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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования 

Стремительный рост объемов и разнообразия данных делает одной из центральных про-

блем современного искусственного интеллекта обеспечение эффективной интеграции, анализа и 

интерпретации информации из разных источников: изображений, звуковых сигналов, текстов, 

временных рядов и других типов данных. Эти источники образуют мультимодальные большие 

данные, характеризующиеся высокой размерностью, гетерогенностью, наличием шумов, пропус-

ков и артефактов, что приводит к искажению признаков и снижению качества принимаемых ре-

шений. 

Традиционные матричные модели и классические алгоритмы машинного обучения плохо 

масштабируются в условиях «проклятия размерности», не обеспечивают сохранение межмодаль-

ных связей и недостаточно устойчивы к шумам и неполноте данных. В отличие от традиционных 

матричных представлений, тензорные структуры позволяют описывать данные в многомерных 

пространствах, выявляя латентные зависимости и семантические закономерности. Это делает их 

эффективным инструментом для задач слияния мультимодальной информации, что особенно ак-

туально в областях компьютерного зрения, обработки речи, биомедицинских исследований и ин-

теллектуальных систем мониторинга. 

Одновременно с задачей интеграции данных сохраняет актуальность проблема устранения 

шумов и восстановления информации в многомерных массивах. С ростом сложности и размер-

ности данных увеличивается доля случайных искажений, обусловленных аппаратными и мето-

дологическими факторами. Эти искажения существенно влияют на точность обучения моделей 

и достоверность принимаемых решений. Поэтому создание методов, способных эффективно вы-

делять полезные сигналы на фоне шумов и корректно восстанавливать утраченные фрагменты 

информации, имеет не только теоретическую, но и прикладную значимость. 

Это определяет актуальность разработки методики семантического анализа мультимодаль-

ных больших данных, основанной на тензорных представлениях и современных методах машин-

ного обучения, обеспечивающей одновременное слияние модальностей, уменьшение размерно-

сти, подавление шумов и восстановление недостающей информации. 

Степень разработанности темы исследования 

Исследования, посвященные вопросам интеграции и анализа мультимодальных данных, 

имеют значительную историю и в последние годы получили активное развитие благодаря рас-

ширению вычислительных возможностей. В диссертации проведен подробный обзор современ-

ных подходов к работе с мультимодальными данными, включая классические и нейросетевые 

методы слияния признаков, а также тензорные модели представления. Рассмотрены классиче-

ские схемы Data Fusion, применяемые при интеграции гетерогенных данных дистанционного 

зондирования и геоинформатики (Du et al., 2021; Феоктистов и др., 2017; Бондур и др., 2023), а 

также тензорный слой слияния и основанные на нем архитектуры Tensor Fusion Network и ее 

модификации для анализа эмоций и настроений (Zadeh et al., 2017). Особое внимание уделено 

низкоранговым методам тензорного объединения признаков (Low-rank Multimodal Fusion, LMF 

и др.), позволяющим существенно снизить параметрическую сложность моделей за счет разло-

жения веса тензорного слоя на набор модально-специфичных факторов (Liu et al., 2018). Проана-

лизированы нелинейные полиномиальные модели слияния (High-Order Polynomial Fusion, поли-

номиальное тензорное объединение, HPFN), обеспечивающие учет взаимодействий высоких по-

рядков между модальностями при умеренном росте числа параметров (Hou et al., 2019). Рассмот-

рены attention- и gating-архитектуры (Gated Multimodal Unit, GMU; Gated Multimodal Embedding 

LSTM with Temporal Attention, GME-LSTM(A) и др.), реализующие адаптивное взвешивание 

вкладов модальностей и подавление шумовых каналов (Arevalo et al., 2017; Chen et al., 2018), а 

также трансформерные модели для последовательностей мультимодальных признаков, в том 

числе Multimodal Transformer (MulT) и High-Modality Multimodal Transformer (HighMMT), ори-

ентированные на моделирование сложных временных и межмодальных зависимостей (Tsai et al., 
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2019; Liang et al., 2022). Отдельное внимание уделено динамическим схемам слияния, в которых 

структура взаимодействий между модальностями адаптируется к контексту входных данных 

(Dynamic Multimodal Fusion, DynMM; Recurrent Attended Variation Embedding Network, RAVEN 

и др.) (Wang et al., 2019; Xue et al., 2023), а также методам оптимизации мультимодальных остат-

ков (Multimodal Residual Optimization, MRO), позволяющим явно декомпозировать унимодаль-

ные, бимодальные и тримодальные вклады (Wörtwein et al., 2022). Наконец, проанализированы 

подходы на основе мультимодальных автоэнкодеров и вариационных автоэнкодеров, направлен-

ные на совместное обучение общих и модально-специфичных представлений и реконструкцию 

пропусков в данных (Gao et al., 2020; Xu et al., 2022). 

Анализ показал, что, несмотря на существенный прогресс, большинство существующих 

подходов ориентированы преимущественно на повышение точности в рамках конкретных при-

кладных задач (распознавание эмоций, анализ настроений и т.п.) и в меньшей степени направ-

лены на выявление скрытых взаимосвязей между модальностями. При этом мало внимания уде-

ляется уровню шума и задаче восстановления исходных модальностей: мультимодальные дан-

ные, как правило, содержат значительные помехи и пропуски, и выполнение слияния без пред-

варительного удаления шума и восполнения недостающей информации существенно ограничи-

вает возможность корректного выявления межмодальных зависимостей. Использование тензор-

ного слоя слияния сопровождается эффектом «проклятия размерности», когда экспоненциаль-

ный рост числа параметров делает обучение таких моделей практически недоступным на реаль-

ных вычислительных ресурсах. Методы низкорангового слияния, напротив, обычно предпола-

гают фиксированный ранг для всех модальностей, что не позволяет учитывать их индивидуаль-

ные характеристики: при малых рангах теряются важные взаимосвязи между модальностями, а 

при больших – резко возрастает число параметров и сложность модели. В совокупности это сви-

детельствует о недостаточной разработанности комплексных решений, которые одновременно 

обеспечивали бы семантически осмысленное слияние мультимодальных представлений, подав-

ление шумов, восстановление исходной информации и оценку качества реконструкции в единой 

тензорной модели, что и обусловливает выбор в диссертационной работе подхода, основанного 

на тензорных разложениях с end-to-end-обучением и рандомизированными алгоритмами тензор-

ного восстановления. 

