольцы

Пациенты с постковидным синдромом

III этап исследования

Изучение влияния $\Gamma\Pi$ и рекIFNα2b на количество и фенотип субпопуляций $CD16^{+}IFNα/βR1^{-}CD119^{+}$, $CD16^{+}IFNα/βR1^{+}CD119^{-}$ и функциональные возможности $H\Gamma$ *in vitro*

Условно-здоровые добровольцы

Пациенты с постковидным синдромом

IV этап исследования

Разработка программы комплексной иммунодиагностики нарушений функционирования $H\Gamma$, с последующим применением фармпрепарата, основанного на действующей субстанции $\Gamma\Pi$ и использования лекарственного препарата на основе рек $IFN\alpha2b$ в комбинации с высокоактивными антиоксидантами для коррекции дисфункций $H\Gamma$ у пациентов с постковидным синдромом

Рисунок 2.1.1 – Дизайн исследования

2.2 Методы исследования

2.2.1 Клинические методы исследования

Оценка клинического статуса включала в себя: сбор жалоб, анамнеза заболевания и жизни пациента, иммунологического и аллергологического объективный осмотр, физикальное обследование оценкой анамнеза, объективного статуса и клинического течения постковидного периода. Подбор пациентов в группу исследования проводился с учетом наличия клинических признаков и проявлений ПКС различной степени выраженности, согласно модифицированному оценочному опроснику по пятибалльной шкале: 0 баллов отсутствие симптомов; 1 балл - минимальные проявления ПКС; 2 балла - средняя выраженность проявлений ПКС; 3 балла - тяжелая степень выраженности проявлений ПКС; 4 балла - очень тяжелая степень проявлений ПКС [44]. Опросник содержал следующие жалобы:

- Синдром хронической усталости, непереносимость физической нагрузки, снижение работоспособности, повышенная утомляемость;
- Снижение процессов запоминания, трудности с концентрацией внимания, ощущение тумана в голове;
- Головная боль, головокружение, мигрень;
- Артралгии, миалгии;
- Панические атаки, расстройства настроения, эмоциональная лабильность, психогенная депрессия;
- Нарушения засыпания и сна;
- Повышенная потливость, субфебрилитет;
- Кашель и одышка;
- Клинические проявления ГВИ.

Выраженность клинических проявлений представляли в виде общей суммы баллов.

В исследовании использовались данные историй болезни, выписные эпикризы, амбулаторные карты и анкеты, разработанные в соответствии со шкалой выраженности клинических проявлений ПКС у пациентов, перенесших COVID-19.

Для диагностики и прогноза развития постковидных осложнений, после перенесенного COVID-19 в результате анализа ретроспективного исследования был разработан и внедрен в лечебный процесс новый лабораторный диагностический маркер, используя возможности которого можно было бы предположить возникновение осложнений в постковидном периоде, а также на диагностировать формирование ПКС. Интеграционный раннем этапе диагностический показатель (ИДП) был зарегистрирован в Роспатенте, как ЭВМ программа для практического здравоохранения и объединяет соотношение относительного количества нейтрофильных гранулоцитов (НГ) и лимфоцитов (Π) , а также уровень С-реактивного белка (СРБ): $\Pi \Pi = (\%H\Gamma * CPF)/\%\Pi$. Важно отметить, необходимость включения в формулу ИДП относительного количества НГ, которые играют ключевую роль, как в иммунопатогенезе COVID-19, так и в формировании ПКС [1].

Для диагностики и прогноза течения уже, сформировавшегося ПКС с развитием характерных осложнений и формированием СХУ, когнитивных нарушений и активации ГВИ, в качестве программы для ЭВМ нами также был разработан и зарегистрирован в Роспатенте интеграционный диагностический критерий (ИДК), который характеризует состояния системы НГ у пациентов с ПКС. ИДК = % неизмененных НГ/ % клеток, сформировавших NETs и % клеток Интенсивность образования NETs состоянии апоптоза. коррелирует с тяжестью протекания воспалительного процесса и является прогностическим фактором в развитии тяжелого течения ПКС. Гиперактивация формированием NETs способствует развитию иммунотромбозов, ΗГ коагулопатий и нейроиммуновоспаления, опосредованных через процессы

нетоза, что напрямую коррелирует с риском развития и тяжестью протекания ПКС [7].

2.2.2 Лабораторные методы исследования

2.2.2.1 Общий анализ крови с изучением морфологического состава клеток

Проведение гемограммы проводилось на автоматическом гематологическом анализаторе MicroCC-20 Plus («High Technology Inc.», США). Изучение морфологического состава клеток крови проводили с помощью световой микроскопии мазка ПК, увеличение 8х100, окрашенного по Романовскому-Гимзе: проводился подсчет лейкоцитарной формулы с последующим выявлением количества НГ, сформировавших NETs и клеток в состоянии апоптоза на 100 посчитанных НГ. Данные представляли в виде интеграционного диагностического критерия (ИДК), разработанного ранее с целью предикции прогноза развития тяжести ПКС [7].

$$UДK = \frac{\% \text{ неизмененных H}\Gamma}{\% \text{NETs} + \% \text{H}\Gamma \text{ в апоптозе}}$$

2.2.3 Иммунологические методы исследования

При проведении научного исследования применялись иммунологические методы, позволяющие определить изменение концентрации сывороточных интерферонов и цитокинов, а также выявить дисфункции в системе НГ, с целью оценки состояния клеточного и гуморального звеньев иммунитета.

2.2.3.1 Определение концентрации сывороточных интерферонов, про- и противовоспалительных цитокинов

Методом твердофазного иммуноферментного анализа (ИФА) в сыворотке крови определяли концентрацию интерферонов IFNα, IFNγ и цитокинов TNFα, IL1β, IL4, IL6, IL8, IL10, IL17A, IL18 соответствующими диагностическими системами (ЗАО Вектор Бест, Россия) с помощью анализатора StatFax 4200 (Awareness technology, США) согласно инструкциям по применению к наборам тест-систем, прилагаемых производителем.

2.2.3.2 Определение концентрации общих иммуноглобулинов А, М, G

Определение уровня концентрации общих иммуноглобулинов (IgA, IgM, IgG) проводилось с помощью твердофазного иммуноферментного анализа (ИФА) на анализаторе StatFax 4200 (Awareness Technology, США) с применением соответствующих диагностических систем (ЗАО Вектор Бест, Россия) согласно инструкциям по применению к наборам тест-систем, прилагаемых производителем.

2.2.3.3. Фенотипирование субпопуляций нейтрофильных гранулоцитов

Имунофенотипирование НГ ПК осуществляли с помощью цитометра FC 500 «Beckman Coulter» (США) у условно-здоровых добровольцев, и пациентов, перенесших SARS-CoV-2 инфекцию, а также при проведении экспериментальной части исследования в системе *in vitro* с $\Gamma\Pi$ (10^{-6} г/л) и рек $IFN\alpha2b$ (50 ME/мкл). С использованием метода проточной цитометрии было определено процентное субпопуляций CD16⁺IFNα/βR1⁻CD119⁺, $H\Gamma$: соотношение различных $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{+}$, а также определение плотности экспрессии изучаемых рецепторов помощью индекса интенсивности флуоресценции (mean of fluorescence index MFI). Для маркировки

использовались конъюгаты моноклональных антител (МКАТ) с флуоресцентными метками: IFNαβR1-FITC, CD119-PE, CD16-ECD от компании «Beckman Coulter International S.A.» (Франция).

Протокол исследования:

- 1. В каждую ячейку планшета добавляют по 5 мкл соответствующих МКАТ и 50 мкл исследуемых образцов сыворотки крови;
- 2. Помещают в термошейкер на 25 минут при 400g оборотах в минуту (RPM) при температуре 24-25°C;
- 3. Для лизиса эритроцитов и фиксации лейкоцитов добавляют 250 мкл OptiLyse C;
- 4. После этого образец анализируют на цитометре, применяя метод последовательного гейтирования.

Помимо определения общего количества НГ одновременно экспрессирующих функционально-значимые рецепторы, также регистрировали показатели плотности экспрессии (MFI) каждого исследуемого рецептора по отдельности.

2.2.4. Оценка оксидазной активности нейтрофильных гранулоцитов

Интегральным показателем биоцидной способности НГ является NBT-тест – спонтанный (NBT сп.) и стимулированный (NBT ст.) с *S. aureus* (штамм № 209), который позволяет оценить NADPH-оксидазную активность и эффекторный резерв НГ. Исследование проводилось в соответствии с учебно-методическими рекомендациями по комплексной оценке системы НГ [15].

Алгоритм исследования проводится в двух вариантах:

NBT спонтанный NBT стимулированный (NBT cп.) (NBT ct.) В центр обезжиренного предметного стекла помещают 20 мкл гепариновой смеси 20 мкл сыворотки крови 20 мкл S. aureus в разведении 20 мкл 0,9% физ. p-pa NaCl 1×10^6 микробных клеток/мл 20 мкл 0,1% раствора нитросинеготетразолия Перемешивают и инкубируют во влажной камере (T-37°C, 15 минут) Эритроцитарный остаток удаляют Высушенные препараты фиксируют и окрашивают 0,5% раствором нейтрального красного в течении 5 минут Микроскопируют методом световой микроскопии (10х100) под иммерсионным объективом

По методике Kaplow L.S. подсчитывают в препарате 100 НГ, определяют долю НГ с восстановленным индикатором NBT, содержащих нерастворимый формазан в цитоплазме.

1. Вычисляют средний цитохимический индекс (СЦИ) в NBT спонтанном и стимулированном тестах (СЦИсп и СЦИст):

$$C \coprod M = \frac{0a + 1b + 2c + 3d + 4e}{100}$$

где a, b, c, d, e - количество НГ 0, 1, 2, 3, 4 степеней.

2. Определяют долю формазан позитивных клеток (%ФПК) в NBT спонтанном и стимулированном тестах (%ФПКсп и %ФПКст):

$$\%\Phi\Pi K = c + d + e$$

где c, d, e - HГ 2, 3, 4 степеней.

3. Определяют резервные возможности НГ по коэффициенту мобилизации (КМ):

$$KM = \frac{\% \Phi \Pi Kct}{\% \Phi \Pi Kcn}$$

2.2.5 Оценка фагоцитарной активности нейтрофильных гранулоцитов

Исследование проводится в соответствии с учебно-методическими рекомендациями по комплексной оценке системы НГ [15].

Алгоритм исследования:

В центр обезжиренного предметного стекла помещают

20 мкл гепариновой смеси

20 мкл сыворотки крови

20 мкл S. aureus в разведении 1×10^6 микробных клеток/мл

20 мкл мясопептонного бульона (МПБ)

Перемешивают круговыми движениями и инкубируют во влажной камере (T-37°C, 120 минут)

Эритроцитарный остаток удаляют

Высушенные препараты фиксируют и окрашивают по Романовскому-Гимзе 3-4 минуты

Микроскопируют методом световой микроскопии (10x100) под иммерсионным объективом

Подсчитывают долю активно фагоцитирующих клеток (%ФАН) на 100 НГ

В каждом НГ оценивают количество внутриклеточно расположенных бактерий, учитывая количество разрушенных бактерий

Показатели %ФАН, ФЧ, ФИ – характеризуют поглотительную способность. Показатели %П, ИП отражают переваривающую функцию и завершенность фагоцитоза.

Формулы для расчета:

$$\%\Phi AH = \frac{\Phi A}{100}$$

где % ФАН – процент НГ, поглотивших микробы (ФА) на 100 клеток;

$$\Phi \Psi = \frac{M}{\Phi A}.$$

где ФЧ (фагоцитарное число) - среднее число микробов (M) на фагоцитирующий НГ;

$$\Phi \mathbf{M} = \frac{\mathbf{M}}{100}$$

где ФИ (фагоцитарный индекс) - среднее число микробов (М) на 100 НГ;

$$_{4.}^{\%\Pi} = \frac{_{My6*100}}{_{M}}$$

где %П (процент переваривания) – процент убитых бактерий (Муб);

$$\Pi \Pi = \frac{My6}{100}$$

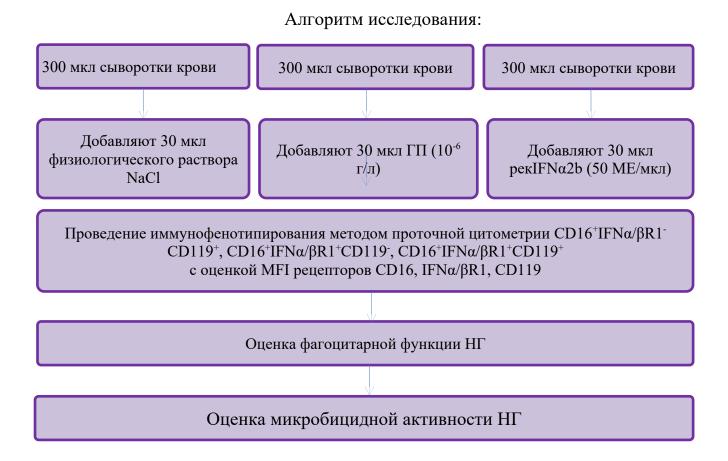
где ИП (индекс переваривания) - среднее число убитых бактерий на 1 НГ.

2.2.6 Молекулярно-генетические методы исследования: ИФА и ПЦР-РВ

2.2.6.1 Методы выявления герпесвирусных инфекций

Для выявления герпесвирусов у пациентов с ПКС, ассоциированным с активацией ГВИ, были использованы молекулярно-генетические методы диагностики. С этой целью для оценки наличия и выявления степени активности ГВИ использовался серологический метод диагностики. Анализ проводился на антитела классов IgG к антигенам: ВЭБ VCA, ВЭБ ЕВNА; ВЧГ6; ВЧГ8; ЦМВ, ВПГ1/2 с использованием твердофазного метода иммуноферментного анализа (ИФА) на приборе StatFax 4200 (Awareness technology, США) с применением соответствующих тест-систем от ЗАО Вектор Бест в соответствии с инструкциями производителя. Образцы слюны, соскобов с миндалин и задней стенки глотки исследовались методом ПЦР в реальном времени (ПЦР-РВ), при котором проводилась амплификация ДНК герпесвирусов с помощью набора

«АмплиПрайм EBV/CMV/HHV6/HHV8 и BПГ1/2» на детектирующем амплификаторе QuantStudio 5.


2.2.6.2 Серологическая диагностика перенесенного COVID-19

Для изучения иммунного ответа на перенесенную инфекцию COVID-19 и с целью определения сероконверсии иммуноглобулинов различных классов к SARS-CoV-2 применяли иммуноферментный метод диагностики с выявлением в сыворотке крови антител классов IgG, IgM, IgA к SARS-CoV-2 с помощью твердофазного ИФА на анализаторе StatFax 4200 (Awareness technology, США) с применением соответствующих тест-систем (ЗАО Вектор Бест, Россия) согласно инструкциям по применению к наборам тест-систем, прилагаемым производителем.

2.2.7 Культуральные методы

Для оценки влияния иммунотропных субстанций ГП и рекIFN α 2b на фенотипы изучаемых субпопуляций и функциональную активность НГ в системе *in vitro* применяли культуральные методы исследования клеток ПК (10^6 г/л; t- 37°C, 60 мин), при этом использовали ламинар Mars 1500 («Scanlaf», Дания), СО2–инкубатор «New Brunswick Scientific Galaxy 170S» (Великобритания).

Было проведено исследование образцов ПК 60 пациентов перенесших подтвержденную SARS-CoV-2 инфекцию (подтвержденную положительным ПЦР тестом с наличием в остром периоде различных клинических проявлений и характерными изменениями в легочной ткани по данным лучевых исследований) и предъявляющие жалобы на различные проявления ПКС в возрасте от 18 до 65 лет.

2.2.8 Статистические методы

Для анализа данных применялись математические методы, интегрированные в программные продукты Microsoft Exel 2016 и StatPlus 2017. Проверка данных на соответствие нормальному распределению осуществлялась с использованием критериев Шапиро-Уилка. В результате анализа были отобраны методы непараметрической статистики, результаты которых представлены через медиану (Ме), охватывающую центральные 50% данные выборки, и интервал (Q1-Q3), который показывает разброс между 25-м и 75-м процентилями. Для оценки значимости различий в независимых выборках использовался U-критерий Манна-Уитни, а для зависимых выборок применялся критерий Вилкоксона. Различия считались статистически значимыми при уровне значимости менее 0,05 (p<0,05).

ГЛАВА З КЛИНИКО-ИММУНОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ФУНКЦИОНАЛЬНЫХ ОСОБЕННОСТЕЙ, ФЕНОТИПА И ЭФФЕКТОРНЫХ ФУНКЦИЙ НЕЙТРОФИЛЬНЫХ ГРАНУЛОЦИТОВ ПРИ ПОСТКОВИДНОМ СИНДРОМЕ, АССОЦИИРОВАННЫМ С АКТИВАЦИЕЙ ГЕРПЕСВИРУСНЫХ ИНФЕКЦИЙ

3.1 Клинико-иммунологические особенности пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций

По мнению зарубежных и российских ученых, остаточные и вновь приобретенные клинические проявления после перенесенной новой коронавирусной инфекции значительно распространены не только у пациентов с коморбидной патологией, но и среди молодых и ранее не предъявлявших жалобы здоровых людей [308]. Часть пациентов, перенесших COVID-19 разной степени тяжести после периода реконвалесценции, отмечают различные проявления ПКС.

Таким образом, становится очевидной важность эффективного выявления и определения пациентов из групп риска по развитию ПКС с целью его своевременной диагностики, динамического наблюдения и дальнейшего терапевтического воздействия.

На основании проведенного дельфийского консенсуса от 6 октября 2021 года и клинического определения случаев состояния после COVID-19 были выделены тематические блоки, которые были включены в клиническое определение состояния после COVID-19, таким образом, определение "постковидный синдром" было предложено в Международной классификации болезней 10 пересмотра - МКБ-10 - U09.9 [84]. ПКС представляет собой полисистемное клиническое состояние, возникающее через 12 и более недель, после перенесенного COVID-19, с сохраняющимися не менее 2 месяцев

симптомами, отражающими дисфункцию многих систем и органов, которые не могут быть объяснены альтернативным диагнозом [132].

Среди наиболее распространенных симптомов ПКС выделяются утомляемость, одышка, когнитивная дисфункция и другие, которые часто оказывают влияние на выполнение повседневных задач. Симптомы могут проявиться после периода выздоровления от острой инфекции COVID-19 или сохраняться с момента первоначального заболевания. Кроме того, возможно периодическое появление или рецидивирование симптомов со временем.

Проявления ПКС разнообразны, непредсказуемы и опасны, поэтому крайне важно оценить у таких пациентов развитие возможных осложнений, часто сопровождающих течение тяжелых вирусных инфекций с развитием синдрома хронической усталости (СХУ) и выраженных когнитивных расстройств (КР) [30, 199]. ПКС объединяет множество неблагоприятных исходов часто возникающими впервые состояниями, сердечно-сосудистые, включая тромботические и цереброваскулярные заболевания, сахарный диабет 2 типа [14], миалгический энцефаломиелит (МЭ), СХУ [33] и дисавтономию, особенно синдром постуральной ортостатической тахикардии [2]. Стойкое ощущение СХУ характеризуется астенией различной степени выраженности, затяжным или волнообразным течением и является одной из самых частых жалоб пациентов [30]. Ухудшение способности к запоминанию, усвоению новой информации, пониманию, воспроизведению прочитанного ИЛИ услышанного, также выполнению повседневных задач, возникновение трудностей в общении с окружающими, концентрацией внимания, снижение умственной работоспособности, забывчивость, ощущение «тумана в голове», нарушение процессов сна и засыпания, а также многочисленные и разнообразные вегетативные нарушения (головная боль, головокружение, перепады артериального давления и пульса, аритмии, тахикардии), мигрирующие боли в суставах и мышцах все это является частыми проявлениями ПКС.

При проведении нейропсихологического тестирования изучения двигательной активности ΜΟΓΥΤ быть выявлены нарушения области способности коммуникативных навыков, концентрации внимания, распознаванию, пониманию новой информации и мышлению, а также проблемы с моторикой, запоминанием и воспроизведением рядов слов, цифр и фигур. проблемы поведением, Возникают адаптивным производительностью, познавательными процессами, осознанием, а также с различными видами памяти: оперативной, процедурной, семантической, эпизодической, фиксационной, кратковременной и долговременной [26, 85, 154].

Пациенты проявляют жалобы на: также повышенную потливость, длительный субфебрилитет, периодические боли в горле, спине, поясничной области, грудной клетке. Одышка, кашель, регионарная лимфоаденопатия, потеря или изменение вкуса, запаха или слуха, плохая переносимость света и шума, боли в животе, диарея, кожные проявления васкулитов и/или аллергических реакций, выпадение волос и другие жалобы продолжают беспокоить пациентов в раннем и позднем постковидном периоде [9, 26, 106, 119, 199]. Сохраняющиеся негативные сдвиги в физическом и эмоциональном состоянии приводят к социальной дезадаптации пациентов и отрицательно отражаются на качестве их жизни. Могут наблюдаться такие проявления, как панические атаки, расстройства настроения, включая эмоциональную нестабильность и психогенную депрессию, повышенная тревожность, различные фобии, асоциальное поведение и конфликты. Попытки родственников и медицинских работников повлиять на самооценку пациента психотические ΜΟΓΥΤ спровоцировать реакции, взрывное поведение, конверсионные расстройства и суицидальные наклонности [154, 241]. Эти упомянутые осложнения наблюдаются у 30-50% выздоравливающих, чаще у женщин, чем у мужчин, а тяжесть и длительность этих осложнений выше у пациентов с полиорганными и сопутствующими формами патологии, которые проходили лечение в отделениях интенсивной терапии и реанимации [2, 184, 241].

Помимо этого, большая часть пациентов отмечает частые эпизоды острых и рекуррентных респираторных вирусных инфекций, обострение хронических бактериальных и грибковых инфекций, вызывающих хронический синусит, гайморит, фарингит, отит, цистит, уретрит, вульвовагинит, развитие других инфекций различной этиологии и локализации [22, 208].

Было предложено несколько гипотез патогенеза ПКС, в том числе персистирующие резервуары SARS-CoV-2 в тканях [221], микрососудистое свертывание крови с эндотелиальной дисфункцией, нарушенная передача сигналов в стволе мозга и/или блуждающем нерве, негативное воздействие SARS-CoV-2 на микробиоту [102, 115, 244, 245]; иммунная дисрегуляция с реактивацией ГВИ, таких как ВЭБ и ВЧГ6 [22, 131, 136, 242, 297].

Долгосрочные физические и психические последствия COVID-19 вызывают растущую озабоченность общественного здравоохранения, однако существует значительная неопределенность относительно их распространенности, стойкости и предикторов развития ПКС.

Пациенты, перенесшие SARS-CoV-2 инфекцию подлежат диспансерному наблюдению в соответствии с Приказом Министерства здравоохранения РФ от 1 июля 2021 г. № 698н "Об утверждении Порядка направления граждан на прохождение углубленной диспансеризации, включая категории граждан, проходящих углубленную диспансеризацию в первоочередном порядке", в котором поясняется, что углубленную диспансеризацию вправе пройти граждане, переболевшие новой коронавирусной инфекцией COVID-19. Планируемая дата проведения углубленной диспансеризации устанавливается не ранее 60 календарных дней после выздоровления гражданина, перенесшего новую коронавирусную инфекцию COVID-19, при оказании ему медицинской помощи в амбулаторных условиях или в условиях стационара.

Таким образом, под наше наблюдение попали 60 пациентов обоего пола (28 женщин, 32 мужчин) в возрасте от 18 до 65 лет, после перенесенной SARS-CoV-2

инфекции среднетяжелой (n=46) и тяжелой (n=14) степени тяжести. Включенные в исследование пациенты были поделены на две группы: условно-здоровые добровольцы - группа сравнения (ГС) и пациенты после перенесенного COVID-19 давностью от 3 до 6 месяцев с наличием характерных жалоб и клинических проявлений ПКС - группа исследования (ГИ). По данным анамнеза вирус SARS-CoV-2 в ГИ в 100% случаев был идентифицирован в остром периоде положительным ПЦР-тестом. При ЭТОМ ПО результатам компьютерной томографии органов грудной клетки в остром периоде COVID-19 отмечалась картина вирусного поражения легочной ткани с понижением прозрачности по типу «матового стекла» различной степени выраженности (КТ 2-3-4) или его сочетание с консолидациями и мультилобарной вовлеченности. Изменения после воспалительного процесса выявлялись в виде локального одно или двустороннего пневмофиброза, что возможно явилось следствием присоединения бактериальной инфекции, так и могло быть осложнением течения интерстициальной вирусной пневмонии, зоны консолидации и пневмосклероза разной протяженности, бронхоэктазы, облитерирующего дисковидные ателектазы, признаки бронхиолита.

Для оценки выраженности и наличия клинических признаков и проявлений ПКС проводилось анкетирование, согласно модифицированному оценочному опроснику по пятибалльной шкале: 0 баллов - отсутствие симптомов; 1 балл - минимальные проявления ПКС; 2 балла - средняя выраженность проявлений ПКС; 3 балла - тяжелая степень выраженности проявлений ПКС; 4 балла - очень тяжелая степень проявлений ПКС наличие или отсутствие симптомов в зависимости от тяжести их проявления в баллах от 0 до 5 [144]. В результате проведенного исследования установлено, что частота встречаемости клинических проявлений СХУ и КР была выявлена у всех пациентов ГИ с оценкой их выраженности согласно 5-балльной шкале. Таким образом, общее количество

баллов составило - 17,0 (13,5; 20,5), что в 17 раз больше, чем в ГС-1,0 балл (1,0; 2,0) (p<0,05) (Таблица 3.1.1).

