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Введение 
  

Актуальность темы исследования. Актуальность анализа 

качественного поведения и исследования динамики траекторий 

популяционных моделей связана с необходимостью изучения свойств 

многомерных экологических систем. Одним из классических направлений 

исследования является построение траекторий и фазовых портретов для 

моделей динамики популяций с применением теории устойчивости 

динамических систем. С учетом того, что характер развития и взаимодействия 

видов, их конкуренция и миграция в другие ареалы обитания оказывают 

значимое влияние на эволюцию экосистем, возникает потребность в 

моделировании систем высокой размерности. В процессе построения и 

анализа многомерных популяционных моделей могут выявляться 

существенные особенности, понимание которых требует разработки новых 

методов исследования, создания алгоритмов численного анализа и 

программных средств. 

Направление, связанное с исследованием многомерных популяционных 

моделей, является актуальным в связи с недостаточной изученностью 

нелинейных моделей размерности n ( 3n  ) и в связи с прикладной 

значимостью для описания экосистем. В частности, представляет интерес 

задача построения и анализа конечномерных математических моделей 

популяционной динамики с учетом конкуренции и миграционных потоков. В 

процессе решения указанной задачи возникают вычислительные трудности, 

связанные с большим количеством таких параметров, как скорости миграции 

каждого из видов, параметры внутривидовой и межвидовой конкуренции, 

параметры естественного роста популяций, параметры взаимодействия 

хищников и жертв.  

Решение задач стохастизации и изучение стохастических вариантов 

популяционных моделей с учетом миграционных потоков являются важными 

направлениями исследований. При детерминистическом описании модели не 
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учитываются вероятностные факторы, влияющие на траекторную динамику 

модели. Самым распространенным методом введения стохастики в модель 

является аддитивное добавление стохастического члена, который описывает 

лишь внешнее воздействие и не связан со структурой самой модели. 

Эффективными методами стохастизации являются введение 

мультипликативных и параметрических шумов, а также метод построения 

самосогласованных стохастических моделей. Следует отметить актуальность 

проведения сравнительного анализа динамики детерминированных и 

стохастических миграционно-популяционных моделей, построенных на 

основе введения аддитивных, мультипликативных и параметрических шумов, 

а также с использованием самосогласованных одношаговых процессов.   

В настоящее время моделирование миграционно-популяционных систем 

можно осуществлять с применением различных программных средств, 

обладающих достаточно эффективным набором инструментов для построения 

компьютерных моделей и проведения вычислительных экспериментов. Тем не 

менее, применение известных программных продуктов имеет ограниченные 

возможности для моделирования отдельных классов систем.  В связи с этим 

следует отметить актуальность применения языков программирования общего 

назначения для исследования миграционно-популяционных моделей. 

Компьютерное моделирование с использованием языков программирования 

общего назначения позволяет разрабатывать специализированные 

интерфейсы и получать результаты в случае достаточно высокой размерности 

с учетом увеличения количества фазовых переменных. 

Диссертация посвящена построению и анализу многомерных 

математических моделей популяционной динамики в детерминированном и 

стохастическом случаях с учетом трофических взаимодействий, конкуренции 

видов и миграционных потоков, а также разработке алгоритмов и 

компьютерных программ для изучения динамики и устойчивости 

рассматриваемых моделей. 
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Степень разработанности темы. Начиная с классических трудов 

А. Пуанкаре и А.М. Ляпунова, вопросами исследования систем 

дифференциальных уравнений и их приложений к моделированию в 

естествознании занимались многие отечественные и зарубежные ученые, 

среди которых Н.Г. Четаев [151], Н.Н. Красовский, Е.А. Барбашин [91], 

В.В. Румянцев, В.В. Степанов, И.Г. Малкин, В.И. Зубов, Н.П. Еругин, 

А.А. Шестаков [152], В.А. Якубович, Г.А. Леонов, Б.С. Разумихин, 

Б.П. Демидович, В.М. Матросов, С.Н. Васильев, Е.А. Гребеников, Ж.П. Ла 

Салль, С. Лефшец [128], Дж. Биркгоф, Ф. Хартман, Ч. Олех, Дж. Хейл, 

Л. Хатвани, А. Денес, Л.Л. Стачо, М.Т. Терехин, С.С. Мамонов, А.С. Андреев, 

В.Н. Щенников, Ю.Н. Меренков [137], М.Д. Малых [89], Н.О. Седова, 

Е.Ю. Лискина [129, 130], С.В. Павликов. 