Объектом исследования является система интеграции и представления мультимодальных 

данных на основе тензорного разложения, функционирующая в условиях многомерности, избы-

точности и зашумленности исходных данных. 

Предмет исследования – тензорные модели представления и алгоритмы обработки много-

мерных и мультимодальных данных, направленные на повышение достоверности, устойчивости 

и эффективности анализа информации. 

Цель работы заключается в разработке нового вычислительного метода для решения про-

блемы обработки мультимодальных больших данных с представлением данных в формате тен-

зора и также нового подхода для удаления шума и восстановления информации в мультимодаль-

ных данных для устойчивости работы с нейронными сетями.  

Для достижения поставленной цели решены следующие научно-технические задачи: 

 Выполнен анализ предметных областей, в которых используются мультимодальные 

большие данные, и выявлены типичные сценарии их обработки. 

 Исследованы возможности и ограничения существующих систем обработки мультимо-

дальных данных. 

 Проанализированы современные алгоритмы интеграции многомерных данных на уровне 

признаков и на уровне принятия решений. 

 Разработан и обоснован метод интеграции, удаления шума и восстановления мультимо-

дальных данных на основе мультирангового тензорного разложения. 

 Проведены вычислительные эксперименты, подтверждающие эффективность предло-

женных подходов. 



5 

 

 Разработана программная библиотека на языке Python, реализующая предложенную ме-

тодику. 

Методология и методы исследования. Для решения поставленных в работе задач исполь-

зовались методы линейной и мультилинейной алгебры, математической статистики, а также ал-

горитмы машинного обучения и глубокого обучения. Основу математического аппарата состав-

ляют операции над тензорами и различные виды их разложения, включая CPD, разложение Та-

кера, Tensor Train и Tensor Ring. Для повышения устойчивости и достоверности анализа приме-

нялись методы регуляризации, рангового ограничения и низкорангового восстановления данных. 

Для реализации и экспериментальной проверки предложенных решений разработано программ-

ное обеспечение на языках Python и Matlab. Реализованные модули обеспечивают выполнение 

тензорных операций, моделирование алгоритмов интеграции и восстановления мультимодаль-

ных данных, а также визуализацию полученных результатов. 

Научная новизна работы заключается в следующем: 

 Разработана структурная модель интеграции мультимодальных данных на основе тен-

зорного представления, в которой различные модальности объединяются в едином многомерном 

пространстве признаков. Предложенный подход обеспечивает сохранение межмодальных связей 

и позволяет повысить информативность объединенных данных при анализе сложных объектов. 

 Предложен метод построения тензорных представлений с использованием декомпози-

ции по низкоранговым компонентам (CPD, Tucker, TT), обеспечивающий уменьшение размерно-

сти данных без потери значимых признаков. В отличие от традиционных подходов, метод позво-

ляет учитывать корреляционные зависимости между модальностями. 

 Разработан алгоритм удаления шумов и восстановления недостающих элементов в муль-

тимодальных данных с использованием тензорного формализма и адаптивных регуляризаторов. 

Алгоритм сочетает принципы низкорангового восстановления и адаптивной фильтрации, что 

обеспечивает повышение достоверности реконструированных данных и их пригодности для по-

следующего анализа. 

 Разработана обобщенная архитектура интеллектуальной системы анализа мультимо-

дальных данных, включающая модули тензорного слияния, подавления шумов и реконструкции 

пропусков. Архитектура обеспечивает масштабируемость и возможность адаптации под различ-

ные типы данных и прикладные задачи (видеонаблюдение, биомедицинская диагностика, распо-

знавание эмоций и др.). 

 Проведен вычислительный эксперимент на реальных и синтетических наборах мульти-

модальных данных, доказавший преимущество предложенных методов по сравнению с суще-

ствующими по критериям точности, устойчивости и вычислительной эффективности. 

Практическая значимость полученных результатов заключается в разработке вычисли-

тельных методов и программных средств для эффективной интеграции и анализа мультимодаль-

ных данных. Формализовано мультиранговое слияние, обеспечивающее объединение разнород-

ных источников информации с сохранением взаимных зависимостей между модальностями и по-

вышением точности и устойчивости анализа при работе с реальными данными. Использование 

факторизованных тензорных представлений позволяет избежать явного формирования высоко-

размерных тензоров признаков и, тем самым, уменьшить вычислительные затраты. Разработан-

ные методы удаления шумов и восстановления недостающих элементов данных делают возмож-

ным применение предложенной методики при обработке неполных и зашумленных мультимо-

дальных выборок. В рамках работы создана программная библиотека на языке Python, реализу-

ющая предложенные алгоритмы мультирангового тензорного слияния и низкорангового восста-

новления, что облегчает их интеграцию в существующие программные комплексы интеллекту-

ального анализа данных. 

Теоретическая значимость результатов заключается в развитии методов тензорного ана-

лиза и моделирования мультимодальных данных, направленных на решение фундаментальных 

проблем представления, интеграции, удаления шума и восстановления информации. 
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Положения, выносимые на защиту 

1. Структурная модель интеграции мультимодальных данных на основе тензорного пред-

ставления, обеспечивающая сохранение семантических связей между модальностями и умень-

шение размерности признакового пространства. 

2. Метод мультирангового тензорного слияния, позволяющий эффективно интегрировать 

мультимодальные данные и решать задачу «проклятия размерности» в задачах машинного обу-

чения. 

3. Алгоритм подавления шума и восстановления недостающих элементов в тензорных мо-

делях данных, основанный на минимизации тензорного ранга и адаптивной регуляризации. 

4. Методика количественной оценки качества тензорного слияния и восстановления на ос-

нове совокупности метрик согласованности модальностей, ранговых характеристик и точности 

реконструкции. 

5. Результаты вычислительных экспериментов, демонстрирующие преимущество предло-

женных алгоритмов по сравнению с существующими методами по точности, устойчивости и вы-

числительной эффективности. 

Апробация работы 

Основные концепции и результаты исследований обсуждались и представлялись на следу-

ющих международных научных конференциях: 

 V International Conference on Information Technologies in Engineering Education (In-

forino), 2020. 

 Международную конференцию Сбера по искусственному интеллекту "AI Journey 

2024", Москва. 

 Международную научно-практическую конференцию «Образовательная трансфор-

мация в условиях цифровой экономики», организованную Государственным гуманитарно-

технологическим университетом (ГГТУ), Московская область, 2025. 