Таблица 3.1.1 – Выраженность клинических проявлений ПКС у пациентов, перенесших COVID-19 (в баллах)

Симптомы	Группа сравнения (ГС), n=60 Me (Q1;Q3)	Пациенты с ПКС (ГИ), n=60 Me (Q1;Q3)			
Синдром хронической усталости, непереносимость физической нагрузки, снижение работоспособности, повышенная утомляемость	0,5 (0,1; 1,0)	3,0 (2,0; 3,0)*			
Снижение процессов запоминания, трудности с концентрацией внимания, ощущение тумана в голове	0,0 (0,0; 0,0)	3,0 (3,0; 3,0) *			
Головная боль, головокружение, мигрень	0,5 (0,1; 1,0)	2,0 (2,0; 3,0) *			
Артралгии, миалгии	0,0 (0,0; 0,0)	2,0 (1,0; 3,0) *			
Панические атаки, расстройства настроения, эмоциональная лабильность, психогенная депрессия	0,0 (0,0; 0,0)	2,0 (2,0; 2,0) *			
Нарушения засыпания и сна	0,0 (0,0; 0,0)	2,0 (1,5; 2,0) *			
Повышенная потливость, субфебрилитет	0,0 (0,0; 0,0)	1,0 (1,0; 1,5) *			
Кашель и одышка	0,0 (0,0; 0,0)	1,0 (0,5; 1,5) *			
Частота обострений герпесвирусных инфекций 3 и более раз в год	0,0 (0,0; 0,0)	1,0 (0,5; 1,5) *			
Общее кол-во баллов	1,0 (0,5; 2, 0)	17,0 (13,5; 20,5)*			
* значимость отличий от показателей группы сравнения; р <0,05					

Наиболее стойкими жалобами, которые отмечались у всех пациентов в ГИ, являлись: ощущение стойкой хронической усталости, непереносимость

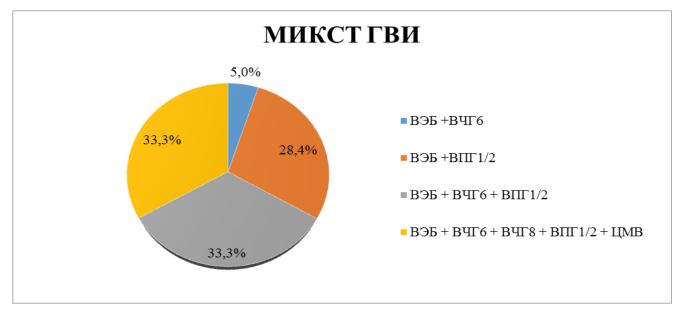
физической нагрузки, снижение работоспособности, повышенная утомляемость. Также у всех пациентов в разной степени выраженности выявлялись когнитивные нарушения в виде снижения процессов запоминания, трудности с концентрацией внимания, ощущение «тумана в голове», панические атаки и психогенная депрессия, нарушения процессов сна и засыпания, а также отмечались головная боль, головокружение. У 75% пациентов возникали периодически повышенная потливость и субфебрилитет, артралгии и миалгии, 33% отмечали клинические проявления ГВИ - ВПГ 1/2 типа, а в 18% случаев длительно сохранялись кашель и одышка.

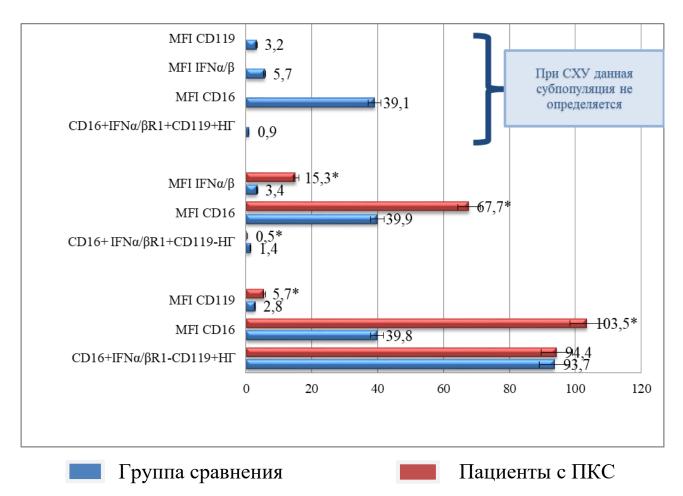
3.2 Характеристика этиологической структуры герпесвирусных инфекций у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций

Современные лабораторные методы диагностики инфекций, вызванных ГВИ, играют ключевую роль в установлении или подтверждении причины заболевания. Для этого осуществляется комплексное молекулярно-генетическое исследование, направленное на определение генетической структуры вируса, а проводятся иммунологические тесты, которые позволяют выявить вирусные антигены и антитела, выработанные в ответ на инфекцию. С целью ГВИ выявления этиологической структуры проводили молекулярнобиологическое тестирование хронических герпесвирусов (ВПГ1/2, ВЭБ, ВЧГ6, ВЧГ8, ЦМВ), которые имеют важное и ключевое значение для выявления реактивации хронических ГВИ. Иммуноглобулины класса IgG к вирусному капсидному антигену - VCA начинают циркулировать в крови через 1-2 месяца после начала заболевания, затем их титр постепенно уменьшается и остается на минимальном уровне, на протяжении всей жизни. Увеличение титра IgG VCA характерно для обострения хронической ВЭБ инфекции. IgG к ядерному антигену

- EBNA считаются наиболее поздними антителами, так как появляются в крови через 1-3 месяца после начала инфекционного процесса и могут сохраняться в высоких концентрациях в течение длительного времени, затем их титр снижается и остается на уровне, характерном для всей жизни, увеличение титра IgG EBNA свидетельствует о реактивации хронической ВЭБ инфекции. При этом обнаружение ГВИ в образцах слюны, соскобов с миндалин и задней стенки глотки методом ПЦР - РВ подтверждает реактивацию хронических активных ГВИ.

Согласно полученным данным, были выявлены варианты различных микст ГВИ, а частота встречаемости была следующей: ВЭБ + ВЧГ6 – 5 %; ВЭБ + ВПГ1/2 – 28,4 %; ВЭБ + ВПГ1/2 – 33,3 %; ВЭБ + ВЧГ6 + ВПГ1/2 + ЦМВ - 33,3 % случаев (Рисунок 3.2.1).




Рисунок 3.2.1 – Этиологическая структура ГВИ у пациентов с ПКС

Стоит отметить, что у пациентов с микст ГВИ, имеющих детекцию 3 и более вирусов герпеса, с доминированием во всех группах ВЭБ, наблюдались наиболее выраженные и стойкие симптомы ПКС, среди которых преобладали жалобы на длительные ощущения СХУ и КР, а выраженность симптомов составила 19,0 (17,0; 21,0) баллов. Наиболее важной особенностью патогенеза

ГВИ следует отметить активную репликацию ВЭБ, ВЧГ6, ВПГ1/2, ЦМВ, ВЧГ8, которая может наблюдаться даже в момент отсутствия клинических проявлений инфекционного процесса.

3.3 Содержание и фенотип субпопуляции CD16+IFNα/βR1+CD119+, CD16+IFNα/βR1+CD119-, CD16+IFNα/βR1+CD119+ нейтрофильных гранулоцитов у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций

При исследовании уровня субпопуляций НГ, экспрессирующих рецепторы к IFN I (IFN α/β R1), II τипов IFN γ R (CD119) и активационному маркерному рецептору CD16, было установлено, что в периферической крови субпопуляции НГ: $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, циркулируют 3 $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{+}$. Субпопуляция, экспрессирующая рецептор к IFN γ - CD16⁺IFN α / β R1⁻CD119⁺ составляла 93,7 (89,8; 96,5) % HГ с плотностью экспрессии по MFI CD16 – 39,8 (20,4; 51,3) и CD119⁺ $(IFN\gamma)-2,8$ $(2,5;\ 3,1)$. Доля субпопуляции экспрессирующая рецептор к $IFN\alpha/\beta$ - $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, была представлена 1,4 (0,5; 2,4) % НГ с плотностью экспрессии по MFI IFN α /βR1 – 3,4 (2,6; 4,1) и MFI CD16 – 39,9 (22,9; 54,5). Также определялась субпопуляция HГ, одновременно экспрессирующая IFNα/β и IFNγ рецепторы — $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{+}$, представленная всего 0,9 (0,4; 1,8) % HГ, но при этом имеющая более высокие значения плотности экспрессии IFNα/βR1 (p>0.05) и CD119 молекул (p>0.05) (Рисунок 3.3.1).

* значимость отличий от показателей группы сравнения; р <0,05 Рисунок 3.3.1 – Количественные и фенотипические особенности субпопуляций НГ, экспрессирующих рецепторы к IFN I и II типов и активационный маркерный рецептор CD16 у пациентов с ПКС

В ГИ содержание субпопуляции CD16⁺IFN α /βR1⁻CD119⁺HГ не отличалось от ГС (p>0,05), но при этом было выявлено увеличение плотности экспрессии рецепторов по MFI в 2,6 раза CD16 (p<0,05) и в 1,9 раз CD119 (p<0,05). Напротив, наблюдалась тенденция снижения в 2,8 раз содержания субпопуляции CD16⁺IFN α /βR1⁺CD119⁻HГ (p>0,05). При этом для этой субпопуляции были характерны повышенные уровни экспрессии в 4,5 раза рецептора IFN α /βR1 (p<0,05) и в 1,7 раз CD16 (p<0,05) по отношению к показателям ГС. Отличительной особенностью показателей ГИ явилось отсутствие субпопуляции CD16⁺IFN α /βR1⁺CD119⁺ НГ. При этом только у 3-х пациентов с микст ГВИ регистрировались 0,3 (0,3; 0,7) % данной субпопуляции с повышенными в 1,8 раз

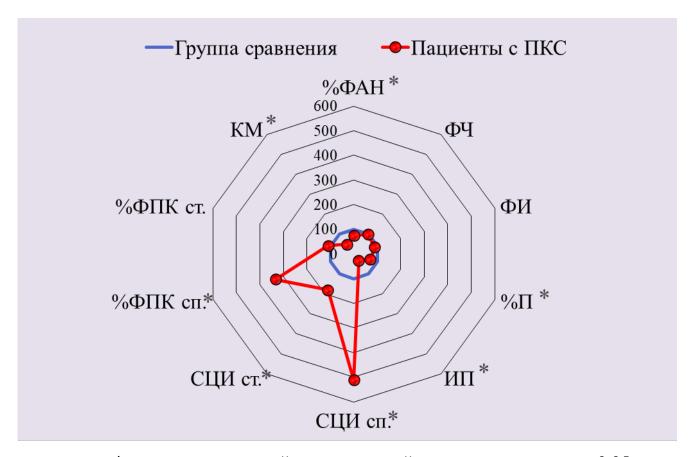
МГІ ІГNα/βR1-10,3 (9,82; 10,5), в 6 раз CD119 - 18,4 (10,4, 34,8) и в 1,4 раза CD16-54,7 (38,4; 91,8) по отношению к значениям ГС (p_{1-3} <0,05) (Таблица 3.3.1).

Таблица 3.3.1 – Фенотип субпопуляций НГ, экспрессирующих рецепторы к IFN I и II типов и активационный маркерный рецептор CD16 у пациентов в постковидном периоде

П	Группа сравнения (ГС),	Пациенты с ПКС (ГИ),		
Показатели	n=60	n=60		
Me(Q1; Q3)		Me(Q1; Q3)		
	CD16 ⁺ IFNα/βR1 ⁻ CD119 ⁺ HΓ			
НГ, %	93,7 (89,8; 96,5)	94,4 (92,6; 96,1)		
CD16 (MFI)	39,8 (20,4; 51,3)	103,5 (73,9; 121,0)*		
CD119 (MFI)	2,8 (2,5; 3,1)	5,2 (4,4; 6,2)*		
CD16 ⁺ IFNα/βR1 ⁺ CD119 ⁻ HΓ				
НГ, %	1,4 (0,5; 2,4)	0,5 (0,4; 2,0)		
CD16 (MFI)	39,9 (22,9; 54,5)	67,7 (58,5; 100,3)*		
IFNα/β (MFI)	3,4 (2,6; 4,1)	15,3 (6,8; 22,2)*		
CD16 ⁺ IFNα/βR1 ⁺ CD119 ⁺ HΓ				
НГ, %	0,9 (0,4; 1,8)	0		
CD16 (MFI)	39,1 (26,6; 50,3)	0		
IFNα/β (MFI)	5,7 (4,6; 6,5)	0		
CD119 (MFI)	3,2 (2,9; 5,8)	0		
* значимость отличий от показателей группы сравнения; р <0,05				

Следует отметить, что у пациентов с ПКС на фоне микст ГВИ отмечается трансформация фенотипа субпопуляций НГ, несущих рецепторы к IFN α/β и IFN γ и активационного рецептора CD16, отвечающего за цитотоксичность НГ по

отношению к инфицированным вирусами клеткам. Выявлено статистически значимое повышение MFI всех изучаемых рецепторов на субпопуляциях ${\rm CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}H\Gamma}$ и ${\rm CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}H\Gamma}$, демонстрирующих готовность к восприятию цитокиновых сигналов и ответа на них.


3.4 Дефекты эффекторных функций нейтрофильных гранулоцитов у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций

Анализ функционального потенциала НГ при ПКС выявил снижение доли активно фагоцитирующих НГ (%ФАН) в 1,3 раза, %П в 1,4 раза и ИП в 2,9 раз по отношению к показателям ГС ($p_{1,2,3}$ <0,05) (Таблица 3.4.1).

Таблица 3.4.1 — Оценка фагоцитарной активности НГ пациентов с ПКС в системе *in vitro* (Me (Q1; Q3))

Показатель	Группа сравнения (ГС), n=60	Пациенты с ПКС (ГИ), n=60	
%ФАН	65,8 (60,9; 79,6)	49,0* (48,0; 52,0)	
ФЧ	3,4 (2,1; 4,2) 1,8	3,3 (3,1; 3,4)	
ФИ	1,8 (1,6; 2,0) 58,9	1,6 (1,5; 1,8) 40,9*	
%П	58,9 (51,3; 78,3) 1,90	40,9* (40,5; 41,7) 0,65*	
ИП	1,90 (1,10; 2,40)	(0,61;0,72)	
СЦИ сп.	0,09 (0,06; 0,10)	0,46* (0,41;0,49)	
СЦИ ст.	0,20 (0,08; 0,30)	0,36* (0,33; 0,39)	
%ФПК сп.	2,4 (2,3; 3,5) 5,5	8,0* (6,8;9,0)	
%ФПК ст.	5,5 (2,8; 6,3) 1,8	6,0 (5,8; 7,0)	
KM	1,8 (1,60; 2,20)	0,8* (0,5; 1,3)	
* значимость отличий от показателей группы сравнения; р <0,05			

В данной группе пациентов отмечалось: в спонтанном NBT-тесте напряженность NADPH-оксидаз по показателям СЦИсп. — 0,46 (0,41;0,49) и %ФПКсп. — 8,0 (6,8; 9,0) % в сравнении с ГС ($p_{1,2}$ <0,05). В стимулированном NBT-тесте при дополнительной нагрузке S. aureus отмечалось снижение значений СЦИст. — 0,36 (0,33; 0,39) (p<0,05) и %ФПКст. 6,0 (5,8; 7,0), (p>0,05) что демонстрирует истощение оксидазного микробицидного потенциала с КМ-0,8 (0,75; 1,26) (p<0,05) (Рисунок 3.4.1).

 \ast значимость отличий от показателей группы сравнения; р <0,05

Рисунок 3.4.1 – Оценка фагоцитарной активности НГ пациентов с ПКС

Большое количество клинических данных и экспериментальных исследований все чаще подтверждает негативное воздействие на организм человека гиперактивированных НГ, способных легко образовывать NETs. Это связано с тем, что NETs способствует развитию многих патологических процессов, включая те, которые возникают при вирусных инфекциях [250].

Интенсивность образования NETs в организме с возникновением тромбозов и коагулопатий сопоставимо с тяжестью течения воспалительного процесса и является неблагоприятным прогностическим фактором в развитии осложнений после перенесенного COVID-19.

С целью поиска новых диагностических возможностей в дополнение к клиническому анализу крови нами был разработан и предложен для внедрения в практическое здравоохранение новый интеграционный диагностический критерий (ИДК) для диагностики и прогноза течения ПКС и характерных осложнений с развитием СХУ, КР и активацией хронических ГВИ [7].

Алгоритм был разработан и зарегистрирован в Роспатенте, как программа для ЭВМ «Критерий прогноза тяжести течения постковидного синдрома». Данный критерий характеризует состояния системы НГ у пациентов с ПКС: ИДК = % неизмененных НГ/ % клеток, сформировавших NETs и % клеток в состоянии апоптоза. Изучение морфологических характеристик клеток крови проводится в препаратах периферической крови с помощью световой микроскопии с увеличением 10*100 с окрашиванием мазков по Романовскому-Гимзе. При этом определяется относительное количество НГ, появление NETs и клеток с апоптозом (Таблица 3.4.2).

При оценке показателей общеклинического анализа крови в ГС и ГИ не было выявлено значимых изменений общего количества лейкоцитов, НГ и Л (p>0,05), в то же время выявлено увеличение количества моноцитов в ГИ – 9,0 (8,0; 10,0) % против ГС – 5,0 (3,3; 6,8) % в 1,8 раза, что может говорить о возможной реактивации ВЭБ инфекции при развитии ПКС (p<0,05). (Таблица 3.4.2).

Таблица 3.4.2 – Количественные характеристики гемограммы у пациентов с ПКС (Me (Q₁; Q₃))

Показатель	Группа сравнения (ГС),	Пациенты с ПКС (ГИ),	
	n=60	n=60	
T 109/_	5,96	6,25	
$L, 10^9/\pi$	(5,34; 6,66)	(5,75; 6,75)	
ПФ 0/	35,0	35,0	
ЛФ, %	(31,0; 42,0)	(31,0; 36,0)	
пљ 109/_	2,17	2,39	
	(1,76; 2,48)	(2,02; 2,68)	
III 0/	57,0	60,0	
НГ, %	(49,0; 61,0)	(56,0; 63,0)	
III 109/-	3,37	3,75	
$H\Gamma, 10^9/л$	(2,72; 3,9)	(3,22; 4,25)	
СПП 0/	53,0	55,5	
СЯЛ, %	(47,0; 58,5)	(54,3; 59,8)	
пап 0/	2,0	3,0	
ПЯЛ, %	(1,0; 3,0)	(1,0; 4,5)	
MOH, %	5,0	9,0*	
MOH, 70	(3,3; 6,8)	(8,0; 10,0)	
ЭОЗ, %	0,0	3,5	
JO3, 70	(0,0;1,0)	(3,0; 4,0)	
NETs	1,0	2,0*	
NETS	(0; 1,0)	(1,75; 2,5)	
Клетки в	1,0	2,0	
апоптозе	(0; 1,0)	(1,0; 3,0)	
* значимость отличий от показателей группы сравнения; р <0,05			

При морфологической оценке 100~% НГ у условно здоровых добровольцев выявляются клетки с неизмененными зрелыми НГ - 99%, отсутствуют NETs и клетки с апоптозом составляют не более 1~%.

$$U$$
Д K = $\frac{\%$ неизмененных Н Γ $\%$ NETs + $\%$ Н Γ в апоптозе

Данный алгоритм программы показывает, что с использованием оператора деления вычисляется ИДК — НГ-ПКС- % неизмененных НГ/ % клеток, сформировавших NETs и % клеток в состоянии апоптоза. Интерпретация полученных данных осуществляется с последующим представлением пользователю в форме прогноза о развитии тяжести ПКС в постковидном периоде. При расчете у условно-здоровых лиц ИДК НГ-ПКС должен составлять 99,0 (Рисунок 3.4.2).

Рисунок 3.4.2 – Алгоритм программы ИДК-ПКС

Таким образом, стоит отметить, что снижение данного коэффициента, наиболее характерно для лиц с выраженными проявления СХУ, КР и активацией ХГВИ, при этом основными жалобами являются, такие как, непереносимость физической уменьшение работоспособности, повышенная нагрузки, утомляемость, нарушение процессов запоминания, затруднения с концентрацией внимания, ощущение памяти, головные боли, головокружение, мигрень, боли в боли. суставах, мышечные панические атаки, нарушения настроения,

эмоциональная нестабильность, психогенная депрессия, нарушения засыпания и сна, повышенная потливость, субфебрилитет, сохраняющиеся кашель и одышка, клинические проявления ГВИ. Автоматический расчет ИДК позволит пользователю оценить риски развития и прогноза постковидных осложнений, у пациентов, перенесших SARS-CoV-2 инфекцию (Рисунок 3.4.3).

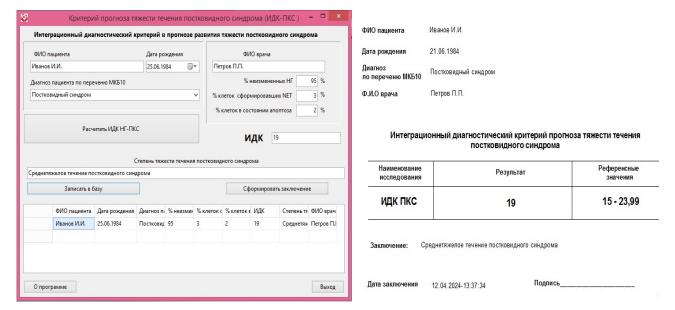
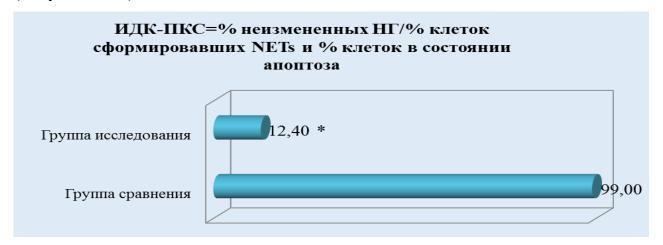


Рисунок 3.4.3 – Экранные изображения программы для ЭВМ ИДК-ПКС


Конечный результат представляется в виде степени течения ПКС (Таблица 3.4.3):

- если ИДК=49-99 прогнозирование благоприятного исхода в постковидном периоде; (1-2% NETs+ клеток в состоянии апоптоза);
- если ИДК=24-48,9 легкое течение ПКС; (3-4% NETs+ клеток в состоянии апоптоза);
- если ИДК=15-23,9 среднетяжелое течение ПКС; (5-6% NETs+ клеток в состоянии апоптоза);
- если ИДК=9-14,9 тяжелое течение ПКС; (7-10% NETs+ клеток в состоянии апоптоза);
- если ИДК=0-8,9 крайне тяжелое течение ПКС; (>10 % NETs+ клеток в состоянии апоптоза).

Таблица 3.4.3 – Прогноз течения ПКС в зависимости от показателя ИДК

Группа пациентов	идк	Степень протекания ПКС
Пациенты, перенесшие COVID-19 тяжелой степени тяжести, n=14	12,4 (9,90; 14,14)	Тяжелое течение ПКС
Пациенты, перенесшие COVID-19 средней степени тяжести, n=22	18,0 (16,5; 19,8)	Среднетяжелое течение ПКС
Пациенты, перенесшие COVID-19 средней степени тяжести, n=24	28,2 (24,8; 33,0)	Легкое течение ПКС

При оценке ИДК в ГИ было выявлено: у 23% пациентов, перенесших COVID-19 тяжелой степени тяжести ИДК составил 12,4 (9,90; 14,14), что в 8 раз меньше, чем в ГС 99,0 (99,0; 99,0), (р<0,05) и говорит о тяжелом течении ПКС; у 37% пациентов, перенесших COVID-19 среднетяжелой степени тяжести ИДК составил 18,0 (16,5; 19,8) что в 5,5 раз меньше, чем в ГС 99,0 (99,0; 99,0), (р<0,05) и говорит о среднетяжелом течении ПКС; у 40%, перенесших COVID-19 среднетяжелой степени тяжести ИДК составил 28,2 (24,8; 33,0), что в 5,5 раз меньше, чем в ГС 99,0 (99,0; 99,0), (р<0,05), и говорит о легком течении ПКС (Рисунок 3.4.4).



* значимость отличий от показателей группы сравнения; р <0,05 Рисунок 3.4.4 – Интеграционный диагностический критерий – ИДК-ПКС Стоит подчеркнуть, что все пациенты, перенесшие COVID-19 тяжелой степени тяжести, были подвержены тяжелому течению ПКС и имели наиболее низкие показатели ИДК. В соответствии с вышеописанным было отмечено, что снижение данного коэффициента, регистрировалось у лиц с большим количеством клинических проявлений ПКС основными жалобами, которых являлись: сохраняющиеся кашель и одышка, снижение работоспособности, утомляемость, головная боль, головокружение, ощущение «тумана» в голове, неожиданно возникшие проблемы с памятью и усвоением новой информации, нарушение концентрации внимания, понимания, проблемы в общении с окружающими, а также нарушения процессов засыпания и сна. В более редких случаях отмечались жалобы на аносмию, дисгевзию, кожные высыпания, аллергические реакции, тошноту, диарею, и отвращение к некоторым продуктам.

В результате анализа ретроспективного исследования в целях диагностики и прогноза развития постковидных осложнений, после перенесенного COVID-19 нами был также разработан и предложен для внедрения в практическое здравоохранение интеграционный диагностический показатель (ИДП) - новый лабораторный маркер, используя возможности которого можно было бы предположить возникновение осложнений в постковидном периоде, а также на раннем этапе диагностировать формирование ПКС [1].

Изучение морфологических показателей клеток крови проводится в препаратах периферической крови с помощью световой микроскопии с увеличением 10*100 с окрашиванием мазков по Романовскому-Гимзе. При этом определяется относительное количество НГ и Л с последующим определением уровня СРБ в сыворотке крови. В результате ретроспективного анализа было выявлено, что в период острого COVID-19 часть пациентов, проходившая лечение в стационарных условиях, при выписке имела высокие показатели ИДП: 49,06 (33,03; 63,24) что в 11 раз больше значений Γ C – 4,47 (2,95; 6,43), при этом через 4 недели после выписки значение ИДП оставался повышенным в 3,5 раза: 13,89

(9,45; 18,76) (p<0,05), что могло быть расценено, как высокий риск развития тяжелого течения ПКС (Рисунок 3.4.5). При этом все пациенты были выписаны из стационара в соответствии с критериями выписки, согласно Временным методическим рекомендациям, актуальным на тот момент.

* значимость отличий от показателей группы сравнения; р <0,05 Рисунок 3.4.5 – Интеграционный диагностический показатель – ИДП-ПКС

Стоит отметить, что повышение данного показателя отмечается у пациентов в постковидном периоде, имеющих характерные признаки ПКС с жалобами последующими на хроническую усталость, непереносимость физической нагрузки, значительное снижение работоспособности и повышенную утомляемость. Также обращают на себя пристальное внимание различные проявления когнитивных расстройств, головной боли, головокружения, мигрени, артралгий, миалгий, панических атак, расстройства настроения, эмоциональной лабильности, психогенной депрессии, нарушения засыпания и сна, повышенной потливости, субфебрилитета, сохраняющихся кашля и одышки, а также клинические проявления активации хронических ГВИ. Таким образом, была разработана и зарегистрирована в Роспатенте программа для ЭВМ «Показатель

прогноза развития постковидного синдрома». Данный показатель объединяет соотношение относительного количества нейтрофильных гранулоцитов (НГ) и лимфоцитов (Л), а также уровень С-реактивного белка (СРБ): ИДП = (%НГ*СРБ)/%Л. Важно отметить, необходимость включения в формулу ИДП относительного количества НГ, которые играют ключевую роль, как в иммунопатогенезе COVID-19, так и в формировании ПКС. Гиперактивация этих иммунных клеток, с формированием NETs способствует развитию иммунотромбозов и нейроиммуновоспаления, что коррелирует с риском развития ПКС (Рисунок 3.4.6).