Формализации и аналитическому исследованию популяционных 

моделей, описываемых системами дифференциальных уравнений, посвящены 

классические работы А. Лотки [46] и В. Вольтерры [79]. Вопросы построения 

и устойчивости популяционных моделей рассмотрены в трудах таких 

известных исследователей, как Ю.М. Свирежев [146], Д.О. Логофет [132], 

А.Д. Базыкин, В.Н. Разжевайкин [131, 141, 142], Н.В. Белотелов, А.С. Братусь, 

А.С. Новожилов [92], А.Ю. Александров [87], Ю.А. Пых [140] и др. 

Популяционные модели, учитывающие различные типы взаимодействия в 

популяционном сообществе, изучены в работах таких ученых, как В. Хатсон, 

Г.Т. Викерс [35], Г. Кирлингер [37, 38, 39], Х.И. Фридман, Б. Рей [59], Л. Чен, 

Дж. Жанг [84], В.Г. Цыбулин [88],  Х.К. Таквелл [71], Л.Дж. Аллен [2], 

Я. Такеучи [69]. Системы популяционной динамики с конкуренцией и 

мутуализмом, миграцией представлены в трудах О.В. Дружининой, 

А.В. Демидовой, М. Ячимовича, О.Н. Масиной, А.А. Петрова [14–23].  

Аналитическое исследование нелинейных систем обыкновенных 

дифференциальных уравнений размерности 3n   часто вызывает 

существенные трудности. В частности, при поиске стационарных состояний 

возникают трудности ввиду большого количества параметров, которые могут 
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включать в себя скорости миграции каждого из видов, параметры 

внутривидовой и межвидовой конкуренции, параметры естественного роста 

популяций, параметры взаимодействия хищников и жертв и другие 

параметры. В связи с этим исследования последних десятилетий часто связаны 

с применением численных методов, методов оптимизации, методов 

искусственного интеллекта.  

В работах К.В. Гардинера [109] и Н.Г. Ван Кампена [74] разработана 

комбинаторная методология стохастизации моделей и рассмотрены 

приложения теории стохастических дифференциальных уравнений в физике, 

химии и других естественных и технических науках. Согласно указанной 

методологии, эволюция во времени многомерных систем рождения–гибели 

может быть рассмотрена как результат индивидуальных взаимодействий 

между элементами этой системы. Для описания системы используется 

основное кинетическое уравнение, учитывающее распределение вероятностей 

перехода из одного состояния системы в другое. Рассмотренная методология 

лежит в основе метода построения самосогласованных стохастических 

моделей. Развитию этого метода, моделированию динамических систем с его 

применением и разработке программных средств для реализации метода 

посвящены работы ученых: Л.А. Севастьянов, Д.С. Кулябов, А.В. Демидова, 

М.Н. Геворкян, А.В. Королькова, Т.Р. Велиева [31, 32, 40]. Для различных 

типов многомерных популяционных моделей с учетом внутривидовых 

взаимодействий, межвидовых взаимодействий и миграционных потоков метод 

построения самосогласованных стохастических моделей использован в трудах 

А.В. Демидовой, О.В. Дружининой, О.Н. Масиной [112–125].  

Цикл статей И.Н. Синицына, В.И. Синицына [147–150] посвящен 

разработке методов аналитического моделирования, методов фильтрации и 

экстраполяции процессов в вольтерровских стохастических системах. 