 Конференцию «AI-Горизонты», Москва, 2025. 

По теме диссертации опубликовано 5 печатных работ в рецензируемых научных изданиях, 

индексируемых в международных базах Scopus и Web of Science. 

Степень достоверности результатов 

Достоверность результатов обеспечивается строгой математической постановкой задач, ис-

пользованием общепринятых методов мультилинейной алгебры и статистики, а также сопостав-

лением разработанных алгоритмов с существующими решениями на множестве тестовых приме-

ров. Степень достоверности подтверждается согласованностью теоретических выводов и полу-

ченных экспериментальных данных, а также повторяемостью результатов при вариации пара-

метров модели. 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

В первой главе подробно рассматриваются основные понятия мультимодальных данных и 

методов их слияния, под которыми понимается совокупность наблюдений, описывающих один 

и тот же объект или явление через несколько принципиально различных способов представления 

информации. Каждое такое представление называется модальностью и соответствует определен-

ному «каналу» восприятия или измерения.  

 
Рисунок 1. Экспериментальная установка – участник подключен ко всем устройствам сбора 

данных 
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Существенной характеристикой мультимодальных данных является их гетерогенность, 

причем различия между модальностями носят многомерный характер. В диссертации выделя-

ются шесть измерений такой гетерогенности. 

 

Рисунок 2. Шесть измерений гетерогенности между модальностями 

Во-первых, модальности различаются по способу представления элементов: пиксели изоб-

ражения, спектральные коэффициенты аудиосигнала и токены текста имеют принципиально раз-

ную природу и структуру. Во-вторых, различаются статистические распределения данных: плот-

ность вероятности значений в пространстве изображений, как правило, существенно отличается 

от распределений в пространстве текстовых эмбеддингов или акустических признаков. В-тре-

тьих, важна структурная организация: одни модальности обладают ярко выраженной временной 

структурой (речь, сенсорные временные ряды), другие пространственной (изображения, трех-

мерные облака точек), третьи графовой или последовательной (текст, сцены с отношениями 

между объектами). В-четвертых, модальности могут нести различное информационное содержа-

ние: одна модальность может быть более информативной относительно целевой задачи, а другая 

содержать избыточную либо комплементарную информацию. В-пятых, уровни шума и искаже-

ний в разных модальностях могут существенно различаться, что необходимо учитывать при сов-

местной обработке. Наконец, в-шестых, модальности различаются по релевантности для решае-

мой задачи: например, для эмоцианализации речи визуальный канал (мимика, жесты) часто ока-

зывается более информативным, чем текстовая транскрипция, тогда как в задачах семантиче-

ского анализа доминирует именно текст. Важной составляющей теоретической основы является 

типология связей и взаимодействий между модальностями. На уровне вероятностного модели-

рования рассматриваются статистические связи: ассоциации, условные зависимости, совместные 

распределения, соответствие элементов одной модальности элементам другой. 

На этой теоретической базе рассматриваются стратегии слияния данных (data fusion), при-

меняемые в современных мультимодальных системах. Классически выделяют раннее слияние 

(early fusion), позднее слияние (late fusion) и гибридные схемы. 

 
Рисунок 3. Архитектура раннего и позднего слияния 

При раннем слиянии признаки, извлеченные из разных модальностей, конкатенируются 

или объединяются на начальных этапах обработки, после чего единый вектор признаков посту-

пает в общую модель. Преимуществом такого подхода является возможность явно моделировать 
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межмодальные зависимости и получать представления, учитывающие корреляции между кана-

лами. Однако простая конкатенация приводит к резкому росту размерности признакового про-

странства, что усиливает проблему «проклятия размерности» и делает модель чувствительной к 

шуму, дисбалансу и пропущенным данным в отдельных модальностях. При позднем слиянии 

каждая модальность обрабатывается собственной моделью, выдающей частичное решение 

(оценку, вероятность, распределение), а объединение происходит на уровне решений, например, 

путем взвешенного усреднения или мета-классификации. Этот подход более устойчив к отсут-

ствию отдельных модальностей, но хуже использует их тонкие взаимодействия. Гибридные стра-

тегии пытаются совместить достоинства обоих подходов, вводя промежуточные уровни слияния 

и механизмы адаптивного взвешивания модальностей. 

Далее в главе проводится обзор современных методов мультимодального слияния. Суще-

ственное внимание уделяется моделям, в первую очередь основанным на тензорных и нейросе-

тевых представлениях. Отдельно рассматриваются подходы, в которых совместное представле-

ние модальностей строится с помощью тензорного слоя слияния (Tensor Fusion Network, TFN) и 

его модификаций, позволяющих явно моделировать попарные и более высокоранговые взаимо-

действия между признаками различных модальностей. Обсуждаются методы низкорангового 

тензорного слияния, направленные на уменьшение размерности и числа параметров без потери 

ключевых межмодальных зависимостей, а также полиномиальные схемы слияния, реализующие 

нелинейные комбинации признаков. 

Завершая теоретический обзор, в главе формулируется выявленный научный разрыв. Ана-

лиз литературы показывает, что существующие методы либо слабо учитывают высокоранговые 

взаимодействия между модальностями, ограничиваясь попарными связями и простыми схемами 

слияния признаков, либо демонстрируют недостаточную устойчивость к реальным условиям, ко-

гда данные содержат шум, выбросы, а отдельные модальности могут частично или полностью 

отсутствовать. Кроме того, многие модели оказываются слишком ресурсоемкими из-за высокой 

размерности признаковых тензоров и большого числа параметров, что затрудняет их применение 

в практических системах реального времени. 

Во второй главе формализована задача интеграции мультимодальных данных и предло-

жена методика их тензорного представления и обработки. Постановка задачи слияния мультимо-

дальных данных связана с построением модели, способной эффективно объединять информа-

цию, поступающую из различных модальностей, где каждая модальность имеет собственное про-

странство признаков, размерность и статистические свойства. Цель состоит в построении отоб-

ражения: 

ℱ: ℝ𝑑1 × ℝ𝑑2 × … × ℝ𝑑𝑀 → ℝℎ                                                           (1) 

такого, что результирующее представление H=F(D_1,D_2,…,D_M) одновременно сохраняет 

внутримодальные и межмодальные зависимости, обеспечивая при этом низкую вычислительную 

сложность и устойчивость к избыточности данных. Для достижения этой цели рассматриваются 

следующие подходы тензорного разложения. 