Рисунок 3.4.6 – Алгоритм программы ИДП-ПКС

Автоматический расчет ИДП позволяет пользователю оценить прогноз развития постковидных осложнений, у пациентов, перенесших SARS-CoV-2 (Рисунок 3.4.7). Ha рисунке приведен алгоритм программы расчета ИДП=(%НГ*СРБ)/%Л. Интерпретация полученных данных в зависимости от вычисленной осуществляется последующим величины c представлением пользователю в виде заключения о прогнозе развития постковидных осложнений. Таким образом, результат представляется в виде градации степени риска развития постковидных осложнений:

- Если ИДП <4,47 низкий риск развития постковидных осложнений;
- Если ИДП >4,47-6,43 средняя степень риска развития постковидных осложнений;

• Если ИДП >6,43 - высокий риск развития постковидных осложнений.

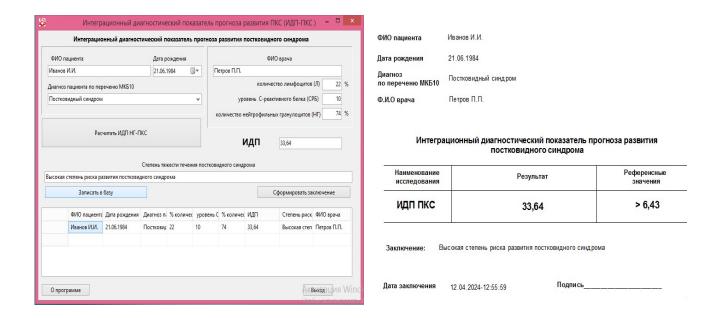


Рисунок 3.4.7 – Экранные изображения программы для ЭВМ ИДП-ПКС

Таким образом, получены убедительные данные, свидетельствующие об информативной значимости ИДП, как в прогнозе исхода и развития ранних постковидных осложнений, так и в качестве предиктора развития ПКС.

3.5 Особенности системы интерферонов, про- и противовоспалительных цитокинов у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций

Повышенные уровни различных цитокинов на пике заболевания и в период реконвалесценции COVID-19, а также те цитокины, которые сохраняются в постковидном периоде при ПКС, могут служить прогностическими биомаркерами, указывающими на незавершенность иммунного воспаления. Это может стать основанием для необходимости мониторинга динамики уровней цитокинов в процессе наблюдения за пациентами в постковидном периоде.

Представления о потенциальных молекулярных механизмах стойкого воспаления при ПКС могут предложить возможные терапевтические мишени, так как более половины всех пациентов с ПКС имеют воспалительную белковую сигнатуру, в то время как у других отмечается не воспалительный вариант течения ПКС.

Патофизиологические механизмы, лежащие в основе ПКС, являются многофакторными и сопровождаются нарушением регуляции иммунной и вегетативной нервной системы. Поэтому необходимы будущие исследования, чтобы понять основной иммунопатофизиологический процесс, который может активировать врожденные и адаптивные иммунные реакции, включая фенотипы, связанные с синдромом пост-COVID-19.

Среди потенциальных механизмов развития ПКС значительную роль ΗГ гиперактивация И NETs. опосредованная действием играют провоспалительных цитокинов, хемокинов и циркулирующих гистонов, что может приводить К прогрессированию неконтролируемого системного гипервоспаления, усилению респираторной декомпенсации, микротромбозу и неадекватному иммунному ответу, включая нарушение регуляции цитокинового профиля [118, 250].

Для выявления дефектов цитокинового профиля и системы интерферонов у 60 пациентов с ПКС, ассоциированным с активацией ГВИ, были проведены исследования уровня про- и противовоспалительных цитокинов и интерферонового статуса (Таблица 3.5.1).

Анализ результатов позволил выявить следующие тенденции: концентрация TNFα в исследуемой группе - 4,15 (2,1; 5,8) пг/мл не отличалась от значений ГС -4,43(2,6;4,9) пг/мл (p>0,05), также, как и уровень IL18 у пациентов ГИ не показал статистически значимой разницы 183,0 (156,8; 232,9) пг/мл по сравнению с показателями ГС 322,51 (185,5; 381,7) пг/мл (p>0,05). В то же время уровень провоспалительного цитокина IL1β в ГИ оказался повышенным в 39,5 раз до 3,95 (1,6; 5,6) пг/мл против 0,1 (0,01; 0,1) пг/мл (p<0,05) в ГС. Повышенный уровень IL1β тесно связан с активацией Th1-зависимого иммунного ответа, что может стать причиной воспалительных и дегенеративных процессов. Кроме того, его увеличение неблагоприятным является элементом ДЛЯ развития нейроиммуновоспалительных реакций, которые играют ключевую роль в возникновении когнитивных нарушений и симптомов ПКС. Анализ уровня системного провоспалительного цитокина IL6 выявил неоднозначный характер изменений: у 56 пациентов ГИ концентрация показателя регистрировалась на уровне 1,7 (1,2; 2,8) пг/мл и не отличались от данных Γ C (p>0,05), в то же время, у 4 пациентов было выявлено значительное повышение уровня данного показателя в 25 раз 307,7 (197,2; 357,1) пг/мл против ГС 12,3 (1,9; 13,1) пг/мл (p<0,05). Стоит отметить, что высокие уровни IL6 в периферической крови наблюдались у пациентов, перенесших тяжелую форму COVID-19, что сопровождалось в последующим тяжелым течением ПКС, с наиболее выраженными и стойкими жалобами согласно шкале-опроснику - 19 (17-21) балла, что в 19 раз больше, чем в Γ C-1,0 балл (0,5; 2,0) (p<0,05) и было ассоциировано с микст Γ ВИ, подтвержденными лабораторными исследованиями. Исследование уровня IL17A выявило также неоднозначные данные по ГИ, где у 56 пациентов отмечено

снижение показателя до уровня 0.03 (0.01; 0.02) пг/мл, и, напротив, у 4 пациентов с микст ГВИ регистрировалось повышение данного показателя в 34 раза 460,95 (374,1; 461,0) пг/мл по сравнению с ГС 13,6 (7,7; 21,8) пг/мл (p<0,05). Было показано, что данная часть пациентов имела низкие показатели ИДК 12,4 (9,90; 14,14) по сравнению с ГС 99,0 (99,0; 99,0) (р<0,05) и по нашему мнению, была более подвержена формированию тромбоэмболий за счет образования NETs, так как известно, что IL17A действует как цитокин, активирующий HГ, и тем самым способствует воспалению и повреждению тканей, участвуя в патогенезе формирования тромбоза за счет усиления активации тромбоцитов [203]. Уровень концентрации IL8 в ГИ был повышен в 2 раза 10,7 (6,4;16,8) пг/мл по сравнению с ΓC 5,3 (3,5; 5,7) пг/мл (p<0,05), при этом у 1 пациента данный показатель был значительно больше уровня ГС в 22,4 раза и находился на уровне 119,0 пг/мл и сопровождался выраженными жалобами на одышку, хроническую усталость и стойкие когнитивные нарушения, при этом отмечалась подтвержденная лабораторными данными активация ВЭБ инфекции, а ИДК характеризовался тяжелым течением ПКС. Острый период COVID-19 у данного пациента характеризовался тяжелой степенью тяжести, а поражение легочной ткани по данным лучевых исследований находилось в пределах КТ3-4, с последующим образованием участков фиброза.

Таблица 3.5.1 – Цитокиновый профиль пациентов с ПКС, ассоциированным с активацией ГВИ

Показатель	Группа сравнения (ГС),	Пациенты с ПКС (ГИ),	
Me	(n=60)	(n=60)	
$(Q_1; Q_3)$,		
IL1β	0,1	3,95*	
· (пг/мл)	(0,01;0,1)	(1,6; 5,6)	
TNFα	4,43	4,15	
(пг/мл)	(2,6; 4,9)	(2,1; 5,8)	
		1,7 (1,2; 2,8),	
IL6	12,3	n=56	
(пг/мл)	(1,9; 13,1)	307,7* (197,2; 357,1),	
		n=4	
		10,7* (6,4;16,8),	
IL8	5,3	n=59	
(пг/мл)	(3,5; 5,7)	119,0*, n=1	
IL18	322,51	183,0	
(пг/мл)	(185,5; 381,7)	(156,8; 232,9)	
		0,03 (0,01; 0,02),	
IL17A	13,6	n=56	
(пг/мл)	(7,7; 21,8)	460,95* (374,1; 461,0),	
		n=4	
IL10	3,0	3,1 (2,0; 4,9), n=51	
(пг/мл)	(2,5; 3,3)	15,6 (12,1; 18,2) *, n=9	
IL4	2,7	3,4(1,7; 4,95), n=42	
(пг/мл)	(2,2; 2,9)	20,0 (18,2; 23,3)*, n=18	
IFNα	17,4	1,4*	
(пг/мл)	(16,2; 25,7)	(1,0; 3,9)	
IFNγ	5,7	2,3*	
(пг/мл)	(5,3; 13,9)	(1,6; 3,35)	
* значимость отличий от показателей группы сравнения; р <0,05			

Анализ уровня противовоспалительных цитокинов IL4 и IL10 также выявил изменения их концентрации в сыворотке крови. Так было отмечено повышение уровня IL4 у 42 пациентов ГИ в 1,3 раза - 3,4 (1,7; 4,95) пг/мл, а у 18 пациентов в 7,5 раз - 20,0 (18,2; 23,3) пг/мл против ГС 2,7 (2,2; 2,9) пг/мл ($p_{1,2}$ <0,05). В то же время, показатели IL10 у 51 пациента составили 3,1 (2,0; 4,9) пг/мл и не отличались от ГС ($p_1>0,05$), а у 9 пациентов были повышены в 5,2 раза - 15,6 (12,1; 18,2) пг/мл против ГС 3,0 (2,5; 3,3) пг/мл (p<0,05). Пациенты с повышенным уровнем IL4 и IL10 предъявляли различные жалобы на симптомы ПКС среднего и тяжелого вариантов течения, также у данных пациентов отмечалась активация ГВИ в разных микст вариациях.

Анализ функционального состояния системы сывороточных интерферонов I и II типов показал снижение уровней IFNα и IFNγ у пациентов с ПКС, что свидетельствует о недостаточной противовирусной защите и характеризуется активацией ГВИ. Оценка функционального состояния системы интерферонов I и II типов позволила выявить снижение уровней IFNα и IFNγ, что подтверждает слабую противовирусную защиту у пациентов с ПКС и характеризуется активацией ГВИ. Уровень IFNα в ГИ оказался значительно ниже в 12,4 раза - 1,4 (1,0; 3,9) пг/мл по сравнению с ГС - 17,4 (16,2; 25,7) пг/мл (р<0,05), при этом показатели IFNγ были ниже в 2,5 раза - 2,3 (1,6; 3,35) пг/мл, чем в ГС - 5,7 (5,3; 13,9) пг/мл (р<0,05). Таким образом, наблюдается дисбаланс системы цитокинов и интерферонового статуса, ассоциированный с дефицитом IFN I и II типов, а выявленные изменения в уровнях цитокинов свидетельствуют о развитии нейроиммуновоспаления, риске возникновения тромбозов и тромбоэмболий после перенесенного COVID-19, которые могут зачастую протекать в комбинации с активацией ГВИ.

3.6 Состояние гуморального иммунного ответа у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций

При исследовании гуморального иммунного ответа в ГИ были выявлены следующие показатели: общий IgA выявлялся на уровне 2,0 (1,3; 2,5) г/л и не отличался от ГС 1,3 (1,0; 1,9) г/л; общий IgM составил 1,35 (0,82; 2,12) г/л и

соответствовал показателям контрольной группы 1,2 (0,82; 1,5); общий IgG имел тенденцию к снижению, но статически значимо не отличался от ГС и регистрировался в пределах 10,6 (7,3; 14,5) г/л против ГС 14,8 (12,5; 15,3) г/л ($p_{1,2,3}>0,05$) (Таблица 3.6.1).

Для оценки иммунного ответа на перенесенную инфекцию COVID-19 и с целью определения сероконверсии иммуноглобулинов различных классов к SARS-CoV-2 определяли уровень антител классов IgG, IgM, IgA к SARS-CoV-2 (Таблица 3.6.1).

Таблица 3.6.1 — Показатели иммуноглобулинов у пациентов с ПКС, ассоциированным с активацией ГВИ

Показатели	Группа сравнения (ГС),	Пациенты с ПКС (ГИ),
	(n=60)	(n=60)
Общий IgA, г/л	1,3 (1,0; 1,9)	2,0 (1,3; 2,5)
Общий IgM, г/л	1,2 (0,82; 1,5)	1,35 (0,82; 2,12)
Общий IgG, г/л	14,8 (12,5; 15,3)	10,6 (7,3; 14,5)
	< 0,8	0,4 (0,32; 0,46), n=4
IgA к SARS-CoV-2, КП	0,8≥ ΚΠ ≤ 1,1	0,9 (0,88; 0,92), n=5
	≥ 1,1	4,0 (3,1; 6,2), n=51
	< 0,8	0,22 (0,14; 0,44), n=35
IgM к SARS-CoV-2, КП	0,8≥ ΚΠ ≤ 1,1	0,92 (0,89; 0,96), n=7
	≥ 1,1	12,0 (3,8; 12,6), n=18
IgG к SARS-CoV-2, КП	≥ 1,1	13,3 (12,9; 13,5), n=60

Оценка показателей уровня иммуноглобулинов к новой коронавирусной инфекции COVID-19 показал следующие тенденции: у всех 60 пациентов ГИ регистрировался титр IgG к SARS-CoV-2 выше коэффициента позитивности (КП), что дополняет анамнез пациентов ГИ о подтвержденной перенесенной SARS-

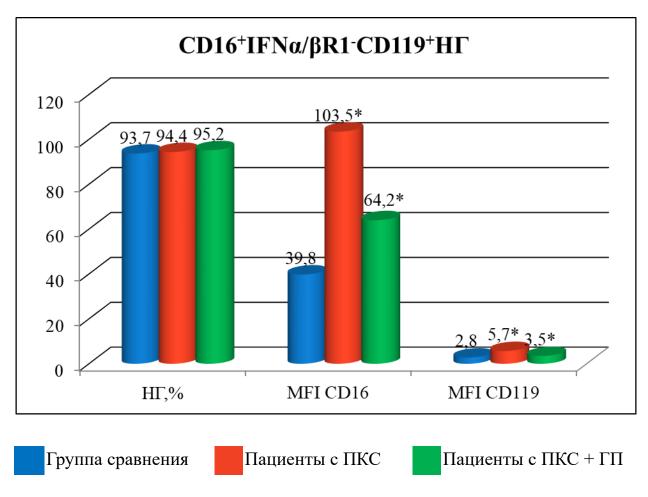
СоV-2 инфекции. Немаловажным являлось определение титра IgA к SARS-CoV-2, при котором было выявлено, что у 51 пациента отмечались титры выше значения КП, а определение титра IgM в то же время выявило ключевые и значимые результаты, так как у 18 пациентов было отмечено повышение его уровня выше КП, что предполагает наличие остатков и/или продолжающуюся персистенцию вирусных частиц в эпителиальных клетках кишечника и эндотелии сосудов с вероятным последующим развитием аутоиммунных процессов, миокардитов, коагулопатий, тромбоэмболий и прогрессирования симптомов нейроиммуновоспаления (Таблица 3.6.1).

Выявление иммуноглобулинов разных классов к SARS-CoV-2 инфекции в постковидном периоде выполнялось в качестве вспомогательного метода диагностики для подтверждения факта перенесенной ранее инфекции, оценки состояния иммунного ответа и с целью возможного выявления продолжительной персистенции SARS-CoV-2 в организме человека.

ГЛАВА 4 ПЕРЕПРОГРАММИРОВАНИЕ IN VITRO ФЕНОТИПА СУБПОПУЛЯЦИЙ НЕЙТРОФИЛЬНЫХ ГРАНУЛОЦИТОВ И ИХ ЭФФЕКТОРНЫХ ФУНКЦИЙ У ПАЦИЕНТОВ С ПОСТКОВИДНЫМ СИНДРОМОМ, АССОЦИИРОВАННЫМ С АКТИВАЦИЕЙ ГЕРПЕСВИРУСНЫХ ИНФЕКЦИЙ

4.1 Эффекты влияния гексапептида in vitro на нейтрофильные гранулоциты у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций

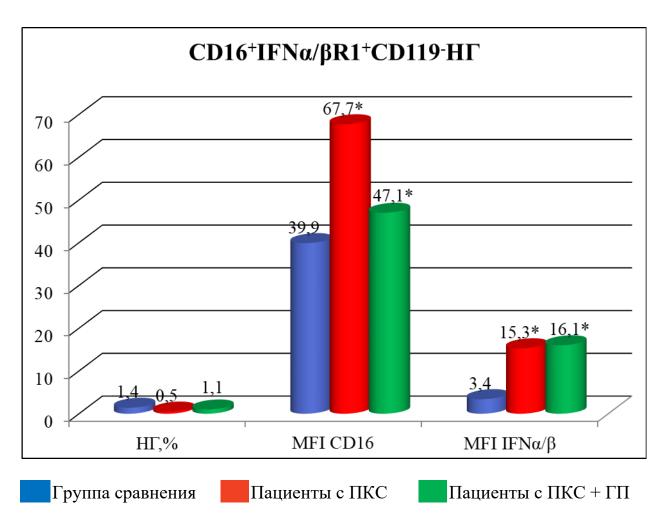
По данным литературы имеется положительный опыт использования во время пандемии COVID-19 в Китае иммуномодулирующего пентапептида тимопентина (Arg-Lys-Asp-Val-Tyr, RKDVY, TP5), являющегося активным центром гормона тимуса тимопоэтина [218]. В России зарегистрирован иммуномодулирующий препарат, содержащий Гексапептид - Arginyl-alpha-Aspartyl-Lysyl-Valyl-Tyrosyl-Arginine, который является синтетическим аналогом активного центра тимопоэтина, гормона тимуса, сохраняя все его биологические функции [11]. Этот пептид оказывает положительное иммунорегулирующее нарушенные функции ИС, способствуя восстановлению воздействие на активности Т-клеток, увеличению числа и активности НГ и моноцитов, а также нормализации синтеза цитокинов. Кроме того, препарат демонстрирует гепатопротекторные и антиоксидантные свойства, повышает эффективность антибактериальной терапии и помогает предотвратить развитие множественной лекарственной устойчивости [11, 22].


Изучение молекулярных механизмов нарушений в системе НГ у пациентов с проявлениями ПКС, в частности регуляторных субпопуляций экспрессирующих IFN α / β R, IFN γ R (CD119) и CD16 рецепторов на мембране НГ, обеспечивающих взаимодействие между врожденным и адаптивным иммунитетом, является

актуальным и представляет несомненный интерес, а изучение эффектов влияния ГП на фенотип и функции НГ может помочь в поиске терапевтических стратегий.

Проведено исследование образцов ПК 60 пациентов перенесших SARS-CoV-2 инфекцию с различными симптомами и проявлениями ПКС, до инкубации - группа исследования (ГИ) и после инкубации с ГП (в концентрации 10^{-6} г/л) в системе *in vitro* в течение 60 мин при $T-37^{0}$ С. Определяли количество НГ субпопуляций CD16⁺IFN α / β R1⁻CD119⁺, CD16⁺IFN α / β R1⁺CD119⁻ и их фенотипа по плотности экспрессии мембранных рецепторов – MFI.

4.1.1 Эффекты влияния гексапептида на количество и фенотип субпопуляций нейтрофильных гранулоцитов, экспрессирующих рецепторы к IFN I и II типов, и CD16 при постковидном синдроме, ассоциированным с активацией герпесвирусных инфекций


Инкубация ПК пациентов с ПКС с ГП *in vitro* выявила позитивные эффекты, на фенотип 2 субпопуляций: CD16⁺IFN α / β R1⁻CD119⁺, CD16⁺IFN α / β R1⁺CD119⁻ не влияя на их содержание. Так на НГ субпопуляции CD16⁺IFN α / β R1⁻CD119⁺ наблюдалось снижение в 1,6 раз плотности экспрессии по МFI как CD16 до 64,0 (54,5; 76,0) против 103,5 (83,9; 121,0) в ГИ до инкубации (р<0,05) так и CD119 до 3,5 (3,5; 5,2) против 5,7 (5,4; 6,8) в ГИ до инкубации (р<0,05). При этом регистрируемые показатели МFI CD16 и MFI CD119 оставались повышенными по отношению к уровню экспрессии молекул на НГ данной субпопуляции в ГС (р_{1,2}<0,05) (Рисунок 4.1.1.1).

* значимость отличий от показателей группы сравнения; р <0,05 $^{\land}$ значимость отличий показателей ГИ до и после инкубации; р <0,05

Рисунок 4.1.1.1 — Эффекты влияния тимического Гексапептида на фенотип субпопуляций CD16 $^+$ IFN α / β R1 $^-$ CD119 $^+$ HГв системе *in vitro*

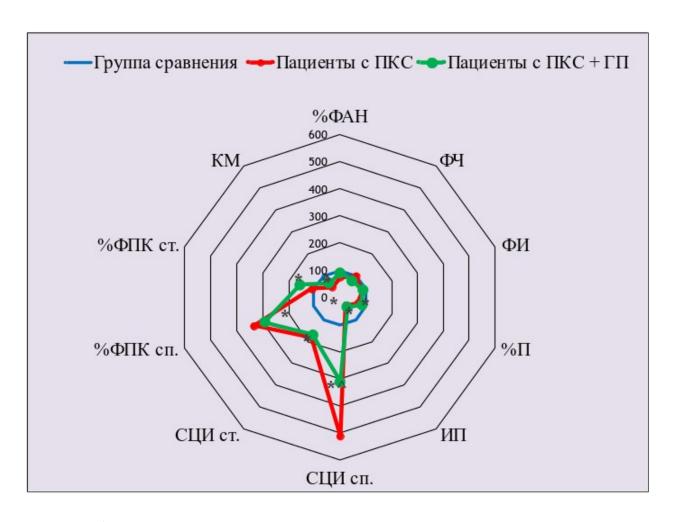
Воздействие ГП на фенотип субпопуляций CD16⁺IFN α / β R1⁺CD119⁻HГ также заключались в снижении в 1,4 раза MFI CD16 по отношению к показателям ГИ до инкубации (p<0,05) практически до уровня, определяемого в ГС (p>0,05), при этом плотность экспрессии IFN α / β R1 не менялась и не отличалась от значений, регистрируемых в ГИ до инкубации пациентов с ПКС (p>0,05), но оставаясь в 4,7 раз выше значений в ГС (p<0,05) (Рисунок 4.1.1.2).

^{*} значимость отличий от показателей группы сравнения; p < 0.05; ^ значимость отличий показателей ГИ до и после инкубации; p < 0.05

Рисунок 4.1.1.2 — Эффекты влияния тимического Гексапептида на фенотип субпопуляций CD16 $^+$ IFN α/β R1 $^+$ CD119 $^-$ HГв системе *in vitro*

ГΠ Выявлено позитивное иммуномодулирующее влияние на количественные фенотипические характеристики субпопуляций НГ: И $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$. В эксперименте *in vitro* под влиянием ГП было показано умеренное снижение MFI CD16 рецептора в обоих субпопуляциях и MFI CD119 рецептора в субпопуляции CD16⁺IFNα/βR1⁻ $CD119^{+}H\Gamma$ (p_{1,2}<0,05), но при этом показатели MFI IFN α/β R1 в субпопуляции CD16⁺IFNα/βR1⁺CD119⁻HГ сохранялись на уровне значений ГИ до инкубации (р>0,05) (Таблица 4.1.1.1).

Таблица 4.1.1.1 — Эффекты влияния Гексапептида на фенотип субпопуляций НГ, экспрессирующих рецепторы к IFN I и II типов и активационный маркерный рецептор CD16, у пациентов с ПКС (Me (Q1; Q3))


Показатели	Группа сравнения (ГС), n=60	Пациенты с ПКС до инкубации с ГП, n=60	Пациенты с ПКС после инкубации с ГП, n=60
	CD16 ⁺	IFNα/βR1 ⁻ CD119 ⁺ HΓ	
ЫГ 0/.	93,7	94,4	95,2
НГ, %	(89,8; 96,5)	(92,6; 96,1)	(91,9; 97,0)
CD16 (MEI)	39,8	103,5*	64*^
CD16 (MFI)	(20,4; 51,3)	(83,9; 121,0)	(54,5; 76,0)
CD110 (MEI)	2,8	5,7*	3,5*^
CD119 (MFI)	(2,5; 3,1)	(5,4; 6,8)*	(3,5; 5,2)
	CD16 ⁺	IFNα/βR1 ⁺ CD119 ⁻ HΓ	
III 0/	1,4	0,5	1,0
НГ, %	(0,5;2,4)	(0,4; 2,0)	(0,6;1,9)
CD16 (MFI)	39,9	67,7*	47^
	(22,9; 54,5)	(58,5; 100,3)*	(35,8; 52,8)
IFNα/β (MFI)	3,4	15,3*	16,0*
	(2,6; 4,1)	(6,8; 22,2)*	(10,6; 21,3)
CD16 ⁺ IFNα/βR1 ⁺ CD119 ⁺ HΓ			
НГ, %	0,9	0	0
111, /0	(0,4; 1,8)		
CD16 (MFI)	39,1	0	0
	(26,6; 50,3)		
IENG/R (MEI)	5,7	0	0
IFNα/β (MFI)	(4,6; 6,5)		
CD119 (MFI)	3,2	0	0
CD119 (MIF1)	(2,9; 5,8)		

^{*} значимость отличий от показателей группы сравнения; р <0.05; ^ значимость отличий показателей ГИ до и после инкубации; р <0.05

4.1.2 Влияние гексапептида на эффекторные функции нейтрофильных гранулоцитов при постковидном синдроме, ассоциированным с активацией герпесвирусных инфекций

В исследуемых группах также проводилась оценка фагоцитарной активности НГ и параллельно производился подсчет на 100 НГ доли клеток в апоптозе и клеток, образующих NETs.