Авторами изучено условно-оптимальное линейное оценивание нормальных 

процессов, а также исследованы распределения с инвариантной мерой в 

вольтерровских стохастических системах. 
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Исследование многомерных миграционно-популяционных моделей 

требует привлечения численных методов оптимизации для оценки 

параметров. Применение эволюционных алгоритмов, инспирированных 

природой, изложено в работах А.П. Карпенко [126], Д. Саймона [145]. Одним 

из эффективных эволюционных алгоритмов оптимизации является 

дифференциальная эволюция. Дифференциальная эволюция базируется на 

алгоритме генетического отжига, разработанного К. Прайсом и дополненного 

Р. Сторном [56]. На основе дифференциальной эволюции З.Б. Новиков, 

А.В. Вахнин [52], Л.Д. Егорова, Л.А. Казаковцев, В.Н. Крутиков, Е.М. Товбис, 

А.В. Федорова [27] разработали модификации алгоритмов оптимизации с 

применением гибридного эволюционного подхода. В ряде работ 

О.В. Дружининой, О.Н. Масиной, А.А. Петрова [116–119] модификации 

алгоритма дифференциальной эволюции использовались для поиска 

оптимальных параметров некоторых типов популяционных моделей. 

В настоящее время требуется дальнейшее развитие методов оптимизации 

параметров на основе создания новых модификаций дифференциальной 

эволюции с учетом адаптации к миграционно-популяционным моделям, а 

также проведение анализа влияния миграционных потоков и случайных 

колебаний различного характера на динамику многомерных систем. 

Цель диссертационной работы является развитие методов 

моделирования систем с миграционными потоками, исследование свойств 

моделей на основе анализа динамического поведения и численной 

оптимизации, а также создание алгоритмов и специализированного 

программного комплекса для изучения траекторной динамики, поиска 

оптимальных параметров и выявления особенностей влияния миграционных 

потоков на поведение систем. 

Для достижения этой цели в диссертационной работе решаются 

следующие задачи: 

 систематизация построения многомерных миграционно-

популяционных моделей с конкуренцией; 
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 разработка критериев оптимальности, направленных на обеспечение 

сосуществования видов в основном ареале и существования видов в ареалах 

миграции (интегральный критерий и критерий по норме отклонения); 

 разработка численного метода поиска оптимальных параметров 

миграционно-популяционных моделей; 

 анализ траекторной динамики детерминированных и стохастических 

миграционно-популяционных моделей;  

 исследование устойчивости состояний равновесия трехмерных 

миграционно-популяционных моделей с применением метода функций 

Ляпунова; 

проведение вычислительных экспериментов с учетом вариативности 

параметров миграционно-популяционных моделей и обоснование результатов 

сравнительного анализа в детерминированном и стохастическом случаях. 

Научная новизна диссертационной работы:  

1. Построены обобщенные конечномерные динамические миграционно-

популяционные модели. 

2. Получены новые условия сосуществования видов для модели «два 

конкурента – один ареал миграции» с одинаковыми и различными скоростями 

миграции. Предложены условия асимптотической устойчивости 

положительных состояний равновесия на основе метода функций Ляпунова. 

3. Впервые разработаны критерии оптимальности, обеспечивающие как 

сосуществование видов в основном ареале, так и существование видов в 

убежищах.  

4. Предложена новая модификация метода дифференциальной эволюции 

с учетом специфики миграционно-популяционных моделей. 

5. С учетом рассматриваемых условий найдены оптимальные параметры 

миграционно-популяционных моделей на основе модифицированной 

дифференцированной эволюции и других численных методов оптимизации.  
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6. Изучено влияние вариативности параметров на траекторную динамику, 

что позволило выявить новые качественные эффекты детерминированных 

миграционно-популяционных систем.  

7. Применение алгоритма стохастизации на основе возмущения 

аддитивными, мультипликативными и параметрическими случайными 

шумами позволило провести сравнительный анализ детерминированных и 

соответствующих им стохастических моделей миграционно-популяционного 

типа. 

8. Для изучения динамики детерминированных и стохастических 

миграционно-популяционных моделей и поиска оптимальных параметров 

разработан программный комплекс. 

Теоретическая и практическая значимость работы.  

Результаты исследования могут быть использованы для моделирования и 

прогнозирования динамики популяций в природных экосистемах. Это 

особенно важно для понимания механизмов конкуренции между видами, 

миграционных процессов и их влияния на устойчивость экосистем. 