Разложение Такера. Основная идея заключается в аппроксимации исходного многомер-

ного тензора X с помощью меньшего по размерности тензора ядра g и набора матриц-факторов, 

которые описывают линейные подпространства для каждой модальности данных. Задан трехмер-

ный тензор 𝒳 ∈  ℝ𝐼×𝐽×𝐾 Тогда разложение Такера записывается в виде: 

𝒳 ≈  ℊ ×1  𝐵(1) ×2  𝐵(2) ×3  𝐵(3)                                                            (2) 

где ℊ ∈  ℝR1×R2×R3 ядро (core tensor), хранящее взаимодействия между компонентами разных мо-

дальностей B(1) ∈  ℝI×R1 ,  B(2) ∈  ℝJ×R2 ,  B(3) ∈  ℝK×R3 матрицы факторов, отображающие исход-

ные признаки каждой модальности в пониженное пространство размерности ℝn. Для каждого 

элемента тензора 𝒳 аппроксимация записывается как 
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𝒳𝑖𝑗𝑘 ≈ ∑ ∑ ∑ ℊ𝑝𝑞𝑟 𝑏𝑖𝑝
(1)

 𝑏𝑗𝑞
(2)

 𝑏𝑘𝑟 
(3)

𝑅3

𝑟=1

𝑅2

𝑞=1

𝑅1

𝑝=1

                                                       (3) 

Мы можем использовать подход разложения Такера для слияния мультимодальных данных 

и мультимодальное представление выражается как 

𝐻̂ ≈  ℊ ×1  B(1) ×2  B(2) ×3 … ×M B(M)                                                   (4) 

Полученное латентное представление 𝐻̂ подается в классификатор или регрессионный блок 

для выполнения целевой задачи  

Ŷ = σ(WHĤ + b)                                                                             (5) 

Процесс оптимизации параметров направлен на минимизацию функции потерь: 

ℒ = ℒtask(Y, Ŷ) + λ1 ∑‖B(i)‖
F

2
+ λ2‖ℊ‖F

2

M

i=1

                                                        (6) 

Одним из ключевых преимуществ Tucker-разложения является резкое снижение числа па-

раметров по сравнению с традиционным построением тензора с помощью внешнего произведе-

ния вектора признаков. Вычислительная сложность метода оценивается как 

𝒪 (∑ diri + ∏ rih

M

i=1

M

i=1

)                                                                         (7) 

Tensor Train разложение. В предыдущем подходе основная идея заключается в построе-

нии многомерного тензора, однако разложение Такера масштабируется плохо при большом 

числе модальностей, а ядро ℊ быстро становится высокоразмерным, что ограничивает примене-

ние в более сложных мультимодальных задачах. TT-разложение, предложенное Оселедцем 

(Oseledets, 2011), представляет собой эффективный метод аппроксимации высокомерных тензо-

ров через последовательную цепочку низкоранговых компонент. Для тензора 𝑋 ∈ ℝ𝐼1× 𝐼2×…× 𝐼𝑁  , 

TT-разложение определяется как 

𝑋(𝑖1, 𝑖2, … , 𝑖𝑁 , ) ≈ ∑ ∑ … ∑ 𝐺1(𝑟0, 𝑖1, 𝑟1)𝐺2(𝑟1, 𝑖2, 𝑟2) … 𝐺𝑁(𝑟𝑁−1, 𝑖𝑁 , 𝑟𝑁)

𝑅𝑁−1

𝑅𝑁−1

𝑅1

𝑅1=1

𝑅0

𝑅0=1

             (8) 

Структура TT-разложения адаптируется для представления разнородных данных путем по-

следовательной цепочки ядер, где каждое ядро соответствует моде тензора. Ядро Такера может 

быть заменено TT-представлением, поскольку TT аппроксимирует полный тензор через после-

довательные матричные произведения, минимизируя параметры и контролируют степень сжатия 

и выразительность, обеспечивая баланс между точностью и сложностью. Число параметров в TT-

формате составляет 𝒪(dyR1 + ∑ (dm + 1)M
m=1 RmRm+1). TT обеспечивает гибкость через незави-

симые Rk, лучше адаптируясь к разнородным модальностям. ТТ - разложение обеспечивает оп-

тимальный компромисс между точностью и вычислительной эффективностью, что делает его 

предпочтительным для систем с большим числом модальностей и высокоразмерными призна-

ками. Однако TT имеет линейную структуру, что может ограничивать захват циклических зави-

симостей между модами. 

Tensor Ring разложение. TT-разложение аппроксимирует тензор 𝒳 в виде последователь-

ной цепочки ядер 𝒳(𝑖1, … , 𝑖𝑁) = 𝐺1[𝑖1]𝐺2[𝑖2] … 𝐺𝑁[𝑖𝑁], где каждое ядро GN ∈ ℝrn−1×In×rn с гра-

ничными условиями R0 = RN = 1. TR-разложение снимает эти условия, позволяя R0 = RN = R, 

замыкая структуру в кольцо: 

𝒳(𝑖1, … , 𝑖𝑁) = 𝑇𝑅 (𝐺1[𝑖1]𝐺2[𝑖2] … 𝐺𝑁[𝑖𝑁])                                                   (9) 

где W хранится в TR-формате. Таким образом: 

𝑦̂ = 𝑇𝑅 (∏ 𝐺𝑛
(𝑊)[𝑖𝑛]

𝑁

𝑛=1

) ∏ 𝑥𝑛[𝑖𝑛]

𝑁

𝑛=1

                                                      (10) 
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Обучение осуществляется end-to-end через дифференцируемую схему, аналогичную TT-ре-

грессии, с обновлением ядер Gn
(W)

 посредством градиентного спуска. Общее количество парамет-

ров PTR = ∑ Inrn−1rn
N
n=1 , Ожидается, что TR-подход позволит работать с данными на 2-3 порядка 

большей размерности при сокращении потребления памяти на 15-25% по сравнению с TT, с по-

вышением точности на 5-10% в задачах с циклическими зависимостями. 