Анализ функционального потенциала НГ при ПКС выявил снижение в 1,3 раза доли активно фагоцитирующих НГ ($\%\Phi$ AH) (p<0,05), $\%\Pi$ в 1,4 раза и 2,9 раз ИП ($p_{1,2} < 0.05$) по отношению к показателям ГС, на фоне увеличения содержания НГ образующих NETs и клеток в апоптозе. При этом в этой группе пациентов отмечалось: в спонтанном NBT-тесте напряженность NADPH-оксидаз по показателям СЦИсп. -0.46 (0,41;0,49) и %ФПКсп. -8.0 (6,8; 9,0) % в сравнении с ГС ($p_{1.2} < 0.05$). В стимулированном NBT-тесте при дополнительной нагрузке S. aureus регистрировалось снижение значений СЦИ ст. - 0,36 (0,33; 0,39) и %ФПКст. 6,0 (5,8;7,0), демонстрирует истощение что оксидазного микробицидного потенциала с КМ-0,86 (0,75; 1,26) ($p_{1,2}$ <0,05) (Рисунок 4.1.2.1).

* значимость отличий от показателей группы сравнения; p < 0.05; ^ значимость отличий показателей ГИ до и после инкубации; p < 0.05

Рисунок 4.1.2.1 – Эффекты влияния Гексапептида на функциональную активность НГ пациентов с ПКС в системе *in vitro*

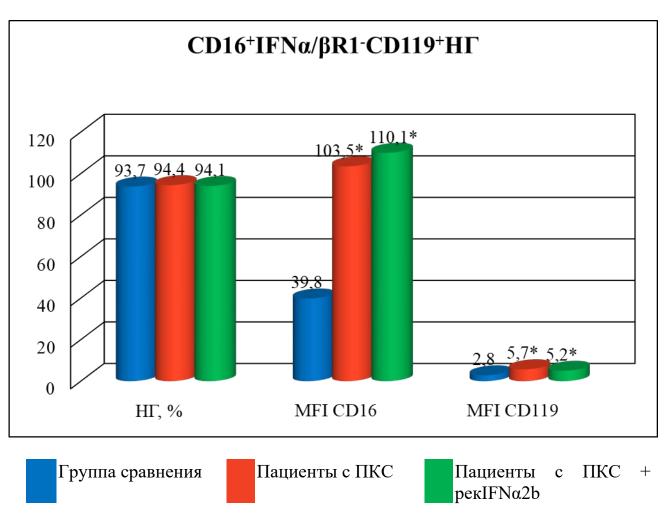
После инкубации ПК пациентов с ПКС в системе *in vitro* с ГП отмечалось статистически значимое увеличение доли ФАН (p<0,05) и восстановление процессов киллинга и переваривания (%П, ИП) практически до уровня показателей ГС (p_{1,2}>0,05), снижение спонтанной и усиление стимулированной активности NADPH-оксидаз, как по показателям %ФПК, так и по СЦИ с сохранением резервного микробицидного потенциала с КМ - 1,2 (1,1; 1,9). ГП в системе *in vitro* не влиял на процессы образования NETs и апоптоз (Таблица 4.1.2.1).

Таблица 4.1.2.1 — Эффекты влияния Гексапептида на функциональную активность НГ пациентов с ПКС в системе *in vitro* (Me (Q1; Q3))

Показатели	Группа сравнения (ГС), n=60	Пациенты с ПКС до инкубации с ГП, n=60	Пациенты с ПКС после инкубации с ГП, n=60
%ФАН	65,8 (60,9; 79,6)	49,0* (48,0; 52,0)	61,0 [^] (53,5; 66,0)
ФЧ	3,4	3,3	2,6
	(2,1; 4,2)	(3,1; 3,4)	(2,3; 2,8)
ФИ	1,8	1,6	1,6
	(1,6; 2,0)	(1,5; 1,8)	(1,4; 1,7)
%П	58,9	40,9*	50,0 [^]
	(51,3; 78,3)	(40,5; 41,7)	(42,9; 53,6)
ИП	1,90	0,65*	0,83*
	(1,10; 2,40)	(0,61; 0,72)	(0,79; 1,1)
СЦИ сп.	0,09	0,46*	0,28
	(0,06; 0,10)	(0,41;0,49)	(0,16; 0,29)
СЦИ ст.	0,20	0,36*	0,34
	(0,08; 0,30)	(0,33; 0,39)	(0,30; 0,36)
%ФПК сп.	2,4	8,0*	7,0
	(2,3; 3,5)	(6,8;9,0)	(6,0; 7,0)
%ФПК ст	5,5	6,0	8,5
	(2,8; 6,3)	(5,8; 7,0)	(7,0; 9,5)
КМ	1,8	0,8*	1,2
	(1,60; 2,20)	(0,5; 1,3)	(1,1; 1,9)
NETs	1,0	2,0*	1,0
	(0; 1,0)	(1,75; 2,5)	(1,0; 2,0)
Клетки в	1,0	2,0	2,0
апоптозе	(0; 1,0)	(1,0; 3,0)	(1,0; 2,0)

^{*} значимость отличий от показателей группы сравнения; р <0,05;

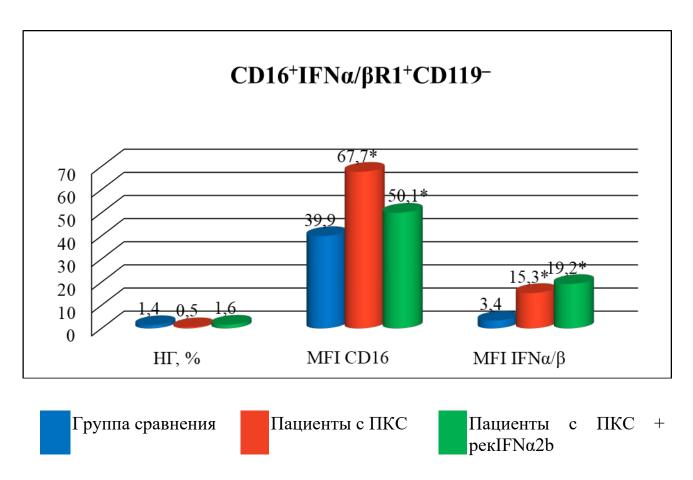
[^] значимость отличий показателей ГИ до и после инкубации; р < 0.05


4.2 Эффекты влияния рекIFNα2b in vitro на нейтрофильные гранулоциты у пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций

Нарушения в работе ИС в противовирусной защите при ПКС могут сопровождаться истощением и функциональной неполноценностью клеток врожденного и адаптивного иммунитета с последующим прогрессированием нарушений молекулярных механизмов, связанных с продукцией интерферона (IFN) возникших при остром COVID-19 [30]. В частности, было показано, что при COVID-19 отмечается подавление выработки IFNα и IFNγ, увеличение концентрации сывороточных цитокинов, связанных с активацией НГ, изменение состава и характеристик субпопуляций нейтрофилов, а также изменение их функций [19]. Также продемонстрированы эффекты позитивного влияния рекIFNα2b in vitro на количественные и фенотипические характеристики субпопуляций НГ [33]. Также были обнаружены различные дисрегуляторные нарушения в системе противовирусной иммунной защиты и системе IFN у пациентов с атипичными хроническими активными ГВИ, что приводит к развитию состояния иммунокомпрометированности у пациентов с ПКС. Эти нарушения могут проявляться как локально, так и системно, и считаются одним из основных признаков постковидного периода [22].

Проведено исследование образцов ПК 60 пациентов, перенесших SARS-CoV-2 инфекцию с различными симптомами и проявлениями ПКС, до инкубации - группа исследования (ГИ) и после инкубации с рекIFN α 2b (50 ME/мкл) в системе *in vitro* в течение 60 мин при Т-37°C. Определяли количество НГ субпопуляций CD16⁺IFN α /βR1⁻CD119⁺, CD16⁺IFN α /βR1⁺CD119⁻, CD16⁺IFN α /βR1⁺CD119⁻, и их фенотипа по плотности экспрессии мембранных рецепторов – MFI.

4.2.1 Эффекты влияния рекIFNα2b на количество и фенотип субпопуляций нейтрофильных гранулоцитов, экспрессирующих рецепторы к IFN I и II типов, и CD16 при постковидном синдроме, ассоциированным с активацией герпесвирусных инфекций


Инкубация ПК пациентов с ПКС с рекIFN α 2b *in vitro* не влияла на количество НГ субпопуляций CD16⁺IFN α /βR1⁻CD119⁺ и CD16⁺IFN α /βR1⁻CD119⁺ как по сравнению с показателями ГС (р_{1,2}>0,05) так и по отношению к значениям ГИ до инкубации (р_{1,2}>0,05). В то же время на НГ субпопуляции CD16⁺IFN α /βR1⁻CD119⁺ в ГИ после инкубации наблюдались незначительные тенденции увеличения плотности экспрессии по МFI CD16 до 110,0 (95,7; 127,0) против 103,5 (83,9; 121,0) в ГИ до инкубации (р>0,05) и снижения плотности экспрессии по МFI CD119 до 5,0 (3,7; 6,3) против 5,7 (5,4; 6,8) в ГИ до инкубации (р>0,05). При этом регистрируемые показатели МFI CD16 и MFI CD119 оставались повышенными по отношению к уровню экспрессии молекул на НГ данной субпопуляции в ГС (р_{1,2}<0,05) (Рисунок 4.2.1.1).

^{*} значимость отличий от показателей группы сравнения; р <0,05;

Рисунок 4.2.1.1 — Эффекты влияния рекIFNα2b на фенотип субпопуляций $CD16^+IFN\alpha/\beta R1^-CD119^+H\Gamma B$ системе *in vitro*

Воздействие влияния рекIFN α 2b на фенотип субпопуляций CD16⁺IFN α / β R1⁺CD119⁻HГ заключались в снижении в 1,4 раза MFI CD16 по отношению к показателям ГИ до инкубации (p<0,05) практически до уровня, определяемого в ГС (p>0,05), при этом плотность экспрессии IFN α / β R1 увеличилась в 1,3 раза от значений, регистрируемых в ГИ до инкубации (p>0,05), но оставаясь в 5,6 раз выше значений в ГС (p<0,05) (Рисунок 4.2.1.2).

^{*} значимость отличий от показателей группы сравнения; р <0,05; $^{\wedge}$ значимость отличий показателей ГИ до и после инкубации; р <0,05

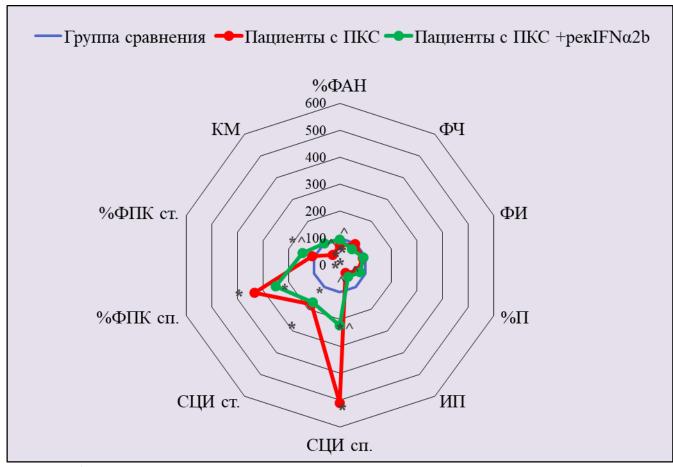
Рисунок 4.2.1.2 — Эффекты влияния рекIFNα2b на фенотип субпопуляций CD16⁺IFNα/βR1⁺CD119⁻HГв системе *in vitro*

Таким образом, у пациентов с ПКС выявлена трансформация субпопуляций $H\Gamma$ CD16⁺IFNα/βR1⁺CD119⁻HΓ и CD16⁺IFNα/βR1⁻CD119⁺HΓ, несущих рецепторы к IFNα и IFNγ и активационный рецептор CD16, отвечающий, за цитотоксичность НГ по отношению к инфицированным вирусами клеткам. Выявлено значимое повышение плотности экспрессии изучаемых рецепторов всех активации НГ предположительной свидетельствующее об инициацией c антителозависимой клеточной цитотоксической реакции или NETosis (Таблица 4.2.1.1).

Таблица 4.2.1.1 — Эффекты влияния рек $IFN\alpha 2b$ на фенотип субпопуляций НГ, экспрессирующих рецепторы к IFN I и II типов и активационный маркерный рецептор CD16, у пациентов с ПКС (Me (Q1; Q3))

Показатели	Группа сравнения (ГС), n=60	Пациенты с ПКС до инкубации с рекIFNα2b, n=60	Пациенты с ПКС после инкубации с рекIFNα2b, n=60
	CD	16 ⁺ IFNα/βR1 ⁻ CD119 ⁺ H	Γ
НГ, %	93,7	94,4	94,0
111, 70	(89,8; 96,5)	(92,6; 96,1)	(92,4; 95,0)
CD16 (MFI)	39,8	103,5*	110,0*
CD10 (MIT1)	(20,4; 51,3)	(83,9; 121,0)	(95,7;127,0)
CD110 (MEI)	2,8	5,7*	5,0*
CD119 (MFI)	(2,5; 3,1)	(5,4; 6,8)*	(3,7;6,3)
CD16 ⁺ IFNα/βR1 ⁺ CD119 ⁻ HΓ			
TTT 0/	1,4	0,5	1,6
НГ, %	(0,5;2,4)	(0,4;2,0)	(0,5;1,9)
CD16 (MFI)	39,9	67,7*	50,0*^
	(22,9; 54,5)	(58,5; 100,3)*	(40,1;62,3)
IFNα/β (MFI)	3,4	15,3*	19,2*
	(2,6; 4,1)	(6,8; 22,2)*	(13,9;26,1)
	CD	16 ⁺ IFNα/βR1 ⁺ CD119 ⁺ H	Γ
НГ, %	0,9	0	0
П1, 70	(0,4; 1,8)	U	U
CD16 (MFI)	39,1	0	0
CD10 (MIN)	(26,6; 50,3)	U	U
IENIa/Q (MEI)	5,7	0	0
IFNα/β (MFI)	(4,6; 6,5)	U	V
CD119 (MFI)	3,2	0	0
	(2,9; 5,8)	U	V
* значимость отличий от показателей группы сравнения; р <0,05;			

^{*} значимость отличий от показателей группы сравнения; р <0,05; $^{\wedge}$ значимость отличий показателей ГИ до и после инкубации; р <0,05


Получены позитивные эффекты влияния рекІFNα2b *in vitro* на фенотип субпопуляций и функции НГ. РекІFNα2b *in vitro* не влиял на количество и соотношение 2 субпопуляций CD16⁺IFNα/βR1⁻CD119⁺, CD16⁺IFNα/βR1⁺CD119⁻. При этом на НГ субпопуляции CD16⁺IFNα/βR1⁻CD119⁺ сохранялись повышенные показатели МFI CD16 и MFI CD119 по отношению к уровню в ГС; а на НГ субпопуляции CD16⁺IFNα/βR1⁺CD119⁻ отмечено снижение MFI CD16 до уровня ГС, и усиление экспрессии IFNα/βR1 по сравнению с показателями ГИ до инкубации и ГС.

4.2.2 Влияние рекIFNα2b на эффекторные функции нейтрофильных гранулоцитов при постковидном синдроме, ассоциированным с активацией герпесвирусных инфекций

В исследуемых группах также проводилась оценка фагоцитарной активности НГ и параллельно производился подсчет на 100 НГ доли клеток в апоптозе и клеток, образующих NETs.

Анализ функционального потенциала НГ при ПКС выявил значительное снижение в 1,3 раза доли активно фагоцитирующих НГ (%ФАН) (р<0,05), %П в 1,4 раза и 2,9 раз ИП (р_{1,2}<0,05) по отношению к показателям ГС, на фоне увеличения содержания НГ образующих NETs и клеток в апоптозе. При этом в этой группе пациентов отмечалось: в спонтанном NBT-тесте напряженность NADPH-оксидаз по показателям СЦИсп. – 0,46 (0,41;0,49) и %ФПКсп. – 8,0 (6,8; 9,0) % по отношению к ГС (р_{1,2}<0,05). В стимулированном NBT-тесте при дополнительной нагрузке S. aureus повышение значений СЦИст. – 0,36 (0,33; 0,39) и %ФПКст. 6,0 (5,8; 7,0), что демонстрирует истощение оксидазного микробицидного потенциала с КМ-0,86 (0,75; 1,26) (р_{1,2}<0,05) (Рисунок 4.2.2.1).

Установлено снижение функциональной активности НГ, проявляющееся в снижении процессов захвата и переваривания бактериальных антигенов и напряженности NADPH-оксидазной активности с истощением резервных возможностей HГ.

* значимость отличий от показателей группы сравнения; р <0,05; $^{\wedge}$ значимость отличий показателей ГИ до и после инкубации; р <0,05

Рисунок 4.2.2.1 – Эффекты влияния рекIFNα2b на функциональную активность НГ пациентов с ПКС в системе *in vitro*

После инкубации ПК пациентов с ПКС в системе *in vitro* с рекIFN α 2b отмечалось увеличение доли ФАН (p<0,05) и восстановление процессов киллинга и переваривания (%П, ИП) практически до уровня показателей ГС (p_{1,2}>0,05), снижение спонтанной и усиление стимулированной активности NADPH-оксидаз, как по показателям %ФПК, так и по СЦИ с сохранением резервного микробицидного потенциала с КМ - 1,78 (1,58; 1,92). РекIFN α 2b в системе *in vitro* не влиял на процессы образования NETs и апоптоз (Таблица 4.2.2.1).

Таблица 4.2.2.1 — Эффекты влияния рек $IFN\alpha 2b$ на функциональную активность $H\Gamma$ пациентов с ПКС в системе *in vitro* (Me (Q1; Q3))

	Группа	Пациенты с ПКС до	Пациенты с ПКС
Показатели	сравнения (ГС),	инкубации с	после инкубации с
	n=60	рекIFNα2b, n=60	рекIFNα2b, n=60
%ФАН	65,8	49,0*	62,0^
	(60,9;79,6)	(48,0; 52,0)	(57,5; 67,0)
ФЧ	3,4	3,30	2,5^
	(2,1;4,2)	(3,1;3,4)	(2,3; 2,6)
ФИ	1,8	1,6	1,63
	(1,6; 2,0)	(1,5;1,8)	(1,56; 1,7)
%П	58,9	40,9*	47,2^
	(51,3; 78,3)	(40,5;41,7)	(42,9; 51,5)
ИП	1,90	0,65*	1,0^
	(1,10; 2,40)	(0,61;0,72)	(0,74; 1, 5) 0,2*^
СЦИ сп.	0,09	0,46*	0,2*^
	(0,06;0,10)	(0,41;0,49)	(0,18; 0,21)
СЦИ ст.	0,20	0,36*	0,34*
	(0,08;0,30)	(0,33;0,39)	(0,32;0,37)
%ФПК сп.	2,4	8,0*	6,0*^
	(2,3; 3,5)	(6,8;9,0)	(6,0;6,5)
%ФПК ст	5,5	6,0	8,0*^
	(2,8; 6,3)	(5,8;7,0)	(8,0; 9,0)
КМ	1,8	0,86*	1,78^
	(1,60; 2,20)	(0,75;1,26)	(1,58; 1,92)^
NETs	1,0	2,0*	1,0
	(0; 1,0)	(1,75;2,5)	(1,0; 2,0)
Клетки в	1,0	2,0	2,0
апоптозе	(0; 1,0)	(1,0;3,0)	(1,0; 2,0)

^{*} значимость отличий от показателей группы сравнения; р <0.05 ^-значимость отличий показателей ГИ до инкубации и ГИ после инкубации с рекIFN α 2b; р <0.05

Учитывая, что IFN I и II типов усиливают NETosis [182], возможно предположить, что значительное повышение экспрессии рецепторов, отмечаемое в ГИ до инкубации, может усугубить нейтрофильную инфильтрацию и нетоз, а также связанные с этими процессами проявления ПКС, показано, что рекIFN α 2b в системе *in vitro* не влиял на процессы образования NETs и апоптоз.

4.2.3. Алгоритм комплексной диагностики дисфункций НГ пациентов с ПКС, ассоциированным с активацией ГВИ

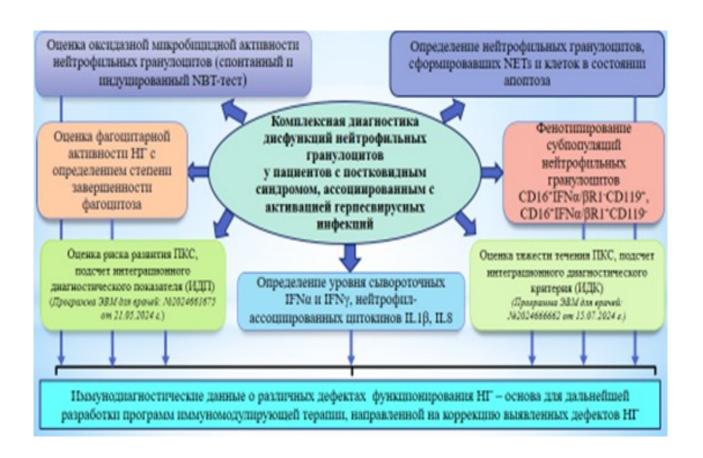


Рисунок 4.2.3.1 – Алгоритм комплексной диагностики дисфункций НГ пациентов с ПКС, ассоциированным с активацией ГВИ

ЗАКЛЮЧЕНИЕ

Последствия пандемии COVID-19 оказались крупномасштабными непредсказуемыми, что, несомненно, вызывает озабоченность и тревожность всего практического здравоохранения. Согласно многочисленным исследованиям, у 10-20% реконвалесцентов наблюдаются остаточные и вновь приобретенные стойкие симптомы, и осложнения, которые сохраняются в течение 4-12 недель SARS-CoV-2 инфекции. выздоровления от Данное состояние сегодняшний день добавлено в МКБ-10 и получило наименование «постковидный синдром». Воздействие SARS-CoV-2, главным образом нацелено на поражение легочной ткани, однако в большинстве случаев происходит повреждение других органов с осложнениями, характеризующимися систем затяжным волнообразным течением.

Нарушение работы противовирусной иммунной защиты и вероятность возникновения осложнений, типичных для тяжелых вирусных инфекций, таких как синдром хронической усталости и проблемы с когнитивными функциями, вызывают множество жалоб и значительные расстройства в постковидном периоде. Такие длительные и разнообразные симптомы наблюдаются как у пациентов, перенесших легкую, так и тяжелую форму COVID-19, и, несмотря на невероятные усилия научного и медицинского сообщества, направленные на борьбу с непредвиденными последствиями, в настоящее время существует недостаточное исследований, количество посвященных иммунопатофизиологическим развития механизмам ЭТОГО синдрома. Недостаточная информированность обоснованных отсутствие И дифференцированных подходов к этио-И иммунопатогенезу осложняют диагностику ПКС, тем самым сказываясь на профилактике, диагностике и может сопровождаться разнообразными лечении данного состояния, ЧТО серьезными осложнениями различной природы.

Для диагностики и прогноза развития постковидных осложнений в качестве программы для ЭВМ был разработан и внедрен в лечебный процесс новый лабораторный диагностический маркер. Интеграционный диагностический показатель (ИДП - ПКС) - «Показатель прогноза развития постковидного синдрома» объединяет процентное соотношение относительного количества нейтрофильных гранулоцитов (НГ) и лимфоцитов (Л), а также уровень Среактивного белка (СРБ): ИДП = (%НГ*СРБ)/%Л (свидетельство о регистрации № 2024661675 от 21.05.2024 г.). Следует подчеркнуть важность учета в формуле ИДП - ПКС относительного количества НГ, которые играют ключевую роль как в иммунопатогенезе COVID-19, так и в процессе формирования ПКС. Таким образом, ИДП у пациентов, проходивших лечение в стационарных условиях, при выписке составил 49,06 (33,03; 63,24), что статистически достоверно в 11 раз больше чем у условно здоровых лиц 4,47 (2,95; 6,43) (p<0,05), а через 4 недели после выписки значение ИДП оставался повышенным в 3,5 раза - 13,89 (9,45; 18,76) (p<0,05), что могло быть расценено, как высокий риск развития тяжелого течения ПКС в постковидном периоде.

Для особенностей изучения клинико-анамнестичеких пациентов, страдающих ПКС, была использована модифицированная шкала-опросник позволяющая, выявить ведущие клинические критериальные признаки синдрома хронической усталости, когнитивных нарушений И иммунокомпрометированности. Согласно анкетированию наиболее выраженными признаками, которые отмечались в 100% случаев и имели разную степень выраженности в исследуемой группе, являлись: ощущение стойкой хронической усталости, непереносимость физической нагрузки, снижение работоспособности, повышенная утомляемость, когнитивные нарушения в виде снижения процессов запоминания, трудности с концентрацией внимания, ощущение «тумана в голове», панические атаки и психогенная депрессия, нарушения процессов сна и засыпания, головная боль, головокружение. У 75% пациентов возникали

периодически повышенная потливость и субфебрилитет, артралгии и миалгии, 33% отмечали клинические проявления ГВИ - ВПГ 1/2 типа, а в 18% случаев длительно сохранялись кашель и одышка. Анализ результатов шкалы-опросника показал достоверно значимую выраженность симптомов у пациентов, страдающих ПКС, что составило 16,0 (14,75; 20,25) баллов по сравнению с показателями условно здоровых лиц 1,0 (0,5; 2, 0) балл (p<0,05).

Выявление этиологической структуры ГВИ (ВЭБ, ВПГ1/2, ВЧГ6, ВЧГ8, ЦМВ) определило различные варианты микст ГВИ, а частота встречаемости была следующей: ВЭБ + ВЧГ6 – 5 %; ВЭБ + ВПГ1/2 – 28,4 %; ВЭБ + ВЧГ6 + ВПГ1/2 – 33,3 %; ВЭБ + ВЧГ6 + ВПГ1/2 + ВЧГ8 + ЦМВ - 33,3 % случаев. Стоит отметить, что у пациентов, имеющих детекцию 3-х и более вирусов герпеса, с доминированием во всех группах ВЭБ, наблюдались наиболее выраженные и стойкие клинические проявления ПКС, среди которых лидирующее место занимали длительные ощущения СХУ и КР, а выраженность симптомов составила 19,0 (17,0; 21,0) баллов. Наиболее ведущей особенностью патогенеза ГВИ следует выделить их активную репликацию, которая может отмечаться даже в момент отсутствия клинических проявлений инфекционного заболевания. Таким образом, была выявлена ассоциированность ПКС с различными ГВИ, что имеет большое прогностическое и диагностическое значение, а также определяет выбор дальнейшей лечебной тактики.

Изучение основных параметров функционирования противовирусной иммунной защиты в контексте иммунокомпрометированности и важной роли ГВИ в развитии ПКС позволило выявить различные варианты негативной трансформации фенотипа НГ, связанные с различными дефектами функциональной и микробицидной активности НГ.