Полученные результаты могут найти применение при решении задач 

компьютерного моделирования, задач устойчивости, стабилизации и 

обеспечения сосуществования видов для популяционных моделей, задач 

прогнозирования динамического поведения экологических систем. 

Численные методы и алгоритмы, разработанные в ходе исследования, могут 

быть использованы для создания специализированного программного 

обеспечения, предназначенного для анализа сложных многомерных систем. 

Алгоритмы поиска оптимальных параметров могут быть использованы при 

решении задач глобальной параметрической оптимизации, компьютерного 

моделирования многомерных экологических систем. Результаты могут найти 

применение при решении задач вычислительной биологии и биоинформатики, 

а также при решении задач анализа сложных динамических систем с учетом 

случайных факторов. 
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Методы исследования. В диссертации использованы методы 

математического моделирования, теории устойчивости динамических систем, 

качественной теории дифференциальных уравнений, численные методы 

решения нелинейных дифференциальных уравнений; численные методы 

оптимизации. 

Положения, выносимые на защиту. 

1. Построены миграционно-популяционные модели с трофическими 

взаимодействиями, конкуренцией видов и миграционными потоками. 

2. Осуществлен поиск оптимальных параметров детерминированных 

моделей с учетом предложенных критериев качества и поиск на их основе 

приближенных состояний равновесия. 

3. Получены результаты исследования траекторной динамики 

детерминированных моделей. Построены фазовые портреты и их проекции 

для моделей высокой размерности и проведен анализ устойчивости. 

Выполнена оценка влияния вариативности параметров на траекторную 

динамику. 

4. Разработан алгоритм перехода от детерминированной к 

стохастической модели. 

5. Получены результаты исследования траекторной динамики 

стохастических моделей с учетом аддитивных и мультипликативных 

гауссовых шумов. 

6. Разработан комплекс проблемно-ориентированных компьютерных 

программ для поиска оптимальных параметров на основе модифицированного 

алгоритма дифференциальной эволюции. 

Степень достоверности и апробация результатов. 

Достоверность результатов исследования подтверждается их 

согласованностью с результатами вычислений, полученными другими 

авторами в ходе тестирования. Результаты диссертации докладывались и 

обсуждались на следующих конференциях и научных семинарах: 

всероссийской конференции с международным участием «Информационно-
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телекоммуникационные технологии и математическое моделирование 

высокотехнологичных систем» (Москва, РУДН), всероссийской научной 

конференции «Дифференциальные уравнения и их приложения» (Рязань, РГУ 

имени С.А. Есенина), международной конференции «Математическая 

биология и биоинформатика» (институт математических проблем биологии 

РАН – филиал Института прикладной математики им. М.В. Келдыша РАН, г. 

Пущино), научно-исследовательском семинаре «Методическое обеспечение и 

средства моделирования динамических систем с применением архитектур 

СВТ на отечественной аппаратно-программной платформе» (Москва, ФИЦ 

ИУ РАН). 

Основные результаты опубликованы в научных журналах: Discrete and 

Continuous Models and Applied Computational Science, Нелинейный мир, 

Современные информационные технологии и ИТ–образование. 

Реализация результатов работы.  

Ряд результатов исследования используется в учебном процессе в ФГБОУ 

ВО «Елецкий государственный университет им. И.А. Бунина» при обучении 

студентов специальностей 09.03.01 Информатика и вычислительная техника, 

09.03.02 Информационные системы и технологии, 01.03.02 Прикладная 

математика и информатика. Кроме того, результаты использованы при 

разработке учебных пособий: 

О.Н. Масина, О.В. Дружинина, А.А. Петров, И.И. Васильева. 

Инструментальные средства языков программирования для решения задач 

математического моделирования. – Елец: Елецкий государственный 

университет им. И.А. Бунина, 2024. – 118 с. ISBN 978-5-00151-444-2. 

А.А. Петров, О.Н. Масина, О.В. Дружинина, И.И. Васильева. 