В подразделе, посвященном методу снижения шума и восстановления информации в муль-

тимодальных данных обобщены стандартные матричные разложения на тензорный случай с ис-

пользованием T-произведения. Разработаны рандомизированные однопроходные алгоритмы и 

методы с фиксированной точностью, ориентированные на работу с большими данными в усло-

виях ограниченных вычислительных ресурсов. Показано, что предложенные решения позволяют 

уменьшить вычислительную сложность при сохранении требуемой точности восстановления. В 

предлагаемом методе предпринята попытка использовать тензорные подходы для снижения 

уровня шума и восстановления утраченных данных, что позволяет обеспечить согласованность 

между процессами мультимодального слияния данных и шумоподавления. В частности, анали-

зируется возможность восстановления изображения при удалении до 90% пикселей, что акту-

ально для обработки сигналов и изображений. 

 

Рисунок 4. Восстановление изображения при 90% пропущенных данных 

Формулировка оптимизационной задачи имеет вид: 

min
𝑋

 𝑟𝑎𝑛𝑘(𝑋),  𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋𝑖,𝑗 = 𝑀𝑖,𝑗   (𝑖, 𝑗) ∈ 𝛺                                            (11) 

Однако минимизация ранга является NP-трудной задачей из-за невыпуклости функции 

ранга. Для приближенного решения используется релаксация с заменой ранга на ядерную норму 

‖𝑋‖∗, определяемую как сумма сингулярных значений матрицы: 

‖𝑋‖∗ = ∑ 𝜎𝑘(𝑋)

min (𝑚,𝑛)

𝑘=1

                                                                  (12) 

Задача tensor completion формулируется как поиск низкорангового тензора 𝑋, совпадаю-

щего с 𝑀 в 𝛺. Одна из распространенных формулировок использует разложение Такера, где тен-

зор аппроксимируется как: 

𝑋 = ℊ ×1  𝑈1 ×2 𝑈2 ×3 … ×𝑑 𝑈𝑑                                                              (13) 

где ℊ ∈ ℝ𝑅1×𝑅2×…𝑅𝑑 ядерный тензор, 𝑈𝑘 ∈ ℝ𝐼k×𝑅k  факторные матрицы, а ×𝑘произведение по моде 

𝑘. Многомерный ранг определяется кортежем (𝑅1, 𝑅2, … , 𝑅d). Оптимизационная задача может 

быть сформулирована как: 

min
𝑋,𝐶

 ‖𝑋 − 𝐶‖𝐹
2 ,  𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑎𝑛𝑘(𝑋) = 𝑅, 𝑃𝛺(𝐶) = 𝑃𝛺(𝑀)                                  (14) 

где ‖𝑋‖𝐹 норма Фробениуса, 𝑅 заданный многомерный ранг, 𝑃𝛺 проектор на множество наблю-

даемых элементов и 𝐶 вспомогательный тензор. 

Для решения применяется алгоритм чередующихся наименьших квадратов (ALS), чередуя 

обновления 𝑋 и 𝐶: 

 Обновление 𝑋(𝑛) ≈ ℒ(𝐶(𝑛)), где ℒ оператор низкоранговой аппроксимации 

 Обновление 𝐶(𝑛+1) =  𝛺 ⨀ 𝑀 + (1 − 𝛺) ⨀ 𝑋(𝑛) 

Метод поддерживает различные тензорные разложения, такие как CP (Canonical Polyadic), 

Tensor Train или Block Tensor разложение. Однако метод обладает ограничениями, такими как 

высокая вычислительная сложность ALS-алгоритма, особенно при большом числе итераций, и 
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зависимость от выбора разложения тензора. Рандомизированные алгоритмы представляют собой 

класс методов, которые обрабатывают поток данных за один проход, без необходимости хранить 

весь набор данных в оперативной памяти. Это свойство является крайне важным при работе с 

крупномасштабными данными, которые не помещаются в память целиком. 

 
Рисунок 5. Рандомизированная аппроксимация с низким трубным рангом 

В модифицированной версии алгоритма T-QR-разложение заменяется на T-произведение 

тензоров и обращение малых тензоров, что обеспечивает более высокую степень параллелизма. 

Описание этого усовершенствованного подхода представлено в алгоритме. 

Пусть 𝑋 ∈  ℝ𝐼1× 𝐼2×𝐼3 и 𝛺 ∈  ℝ𝐼1× 𝐾×𝐼3 случайный тензор. Определим 𝑌 = 𝑋 ∗ 𝛺, 𝑊 = 𝑋𝑇 ∗ 𝑌 

а экономичное T-SVD-разложение тензора 𝑌 задается как 𝑌 = 𝑈 ∗ 𝑆 ∗ 𝑉𝑇. Тогда  

𝑄 = 𝑌 ∗ 𝑉̂ ∗ 𝑆̂−1, 𝐵 = (𝑊 ∗ 𝑉̂ ∗ 𝑆̂−1)
𝑇

                                                    (15) 

получаем аппроксимацию 𝑋 ≈ 𝑄 ∗ 𝐵, которая имеет такую же точность, как и базовые рандоми-

зированные алгоритмы. Кроме того, выполняется равенство 

‖𝐵‖
𝐹

2
= 𝑡𝑟𝑎𝑐𝑒(𝐻1)                                                                       (16) 

где 𝐻1 = 𝐻(: , : ,1) это первый фронтальный срез тензора 𝐻 = 𝑊 ∗ 𝑊𝑇 ∗ (𝑌 ∗ 𝑌)
−1

. 

Рассмотрим тождества 

𝑄 = 𝑜𝑟𝑡ℎ(𝑋 ∗ 𝛺) = 𝑜𝑟𝑡ℎ(𝑌) = 𝑈̂ = 𝑌 ∗ 𝑉̂ ∗ 𝑆̂−1                                        (17) 

Подставляя (15) в 𝐵 = 𝑄𝑇, получаем: 

𝐵 = 𝑄𝑇 ∗ 𝑋 = (𝑊 ∗ 𝑉̂ ∗ 𝑆̂−1)
𝑇

                                                         (18) 

Поскольку 𝑄 представляет собой ортонормализацию тензора 𝑋 ∗ 𝛺 аппроксимация 𝑄 ∗

𝐵 обеспечивает такую же точность, как и базовые рандомизированные алгоритмы, но без итера-

ций по степеням и без передискретизации. Теперь, используя тот факт, что ‖𝐵‖
𝐹

2
= 𝑡𝑟𝑎𝑐𝑒(𝐺1) =

𝐺(: , : ,1) , где 𝐺1 первый фронтальный срез тензора 𝐺 = 𝐵𝑇 ∗ 𝐵 и получаем: 