Было исследовано содержание субпопуляций $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{+}$ НГ и их фенотипа по плотности экспрессии мембранных рецепторов — MFI. При исследовании уровня

субпопуляций HΓ, экспрессирующих рецепторы к IFN I (IFNα/βR1), II типов IFNγR (CD119) и активационный маркерный CD16 рецептор, было установлено, периферической крови ГС циркулируют 3 субпопуляции CD16⁺IFNα/βR1⁻CD119⁺, экспрессирующая рецептор к IFNγ и представленная 93,7 (89,8; 96,5) % HГ; CD16⁺IFN α /βR1⁺CD119⁻, экспрессирующая рецептор к IFN α /β и представленная 1,4 (0,5; 2,4) % НГ и $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{+}$, одновременно экспрессирующая IFN α/β и IFN γ рецепторы и представленная всего 0,9 (0,4; 1,8) % НГ, но при этом имеющая более высокие значения плотности экспрессии IFNα/βR1 и CD119 молекул (p>0,05). В ГИ содержание НГ субпопуляции $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$ НГ не отличалось от ГС, но при этом было выявлено увеличение плотности экспрессии рецепторов по MFI CD16 в 2,6 раза (p<0,05) и CD119 в 1,9 раз (p<0,05). Напротив, наблюдалась тенденция к снижению в 2,8 раз содержания субпопуляции $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}H\Gamma$ (p>0,05) но при этом были характерны повышенные уровни экспрессии IFN α/β R1 в 4,5 раза (p<0,05) и CD16 в 1,7 раз (p<0,05) по отношению к показателям ГС. Отличительной особенностью показателей ГИ явилось отсутствие субпопуляции CD16⁺IFNα/βR1⁺CD119⁺, которая, по-видимому, не определяется у пациентов с СХУ. При этом только у 3 пациентов с микст ГВИ регистрировались всего 0,3 % НГ субпопуляции ${\rm CD16^{^+}IFN}$ α/βR1 $^+$ CD119 $^+$ с повышенными MFI IFNα/βR1 в 1,8 раз, CD119 в 6 раз и CD16 в 1,4 раза по отношению к значениям ГС (p < 0.05). Таким образом, у пациентов с ПКС на фоне активации микст ГВИ отмечается трансформация фенотипа субпопуляций НГ, несущих рецепторы к IFN и и IFN и активационный CD16 рецептор, отвечающий за цитотоксичность НГ по отношению к вирусами инфицированным Выявлено клеткам. статистически повышение плотности экспрессии всех изучаемых рецепторов на субпопуляциях CD16⁺IFNα/βR1⁺CD119⁻ HΓ и CD16⁺IFNα/βR1⁻CD119⁺ HΓ, демонстрирующих их готовность к восприятию и ответу цитокиновых сигналов.

Оценка функционального потенциала НГ при ПКС выявила снижение доли активно фагоцитирующих НГ (%ФАН) в 1,3 раза, %переваривания (%П) в 1,4 раза и индекса переваривания (ИП) в 2,9 раза по отношению к показателям ГС (p_{1,2,3}<0,05). При этом в данной группе пациентов отмечалось: в спонтанном NBTтесте напряженность NADPH-оксидаз по показателям СЦИсп. - 0,46 (0,41;0,49) и %ФПКсп. – 8,0 (6,8; 9,0) в сравнении с ГС (p_{1,2}<0,05). В стимулированном NBTтесте при дополнительной нагрузке S. aureus отмечалось снижение значений СЦИст. – 0,36 (0,33; 0,39) (p<0,05) и %ФПКст. 6,0 (5,8; 7,0) (p>0,05), что демонстрирует истощение оксидазного микробицидного потенциала с КМ-0,8 (0.75; 1.26) (p<0.05). При морфологической оценке 100 % НГ у условно здоровых добровольцев в периферической крови выявляются клетки с неизмененными зрелыми HГ - 99%, отсутствуют NETs, и клетки с апоптозом составляют не более 1 %. Для диагностики и прогноза течения уже, сформировавшегося ПКС с развитием характерных осложнений и формированием СХУ, когнитивных нарушений и активацией ГВИ, в качестве программы для ЭВМ нами был разработан новый лабораторный маркер. Интеграционный диагностический критерий (ИДК - ПКС) - «Критерий прогноза течения ПКС» (свидетельство о регистрации: №202466662 от 15.07.2024 г.). Данный показатель характеризует состояния системы НГ у пациентов с ПКС: ИДК = % неизмененных НГ/ % клеток, сформировавших NETs и % клеток в состоянии апоптоза. Степень образования NETs в организме коррелирует с тяжестью воспалительного процесса и является прогностическим показателем развития тяжелых форм ПКС. Гиперактивация НГ, с формированием NETs способствует развитию иммунотромбозов, коагулопатий нейроиммуновоспаления, опосредованных процессы нетоза, через напрямую коррелирует с риском развития и тяжестью протекания ПКС. Таким образом, результат представляется в виде степени течения ПКС. При оценке ИДК в ГИ было выявлено: у 23% пациентов, перенесших COVID-19 тяжелой степени тяжести ИДК составил 12,4 что в 8 раз меньше, чем в ГС (p<0,05) и говорит о

тяжелом течении ПКС; у 37 % пациентов, перенесших COVID-19 среднетяжелой степени тяжести ИДК составил 18,0 что в 5,5 раз меньше, чем в ГС (p<0,05) и говорит о среднетяжелом течении ПКС; у 40 %, перенесших COVID-19 среднетяжелой степени тяжести ИДК составил 28,2, что в 3,5 раза меньше, чем в ГС (p<0,05), что говорит о легком течении ПКС.

Среди потенциальных механизмов развития ПКС значительную роль играют гиперактивация НГ и образование NETs, опосредованные действием провоспалительных цитокинов, хемокинов и циркулирующих гистонов, что прогрессированию неконтролируемого системного может приводить К гипервоспаления, усилению респираторной декомпенсации, микротромбозу и неадекватному иммунному ответу, включая нарушение регуляции цитокинового профиля. Оценка профиля нейтрофил-ассоциированных сывороточных цитокинов у пациентов с ПКС показала нарушения противовирусной иммунной защиты, которые обуславливают активацию ГВИ, что приводит в свою очередь к возникновению нейроиммуновоспаления, сопровождающегося СХУ и КР, на фоне повышенного уровня в ГИ IL 1β в 39,5 раз до 3,95 (1,6; 5,6) пг/мл против ГС (p<0,05) и IL8, повышенного в 2 раза в ГИ 10,7 (6,4;16,8) пг/мл по сравнению с ГС (p<0,05). Анализ уровня системного провоспалительного цитокина IL6 выявил неоднозначный характер изменений: у 56 пациентов ГИ концентрация показателя регистрировалась на уровне 1,7 (1,2; 2,8) пг/мл и не отличалась от данных ГС (p>0,05), в то же время, у 4 пациентов, перенесших тяжелую степень COVID-19 и имеющих тяжелое течение ПКС, ассоциированного с микст ГВИ было выявлено значительное повышение уровня данного показателя в 25 раз 307,7 (197,2; 357,1) пг/мл против ГС (р<0,05) с сопутствующим повышением уровня IL17A в 34 раза 460,95 (374,1; 461,0) пг/мл по сравнению с ГС (p<0,05). Таким образом, стоит предположить наличие у данной категории пациентов продолжающегося вялотекущего воспалительного процесса И значительную склонность возникновению тромбоэмболий тромбоцитов, за счет активации

формирование NETs. В то же время регистрировалось повышение уровня IL4 в 7,5 раз у 30% (p<0,05) и в 1,3 раза у 70% (p>0,05) пациентов по сравнению с ГС и имеющих сопутствующее повышение уровня IL10 в 5,2 раза у 15% пациентов установлен (p>0.05). Таким образом, дисбаланс цитокинов, вызванный избыточной продукцией провоспалительных цитокинов IL1β и IL8, при недостаточной выработке противовоспалительных цитокинов IL4 и IL10. Такой дисбаланс характерен для активации Th1-зависимого иммунного ответа и ассоциирован воспалительными И деструктивными процессами, представляет собой неблагоприятный прогностический фактор для развития синдрома хронической усталости и нейроиммунного воспаления.

Анализ результатов исследования интерферонового статуса показал статистически достоверный дефицит IFN I и II типов, что подтверждает слабую противовирусную защиту у пациентов с ПКС и характеризуется активацией ГВИ. Уровень IFNα в ГИ оказался значительно ниже в 12,4 раза по сравнению с ГС (p<0,05), при этом показатели IFN γ были ниже в 2,5 раза, чем в ГС (p<0,05). Таким образом, были обнаружены нарушения в работе системы IFN, проявляющиеся в недостаточной реакции ИС на вирусную инфекцию и приводящие К недостаточной противовирусной иммунной защите. При серологическом исследовании общих иммуноглобулинов IgA, IgM, IgG в сыворотке крови не было обнаружено статистически значимых различий по сравнению с ГС (p>0,05). В то же время анализ показателей уровня IgA, IgM, IgG к новой коронавирусной инфекции COVID-19 показал следующие тенденции: у всех 60 пациентов ГИ регистрировался титр IgG к SARS-CoV-2 выше коэффициента позитивности (КП), что дополняет анамнез пациентов ГИ о подтвержденной перенесенной SARS-CoV-2 инфекции. Немаловажным являлось определение титра IgA к SARS-CoV-2, при котором было выявлено, что у 51 пациента отмечались титры выше значения КП, а определение титра IgM в то же время выявило ключевые и значимые результаты, так как у 18 пациентов было

отмечено повышение его уровня выше КП, что предполагает наличие остатков и/или продолжающуюся персистенцию вирусных частиц в эпителиальных клетках кишечника и эндотелии сосудов с возможным последующим развитием аутоиммунных процессов, миокардитов, коагулопатий, тромбоэмболий и прогрессирования симптомов нейроиммуновоспаления.

Принимая во внимание ключевую роль НГ, как элементов клеточного звена врожденного иммунитета и их способность влиять на развитие, прогрессирование заболевания через восстановление фенотипа И исхол измененного функционально-значимых субпопуляций, были осуществлены экспериментальные исследования в системе in vitro. Целью исследований была оценка воздействия иммунотропных препаратов, таких как рекIFNα2b и ГП на нарушенные эффекторные функции и негативно трансформированный фенотип субпопуляций $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$. Инкубация ПК пациентов с ПКС с ГП *in vitro* выявила модулирующие эффекты, на фенотип 2 субпопуляций: $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$, $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, не влияя при этом на их содержание. Так в ГИ после инкубации с ГП на субпопуляции НГ CD16⁺IFNα/βR1⁻CD119⁺ наблюдалось снижение в 1,6 раз плотности экспрессии по МFI как CD16 до 64,0 (54,5; 76,0), так и CD119 до 3,5 (3,5; 5,2) против ГИ до инкубации ($p_{1,2} < 0.05$). При этом регистрируемые показатели MFI CD16 и MFI CD119 оставались повышенными по отношению к уровню экспрессии молекул на НГ данной субпопуляции в ГС ($p_{1,2} < 0.05$). Воздействия ГП на фенотип субпопуляций CD16⁺IFNα/βR1⁺CD119⁻HГ также заключались в снижении в 1,4 раза MFI CD16 по отношению к показателям ГИ до инкубации (p<0,05) практически до уровня, определяемого в ГС (р>0,05), при этом плотность экспрессии IFNα/βR1 не менялась и не отличалась от значений, регистрируемых в ГИ до инкубации (p>0.05), но оставаясь в 4,7 раз выше значений в ГС (p<0.05). Анализ функционального потенциала НГ после инкубации НГ в системе *in vitro* с показал статистически значимое увеличение доли ФАН (р<0,05) и восстановление процессов киллинга и переваривания (% Π , И Π) до уровня показателей ГС ($p_{1,2}<0.05$), снижение спонтанной и усиление стимулированной активности NADPH-оксидаз, как по показателям % $\Phi\Pi$ K, так и по СЦИ с сохранением резервного микробицидного потенциала и КМ. Г Π в системе *in vitro* не влиял на процессы образования NETs и апоптоз.

Инкубация ПК пациентов с ПКС с рекIFNα2b in vitro не влияла на количество НГ субпопуляций $CD16^{+}IFN\alpha/\beta R1^{-}CD119^{+}$ и $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$, как по сравнению с показателями ГС, так и по отношению к значениям ГИ до инкубации (p_{1,2}>0,05). В то же время в ГИ после инкубации с рекIFNα2b на НГ субпопуляции CD16⁺IFNα/βR1⁻CD119⁺ наблюдались незначительные тенденции увеличения плотности экспрессии по MFI CD16 до 110,0 (95,7; 127,0) против ГИ до инкубации (p>0,05) и снижения плотности экспрессии по MFI CD119 до 5,0 (3,7; 6,3) против показателей в ГИ до инкубации (р>0,05). При этом регистрируемые показатели MFI CD16 и MFI CD119 оставались повышенными по отношению к уровню экспрессии молекул на НГ данной субпопуляции в ГС $(p_{1.2} < 0.05)$. Эффекты влияния peκIFNα2b на фенотип субпопуляций $CD16^{+}IFN\alpha/\beta R1^{+}CD119^{-}$ НГ заключались в снижении в 1,4 раза MFI CD16 по отношению к показателям ГИ до инкубации (p<0,05) практически до уровня, определяемого в ГС (p>0.05), при этом плотность экспрессии IFN α/β R1 увеличилась в 1,3 раза от значений, регистрируемых в ГИ до инкубации (р>0,05), оставаясь в 5,6 раз выше значений в ГС (p<0,05). Получены позитивные эффекты влияния рекIFNα2b *in vitro* на фенотип субпопуляций и функции НГ. У пациентов ГВИ выявлена трансформация ПКС, ассоциированным c фенотипа субпопуляций CD16⁺IFNα/βR1⁻CD119⁺HГ и CD16⁺IFNα/βR1⁺CD119⁻HΓ, несущих рецепторы к IFN и и IFN и активационный рецептор CD16, отвечающий, за цитотоксичность НГ по отношению к инфицированным вирусами клеткам. При анализе функционального потенциала HГ после инкубации с рекIFNα2b в системе in vitro отмечалось увеличение доли ФАН (p<0,05) и восстановление процессов

киллинга и переваривания (%П, ИП) до уровня показателей ГС ($p_{1,2}<0,05$), снижение спонтанной и усиление стимулированной активности NADPH-оксидаз, как по показателям %ФПК, так и по СЦИ с сохранением резервного микробицидного потенциала и КМ. РекIFN α 2b в системе *in vitro* не влиял на процессы образования NETs и апоптоз.

Принимая во внимание, что интерфероны I и II типов стимулируют NETosis, можно предположить, что значительное увеличение экспрессии всех изученных рецепторов, выявленное в ГИ, свидетельствует об активации НГ с возможным запуском антителозависимой клеточной цитотоксической реакции или NETosis, что может усугубить нейтрофильную инфильтрацию и нетоз, а также связанные с этими процессами проявления ПКС, ассоциированного с ГВИ.

Результаты проведенных исследований позволили выявить: клинические критериальные признаки иммунокомпрометированности, особенности нарушенных механизмов противовирусной защиты, этиологическую структуру ГВИ, состояние интерферонового статуса и профиля сывороточных нейтрофил-ассоциированных цитокинов, варианты негативной трансформации фенотипа НГ, ассоциированные с разнообразными дефектами функциональной и микробицидной активности. Для выявления пациентов, угрожаемых по развитию ПКС и диагностики течения уже, выявленного ПКС *de novo* были разработаны и внедрены в практику интеграционные диагностические лабораторные маркеры: ИДП - ПКС и ИДК - ПКС соответственно. Экспериментальные данные, полученные в системе in vitro с применением иммунотропных субстанций рекІFNα2b и ГП показали различные позитивные иммуномодулирующие эффекты, способствующие восстановлению негативно измененного фенотипа функционально-значимых субпопуляций, устранению дефектов фагоцитарной и микробицидной активности НГ, что открывает новые возможности для разработки и применения в практическом здравоохранении комплексной

иммуномодулирующей терапии, направленной на восстановление дисрегуляторных нарушений HГ.

С учетом выявленных особенностей иммунопатогенеза ПКС в итоге нами был разработан алгоритм комплексной клинико-лабораторной диагностики дисфункций НГ для пациентов с ПКС, ассоциированным с активацией ГВИ.

ВЫВОДЫ

- 1. На базе проведения ретроспективного анализа данных 1000 историй болезни пациентов, перенесших подтвержденную SARS-CoV-2 инфекцию и клинико-60 ПКС, лабораторного исследования пациентов подтвержденным c разработаны новые прогностические диагностические И критерии: «Интеграционный диагностический показатель прогноза развития постковидного синдрома» (ИДП-ПКС) и «Интеграционный диагностический критерий прогноза тяжести течения постковидного синдрома» (ИДК-ПКС), позволяющие, как прогнозировать формирование постковидного синдрома, так и оценивать тяжесть его течения.
- 2. Частота встречаемости микст герпесвирусных инфекций в стадии репликации вирусов составила: ВЭБ + ВЧГ6 5 %; ВЭБ + ВПГ1/2 28,4 %; ВЭБ + ВЧГ6 + ВПГ1/2 33,3 %; ВЭБ + ВЧГ6 + ВПГ1/2 + ВЧГ8 + ЦМВ 33,3 % случаев, при этом во всех случаях микст герпесвирусных инфекций отмечено доминирование ВЭБ инфекции.
- 3. Использование модифицированной шкалы-опросника у пациентов с подтвержденным постковидным синдромом в 100% случаев позволило оценить ведущие клинические критериальные признаки синдрома хронической усталости, когнитивных нарушений и иммунокомпрометированности в баллах, уровень которых колебался в пределах от 14,0 до 20,0 баллов, что было статистически значимо выше показателей условно здоровых лиц (0,5-2 балла).
- 4. У пациентов с постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций имеются различные дисфункции нейтрофильных гранулоцитов: дефекты эффекторных функций, как фагоцитарной, так и оксидазной, негативная трансформация фенотипа субпопуляций CD16⁺IFNα/βR1⁻CD119⁺, CD16⁺IFNα/βR1⁺CD119⁻ и отсутствие субпопуляции CD16⁺IFNα/βR1⁺CD119⁺, появление циркулирующих в периферической крови

- нейтрофильных гранулоцитов, вошедших в апоптоз и сформировавших NETs на фоне статистически значимой дисрегуляции сывороточных нейтрофилассоциированных цитокинов.
- 5. Нарушения противовирусной иммунной защиты у пациентов с постковидным ассоциированным с активацией герпесвирусных инфекций, синдромом, проявляющиеся хронической усталости клинически синдромом когнитивными расстройствами, сопряжены с дисрегуляторными нарушениями в системе цитокинов, при этом выявлено повышение в 39,5 раз уровня IL1β, общепризнанным сывороточного являющегося маркером нейроиммуновоспаления, на фоне дефицита сывороточных IFN: IFNα – снижен в 12,4 раза, IFNу – снижен в 2,5 раза по сравнению с условно здоровыми субъектами.
- 6. В эксперименте эффекты воздействий in vitro выявлены различные рекомбинантного IFNα2b и синтетического иммунотропных субстанций аргинил-альфа-аспартил-лизил-валил-тирозилтимического гексапептида дисфункции нейтрофильных гранулоцитов аргинина пациентов постковидным синдромом, ассоциированным с активацией герпесвирусных инфекций: позитивное модулирование дефектных эффекторных функций и негативно трансформированного фенотипа субпопуляций НГ CD16⁺IFNα/βR1⁻ $CD119^+$, $CD16^+IFN\alpha/\beta R1^+CD119^-$, но при этом наблюдалось отсутствие их влияний на повышенное количество нейтрофильных гранулоцитов, вошедших в апоптоз и сформировавших NETs.
- 7. Разработанный алгоритм комплексной иммунодиагностики дисфункций нейтрофильных гранулоцитов особенности учитывает уточненные иммунопатогенеза постковидного синдрома, ассоциированного с активацией герпесвирусных инфекций, и позволяет выявлять различные нарушения функционирования нейтрофильных гранулоцитов, ЧТО необходимо ДЛЯ

создания новых таргетных иммунокорректирующих терапевтических стратегий при постковидном синдроме.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Рекомендовано использование в клинической практике разработанных программ для ЭВМ, основанных на интеграционных диагностических лабораторных маркерах: интеграционный диагностический показатель ИДП-ПКС в качестве предиктора развития ПКС после перенесенной SARS-CoV-2 инфекции и интеграционный диагностический критерий ИДК ПКС, с целью диагностики степени тяжести течения ПКС.
- 2. При проведении диагностики ПКС рекомендовано детектировать с использованием ПЦР-РВ и ИФА геном различных ГВИ, для проведения при необходимости в дальнейшем этиотропной терапии.
- 3. Рекомендовано внедрение в клиническую практику созданного программного алгоритма комплексной клинико-лабораторной диагностики дисфункций НГ у пациентов с ПКС, ассоциированного с активацией ГВИ.
- 4. Полученные экспериментальные данные о положительном иммуномодулирующем влиянии рекIFNα2b и ГП на дефектные эффекторные функции НГ и негативно трансформированный фенотип функционально-значимых субпопуляций НГ у пациентов с ПКС, свидетельствуют о необходимости разработки новых программ таргетной иммуномодулирующей терапии с использованием официнальных фармацевтических препаратов, основной действующей субстанцией которых являются рекIFNα2b и ГП.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Разработанные *de novo* интеграционные диагностические лабораторные маркеры в качестве компьютерных программ для ЭВМ являются перспективными к применению в клинической практике в качестве предиктора развития ПКС и с целью диагностики степени тяжести течения уже развившегося ПКС.

Внедрение в работу профильных специалистов созданного алгоритма комплексной клинико-лабораторной диагностики дисфункций НГ у пациентов с ПКС, ассоциированным с активацией ГВИ, открывает перспективы своевременного выявления лиц из группы риска по развитию ПКС.

Полученные экспериментальные данные іп vitro свидетельствуют положительном воздействии рекIFNa2b тимического гексапептида И восстановление адекватной работы НГ. В связи с этим, перспективным направлением для дальнейшего развития данной темы является создание программы таргетной иммунотропной терапии для пациентов, страдающих ПКС, активацией ГВИ c применением ассоциированным отечественных фармацевтических препаратов с содержанием исследованных субстанций, разрешенных к применению в клинической практике. Также несомненный интерес вызывает продолжение клинических исследований, направленных на оценку клинико-иммунологической эффективности разработанной программы таргетной иммунотропной терапии для пациентов с ПКС, связанным с активацией ГВИ.

СПИСОК СОКРАЩЕНИЙ

COVID-19 – новая коронавирусная инфекция

IFN – интерферон

IL – интерлейкин

Ig - иммуноглобулины

MFI – средний индекс флюоресценции (middle index of fluorescence)

NETs – нейтрофильные экстрацеллюлярные сети (neutrophil extracellular traps)

ROS – активные формы кислорода (reactive oxygen species)

МПО – миелопероксидаза

ИС – иммунная система

ПК – периферическая кровь

НГ – нейтрофильные гранулоциты

Л – лимфоциты

СРБ – С-реактивный белок

ОРДС –острый респираторный дистресс-синдром

ЦШ – цитокиновый шторм

ПКС – постковидный синдром

СХУ – синдром хронической усталости

КР – когнитивные расстройства

рекІFNα2b – рекомбинантный интерферон α2b

ГП – Гексапептид

МкАТ – моноклональные антитела

%ФАН – процент активно фагоцитирующих нейтрофилов

ФИ – фагоцитарный индекс

 $\Phi \Psi - \varphi$ агоцитарное число

 $\%\Pi$ – процент переваривания

ИП – индекс переваривания

СЦИ – средний цитохимический индекс

 $\Phi\Pi K - \varphi$ ормазан позитивная клетка

КМ – коэффициент мобилизации

КП – коэффициент позитивности

ГВИ – герпесвирусная инфекция

ВЭБ – вирус Эпштейна-Барр

ЦМВ – цитомегаловирус

ВЧГ6 – вирус человеческого герпеса 6 типа

ВПГ1/ 2 — вирус простого герпеса типа 1/ 2

ПЦР-РВ- полимеразная цепная реакция в режиме реального времени

ФИПС – Федеральная служба по интеллектуальной собственности

ИДП – интеграционный диагностический показатель

ИДК – интеграционный диагностический критерий

СПИСОК ЛИТЕРАТУРЫ

- Атажахова М. Г. Информативная значимость интеграционного диагностического показателя в прогнозе исходов COVID-19 и предикции развития постковидного синдрома / М. Г. Атажахова, Г. А. Чудилова, И. В. Нестерова // Российский иммунологический журнал. 2022. Т. 25, №4. С. 375-378. DOI 10.46235/1028-7221-1199-POC.
- 2. Врожденные и приобретенные интерферонопатии, ассоциированные с нетипично протекающими вирусными инфекциями и с COVID-19 / И. В. Нестерова, С. В. Ковалева, Г. А. Чудилова // Иммунотерапия в практике ЛОР-врача и терапевта / Под ред. А.С. Симбирцев, Г.В. Лавренова. Санкт-Петербург: Диалог, 2022. С. 234-269.
- 3. Высокие уровни цитокинов IL17A, IL18, VEGF-A в периоде реконвалесценции COVID-19 биомаркеры незавершенности иммунного воспалительного процесса, сигнализирующие об опасности развития постковидного синдрома / В.Н. Городин, И.В. Нестерова, В.А. Матушкина [и др.] // Инфекционные болезни. 2023. Т. 21 (4). С. 12—20. DOI 10.20953/1729-9225-2023-4-12-20.
- 4. Добрынина M.A. Формирование вторичных иммунодисфункций постковидных пациентов и патогенетические подходы к их коррекции: 3.2.7. 3.1.18. спешиальности Иммунология, Внутренние болезни: диссертация на соискание ученой степени доктора медицинских наук / Добрынина Мария Александровна; Институт иммунологии и физиологии. – Екатеринбург, 2025. – 190 с.
- 5. Долгушин И. И. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов / И. И. Долгушин, Ю. С. Андреева, А. Ю. Савочкина. Москва: Издательство РАМН, 2009. 208 с.

- Изменения врожденных факторов иммунной системы по данным изучения иммунной системы периферической крови у постковидных пациентов / М.А. Добрынина, А.В. Зурочка, М.В. Комелькова [и др.] // Инфекция и иммунитет. 2023. Т. 13, № 5. С. 864–872. DOI 10.15789/2220-7619-AII-9641.
- Интеграционный диагностический критерий, оценивающий тяжесть течения COVID-19 и риск возникновения постковидного синдрома / И. В. Нестерова, М. Г. Атажахова, В. А. Матушкина // Медицинская иммунология. 2024. Т. 26, № 3. С. 1383-1392. DOI 10.15789/1563-0625-IDC-2594.
- 8. Интерфероно- и иммунотерапия в лечении нетипично протекающих инфекционно-воспалительных заболеваний у детей и взрослых / И. В. Нестерова, В. В. Малиновская, С. В. Ковалева, Г. А. Чудилова. USA, GB, Russia, Москва: Capricorn Publishing, 2020. 366 с.
- 9. Канорский С. Г. Постковидный синдром: распространенность и патогенез органных поражений, направления коррекции. Систематический обзор / С. Г. Канорский // Кубанский научный медицинский вестник. 2021. Т. 28 (6). С. 90–116. DOI 10.25207/1608-6228-2021-28-6-90-116.4.
- 10. Климов Н.А. Взгляд на патогенез постковидного синдрома / Н.А. Климов,
 А.С. Симбирцев // Цитокины и воспаление. 2024. Т. 21, № 2. С. 72–81.
 DOI 10.17816/CI636474.
- 11. Маркова Т. П. Имунофан в комплексном лечении детей с повторными респираторными заболеваниями и микоплазменной инфекцией / Т. П. Маркова, Д. Г. Чувиров // Эффективная фармакотерапия. 2022. Т. 18 (12). С. 12–18.
- 12. Матушкина В.А. Вариативность патогенетически обусловленных иммунодисрегуляторных нарушений при новой коронавирусной инфекции (COVID-19) и их влияние на выраженность клинических проявлений: специальности 3.1.22. Инфекционные болезни, 3.2.7. Иммунология:

- диссертация на соискание ученой степени кандидата медицинских наук / Матушкина Валерия Александровна; Кубанский государственный медицинский университет. Краснодар, 2024. 202 с.
- 13. Метаболические нарушения в постковидном периоде / Ю.Н. Панина, В.И. Вишневский, Е.Н. Мельчинская, М.В. Вишневский // Актуальные проблемы медицины. 2023. Т. 46 (1). С. 5–15. DOI 10.52575/2687-0940-2023-46-1-5-15.
- Методические рекомендации «Особенности течения Long-COVID инфекции. Терапевтические и реабилитационные мероприятия» // Терапия.
 –2022. Т. 1 (Приложение). С. 1–147. DOI 10.18565/therapy.2022.1su– Р. 1.1-147.
- 15. Методы комплексной оценки функциональной активности нейтрофильных гранулоцитов в норме и патологии [методические рекомендации] / И. В. Нестерова, Г. А. Чудилова, С. В. Ковалева [и др.]. Краснодар, 2017. 52 с.
- 16. Нейтрофильные внеклеточные ловушки: значение для диагностики и прогноза COVID-19 / Д. В. Кассина, И. А. Василенко, А. С. Гурьев [и др.] // Альманах клинической медицины. 2020. Т. 48 (Спецвыпуск 1). С. S43—50. DOI 10.18786/2072-0505-2020-48-029.
- 17. Нейтрофильные гранулоциты: новый взгляд на «старых игроков» на иммунологическом поле / И. В. Нестерова, Н. В. Колесникова, Г. А. Чудилова [и др.] // Иммунология. 2015. Т. 36, № 4. С. 257-265.
- 18. Нейтрофильные гранулоциты: отражение в зеркале современных представлений / И.В. Нестерова, Г.А. Чудилова, С.В. Ковалева [и др.]. Москва: Capricorn Publishing, UK, USA, 2018. 338 с.
- 19. Неоднозначная роль нейтрофильных гранулоцитов в иммунопатогенезе COVID-19: взаимосвязь с дисбалансом провоспалительных нейтрофилассоциированных цитокинов и дефицитом интерферона-α / И. В. Нестерова,

- В. Н. Городин, В. А. Матушкина [и др.] // Инфекционные болезни. 2022. Т. 20 (4). С. 12–24. DOI 10.20953/1729-9225-2022-4-12-24.
- 20. Неоднозначность влияний рекомбинантного интерферона α2В в эксперименте in vitro на уровни экспрессии ядерного фактора NF-kb, рецепторов IFNαβR и IFNγR (CD119) нейтрофильных гранулоцитов пациентов с хроническими герпес-вирусными инфекциями / И.В. Нестерова, Е.О. Халтурина, В.Н. Нелюбин [и др.] // Цитокины и воспаление. 2022. Т. 196 №1-4. С. 38-46. DOI 10.17816/CI2022221-4-7.
- 21. Нестерова И. В. Вторичные иммунодефициты и методы их коррекции в практике врача оториноларинголога / И. В. Нестерова // Иммунотерапия в практике ЛОР-врача и терапевта / под редакцией А. С. Симбирцева, Г. В. Лавреновой. Санкт-Петербург: Диалог, 2018. С. 32—97.
- 22. Нестерова И. В. Клинико-иммунологическая эффективность интеграционной программы реабилитации иммунной системы у пациентов с атипичной хронической активной герпесвирусной коинфекцией до и во время COVID-19, а также в постковидном периоде / И. В. Нестерова, Е. О. Халтурина, В. В. Малиновская // Эффективная фармакотерапия. 2022. Т. 18 (37). С. 30–41. DOI 10.33978/2307-3586-2022-18-37-30-41.7.
- 23. Нестерова И. В. Моно и микст герпесвирусные инфекции: ассоциированность с клиническими синдромами иммунодефицита / И. В. Нестерова, Е. О. Халтурина // Вестник РУДН. Серия: Медицина. 2018. Т. 22, № 2. С.226—234. DOI 10.22363/2313-0245-2018-22-2-226-234.
- 24. Оценка взаимосвязи нарушения цитотоксических Т-лимфоцитов с другими компартментами иммунной системы у постковидных пациентов / М.А. Добрынина, А.В. Зурочка, М.В. Комелькова [и др.] // Вестник уральской медицинской академической науки. 2022. Т. 19, № 3. С. 294–303. DOI 10.22138/2500-0918-2022-19-3-294-303.

- 25. Позитивные эффекты рекомбинантного интерферона α2b на фенотип субпопуляции СD16+IFNα/βR1-CD119+, CD16+IFNα/βR1+CD119- нейтрофильных гранулоцитов у пациентов с постковидным синдромом и герпесвирусными инфекциями / М. Г. Атажахова, И. В. Нестерова, Г. А. Чудилова [и др.] // Российский иммунологический журнал. 2023. Т. 26, № 4. С. 647-656. DOI 10.46235/1028-7221-13908-PEO.
- 26. Постковидные неврологические синдромы / В. В. Белопасов, Е. Н. Журавлева, Н. П. Нугманова, А. Т. Абдрашитова // Клиническая практика. 2021. Т. 12 (2). С. 69–82. DOI 10.17816/clinpract71137.17.
- 27. Постковидный синдром. Мифы и реалии / В. В. Ковальчук, М. С. Дроздова,
 Ю. А. Чепель, К. В. Нестерин // Эффективная фармакотерапия. 2022. Т.
 18 (23). С. 20–26. DOI 10.33978/2307-3586-2022-18-23-20-26.16.
- 28. Постковидный транзиторный гипогонадизм и эректильная дисфункция / Асфандияров Ф.Р., Круглов В.А., Выборнов С.В. [и др.] // Экспериментальная и клиническая урология. 2021. Т. 14 (3). С. 112-118.
- 29. Халтурина Е.О. Интеграционная программа коррекции иммунной системы в лечении иммунокомпрометированных пациентов атипичными хроническими герпес-вирусными инфекциями: специальность 3.2.7. Иммунология: диссертация на соискание ученой степени медицинских наук / Халтурина Евгения Олеговна; Сеченовский университет. – Москва, 2023. – 431 с.
- 30. Хасанова Д. Р. Постковидный синдром: обзор знаний о патогенезе, нейропсихиатрических проявлениях и перспективах лечения / Д. Р. Хасанова, Ю. В. Житкова, Г. Р. Васкаева // Неврология, нейропсихиатрия, психосоматика. 2021. Т. 13(3). С. 93—98. DOI 10.14412/2074-2711-2021-3-93-98.
- 31. Чапурина В. Н. Иммунотерапия в коррекции дефектов функционирования нейтрофильных гранулоцитов при нетипично протекающих гнойно-

- воспалительных заболеваниях у детей: специальность 3.2.7. Аллергология и иммунология: диссертация на соискание ученой степени кандидата медицинских наук / Чапурина Валерия Николаевна; Кубанский государственный медицинский университет. Краснодар, 2022. 158 с.
- 32. Чудилова Г. А. Мультивариантность фенотипической трансформации субпопуляций нейтрофильных гранулоцитов при различных иммунозависимых заболеваниях: специальность 14.03.09 «Клиническая иммунология, аллергология»: диссертация на соискание ученой степени доктора биологических наук / Чудилова Галина Анатольевна; Кубанский государственный медицинский университет. Краснодар, 2020. 375 с.
- 33. Эффекты влияния рекомбинантного интерферона α-2b на фенотип субпопуляций нейтрофильных гранулоцитов пациентов с COVID-19 / И. В. Нестерова, В. Н. Городин, Г. А. Чудилова [и др.] // Инфекционные болезни. 2022. Т. 20(1). С. 43-51. DOI 10.20953/1729-9225-2022-1-43-51.27.
- 34. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias / D. Zhao, F. Yao, L. Wang [et al.] // Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020. Vol. 71 (15) P. 756-761. DOI 10.1093/cid/ciaa247.
- 35. A Granulocytic Signature Identifies COVID-19 and Its Severity / J. Vitte, A.B. Diallo, A. Boumaza [et al.] // The Journal of Infectious Diseases. 2020. Vol. 222 (12). P. 1985–1996. DOI 10.1093/infdis/jiaa591.
- 36. A Review of Persistent Post-COVID Syndrome (PPCS) / B. Oronsky, C. Larson,
 T. C. Hammond [et al.] // Clinical reviews in allergy & immunology. 2023. –
 Vol. 64 (1). P. 66-74. DOI 10.1007/s12016-021-08848-3.
- 37. Abduljalil J.M. Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: a recent view / J.M. Abduljalil, B.M. Abduljalil // New Microbes New Infect. 2020. Vol. 35. P. 100672. DOI 10.1016/j.nmni.2020.100672.

- 38. Activation and evasion of type I interferon responses by SARS-CoV-2 / X. Lei, X. Dong, R. Ma [et al.] // Nat Commun. 2020. Vol. 11 (1). P. 3810. DOI 10.1038/s41467-020-17665-9.
- 39. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection / L. Montefusco, M. Ben Nasr, F. D'Addio [et al.] // Nat Metab. 2021. Vol. 3 (6). P. 774-785. DOI 10.1038/s42255-021-00407-6.
- 40. Admission hyperglycaemia as a predictor of mortality in patients hospitalized with COVID-19 regardless of diabetes status: data from the Spanish SEMI-COVID-19 Registry / F.J. Carrasco-Sánchez, M.D. López-Carmona, F.J. Martínez-Marcos [et al.] // Ann. Med. 2021. Vol. 53 (1). P. 103–116. DOI 10.1080/07853890.2020.1836566.
- 41. Allergic disorders and susceptibility to and severity of COVID-19: A nationwide cohort study / J.M. Yang, H.Y. Koh, S.Y. Moon [et al.] // J Allergy Clin Immunol. 2020. Vol. 146 (4). P. 790-798. DOI 10.1016/j.jaci.2020.08.008.
- 43. Analysis of 2019-nCoV receptor ACE2 expression in different tissues and its significance study / T. Han, J. Kang, G. Li [et al.] // Ann Transl Med. 2020. Vol. 8 (17). P. 1077. DOI 10.21037/atm-20-4281.
- 44. Astuti I. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response / I. Astuti, Ysrafil // Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2020. Vol. 14. P. 407–412. DOI 10.1016/j.dsx.2020.04.020. 25.

- 45. Autoantibodies against type I IFNs in patients with life-threatening COVID-19 / P. Bastard, L.B. Rosen, Q. Zhang [et al.] // Science. 2020. Vol. 370 (6515). P. eabd4585. DOI 10.1126/science.abd4585.
- Autoantibodies in COVID-19: frequency and function / Z.W. Gao, H.Z. Zhang,
 C. Liu, K. Dong // Autoimmun Rev. 2021. Vol. 20 (3). P. 102754. DOI 10.1016/j.autrev.2021.102754.
- 47. Baig A.M. Chronic COVID syndrome: Need for an appropriate medical terminology for long-COVID and COVID long-haulers / A.M. Baig // J Med Virol. 2021. Vol. 93(5). P. 2555-2556. DOI 10.1002/jmv.26624.
- 48. Beyrau M. Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity / M. Beyrau, J. V. Bodkin, S. Nourshargh // Open biology. 2012. Vol. 2. P. 120-134. –DOI 10.1098/rsob.120134.
- 49. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA / M. Taquet,
 S. Luciano, J.R. Geddes, P.J. Harrison // Lancet Psychiatry. 2021. Vol. 8 (2). P. 130-140. DOI 10.1016/S2215-0366(20)30462-4.
- 50. Billiau A. Interferon-Gamma: A Historical Perspective / A. Billiau, P. Matthys // Cytokine Growth Factor Rev. 2009. Vol. 20 (2). P. 97–113. DOI 10.1016/j.cytogfr.2009.02.004.
- 51. Biological mechanisms underpinning the development of long COVID / R. Perumal, L. Shunmugam, K. Naidoo [et al.] // Iscience. 2023. Vol. 26, №. 6. P. 106935. DOI 10.1016/j.isci.2023.106935.
- 52. Biomarkers in long COVID-19: A systematic review / Y.J. Lai, S.H. Liu, S. Manachevakul [et al.] // Front Med (Lausanne). 2023. Vol. 10. P. 1085988. DOI 10.3389/fmed.2023.1085988.
- 53. Block H. A Fragile Balance: Does Neutrophil Extracellular Trap Formation Drive Pulmonary Disease Progression? / H. Block, A. Zarbock // Cells. 2021. Vol. 10, No.8. P. 1932.

- 54. Bolourani S. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis / S. Bolourani, M. Brenner, P. Wang // Journal of Molecular Medicine. 2021. Vol. 99. P. 1373–1384. DOI 10.1007/s00109-021-02113-y.9.24.
- 55. Brinkmann V. Neutrophil extracellular traps in the second decade / V. Brinkmann // Journal of innate immunity. 2018. Vol. 10 (5-6). P. 414–421. DOI https://doi.org/10.1159/000489829.
- 56. Campen C.L.M.C.V. Orthostatic Symptoms and Reductions in Cerebral Blood Flow in Long-Haul COVID-19 Patients: Similarities with Myalgic Encephalomyelitis Chronic Fatigue Syndrome / C.L.M.C.V. Campen, P.C. Rowe, F.C. Visser // Medicina (Kaunas). 2021. Vol. 58 (1). Vol. 28. DOI 10.3390/medicina58010028.
- 57. Capatina C. Pituitary and SARS CoV-2: An unremitting conundrum / C. Capatina, C. Poiana, M. Fleseriu // Best Pract Res Clin Endocrinol Metab. 2023. Vol. 37 (4). P. 101752. DOI 10.1016/j.beem.2023.101752.
- 58. Cardiovascular complications in COVID-19 / B. Long, W.J. Brady, A. Koyfman, M. Gottlieb // Am J Emerg Med. 2020. Vol. 38 (7). P. 1504-1507. DOI 10.1016/j.ajem.2020.04.048.
- 59. Carfì A. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19 / A. Carfì, R. Bernabei, F. Landi // JAMA. 2020. Vol. 324 (6). P. 603-605. DOI 10.1001/jama.2020.12603.
- 60. Carfi A. Persistent symptoms in patients after acute COVID-19 / A. Carfi, R. Bernabei, F. Landi // JAMA. 2020. Vol. 324. P. 603–605. DOI 10.1001/jama.2020.12603. 2.
- Cellular and molecular biomarkers of long COVID: a scoping review / E. Espín,
 Yang, C. P. Shannon [et al.] // EBioMedicine. 2023. Vol. 91. P. 104552.
 DOI 10.1016/j.ebiom.2023. 104552.

- 62. Cerebral Micro-Structural Changes in COVID-19 Patients An MRI-based 3-month Follow-up Study / Y. Lu, X. Li, D. Geng [et al.] // EClinicalMedicine. 2020. Vol. 25. P. 100484. DOI 10.1016/j.eclinm.2020.100484.
- 63. Characterising long COVID: a living systematic review / M. Michelen, L. Manoharan, N. Elkheir [et al.] // BMJ Glob Health. 2021. Vol. 6 (9). P. e005427. DOI 10.1136/bmjgh-2021-005427.
- 64. Christoffersson G. The neutrophil: one cell on many missions or many cells with different agendas? / G. Christoffersson, M. Phillipson // Cell and Tissue Research. 2018. Vol. 371. P. 415–423. DOI 10.1007/s00441-017-2780-z.
- 65. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19 / Y. Zhou, T. Han, J. Chen [et al.] // Clin Transl Sci. 2020. Vol. 13 (6). P. 1077-1086. DOI 10.1111/cts.12805.
- 66. Clinical and high-resolution CT features of the COVID-19 infection: comparison of the initial and follow-up changes / Y. Xiong, D. Sun, Y. Liu [et al.] // Investigative radiology. 2020. Vol. 55 (6). P. 332-339. DOI 10.1097/RLI.00000000000000074.
- 67. Clinical and pulmonary function analysis in long-COVID revealed that long-term pulmonary dysfunction is associated with vascular inflammation pathways and metabolic syndrome / S. Sanhueza, M.A. Vidal, M.A. Hernandez [et al.] // Front Med (Lausanne). 2023. Vol. 10. P. 1271863. DOI 10.3389/fmed.2023.1271863.
- 68. Clinical Characteristics and Immune Injury Mechanisms in 71 Patients with COVID-19 / Y. Wu, X. Huang, J. Sun [et al.] // mSphere. 2020. Vol. 5 (4). P. e00362-20. DOI 10.1128/mSphere.00362-20.
- 69. Clinical Characteristics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Diagnosed in Patients with Long COVID / K. Tokumasu, H. Honda, N. Sunada [et al.] // Medicina (Kaunas). 2022. Vol. 58 (7). P. 850. DOI 10.3390/medicina58070850.

- Clinical features of patients infected with 2019 novel coronavirus in Wuhan,
 China / C. Huang, Y. Wang, X. Li [et al.] // Lancet. 2020. Vol. 395 (10223). –
 P. 497–506. DOI 10.1016/S0140-6736(20)30183-5.
- 71. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China / Q. Ruan, K. Yang, W. Wang [et al.] // Intensive Care Medicine. 2020. Vol. 46 (5). P. 846-848. DOI 10.1007/s00134-020-05991-x.
- 72. Co-infection with respiratory pathogens among COVID-2019 cases / X. Zhu, Y. Ge, T. Wu [et al.] // Virus Res. 2020. Vol. 285 (198005). P. 11.
- 73. Complement activation in patients with COVID-19: A novel therapeutic target / M. Cugno, P.L. Meroni, R. Gualtierotti [et al.] // J Allergy Clin Immunol. 2020.
 Vol. 146 (1). P. 215-217. DOI 10.1016/j.jaci.2020.05.006.
- 74. Complement activation induces excessive T cell cytotoxicity in severe COVID-19
 / P. Georg, R. Astaburuaga-García, L. Bonaguro [et al.] // Cell. 2022. Vol. 185
 (3). P. 493-512.e25. DOI 10.1016/j.cell.2021.12.040.
- 75. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis / P. Skendros, A. Mitsios, A. Chrysanthopoulou [et al.] // J Clin Invest. 2020. Vol. 130 (11). P. 6151-6157. DOI 10.1172/JCI141374.
- 76. Comprehensive Health Assessment 3 Months After Recovery From Acute Coronavirus Disease 2019 (COVID-19) / B. van den Borst, J.B. Peters, M. Brink [et al.] // Clin Infect Dis. 2021. Vol. 73 (5). P. e1089-e1098. DOI 10.1093/cid/ciaa1750.
- 77. Connors J.M. COVID-19 and its implications for thrombosis and anticoagulation / Connors J.M., Levy J.H. // Blood. 2020. Vol. 135 (23). P. 2033-2040. DOI 10.1182/blood.2020006000.

- 78. Could SARS-CoV-2 Have Bacteriophage Behavior or Induce the Activity of Other Bacteriophages? / C. Brogna, B. Brogna, D.R. Bisaccia [et al.] // Vaccines (Basel). 2022. Vol. 10 (5). P. 708. DOI 10.3390/vaccines10050708.
- 79. Course of post COVID-19 disease symptoms over time in the ComPaRe long COVID prospective e-cohort / V-T. Tran, R. Porcher, I. Pane, P. Ravaud // Nature Communication. 2022. Vol. 13 (1). P. 1812.
- 80. COVID-19 and cytomegalovirus co-infection: a challenging case of a critically ill patient with gastrointestinal symptoms / P. H. Amaral, B. M. Ferreira, S. Roll [et al.] // Eur J Case Rep Intern Med. 2020. Vol. 7 (10). P. 001911.
- 81. COVID-19 and the Endocrine System: A Review of the Current Information and Misinformation / S.A. Mirza, A.A.E. Sheikh, M. Barbera [et al.] // Infect Dis Rep. 2022. Vol. 14 (2). P. 184-197. DOI 10.3390/idr14020023.
- 82. COVID-19 in Relation to Hyperglycemia and Diabetes Mellitus / H. M. Al-Kuraishy, A. I. Al-Gareeb, M. Alblihed [et al.] // Front. Cardiovasc. Med. 2021. Vol. 8. P. 644095. DOI 10.3389/fcvm.2021.644095.
- 83. COVID-19 Infection: A Neuropsychiatric Perspective / T.A. Manolis, E.J. Apostolopoulos, A.A. Manolis [et al.] // J Neuropsychiatry Clin Neurosci. 2021. Vol. 33 (4). P. 266-279.
- 84. COVID-19 rapid guideline: managing the long-term effects of COVID-19 / NICE. London, 2023. URL: www.nice.org.uk/guidance/ng188 (Accessed 09.10.2023).
- 85. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis / R. L. Chua, S. Lukassen, S. Trump [et al.] // Nat Biotechnol. 2020. Vol. 38. P. 970-979. DOI 10.1038/s41587-020-0602-4.
- 86. COVID-19: consider cytokine storm syndromes and immunosupp ression / P. Mehta, D. F. Mc Auley, M. Brown [et al.] // Lancet. 2020. Vol. 395(10229). P. 1033-1034. DOI 10.1016/S0140-6736(20)30628-0.

- 87. Cross-species transmission of the newly identified coronavirus 2019-nCoV / W. Ji, W. Wang, X. Zhao et al. // J Med Virol. 2020. Vol. 92 (4). P. 433-440. DOI 10.1002/jmv.25682.
- 88. CXCR2 antagonist for patients with chronic obstructive pulmonary disease with chronic mucus hypersecretion: a phase 2b trial / A. L. Lazaar, B. E. Miller, A. C. Donald [et al.] // Respir. Res. 2020. Vol. 21, No. 1. P. 149. DOI 10.1186/s12931-020-01401-4.
- 89. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor / M. Dwyer, Q. Shan, S. D'Ortona [et al.] // Journal of innate immunity. 2014. Vol.6, No.6. P. 765-79.
- 90. Damage to endothelial barriers and its contribution to long COVID / X. Wu, M. Xiang, H. Jing [et al.] // Angiogenesis. 2024. Vol. 27 (1). P. 5-22. DOI 10.1007/s10456-023-09878-5.
- 91. Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized¹²⁹ Xe MRI / H. Li, X. Zhao, Y. Wang [et al.] // Sci Adv. 2021. Vol. 7 (1). P. eabc8180. DOI 10.1126/sciadv.abc8180.
- 92. De Bont C. M. NETosis, complement, and coagulation: a triangular relationship / C.M. De Bont, W.C. Boelens, G.J.M. Pruijn // Cellular and Molecular Immunology. 2019. Vol. 16 (1). P. 19-27.
- 93. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in Rheumatoid Arthritis patients / C. Pérez-Sánchez, P. Ruiz-Limón, M. A. Aguirre [et al.] // J Autoimmun. 2017. Vol. 82. P. 31-40. DOI 10.1016/j.jaut.2017.04.007.
- 94. Distinguishing features of Long COVID identified through immune profiling / J. Klein, J. Wood, J. Jaycox [et al.] // Preprint at medRxiv. 2022. Vol. 8. P. 22278592. DOI 10.1101/2022.08.09.22278592.

- 95. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes / C.H. von Weyhern, I. Kaufmann, F. Neff, M. Kremer // Lancet. 2020. Vol. 395 (10241). P. e109. DOI 10.1016/S0140-6736(20)31282-4.
- 96. EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count / S. Paolucci, I. Cassaniti, F. Novazzi [et al.] // International journal of infectious diseases. 2021. Vol. 104. P. 315-319.
- 97. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study / L. Ma, W. Xie, D. Li [et al.] // medRxiv. 2020. Vol. 03 (21). DOI 10.1101/2020.03.21.20037267.
- 98. Ehsani A. H. Pityriasis rosea as a cutaneous manifestation of COVID-19 infection / A. H. Ehsani, M. Nasimi, Z. Bigdelo // J Eur Acad Dermatol. 2020. Vol. 34 (9). P. E436-E437.
- 99. Emerging Roles of Coronavirus in Autoimmune Diseases / S.Y. Zhou, C. Zhang, W.J. Shu [et al.] // Arch Med Res. 2021. Vol. 52 (7). P. 665-672. DOI 10.1016/j.arcmed.2021.03.012.
- 100. Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo / K. Chen, H. Nishi, R. Travers [et al.] // Blood. 2012. Vol. 120, № 22. P. 4421-4431. DOI 10.1182/blood-2011-12-401133.
- 101. Endothelial cell, myeloid, and adaptive immune responses in SARS-CoV-2 infection / N. Degauque, A. Haziot, S. Brouard, N. Mooney // FASEB J. 2021. Vol. 35 (5). P. e21577. DOI 10.1096/fj.202100024R.
- 102. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS) / M. Haffke, H. Freitag, G. Rudolf [et al.] // J. Transl Med. 2022. Vol. 20. P. 138. DOI 10.1186/s12967-022-03346-2.