‖𝐵‖
𝐹

2
= 𝑡𝑟𝑎𝑐𝑒 ((𝑆̂−1 ∗ 𝑉̂𝑇 ∗ 𝑊𝑇 ∗ 𝑊 ∗ 𝑉̂ ∗ 𝑆̂−1)

1
) 

= 𝑡𝑟𝑎𝑐𝑒 ((𝑊𝑇 ∗ 𝑊 ∗ 𝑆̂−2 ∗ 𝑉̂)
1

) 

= 𝑡𝑟𝑎𝑐𝑒 ((𝑊𝑇 ∗ 𝑊 ∗ (𝑌𝑇 ∗ 𝑌)
−1

)
1

)                                               (19) 

Определим 𝑇 = 𝑊𝑇 ∗ 𝑊 и 𝑍 = 𝑌𝑇 ∗ 𝑌. Тогда критерий остановки ‖𝑋 − 𝑄 ∗ 𝐵‖
𝐹

2

= ‖𝑄‖
𝐹

2

−

‖𝐵‖
𝐹

2
 и можно переписать в следующем виде:  
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‖𝑋 − 𝑄 ∗ 𝐵‖
𝐹

2

= ‖𝑄‖
𝐹

2

− 𝑡𝑟𝑎𝑐𝑒 ((𝑇 ∗ 𝑍−1)
1

)                                           (20) 

 

Таким образом, используя эти преобразования, можно уменьшить время вычислений, при 

этом точность снижается незначительно. 

В третьей главе представлены результаты математического моделирования. Анализиру-

ются экспериментальные результаты метода слияния на основе тензорного представления (LMF, 

Tucker, Tensor Train, Tensor Ring) и сравнительный анализ. Далее оценивается метод снижения 

шума на синтетических тензорах, сжатии изображений и видео, повышении разрешения изобра-

жений и применении в глубоком обучении. 

Метод слияния мультимодальных данных на основе тензорного представления 

Эксперименты выполнялись на наборе данных POM, который состоит из 903 видеороликов 

с обзорами фильмов. Каждое видео сопровождается аннотациями со следующими характеристи-

ками говорящего: уверенный, страстный, приятный голос, доминирующий, заслуживающий до-

верия, яркий, опытный, развлекательный, сдержанный, доверчивый, расслабленный, общитель-

ный, тщательный, нервный, убедительный и юмористический. 

 

Рисунок 6. Графическое представление извлечения признаков из текста 

На первом этапе текстовой обработки каждое высказывание приводится к последователь-

ности токенов, для которых строятся векторные представления на основе предобученных эм-

беддингов GloVe размерности 300. Такие векторы отражают семантическую близость и ассоци-

ативные связи между словами, что позволяет модели учитывать скрытые семантические отноше-

ния даже для слов, которые редко встречаются в рассматриваемом корпусе. В результате каждое 

высказывание представляется в виде временного ряда 300-мерных векторов. Далее временная 

последовательность слов подается на вход сети типа LSTM (Long Short-Term Memory). 

 

Рисунок 7. Графическое представление извлечения признаков из изображения 
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Визуальная модальность в корпусе POM представлена видеорядом, на котором отчетливо 

видны лицо, мимика и движения говорящего. Для извлечения информативных визуальных при-

знаков из каждого видеоролика применяется двухэтапный подход. Сначала из сырых видеодан-

ных извлекаются набор высокоуровневых дескрипторов выражения лица с помощью специали-

зированного инструментария FACET, а также координаты лицевых ориентиров при помощи биб-

лиотеки OpenFace. 

 

Рисунок 8. Графическое представление извлечения признаков из акустических данных 

Акустическая модальность корпуса POM отражает просодические и голосовые характери-

стики речи, тесно связанные с эмоциональным состоянием говорящего и его убеждающим сти-

лем. Для аудиоанализа используется специализированный набор низкоуровневых дескрипторов, 

извлекаемых с помощью пакета COVAREP. 

Таким образом, результирующее мультимодальное пространство характеризуется размер-

ностью 𝒳 ∈ ℝ128×64×128. 

Для обеспечения стабильности обучения все модели обучались в единой среде на GPU 

NVIDIA RTX 3090 с одинаковыми параметрами оптимизатора (Adam,𝜂 − 0.001, 𝑏𝑎𝑐ℎ 𝑠𝑖𝑧𝑒 = 32). 

Таблица 1 – Ключевые результаты экспериментов 

 

 
Рисунок 9. Сравнение MAE по всем комбинациям рангов для различных методов тензорного 

разложения. Зеленая линия (Tensor Ring), Оранжевая линия (Tensor Train), Синяя линия 

(Tucker) 

По результатам экспериментов (см. зеленую линию на графике MAE), Tensor Ring демон-

стрирует наилучшие показатели точности. Среднее значение MAE ≈ 0.325, минимальное 0.250 

при рангах (4, 5, 3). Это улучшение на ≈10% по сравнению с Tensor Train и на ≈23% по сравнению 

с Tucker. Важно отметить, что TR сохраняет устойчивость ошибки даже при изменении рангов, 

что говорит о его низкой чувствительности к гиперпараметрам и высокой обобщающей способ-

ности. 
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Визуальное сравнение показало, что колебания MAE для TR минимальны, что свидетель-

ствует о высокой стабильности модели. Более того, TR позволяет использовать различные ком-

бинации рангов для каждой модальности (multi-rank), что делает модель адаптивной к неодно-

родной структуре данных. Таким образом, экспериментальные результаты подтверждают, что 

Tensor Ring демонстрирует оптимальное сочетание точности, устойчивости и вычислительной 

эффективности, превосходя не только Tucker и Tensor Train, но и базовый LMF. 

Метод снижения шума и восстановление информации в мультимодальных данных 

В этой части работы мы оцениваем эффективность алгоритмов на синтетических и реаль-

ных тензорных данных. Эксперименты проводились в среде MATLAB на компьютере с процес-

сором Intel(R) Core(TM) i7-5600U с тактовой частотой 2.60 ГГц и оперативной памятью 8 ГБ. 

Первый эксперимент выполнен на синтетических данных. Второй и третий эксперименты посвя-

щены задачам сжатия изображений и видео. Два последних эксперимента демонстрируют при-

менение предложенных подходов к задачам сверхразрешения изображений и глубокого обуче-

ния. 

Синтетические тензоры данных. В этом эксперименте проводится сравнение эффектив-

ности предложенных алгоритмов и базовых методов на синтетических тензорных данных. Пусть 

необходимо сгенерировать случайный тензор с низким трубным рангом (low tubal rank 

approximation). Для этого рассмотрим безошибочный (чистый) тензор  𝑋  ∈  ℝ𝐼1× 𝐼2×𝐼3  с трубным 

рангом R , который определяется как 

𝑋 𝑐𝑙𝑒𝑎𝑛 = 𝑟𝑎𝑛𝑑𝑛(𝐼1, 𝑅, 𝐼3) ∗ 𝑟𝑎𝑛𝑑𝑛(𝑅, 𝐼1, 𝐼3)                                            (21)  

и добавим к нему шумовой член для генерации зашумленного тензора 𝑋 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 = 𝑋 𝑐𝑙𝑒𝑎𝑛 +

𝛿
𝑌

‖𝑌‖
𝐹

‖𝑋 𝑐𝑙𝑒𝑎𝑛‖
𝐹
, где 𝑌 стандартный гауссовский тензор того же размера, что и исходный тензор 

𝑋. 

Таблица 2 – Сравнение времени вычислений и относительных ошибок предложенных алгорит-

мов и усеченного T-SVD. Значения в таблице представлены в виде (время вычислений, относи-

тельная ошибка) 

 

Из таблицы видно, что предложенные алгоритмы (особенно алгоритм 11) значительно сни-

жают время вычислений по сравнению с усеченным T-SVD, при этом точность аппроксимации 

остается на том же уровне или снижается незначительно. 

Сжатие изображений. В данном эксперименте мы оцениваем эффективность предложен-

ных рандомизированных одношаговых алгоритмов при решении задачи сжатия изображений. 

Для экспериментов использовался набор данных Kodak и были рассмотрены четыре изображе-

ния: Kodim15, Kodim17, Kodim18 и Kodim23. Два первых изображения имеют размер 512×768×3, 

а два последних 768×512×3. Мы применили предложенные алгоритмы и сравнили их с базовыми 

методами. 
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Рисунок 10. Восстановленные изображения, полученные с использованием различных 

одношаговых (single-pass) алгоритмов 

Таким образом, результаты показывают, что предложенные алгоритмы обеспечивают более 

точное восстановление изображений, сохраняя при этом высокую вычислительную эффектив-

ность и способность к обработке данных большого размера. 

Сжатие видео. В данном эксперименте исследуется производительность предложенных 

рандомизированных одношаговых алгоритмов при решении задачи сжатия видео. 

В качестве исходных данных использовались видеодатасеты Forema и News. 

Размер каждого видеоролика представлен в виде тензора третьего порядка размером 

144×176×300. Сначала была протестирована эффективность одношаговых алгоритмов для низ-

коранговых тубальных аппроксимаций указанных видеоданных при следующих параметрах 

скетча L=90, K=90, H=20, R=20. Значения PSNR всех кадров видеороликов Foreman и News, 

полученные с помощью предложенных одношаговых алгоритмов и базовых методов, представ-

лены на рисунках 11 и 12. 

 

Рисунок 11. PSNR всех кадров видео News, вычисленный при тех же параметрах скетча 𝐿 =
90, 𝐾 = 90, 𝐻 = 20, 𝑅 = 50. Предложенные алгоритмы показывают высшую производитель-

ность по сравнению с базовыми методами 
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Рисунок 12. PSNR всех кадров видео News, вычисленный при тех же параметрах скетча 𝐿 =
90, 𝐾 = 90, 𝐻 = 20, 𝑅 = 50. Предложенные алгоритмы показывают высшую производитель-

ность по сравнению с базовыми методами 

Также реконструированные кадры некоторых фреймов указанных видео приведены на ри-

сунках 13 и 14. 

 
Рисунок 13. Восстановленные отдельные кадры видео Foreman, полученные при тех же 

параметрах. Наблюдается лучшее качество реконструкции у предложенных одношаговых 

алгоритмов 

 
Рисунок 14. Восстановленные отдельные кадры видео News при тех же параметрах 
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Предложенные методы демонстрируют наиболее точную реконструкцию и устойчивость к 

шумам. Полученные результаты показывают, что предложенные алгоритмы обладают высокой 

устойчивостью к выбору параметров скетча и демонстрируют высокую точность и стабильность 

при сжатии видео. Таким образом, данный пример подтверждает надежность и эффективность 

предложенных рандомизированных одношаговых алгоритмов для задач видеокомпрессии.  

Повышение разрешения изображений. В данном эксперименте мы исследуем эффектив-

ность и применимость предложенных подходов к задаче повышения разрешения изображений 

(super-resolution). В эксперименте использовались пять изображений: Peppers, Airplane, Kodim01, 

Kodim02 и Kodim03. Первые два изображения имеют размер 256 × 256 × 3 и остальные три 

512 × 768 × 3. Все изображения увеличивались в 4 раза по осям 𝑥 и 𝑦, для всех изображений 

использовался тубальный ранг R=60. 

Таблица 3 – Сравнение времени вычислений и значений PSNR (в скобках указано: время, PSNR) 

 

 
Рисунок 15. Результаты суперразрешения, полученные с использованием алгоритма завершения 

тензора и предложенных рандомизированных одношаговых методов для низкорангового при-

ближения оператора ℒ из уравнения 

Результаты показывают, что предложенные рандомизированные алгоритмы фиксирован-

ной точности восстанавливают изображения так же точно, как и детерминированный подход 

(усеченный T-SVD), но требуют значительно меньше вычислительных затрат. Это демонстри-

рует преимущество предложенных одношаговых рандомизированных алгоритмов в задаче повы-

шения разрешения изображений. 

Применение в глубоком обучении. В данном эксперименте рассматривается применение 

предложенного метода завершения тензора к задаче точного обнаружения объектов (object 

detection), одной из ключевых задач компьютерного зрения в контексте глубокого обучения. 

Для демонстрации берутся два изображения, показанные на рисунке 16 (первый столбец). 

В некоторых частях изображений вручную удаляются пиксели, что иллюстрируется на рисунке 

16 (второй столбец). 