- 103. Enguix D. M. Pityriasis rosea Gibert type rash in an asymptomatic patient that tested positive for COVID-19 / D. M. Enguix, M. D. S. Nievas, D. T. M. Romero // Med Clin-Barcelona. 2020. Vol. 155 (6). P. 272-273.
- 104. Epidemiological and clinical perspectives of long COVID syndrome / K. Huerne, K.B. Filion, R. Grad [et al.] // Am J Med Open. 2023. Vol. 9. P. 100033. DOI 10.1016/j.ajmo.2023.100033.
- 105. Epstein–Barr virus coinfection in COVID-19 / A. Nadeem, K. Suresh, H. Awais, S. Waseem // J Investig Med High Impact Case Rep. 2021. Vol. 9. P. 23247096211040626.
- 106. Evaluation of the effects of COVID-19 pandemic on hair diseases through a web-based questionnaire / D. Turkmen, N. Altunisik, S. Sener, C. Colak // Dermatol Ther. 2020. Vol. 33 (6). P. e13923. DOI 10.1111/dth.13923.
- 107. Evidence for Gastrointestinal Infection of SARS-CoV-2 / F. Xiao, M. Tang, X. Zheng [et al.] // Gastroenterology. 2020. Vol. 158 (6). P. 1831-1833.e3. DOI 10.1053/j.gastro.2020.02.055.
- 108. Excessive neutrophils and neutrophil extracellular traps in COVID-19 / J. Wang, Q. Li, Y. Yin [et al.] // Front. Immunol. 2020. Vol. 11. P. 2063. DOI 10.3389/fimmu.2020.02063.
- 109. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells / X. Yu, S. Wang, W. Wu [et al.] // Cells. 2023. Vol. 12 (13). P. 1767. DOI 10.3390/cells12131767.
- 110. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues / M.Y. Li, L. Li, Y. Zhang, X.S. Wang // Infect Dis Poverty. 2020.
 Vol. 9 (1). P. 45. DOI 10.1186/s40249-020-00662-x.
- 111. Eze B. COVID-19 pain and comorbid symptoms / B. Eze, A. Starkweather // Topics in Pain Management. 2021. Vol. 36. P. 1–7.

- 112. Fatigue symptoms during the first year following ARDS / K. J. Neufeld, J. S. Leoutsakos, H. Yan [et al.] // Chest. 2020. Vol. 158. P. 999-1007. DOI 10.1016/j.chest.2020.03.059.
- 113. Female gender is associated with long COVID syndrome: A prospective cohort study / F. Bai, D. Tomasoni, C. Falcinella [et al.] // Clin. Microbiol. Infect. 2022. Vol. 28. P. e9–e611. DOI 10.1016/j.cmi.2021.11.002.
- 114. Female reproductive health impacts of Long COVID and associated illnesses including ME/CFS, POTS, and connective tissue disorders: a literature review / B. Pollack, E. von Saltza, L. Mc Corkell [et al.] // Front Rehabil Sci. 2023. Vol. 4. P. 1122673. DOI 10.3389/fresc.2023.1122673.
- 115. Ferini-Strambi L. COVID-19 and neurological disorders: are neurodegenerative or neuroimmunological diseases more vulnerable? / L. Ferini-Strambi, M. Salsone // J Neurol. 2021. Vol. 268 (2). P. 409-419. DOI 10.1007/s00415-020-10070-8.
- 116. Fernández-de-Las-Peñas C. Long COVID: current definition / C. Fernández-de-Las-Peñas // Infection. 2022. T. 50, №. 1. P. 285-286.
- 117. Fetz A. E. Human neutrophil FcγRIIIb regulates neutrophil extracellular trap release in response to electrospun polydioxanone biomaterials / A. E. Fetz, M. Z. Radic, G. L. Bowlin // Acta Biomaterialia. 2021. Vol. 130. P. 281-290. DOI 10.1016/j.actbio.2021.06.007.
- 118. From online data collection to identification of disease mechanisms: the IL1ß, IL6 and TNF-α cytokine triad is associated with post-acute sequelae of COVID-19 in a digital research cohort / C. Schultheiß, E. Willscher, L. Paschold [et al.] // SSRN. 2021. Vol. 11 (16). P. 21266391. DOI 10.2139/ssrn.3963839.
- 119. From Viral Infection to Skin Affliction: Unveiling Mechanisms of Cutaneous Manifestations in COVID-19 and Post-COVID Conditions / N. Brahimi, D. Croitoru, F. Saidoune [et al.] // J Invest Dermatol. 2025. Vol. 145 (2). P. 257-265. DOI 10.1016/j.jid.2024.03.047.

- 120. Galestanian A. Immune thrombocytopenic purpura in a patient with SARS-CoV-2 and Epstein–Barr virus / A. Galestanian, K. H. Suthar, B. Karnath // Cureus. 2021. Vol. 13(2). P. e13615. DOI 10.7759/cureus.13615.
- 121. Garcia-Martinez F. J. SARS-CoV-2 and EBV coinfection / F. J. Garcia-Martinez, E. Moreno-Artero, S. Jahnke // Med Clin-Barcelona. 2020. Vol. 155 (7). P. 319-320.
- 122. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis / K.S. Cheung, I.F.N. Hung, P. P. Y. Chan [et al.] // Gastroenterology. 2020. Vol. 159 (1). P. 81-95. DOI 10.1053/j.gastro.2020.03.065.
- 123. Gastrointestinal sequelae 90 days after discharge for COVID-19 / J. Weng, Y. Li, J. Li [et al.] // Lancet Gastroenterol Hepatol. 2021. Vol. 6 (5). P. 344-346. DOI 10.1016/S2468-1253(21)00076-5.
- 124. Gusev E. Exploring the Pathophysiology of Long COVID: The Central Role of Low-Grade Inflammation and Multisystem Involvement / E. Gusev, A. Sarapultsev // International Journal of Molecular Sciences. 2024. Vol. 25 (12). P. 6389.
- 125. Hanson M.R. The viral origin of myalgic encephalomyelitis/chronic fatigue syndrome / M.R Hanson // PLoS Pathog. 2023. Vol. 19 (8). P. e1011523. DOI 10.1371/journal.
- 126. Hellebrekers P. Neutrophil phenotypes in health and disease / P. Hellebrekers, N. Vrisekoop, L. Koenderman // European journal of clinical investigation. 2018. Vol. 48. P. e12943. URL: https://doi.org/10.1111/eci.12943 (accepted 23 April, 2018).
- 127. Hematological findings in coronavirus disease 2019: Indications of progression of disease / X. Liu, R. Zhang, G. He [et al.] // Annals of Hematology. 2020. Vol. 99. P. 1421–1428. DOI 10.1007/s00277-020-04103-5.

- 128. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction / T. Iba, N. Hashiguchi, I. Nagaoka [et al.] // Intensive Care Med. Exp. 2015. Vol. 3, No. 1. P. 36. DOI 10.1186/s40635-015-0072-z.
- 129. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients / P. Le Balc'h, K. Pinceaux, C. Pronier [et al.] // Crit Care. 2020. Vol. 24(1). P. 530.
- 130. Herpesvirus reactivation during severe COVID-19 and high rate of immune defect / A. Saade, G. Moratelli, E. Azoulay, M. Darmon // Infect Dis Now. 2021. Vol. 51 (8). P. 676-679.
- 131. High incidence of Epstein–Barr virus, cytomegalovirus, and human-herpes virus-6 reactivations in critically ill patients with COVID-19 / A. Simonnet, I. Engelmann, A. S. Moreau [et al.] // Infect Dis Now. 2021. Vol. 51(3). P. 296-299.
- 132. High Levels of Neutrophil Extracellular Traps Persist in the Lower Respiratory Tract of Critically Ill Patients With Coronavirus Disease 2019 / W.J.D. Ouwendijk, M.P. Raadsen, J.J.A. van Kampen [et al.] // The Journal of infectious diseases. 2021. Vol. 223, No.9. P. 1512-1521. DOI 10.1093/infdis/jiab050.
- 133. High levels of pro-inflammatory SARS-CoV-2-specific biomarkers revealed by in vitro whole blood cytokine release assay (CRA) in recovered and long-COVID-19 patients / S.M.R. Gomes, A.C.S. Brito, W.F.P. Manfro [et al.] // PLoS One. 2023. Vol. 18 (4). P. e0283983. DOI 10.1371/journal.pone.0283983.
- 134. High Prevalence of Pulmonary Sequelae at 3 Months after Hospital Discharge in Mechanically Ventilated Survivors of COVID-19 / R.J.J. van Gassel, J.L.M. Bels, A. Raafs [et al.] // Am J Respir Crit Care Med. 2021. Vol. 203 (3). P. 371-374. DOI 10.1164/rccm.202010-3823LE.
- 135. HOPE-2 Investigators. Post-COVID-19 Symptoms and Heart Disease: Incidence, Prognostic Factors, Outcomes and Vaccination: Results from a Multi-Center

- International Prospective Registry (HOPE 2) / I. J. Núñez-Gil, G. Feltes, M. C. Viana-Llamas [et al.] // J Clin Med. 2023. Vol. 12 (2). P. 706. DOI 10.3390/jcm12020706.
- 136. Human herpesvirus-6–7 and Epstein–Barr virus reactivation in pityriasis rosea during COVID-19 / F. Drago, G. Ciccarese, A. Rebora, A. Parodi // J Med Virol. 2021. Vol. 93 (4). P. 1850-1851.
- 137. Hyperglycemia is associated with increased mortality in critically ill patients with COVID-19 / A.Y. Mazori, I.R. Bass, L. Chan [et al.] // Endocr Pract. 2021. Vol. 27 (2). P. 95–100. DOI 10.1016/j.eprac.2020.12.015.
- 138. IFNLambda (IFNLambda) Is Expressed in a Tissue-Dependent Fashion and Primarily Acts on Epithelial Cells In Vivo / C. Sommereyns, S. Paul, P. Staeheli, T. Michiels // PloS Pathog. 2008. Vol. 4 (3). P. e1000017. DOI 10.1371/journal.
- 139. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease / M.T. Heneka, D. Golenbock, E. Latz [et al.] // Alzheimers Res Ther. 2020. Vol. 12 (1). P. 69. DOI 10.1186/s13195-020-00640-3.
- 140. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection / V. Ramlall, P.M. Thangaraj, C. Meydan [et al.] // Nat Med. 2020. Vol. 26 (10). P. 1609-1615. DOI 10.1038/s41591-020-1021-2.
- 141. Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning / B. K. Patterson, J. Guevara-Coto, R. Yogendra [et al.] // Frontiers in Immunology. 2021. Vol. 12. P. 700782. DOI 10.3389/fimmu.2021.700782.
- 142. Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection / H.J. Chun, E. Coutavas, A.B. Pine [et al.] // JCI Insight. 2021. Vol. 6 (14). P. e148476. DOI 10.1172/jci.insight.148476.

- 143. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection / C. Phetsouphanh, D.R. Darley, D.B. Wilson [et al.] // Nat Immunol. 2022. Vol. 23 (2). P. 210-216. DOI 10.1038/s41590-021-01113-x.
- 144. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection / J. M. Dan, J. Mateus, Y. Kato [et al.] // Science. 2021. Vol. 371. P. eabf4063. DOI 10.1126/science.abf4063.
- 145. Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease / B. Vijayakumar, K. Boustani, P. Ogger [et al.] // Immunity. 2022. Vol. 55 (3). P. 542-556.e5. DOI 10.1016/j.immuni.2022.01.017.
- 146. Impact of SARS-CoV-2 infection on the profiles and responses of innate immune cells after recovery / V. Ruenjaiman, P. Sodsai, P. Kueanjinda [et al.] // J. Microbiol. Immunol. Infect. 2022. Vol. 55, No. 6. P. 993–1004. DOI 10.1016/j.jmii.2022.09.001.
- 147. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients / J. Hadjadj, B. Yatim, A. Corneau [et al.] // Science. 2020. Vol. 369. P. 718-724. DOI 10.1126/science.abc6027.
- 148. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19 / Q. Zhang, P. Bastard, Z. Liu [et al.] // Science. 2020. Vol. 370 (6515). P. eabd4570. DOI 10.1126/science.abd4570.
- 149. Incident allergic diseases in post-COVID-19 condition: multinational cohort studies from South Korea, Japan and the UK / J. Oh, M. Lee, M. Kim [et al.] // Nat Commun. 2024. Vol. 15 (1). P. 2830. DOI 10.1038/s41467-024-47176-w.
- 150. Incident autoimmune diseases in association with SARS-CoV-2 infection: a matched cohort study / F. Tesch, F. Ehm, A. Vivirito [et al.] // Clin Rheumatol. 2023. Vol. 42. P. 2905–2914.

- 151. Increased histone-DNA complexes and endothelial-dependent thrombin generation in severe COVID-19 / B. A. Bouchard, C. Colovos, M. A. Lawson [et al.] // Vascul. Pharmacol. 2022. Vol. 142. P. 106950. DOI 10.1016/j.vph.2021.106950.
- 152. Increased peripheral blood neutrophil activation phenotypes and neutrophil extracellular trap formation in critically ill coronavirus disease 2019 (COVID-19) patients: A case series and review of the literature / J. A. Masso-Silva, A. Moshensky, M. T. Y. Lam // Clinical Infectious Diseases. 2022. Vol. 74. P. 479–489. DOI 10.1093/cid/ciab437.
- 153. Infection with SARS-CoV-2 is associated with menstrual irregularities among women of reproductive age / E.M. Cherenack, A.S. Salazar, N.F. Nogueira [et al.] // PLoS One. 2022. Vol. 17 (10). P. e0276131. DOI 10.1371/journal.pone.0276131.
- 154. Inflammasome activation-induced hypercoagulopathy:Impact on cardiovascular dysfunction triggered in COVID-19 patients / L. Gedefaw, S. Ullah, P. H. M. Leung [et al.] // Cell. 2021. Vol. 10. P. 916. DOI 10.3390/cells10040916.
- 155. Interferon-Neutralizing Antibodies in a Patient Treated With Human Fibroblast Interferon / A. Vallbracht, J. Treuner, B. Flehmig, K.E. Joester // Nature. 1981. Vol. 289. P. 496–497. DOI 10.1038/289496a0.
- 156. Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms / A.E. Livanos, D. Jha, F. Cossarini [et al.] // Gastroenterology. 2021. Vol. 160 (7). P. 2435-2450.e34. DOI 10.1053/j.gastro.2021.02.056.
- 157. Intestinal Inflammation Modulates the Expression of ACE2 and TMPRSS2 and Potentially Overlaps With the Pathogenesis of SARS-CoV-2-related Disease / M. Suárez-Fariñas, M. Tokuyama, G. Wei [et al.] // Gastroenterology. 2021. Vol. 160 (1). P. 287-301.e20. DOI 10.1053/j.gastro.2020.09.029.

- 158. Investigation of long COVID prevalence and its relationship to Epstein–Barr virus reactivation. / J. E. Gold, R. A. Okyay, W. E. Licht, D. J. Hurley // Pathogens. 2021. Vol. 10 (6). P. 763.
- 159. Is the Collapse of the Respiratory Center in the Brain Responsible for Respiratory Breakdown in COVID-19 Patients? / S. Gandhi, A.K. Srivastava, U. Ray, P. P. Tripathi // ACS Chem Neurosci. 2020. Vol. 11 (10). P. 1379-1381. DOI 10.1021/acschemneuro.0c00217.
- 160. Isaacs A. Virus Interference. I. The Interferon / A. Isaacs, J. Lindenmann // Proc R Soc Lond B Biol Sci. 1957. Vol. 147 (927). P. 258–67. DOI 10.1098/rspb.1957.0048.
- 161. Kaundal R. K. Neurological implications of COVID-19: Role of redox imbalance and mitochondrial dysfunction / R. K. Kaundal, A. K. Kalvala, A. Kumar // Molecular Neurobiology. 2021. Vol. 58. P. 4575–4587. DOI 10.1007/s12035-021-02412-y.
- 162. Kocivnik N. A Review Pertaining to SARS-CoV-2 and Autoimmune Diseases: What Is the Connection? / N. Kocivnik, T. Velnar // Life (Basel). 2022. Vol. 12 (11). P. 1918. DOI 10.3390/life12111918.
- 163. Lamprecht B. Is there a post-COVID syndrome? / B. Lamprecht // Pneumologe (Berl). 2020. Vol. 17(6). P. 398-405. DOI 10.1007/s10405-020-00347-0.
- 164. Large cohort study shows increased risk of developing atopic dermatitis after COVID-19 disease / J. Schmitt, F. Ehm, A. Vivirito [et al.] // Allergy. 2024. Vol. 79. P. 232-234. DOI 10.1111/all.15827.
- 165. Large-Scale Multi-omic Analysis of COVID-19 Severity / K.A. Overmyer, E. Shishkova, I.J. Miller [et al.] // Cell Syst. 2021. Vol. 12 (1). P. 23-40.e7. DOI 10.1016/j.cels.2020.10.003.
- 166. Late Complications of COVID-19: A Morphologic, Imaging, and Droplet Digital Polymerase Chain Reaction Study of Lung Tissue / A. C. Roden, J. M. Boland, T.

- F. Johnson [et al.] // Arch Pathol Lab Med. 2022. Vol. 146 (7). P. 791–804. DOI 10.5858/arpa.2021-0519-SA.
- 167. Lazear H.M. Shared and Distinct Functions of Type I and Type III Interferons / H.M. Lazear, J.W. Schoggins, M.S. Diamond // Immunity. 2019. Vol. 50 (4). P. 907-923. DOI 10.1016/j.immuni.2019.03.025.
- 168. Lehuen A. Organ-specific and systemic autoimmune diseases / A. Lehuen, A. Marshak-Rothstein // Curr Opin Immunol. 2013. Vol. 25 (6). P. 667-669. DOI 10.1016/j.coi.2013.10.014.
- 169. Li Y.C. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients / Y.C. Li, W.Z. Bai, T. Hashikawa // J Med Virol. 2020. Vol. 92 (6). P. 552-555. DOI 10.1002/jmv.25728.
- 170. Libby P. COVID-19 is, in the end, an endothelial disease / P. Libby, T. Lüscher // Eur Heart J. 2020. Vol. 41 (32). P. 3038-3044. DOI 10.1093/eurheartj/ehaa623.
- 171. Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation / Q. Zhang, P. Bastard, A. Bolze [et al.] // Med. 2020. Vol. 1 (1). P. 14-20. DOI 10.1016/j.medj.2020.12.001.
- 172. Lippi G. COVID-19 and its long-term sequelae: what do we know in 2023? / G. Lippi, F. Sanchis-Gomar, B.M. Henry // Pol Arch Intern Med. 2023. Vol. 133. P. 16402. DOI 10.20452/pamw.16402.
- 173. Liquid biomarkers of macrophage dysregulation and circulating spike protein illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19 / C. Schultheiß, E. Willscher, L. Paschold [et al.] // J Med Virol. 2023. Vol. 95 (1). P. e28364. DOI 10.1002/jmv.28364.
- 174. Liu Y. COVID-19 and autoimmune diseases / Y. Liu, A.H. Sawalha, Q. Lu // Curr Opin Rheumatol. 2021. Vol. 33 (2). P. 155-162. DOI 10.1097/BOR.0000000000000776.

- 175. Liver Function in Patients with Long-Term Coronavirus Disease 2019 of up to 20 Months: A Cross-Sectional Study / I.C. De Lima, D.C. de Menezes, J.H.E. Uesugi [et al.] // Int. J. Environ. Res. Public Health. 2023. Vol. 20. P. 5281. DOI 10.3390/ ijerph20075281.
- 176. Long COVID and its associated factors among COVID survivors in the community from a middle-income country-An online cross-sectional study / F.M. Moy, Hairi N.N., Lim E.R.J., Bulgiba A. // PLoS One. 2022. Vol. 17 (8). P. e0273364. DOI 10.1371/journal.pone.0273364.
- 177. Long COVID classification: Findings from a clustering analysis in the predi-COVID cohort study / A. Fischer, N. Badier, L. Zhang [et al.] // International Journal of Environmental Research and Public Health. – 2022. – Vol. 19 (23). – P. 16018.
- 178. Long COVID or post COVID-19 syndrome / J. Lechner-Scott, M. Levy, C. Hawkes // Mult Scler Relat Disord. 2021. Vol. 55. P. 103268. DOI 10.1016/j.msard.2021.103268.
- 179. Long covid outcomes at one year after mild SARS-CoV-2 infection: nationwide cohort study / B. Mizrahi, T. Sudry, N. Flaks-Manov [et al.] // BMJ. 2023. Vol. 380. P. e072529. DOI 10.1136/bmj-2022-072529.
- 180. Long COVID: Factors influencing persistent symptoms and the impact of gender / A. Rodríguez Onieva, C.A. Soto Castro, V. García Morales [et al.] // Semergen. 2024. Vol. 50 (5). P. 102208. DOI 10.1016/j.semerg.2024.102208.
- 181. Long COVID: Major findings, mechanisms and recommendations / H.E. Davis, L. Mc Corkell, J.M. Vogel, E.J. Topol // Nat. Rev. Microbiol. 2023. Vol. 21 (3). P. 133–146. DOI 10.1038/s41579-022-00846-2.
- 182. Long COVID: pathophysiological factors and abnormalities of coagulation / S. Turner, M. A. Khan, D. Putrino [et al.] // Trends in Endocrinology & Metabolism. 2023. Vol. 34 (6). P. 321-344.

- 183. Long COVID-19 Syndrome Severity According to Sex, Time from the Onset of the Disease, and Exercise Capacity-The Results of a Cross-Sectional Study / E. Paradowska-Nowakowska, D. Łoboda, K.S. Gołba, B. Sarecka-Hujar // Life (Basel). 2023. Vol. 13 (2). P. 508. DOI 10.3390/life13020508.
- 184. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms / B. Silva Andrade, S. Siqueira, W.R. de Assis Soares [et al.] // Viruses. 2021. Vol. 13 (4). P. 700. DOI 10.3390/v13040700.
- 185. Long-term neuromuscular consequences of SARS-Cov-2 and their similarities with myalgic encephalomyelitis/chronic fatigue syndrome: results of the retrospective CoLGEM study / F. Retornaz, S. Rebaudet, C. Stavris, Y. Jammes // J Transl Med. 2022. Vol. 20 (1). P. 429. DOI 10.1186/s12967-022-03638-7.
- 186. Low R.N. A review of cytokine-based pathophysiology of Long COVID symptoms / R.N. Low, R.J. Low, A. Akrami // Front. Med. 2023. Vol. 10. P. 1011936. DOI 10.3389/fmed.2023.1011936.
- 187. Lung protection by cathepsin C inhibition: a new hope for COVID-19 and ARDS? / B. Korkmaz, A. Lesner, S. Marchand-Adam [et al.] // J. Med. Chem. 2020. Vol. 63, No. 22. P. 13258–13265. DOI 10.1021/acs.jmedchem.0c00776.
- 188. Maham S. Clinical Spectrum of Long COVID: Effects on Female Reproductive Health / S. Maham, M.S. Yoon // Viruses. 2024. Vol. 16 (7). P. 1142. DOI 10.3390/v16071142.
- 189. Mallakpour S. Protection, disinfection, and immunization for healthcare during the COVID-19 pandemic: Role of natural and synthetic macromolecules / S. Mallakpour, E. Azadi, C. M. Hussain // Science of the Total Environment. 2021. Vol. 776. P. 145989. DOI 10.1016/j.scitotenv.2021.145989.

- 190. Management of post-acute COVID-19 in primary care / T. Greenhalgh, M. Knight, C. A'Court [et al.] // BMJ. 2020. Vol. 370. P. m3026. DOI 10.1136/bmj.m3026.3.
- 191. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis / R. Mao, Y. Qiu, J.S. He [et al.] // Lancet Gastroenterol Hepatol. 2020. Vol. 5 (7). P. 667-678. DOI 10.1016/S2468-1253(20)30126-6.
- 192. Martin de Francisco Á. Long COVID-19 renal disease: A present medical need for nephrology / Á. Martin de Francisco, G. Fernández Fresnedo // Nefrología (English Edition). 2023. Vol. 43, №. 1. P. 1-5. DOI 10.1016/j.nefroe.2023.03.011.
- 193. Matricardi P.M. The first, holistic immunological model of COVID-19: Implications for prevention, diagnosis, and public health measures / P.M. Matricardi, R.W. Dal Negro, R. Nisini // Pediatr Allergy Immunol. 2020. Vol. 31 (5). P. 454-470. DOI 10.1111/pai.13271.
- 194. Mehandru S. Pathological sequelae of long-haul COVID / S. Mehandru, M. Merad // Nat Immunol. 2022. Vol. 23 (2). P. 194-202. DOI 10.1038/s41590-021-01104-y.
- 195. Merhy R. Pityriasis rosea as a leading manifestation of COVID-19 infection / R. Merhy, A. S. Sarkis, F. Stephan // J Eur Acad Dermatol. 2021. Vol. 35 (4). P. E246-E247.
- 196. Miner J. J. Mechanisms of restriction of viral invasion at the blood-brain barrier /
 J. J. Miner, M. S. Diamond // Curr Opin Immunol. 2016. Vol. 38. P. 18–23.
 DOI 10.1016/j.coi.2015.10.008.
- 197. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils / N. Vorobjeva, I. Galkin, O. Pletjushkina [et al.] // Biochim. Biophys. Acta Mol. Basis Dis. 2020. Vol. 1866, No. 5. P. 165664. DOI 10.1016/j.bbadis.2020.165664.

- 198. Moniz P. SARS-CoV-2 and cytomegalovirus co-infections-A case series of critically ill patients / P. Moniz, S. Brito, P. Povoa // J Clin Med. 2021. Vol. 10 (13). P. 2792.
- 199. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis / S. Lopez-Leon, T. Wegman-Ostrosky, C. Perelman [et al.] // Scientific reports. 2021. Vol. 11. P. 16144 URL: https://doi.org/10.1038/s41598-021-95565-8.
- 200. Moss P. The ancient and the new: is there an interaction between cytomegalovirus and SARS-CoV-2 infection? / P. Moss // Immun Ageing. 2020. Vol. 27. P. 14-17. DOI 10.1186/s12979-020-00185-x.
- 201. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study / A. Dennis, M. Wamil, J. Alberts [et al.] // BMJ Open. 2021. Vol. 11 (3). P. e048391. DOI 10.1136/bmjopen-2020-048391.
- 202. Multiple early factors anticipate post-acute COVID-19 sequelae / Y. Su, D. Yuan, D.G. Chen [et al.] // Cell. 2022. Vol. 185 (5). P. 881-895.e20. DOI 10.1016/j.cell.2022.01.014.
- 203. Nath A. Long-haul COVID / A. Nath // Neurology. 2020. Vol. 95. P. 559–560. DOI 10.1212/WNL.000000000010640.
- 204. Neurocognitive deficits in severe COVID-19 infection: Case series and proposed model / D. M. Whiteside, V. Oleynick, E. Holker [et al.] // Clin Neuropsychol. 2021. Vol. 35(4). P. 799-818. DOI 10.1080/13854046.2021.1874056.14.
- 205. Neurocovid-19: A clinical neuroscience-based approach to reduce SARS-CoV-2 related mental health sequelae / S. Pallanti, E. Grassi, N. Makris [et al.] // Journal of psychiatric research. 2020. Vol. 130. P. 215–217. DOI 10.1016/j.jpsychires.2020.08.008.