 
Рисунок 16. Оригинальные и искаженные изображения, использованные в эксперименте 
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Выполненные эксперименты показали, что при обработке искаженных изображений (с 

утратой части пикселей) качество работы детектора объектов YOLOv3 существенно снижается: 

сеть допускала ошибки классификации (например, собака распознавалась как кошка, лошадь – 

как жираф) и пропускала часть объектов на сцене. После применения предложенного метода за-

вершения тензора в качестве предобработки, позволившего восстановить испорченные изобра-

жения, работа YOLOv3 заметно улучшилась: на восстановленном изображении с собакой кор-

ректно были обнаружены три объекта (велосипед, собака и грузовик) с точным определением 

границ, а на изображении с лошадьми – все четыре лошади без ошибок классификации. Тем са-

мым продемонстрирована эффективность предложенного метода завершения тензора для повы-

шения устойчивости и точности детекции объектов в условиях повреждения или частичной 

утраты пиксельной информации. 

 
Рисунок 17. Результаты обнаружения объектов на искаженных изображениях (слева) и на 

восстановленных изображениях (справа), полученные с помощью метода завершения тензора, 

основанного на предложенных рандомизированных одношаговых алгоритмах 

В данной работе предложены эффективные одношаговые (single-pass) и фиксированной 

точности (fixed-precision) алгоритмы для вычисления низкоранговых тубальных аппроксимаций 

тензоров третьего порядка. На первом этапе были разработаны три новых одношаговых алго-

ритма для низкорангового тубального приближения, а также проведено исследование их устой-

чивости и точности при аппроксимации изображений и видео. Результаты моделирования под-

твердили, что предложенные одношаговые алгоритмы обладают большей устойчивостью, чем 

существующие базовые методы. Кроме того, была продемонстрирована их эффективность в за-

дачах сжатия данных, повышения разрешения изображений и глубокого обучения. Во второй 

части работы были предложены два новых алгоритма фиксированной точности для низкоранго-

вой тубальной аппроксимации. 

Проведенные эксперименты подтвердили, что предложенные методы обеспечивают луч-

шие результаты по сравнению с современными аналогами (state-of-the-art) при меньших затратах 

вычислительного времени. 

ЗАКЛЮЧЕНИЕ 

В ходе диссертационного исследования получены следующие основные результаты 

 Сформирована и обоснована структурная модель интеграции мультимодальных данных 

в виде тензорного представления, обеспечивающая сохранение межмодальных связей и семан-

тической целостности данных. 

 Разработан метод мультирангового тензорного слияния мультимодальных данных, поз-

воляющий уменьшить размерность признакового пространства, снизить риск переобучения и по-

высить устойчивость алгоритмов машинного обучения. 

 Предложен алгоритм подавления шумов и восстановления недостающих элементов дан-
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ных в тензорной форме, обеспечивающий повышение достоверности и полноты исходной ин-

формации. 

 Применены рандомизированные однопроходные алгоритмы для устойчивости глубокой 

нейронной сети, повышения разрешения изображений, сжатия видео и изображений. 

 Создана программа на языке Python, реализующая предложенные методы и обеспечива-

ющая их применение в прикладных задачах обработки мультимодальных больших данных. 

 Проведен комплекс вычислительных экспериментов на реальных и синтетических дан-

ных, подтвердивший преимущество предложенных подходов по сравнению с существующими 

методами по критериям точности, устойчивости и вычислительной эффективности. 
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АННОТАЦИЯ 

Резаиан Наим 

«Методика семантического анализа мультимодальных больших данных на основе применения 

методов машинного обучения» 

 

Диссертационная работа посвящена разработке методов представления, слияния и восстановле-

ния мультимодальных данных на основе тензорных представлений. Актуальность исследования 

обусловлена ограничениями традиционных подходов к интеграции разнородных источников ин-

формации, которые не сохраняют многомерную корреляционную структуру признаков и приво-

дят к потере информативности. Целью работы является создание тензорного аппарата, позволя-

ющего объединять и реконструировать данные различной природы при сохранении их внутрен-

ней структуры и сниженных вычислительных затратах. Обоснована необходимость перехода к 

тензорному представлению мультимодальных данных и выявлены ограничения классических 

разложений, связанные с вычислительной сложностью и чувствительностью к шуму. Предложен 

метод тензорного слияния, обеспечивающий формирование общего латентного пространства без 

вычисления полного декомпозиционного базиса и снижающий риск переобучения. Эксперимен-

тальные исследования на модельных и реальных наборах данных показали, что использование 

разложения Tensor Ring обеспечивает прирост точности мультимодальной аппроксимации до 

32% по сравнению с базовыми решениями и почти двукратное ускорение вычислений относи-

тельно традиционных методов. Возможность выбора различных рангов для отдельных модаль-

ностей обеспечивает адаптивность при анализе асимметричных данных. Показано, что рандоми-

зированные одношаговые процедуры восстановления достигают точности детерминированных 

методов при меньших временных затратах и сохраняют качество реконструкции изображений и 

видео, что подтверждает их применимость в задачах сжатия, суперразрешения и предобработки 

данных для глубинных нейронных сетей, включая повышение точности детекции объектов. 

 

ABSTRACT 

Rezaian Naeim 

«Methodology of Semantic Analysis of Multimodal Big Data Based on the Application of Machine 

Learning Methods» 

 

The dissertation is devoted to the development of methods for representation, fusion, and reconstruction 

of multimodal data based on tensor models. The relevance of the research is determined by the limita-

tions of traditional approaches to the integration of heterogeneous information sources, which fail to 

preserve the multidimensional correlation structure of features and lead to a loss of informativeness. The 

aim of the work is to develop a tensor framework that makes it possible to integrate and reconstruct data 

of different nature while preserving their internal structure and reducing computational costs. The ne-

cessity of switching to tensor representations of multimodal data is substantiated, and the limitations of 

classical decompositions associated with computational complexity and sensitivity to noise are identi-

fied. A tensor fusion method is proposed that provides the formation of a common latent space without 

computing a full decomposition basis and reduces the risk of overfitting. Experimental studies on simu-

lated and real-world data sets have shown that the use of Tensor Ring decomposition yields an increase 

in the accuracy of multimodal approximation of up to 32% compared to baseline solutions and almost a 

twofold speed-up of computations relative to traditional methods. The ability to choose different ranks 

for individual modalities ensures adaptability when analyzing asymmetric data. It is shown that random-

ized reconstruction procedures achieve the accuracy of deterministic methods with lower time costs and 

preserve the quality of image and video reconstruction, which confirms their applicability to problems 

of compression, super-resolution, and data pre-processing for deep neural networks, including improv-

ing object detection accuracy. 