- 206. Neuroinvasion and inflammationin viral central nervous system infections / T. Dahm, H. Rudolph, C. Schwerk [et al.] // Mediators Inflamm. 2016. Vol. 2016. P. 8562805. DOI 10.1155/2016/8562805.
- 207. Neuropathological Features of Covid-19 / I.H. Solomon, E. Normandin, S. Bhattacharyya [et al.] // N Engl J Med. 2020. Vol. 383 (10). P. 989-992. DOI 10.1056/NEJMc2019373.
- 208. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms / C. F. Urban, U. Reichard, V. Brinkmann, A. Zychlinsky // Cell. Microbiol. 2006. Vol. 8, No. 4. P. 668–676. DOI 10.1111/j.1462-5822.2005.00659.x.
- 209. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome / E.A. Middleton, X.Y. He, F. Denorme [et al.] // Blood. 2020. Vol. 136 (10). P. 1169-1179. DOI 10.1182/blood.2020007008.
- 210. Neutrophil extracellular traps in COVID-19 / Y. Zuo, S. Yalavarthi, H. Shi [et al.] // JCI Insight. 2020. Vol. 5 (11). P. e138999. DOI 10.1172/jci.insight.138999.
- 211. Neutrophil extracellular traps kill bacteria / V. Brinkmann, U. Reichard, C. Goosmann [et al.] // Science. 2004. Vol. 303, No. 5663. P. 1532–1535. DOI 10.1126/science.1092385.
- 212. Neutrophils in COVID-19 / N. Reusch, E. De Domenico, L. Bonaguro [et al.] // Frontiers in immunology. 2021. Vol. 12. P. 652470. DOI 10.3389/fimmu.2021.652470.
- 213. New-Onset Diabetes in Covid-19 / F. Rubino, S.A. Amiel, P. Zimmet [et al.] // N Engl J Med. 2020. Vol. 383 (8). P. 789-790. DOI 10.1056/NEJMc2018688.
- 214. Nucleocapsid protein accumulates in renal tubular epithelium of a post-COVID-19 patient / A.E. Grootemaat, N. Wiersma, S. van der Niet [et al.] // Microbiol Spectr. 2023. Vol. 11. P. e03029-23.

- 215. Osawa R. Cytomegalovirus infection in critically ill patients: a systematic review / R. Osawa, N. Singh // Crit Care. 2009. Vol. 13(3). P. R68.
- 216. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC) / Z. A. Sherif, C.R. Gomez, T.J. Connors [et al.] // Elife. 2023. Vol. 12. P. e86002. DOI 10.7554/eLife.86002.
- 217. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort / D.T. Arnold, F.W. Hamilton, A. Milne [et al.] // Thorax. 2021. Vol. 76 (4). P. 399-401. DOI 10.1136/thoraxjnl-2020-216086.
- 218. Peptides: Prospects for Use in the Treatment of COVID-19 / V. Khavinson, N. Linkova, A. Dyatlova [et al.] // Molecules. 2020. Vol. 25. P. 4389. DOI 10.3390/molecules25194389.
- 219. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients / E. Pisareva, S. Badiou, L. Mihalovičová [et al.] // J Med Virol. 2023. Vol. 95 (1). P. e28209. DOI 10.1002/jmv.28209.
- 220. Persistent capillary rarefication in long COVID syndrome / I. Osiaevi, A. Schulze, G. Evers [et al.] // Angiogenesis. 2023. Vol. 26 (1). P. 53-61. DOI 10.1007/s10456-022-09850-9.
- 221. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae / Z. Swank, Y. Senussi, Z. Manickas-Hill [et al.] // Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2023. Vol. 76 (3). P. e487-e490. DOI 10.1093/cid/ciac722.
- 222. Persistent complement dysregulation with signs of thromboinflammation in active Long Covid / C. Cervia-Hasler, S.C. Brüningk, T. Hoch [et al.] // Science. 2024.
 Vol. 383 (6680). P. eadg7942. DOI 10.1126/science.adg7942.

- 223. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection / L. Townsend, A. H. Dyer, K. Jones [et al.] // PLoS.

 2020. Vol. 15. P. e0240784. URL: https://doi.org/10.1371/journal.pone.0240784.
- 224. Persistent poor health post-COVID-19 is not associated with respiratory complications or initial disease severity / L. Townsend, J. Dowds, K. O'Brien [et al.] // Annals of the American Thoracic Society. 2021. Vol. 18 (6). P. 997-1003. DOI 10.1513/AnnalsATS.202009-1175OC.
- 225. Persistent serum protein signatures define an inflammatory subcategory of long COVID / A. Talla, S.V. Vasaikar, G.L. Szeto [et al.] // Nat Commun. 2023. Vol. 14 (1). P. 3417. DOI 10.1038/s41467-023-38682-4.
- 226. Pestka S. K.C. Interferons, Interferon-like Cytokines, and their Receptors / S. K.C. Pestka, M.R. Walter // Immunol Rev. 2004. Vol. 202. P. 8–32. DOI 10.1111/j.0105-2896.2004.00204.x.
- 227. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19 / E.D. Hottz, I.G. Azevedo-Quintanilha, L. Palhinha [et al.] // Blood. 2020. Vol. 136 (11). P. 1330-1341. DOI 10.1182/blood.2020007252.
- 228. Platelet and Vascular Biomarkers Associate With Thrombosis and Death in Coronavirus Disease / T.J. Barrett, A.H. Lee, Y. Xia [et al.] // Circ Res. 2020. Vol. 127 (7). P. 945-947. DOI 10.1161/CIRCRESAHA.120.317803.
- 229. Positive detection of SARS-CoV-2 combined HSV1 and HHV6B virus nucleic acid in tear and conjunctival secretions of a non-conjunctivitis COVID-19 patient with obstruction of common lacrimal duct / Y. Hu, T. Chen, M. Liu [et al.] // Acta Ophthalmol. 2020. Vol. 98 (8). P. 859-863.
- 230. Positive Epstein–Barr virus detection in coronavirus disease 2019 (COVID-19) patients / T. Chen, J. Song, H. Liu [et al.] // Sci Rep. 2021. Vol. 11(1). P. 10902.

- 231. Post-acute COVID-19 syndrome / A. Nalbandian, K. Sehgal, A. Gupta [et al.] // Nature medicine. 2021. Vol. 27 (4). P. 601-615. DOI 10.1038/s41591-021-01283-z.
- 232. Post-acute COVID-19 syndrome negatively impacts health and wellbeing despite less severe acute infection / L. Tabacof, J. Tosto-Mancuso, J. Wood [et al.] // medRxiv. 2020. Vol. 101(1). P. 48-52. DOI 10.1101/2020.11.04.20226126.
- 233. Postacute COVID-19: An overview and approach to classification / E. M. Amenta, A. Spallone, M. C. Rodriguez-Barradas [et al.] // Open Forum Infectious Diseases. 2020. Vol. 7. P. ofaa509. DOI 10.1093/ofid/ofaa509. 1.
- 234. Post-COVID syndrome prevalence: a systematic review and meta-analysis / R. Sk Abd Razak, A. Ismail, A.F. Abdul Aziz [et al.] // BMC Public Health. 2024. Vol. 24(1). P. 1785. DOI 10.1186/s12889-024-19264-5.
- 235. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: a cross-sectional study / M. Maamar, A. Artime, E. Pariente [et al.] // Curr Med Res Opin. 2022. Vol. 38 (6). P. 901-909. DOI 10.1080/03007995.2022.2042991.
- 236. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19 / E. Garrigues, P. Janvier, Y. Kherabi [et al.] // J Infect. 2020. Vol. 81 (6). P. e4-e6. DOI 10.1016/j.jinf.2020.08.029.
- 237. Post-exertional malaise among people with long COVID compared to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) / S.D. Vernon, M. Hartle, K. Sullivan [et al.] // Work. 2023. Vol. 74 (4). P. 1179-1186. DOI 10.3233/WOR-220581.
- 238. Potential of large «first generation» human to-human transmission of 2019-nCoV / X. Li, J. Zai, X. Wang, Y. Li // J Med Virol. 2020. Vol. 92 (4). P. 448-454. DOI 10.1002/jmv.25693.
- 239. Pre-existing Autoantibodies Neutralizing High Concentrations of Type I Interferons in Almost 10% of COVID-19 Patients Admitted to Intensive Care in

- Barcelona / X. Solanich, R. Rigo-Bonnin, V.D. Gumucio [et al.] // J Clin Immunol. 2021. Vol. 41 (8). P. 1733-1744. DOI 10.1007/s10875-021-01136-x.
- 240. Preliminary evidence of mitochondrial dysfunction associated with post-infective fatigue after acute infection with Epstein Barr virus / S. D. Vernon, T. Whistler, B. Cameron [et al.] // BMC Infect Dis. 2006. Vol. 6. P. 1-7.
- 241. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis / J. Yang, Y. Zheng, X. Gou [et al.] // International journal of infectious diseases. 2020. Vol. 94. P. 91–95. DOI 10.1016/j.ijid.2020.03.017.19.
- 242. Prevalence of EBV, HHV6, HCMV, HAdV, SARS-CoV-2, and Autoantibodies to Type I Interferon in Sputum from Myalgic Encephalomyelitis Chronic Fatigue Syndrome Patients / U. Hannestad, A. Allard, K. Nilsson, A. Rosén // Viruses. 2025. Vol. 17 (3). P. 422. DOI 10.3390/v17030422.
- 243. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: a systematic review and meta-analysis / M.S. Alkodaymi, O.A. Omrani, N.A. Fawzy [et al.] // Clin Microbiol Infect. 2022. Vol. 28 (5). P. 657-666. DOI 10.1016/j.cmi.2022.01.014.
- 244. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/post-acute sequelae of COVID-19 (PASC) / E. Pretorius, C. Venter, G. J. Laubscher [et al.] // Cardiovasc. Diabetol. 2022. Vol. 21 (1). P. 148. DOI 10.1186/s12933-022-01579-5.
- 245. Proal A. D. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms / A. D. Proal, M. B. VanElzakker // Front. Microbiol. 2021. Vol. 12. P. 698169.
- 246. Proal A. Myalgic encephalomyelitis/chronic fatigue syndrome in the era of the human microbiome: Persistent pathogens drive chronic symptoms by interfering

- with host metabolism, gene expression, and immunity / A. Proal, T. Marshall // Front. Pediatr. 2018. Vol. 6. P. 373. DOI 10.3389/fped.2018.00373.
- 247. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples / Y. Wu, C. Guo, L. Tang [et al.] // Lancet Gastroenterol Hepatol. 2020. Vol. 5 (5). P. 434-435. DOI 10.1016/S2468-1253(20)30083-2.
- 248. Proposed integrative model for post-COVID symptoms / C. Fernández-de-Las-Peñas, L. L. Florencio, V. Gómez-Mayordomo [et al.] // Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2021. Vol. 15(4). P. 102159.
- 249. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19 / M. Ackermann, S.E. Verleden, M. Kuehnel [et al.] // N Engl J Med. 2020. Vol. 383 (2). P. 120-128. DOI 10.1056/NEJMoa2015432.
- 250. Ray A. Cytokines and their Role in Health and Disease: A Brief Overview / A. Ray, S. G. K. Gulati, N. R. J. Joshi // MOJ Immunol. 2016. Vol. 4. P. 00121. DOI 10.15406/moji.2016.04.00121.
- 251. Reactivation of EBV and CMV in severe COVID-19-epiphenomena or trigger of hyperinflammation in need of treatment? A large case series of critically ill patients / J. H. Naendrup, J. Garcia Borrega, D. A. Eichenauer [et al.] // J Intensive Care Med. 2021. Vol. 18. P. 08850666211053990.
- 252. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19 / C.C.L. Cheung, D. Goh, X. Lim [et al.] // Gut. 2022. Vol. 71 (1). P. 226-229. DOI 10.1136/gutjnl-2021-324280.
- 253. Richardson-May J. Reactivation of herpes simplex keratitis following vaccination for COVID-19 / J. Richardson-May, A. Rothwell, M. Rashid // BMJ Case Rep. 2021. Vol. 14 (9). P. e245792.
- 254. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study / R. Chang, T. Yen-Ting Chen, S.I. Wang [et al.] // EClinicalMedicine. 2023. Vol. 56. P. 101783. DOI 10.1016/j.eclinm.2022.101783.

- 255. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2 / M. Antonelli, J. C. Pujol, T. D. Spector [et al.] // The Lancet. 2022. Vol. 399 (10343). P. 2263-2264.
- 256. Risks of cutaneous immune-related adverse events in long COVID: Multinational cohort studies in South Korea, Japan, and the UK / H. Kim, S. Kyung, J. Park [et al.] // J Med Virol. 2024. Vol. 96 (6). P. e29740. DOI 10.1002/jmv.29740.
- 257. RNA Regulatory Mechanisms That Control Antiviral Innate Immunity / N.S. Gokhale, J.R. Smith, R.D. Van Gelder, R. Savan // Immunol Rev. 2021. Vol. 304. P. 77–96. DOI 10.1111/imr.13019.
- 258. Roe K. A viral infection explanation for Kawasaki disease in general and for COVID-19 virus-related Kawasaki disease symptoms / K. Roe // Inflammopharmacology. 2020. Vol. 28 (5). P. 1219-1222. DOI 10.1007/s10787-020-00739-x.
- 259. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing / A. V. W. Nunn, G. W. Guy, W. Brysch [et al.] // Immun Ageing. 2020. Vol. 17 (1). P. 1-21.
- 260. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19 / J. Wu, B. Liang, C. Chen [et al.] // Nature Communications. 2021. Vol. 12. P. 1813. DOI 10.1038/s41467-021-22034-1.
- 261. SARS-CoV-2 infects human neural progenitor cells and brain organoids / B.Z. Zhang, H. Chu, S. Han [et al.] // Cell Res. 2020. Vol. 30 (10). P. 928-931. DOI 10.1038/s41422-020-0390-x.
- 262. SARS-CoV-2 productively infects human gut enterocytes / S. Riesebosch, H.J.H. Kuijpers, er D. Schi–P. [et al.] // Science. 2020. Vol. 369 (6499). P. 50-54. DOI 10.1126/science.abc1669.

- 263. SARS-CoV-2 respiratory co-infections: incidence of viral and bacterial co-pathogens / V. Singh, P. Upadhyay, J. Reddy, J. Granger // International journal of infectious diseases. 2021. Vol. 105. P. 617-620.
- 264. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19 / E. Gusev, A. Sarapultsev, L. Solomatina, V. Chereshnev // Int J Mol Sci. 2022. Vol. 23 (3). P. 1716. DOI 10.3390/ijms23031716.
- 265. Schönrich G. Neutrophil Extracellular Traps Go Viral / G. Schönrich, M.J. Raftery // Frontiers in immunology. 2016. Vol. 7. P. 366. DOI 10.3389/fimmu.2016.00366.
- 266. Schulman S. Anticoagulant treatment of COVID-19 as early as possible-sulodexide and perspectives / S. Schulman, J. Harenberg // Thromb. Haemost. 2021. Vol. 121, No. 7. P. 849–853. DOI 10.1055/a-1477-3569.
- 267. Self-Reported Long COVID in the General Population: Sociodemographic and Health Correlates in a Cross-National Sample / T. Bonsaksen, J. Leung, D. Price [et al.] // Life. 2022. Vol. 12 (6). P. 901. DOI 10.3390/life12060901.
- 268. Semen impairment and occurrence of SARS-CoV-2 virus in semen after recovery from COVID-19 / M. Gacci, M. Coppi, E. Baldi [et al.] // Hum Reprod. 2021. Vol. 36 (6). P. 1520-1529. DOI 10.1093/humrep/deab026.
- 269. Seroconversion stages COVID19 into distinct pathophysiological states / M.D. Galbraith, K.T. Kinning, K.D. Sullivan [et al.] // Elife. 2021. Vol. 10. P. e65508. DOI 10.7554/eLife.65508.
- 270. Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis / K.I. Notarte, M.H.S. de Oliveira, P.J. Peligro [et al.] // J Clin Med. 2022. Vol. 11 (24). P. 7314. DOI 10.3390/jcm11247314.
- 271. Sex-Related Differences in Long-COVID-19 Syndrome / Pelà G., Goldoni M., Solinas E. [et al.] // J Womens Health (Larchmt). 2022. Vol. 31 (5). P. 620-630. DOI 10.1089/jwh.2021.0411.

- 272. Shanshal M. COVID-19 and herpes simplex virus infection: a cross-sectional study / M. Shanshal, H. S. Ahmed // Cureus. 2021. Vol. 13(9). P. e18022.
- 273. Sharma C. High risk of autoimmune diseases after COVID-19 / C. Sharma, J. Bayry // Nat Rev Rheumatol. 2023. Vol. 19 (7). P. 399-400. DOI 10.1038/s41584-023-00964-y.
- 274. Siddiqui S. Recent Chronology of COVID-19 Pandemic / S. Siddiqui, H.W.S. Alhamdi, H.A. Alghamdi // Front. Public Health. 2022. Vol. 10. P. 778037. DOI 10.3389/fpubh.2022.778037.
- 275. Single dose escalation studies with inhaled POL6014, a potent novel selective reversible inhibitor of human neutrophil elastase, in healthy volunteers and subjects with cystic fibrosis / P. Barth, P. Bruijnzeel, A. Wach [et al.] // J. Cyst. Fibros. 2020. Vol. 19, No. 2. P. 299–304. DOI 10.1016/j.jcf.2019.08.020.
- 276. Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia / X. Han, Y. Fan, O. Alwalid [et al.] // Radiology. 2021. Vol. 299 (1). P. E177-E186. DOI 10.1148/radiol.2021203153.
- 277. Soriano J. B. On the new post COVID-19 condition / J. B. Soriano, J. Ancochea //
 Arch Bronconeumol. 2021. Vol. 57 (12). P. 735-736. DOI 10.1016/j.arbr.2021.10.011.
- 278. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein / A. C. Walls, Y. J. Park, M. A. Tortorici [et al.] // Cell. 2020. Vol. 181. P. 281–292.e6. DOI 10.1016/j.cell.2020.02.058.
- 279. Sumantri S. Immunological dysfunction and mast cell activation syndrome in long COVID / S. Sumantri, I. Rengganis // Asia Pacific Allergy. 2023. Vol. 13 (1). P 50-53. DOI 10.5415/apallergy.00000000000022.
- 280. Tanne J.H. Covid-19: Even mild infections can cause long term heart problems, large study finds / J. H. Tanne // BMJ. 2022. Vol. 376. P. o378. DOI 10.1136/bmj.o378.

- 281. Targeting potential drivers of COVID-19: Neutrophil extracellular traps / B.J. Barnes, J.M. Adrover, A. Baxter-Stoltzfus [et al.] // J Exp Med. 2020. Vol. 217 (6). P. e20200652. DOI 10.1084/ jem.20200652.
- 282. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system / F. Coperchini, L. Chiovato, L. Croce [et al.] // Cytokine Growth Factor Rev. 2020. Vol. 53. P. 25-32. DOI 10.1016/j.cytogfr.2020.05.003.
- 283. The Impact of COVID-19 on Female Sexual Health / A. Fuchs, A. Matonóg, J. Pilarska [et al.] // Int J Environ Res Public Health. 2020. Vol. 17 (19). P. 7152. DOI 10.3390/ijerph17197152.
- 284. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis / L.L. O'Mahoney, A. Routen, C. Gillies [et al.] // Erratum in: EClinicalMedicine. 2023. Vol. 59. P. 101959. DOI 10.1016/j.eclinm.2023.101959.
- 285. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies / J. Manry, P. Bastard, A. Gervais [et al.] // Proc Natl Acad Sci USA. 2022. Vol. 119 (21). P. e2200413119. DOI 10.1073/pnas.2200413119.
- 286. The spectrum of COVID-19-associated dermatologic manifestations: An international registry of 716 patients from 31 countries / E.E. Freeman, D.E. Mc Mahon, J.B. Lipoff [et al.] // J Am Acad Dermatol. 2020. Vol. 83 (4). P. 1118-1129. DOI 10.1016/j.jaad.2020.06.1016.
- 287. Time of onset and duration of post-COVID-19 acute telogen effluvium / T.F. Abrantes, K.A. Artounian, R. Falsey [et al.] // J Am Acad Dermatol. 2021. Vol. 85 (4). P. 975-976. DOI 10.1016/j.jaad.2021.07.021.
- 288. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes / R. Zang, M.F. Gomez Castro, B.T. Mc Cune [et al.] // Sci

- Immunol. 2020. Vol. 5 (47). P. eabc3582. DOI 10.1126/sciimmunol.abc3582.
- 289. Tocilizumab in patients with severe COVID-19: a retrospective cohort study / G. Guaraldi, M. Meschiari, A. Cozzi-Lepri [et al.] // Lancet Rheumatol. 2020. Vol. 2 (8). P. e474-e484.
- 290. Treatment for COVID-19: An overview / C. Stasi, S. Fallani, F. Voller, C. Silvestri // Eur J Pharmacol. 2020. Vol. 889. P. 173644. DOI 10.1016/j.ejphar.2020.173644.
- 291. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19 / M.G.P. Van der Wijst, S.E. Vazquez, G.C. Hartoularos [et al.] // Sci Transl Med. 2021. Vol. 13 (612). P. eabh2624. DOI 10.1126/scitranslmed.abh2624.
- 292. Type I Interferon Autoantibodies Correlate With Cellular Immune Alterations in Severe COVID-19 / B. Strunz, C. Maucourant, A. Mehta [et al.] // J Infect Dis. 2024. Vol. 230 (2). P. e318-e326. DOI 10.1093/infdis/jiae036.
- 293. Unraveling the mystery surrounding post-acute sequelae of COVID-19 / R. K. Ramakrishnan, T. Kashour, Q. Hamid [et al.] // Frontiers in Immunology. 2021. Vol. 12. P. 686029. DOI 10.3389/fimmu. 2021.686029.
- 294. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison / I.E. Galani, N. Rovina, V. Lampropoulou [et al.] // Nat Immunol. 2021. Vol. 22 (1). P. 32-40. DOI 10.1038/s41590-020-00840-x.
- 295. Urban C.F. Neutrophil extracellular traps in fungal infection. InSeminars in cell & developmental biology / C. F. Urban, J. E. Nett // Academic Press. 2019. Vol. 89. P. 47-57.
- 296. Veraldi S. Pityriasis rosea-like eruption revealing COVID-19 / S. Veraldi, M. Romagnuolo, V. Benzecry // Australas J Dermatol. 2021. Vol. 62 (2). P. E333-E334.

- 297. Verma D. Epstein–Barr virus lytic replication induces ACE2 expression and enhances SARS-CoV-2 pseudotyped virus entry in epithelial cells / D Verma., T. M. Church, S. Swaminathan // J Virol. 2021. Vol. 95 (13). P. e0019221.
- 298. Vink M. Could cognitive behavioural therapy be an effective treatment for long COVID and post COVID-19 fatigue syndrome? Lessons from the Qure study for Q-fever fatigue syndrome / M. Vink, A. Vink-Niese // Healthcare (Basel). 2020. Vol. 8 (4). P. 552. DOI 10.3390/healthcare8040552.
- 299. Viral and host factors related to the clinical outcome of COVID-19 / X. Zhang, Y. Tan, Y. Ling [et al.] // Nature. 2020. Vol. 583 (7816). P. 437-440. DOI 10.1038/s41586-020-2355-0.
- 300. Vishvkarma R. Could SARS-CoV-2 affect male fertility? / R. Vishvkarma, S. Rajender // Andrologia. 2020. Vol. 52 (9). P. e13712. DOI 10.1111/and.13712.
- 301. Voto C. Overview of the Pathogenesis and Treatment of SARS-CoV-2 for Clinicians: A Comprehensive Literature Review / C. Voto, P. Berkner, C. Brenner // Cureus. 2020. Vol. 12 (9). P. e10357. DOI 10.7759/cureus.10357.
- 302. Wang Z. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients / Z. Wang, Z. Du, F. Zhu // Diabetes Res Clin Pract. 2020. Vol. 164. P. 108214. DOI 10.1016/j.diabres.2020.108214.
- 303. What is the quality of life in patients with long COVID compared to a healthy control group? / D. Líška, E. Liptaková, A. Babičová [et al.] // Front. Public Health. 2022. Vol. 10. P. 975992. DOI 10.3389/fpubh.2022.975992.
- 304. Whiteside T. L. Procoagulant activity of extracellular vesicles in plasma of patients with SARS-CoV-2 infection / T. L. Whiteside // eBioMedicine. 2021. Vol. 68. P. 103411. DOI 10.1016/j.ebiom.2021.103411.

- 305. WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus / J.B. Soriano, S. Murthy, J.C. Marshall [et al.] // Lancet Infect Dis. 2022. Vol. 22 (4). P. e102-e107. DOI 10.1016/S1473-3099(21)00703-9.
- 306. Wong T.L. Long COVID and Myalgic Encephalomyelitis Chronic Fatigue Syndrome (ME/CFS)-A Systemic Review and Comparison of Clinical Presentation and Symptomatology / T.L. Wong, D.J. Weitzer // Medicina (Kaunas). 2021. Vol. 57 (5). P. 418. DOI 10.3390/medicina57050418.
- 307. World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus. 2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID 19 condition-Clinical case definition-2021.1 (accessed 18.04.2023).
- 308. World Health Organization. Coronavirus disease (COVID-19): post COVID-19 condition. Questions and answers (Online). Geneva, 2023. URL: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition (Accessed 14.04.2023).
- 309. World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV), 2020. URL: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed 20.04.2024).
- 310. World Health Organization. WHO Coronavirus (COVID-19) Dashboard, 2024. URL: https://covid19.who.int/ (accessed 18.08.2024).
- 311. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19, 2020. URL: https://www.who.int/news-room/speeches/item/who-director-general-s-opening-

- remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed 20.04.2024).
- 312. Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? / P. Wostyn // Medical hypotheses. 2021. Vol. 146. P. 110469. DOI 10.1016/j.mehy.2020.110469.
- 313. Yong S. J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments / S. J. Yong // Infectious Diseases. 2021. Vol. 53(10). P. 737–754.
- 314. Yong S. J. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesi / S.J. Yong // ACS Chem Neurosci. 2021. Vol. 12 (4). P. 573-580. DOI 10.1021/acschemneuro.0c00793.
- 315. Yong S. J. Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies / S. J. Yong, S. Liu // Reviews in medical virology. 2022. Vol. 32 (4). P. e2315.
- 316. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study / C. Huang, L. Huang, Y. Wang [et al.] // Lancet. 2023. –Vol. 401 (10393). P. e21-e33. DOI 10.1016/S0140-6736(23)00810-3.