Компьютерное моделирование нелинейных динамических систем с 

применением современных языков программирования. – Елец: Елецкий 

государственный университет им. И.А. Бунина, 2025. – 128 с. 

Публикации. По теме диссертации опубликовано 24 работы, из которых 

3 работы ([75, 76, 77]) – в изданиях Scopus, 1 работа ([124]) – в ведущих 
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рецензируемых журналах и изданиях, определенных Высшей аттестационной 

комиссией, 1 свидетельство о государственной регистрации программы для 

ЭВМ [105]. 

Соответствие паспорту специальности. Диссертационное 

исследование соответствует следующим разделам паспорта специальности 

1.2.2 «Математическое моделирование, численные методы и комплексы 

программ»:  

– п. 1 «Разработка новых математических методов моделирования 

объектов и явлений (физико-математические науки)» в части развития 

методов моделирования динамических популяционных систем; 

– п. 2 «Разработка, обоснование и тестирование эффективных 

вычислительных методов с применением современных компьютерных 

технологий» в части создания и тестирования вычислительных алгоритмов 

решения задачи; 

– п. 3 «Реализация эффективных численных методов и алгоритмов в виде 

комплексов проблемно-ориентированных программ для проведения 

вычислительного эксперимента» в части создания программного комплекса 

для анализа моделей, поиска параметров и визуализации исследования 

траекторной динамики; 

– п. 5. «Разработка новых математических методов и алгоритмов 

валидации математических моделей объектов на основе данных натурного 

эксперимента или на основе анализа математических моделей» в части 

модификации математических методов и алгоритмов. 

Личный вклад. Разработанные в диссертационной работе модели, 

программные средства и анализ моделей выполнены автором самостоятельно 

или в соавторстве. 

Объем и структура работы. Структура диссертационной работы состоит 

из введения, четырех глав, заключения и списка литературы. Работа изложена 

на 155 страницах, список литературы содержит 152 наименования работ 
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отечественных и зарубежных авторов. Работа содержит 60 рисунков и 8 

таблиц.  

Краткое изложение диссертации. Работа состоит из четырех глав. Во 

введении обоснована актуальность темы, сформулированы цель и задачи 

работы, аргументирована научная новизна, показана практическая значимость 

полученных результатов.  

В первой главе представлен аналитический обзор методов и результатов 

математического моделирования систем популяционной динамики.  

В разделе 1.2 перечислены аспекты применения методов математического 

моделирования для исследования систем популяционной динамики;  

в разделе 1.3 описаны обобщения и модификации классических моделей  

Лотки–Вольтерры; в разделе 1.4 рассмотрены прикладные задачи, связанные 

с построением конечномерных моделей с конкуренцией и миграцией;  

в разделе 1.5 описаны численные методы поиска оптимальных параметров 

популяционно-миграционных моделей; в разделе 1.6 представлены методы 

вероятностного анализа стохастических систем популяционной динамики.   

Во второй главе описано построение, компьютерное исследование и 

анализ устойчивости миграционно-популяционных моделей с конкуренцией. 

В разделе 2.2 рассмотрен метод дифференциальной эволюции для поиска 

оптимальных параметров модели. Методология дифференциальной эволюции 

адаптирована к широкому спектру алгоритмов оптимизации, в то же время в 

отдельных задачах требуется дополнительный анализ производительности и 

адаптация к изучаемым математическим моделям. При реализации 

программного комплекса используется модифицированная стратегия best1bin 

дифференциальной эволюции с учетом коэффициента биномиального 

распределения. Указанная стратегия обеспечивает наилучшее решение, 

найденное в родительской популяции, а также более быстрое приближение к 

оптимальному решению. В случае популяционно-миграционных 

динамических моделей высокой размерности целесообразно управлять такими 

параметрами, как погрешность вычислений, оптимальный выбор масштабного 
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коэффициента F и вероятности распределения пробного вектора Cr.  

В разделе 2.3 приводится построение и анализ популяционных динамических 

моделей типа «n конкурентов – n ареалов миграции». В разделе 2.4 

произведено построение и качественное исследование популяционных 

динамических моделей типа «n конкурентов – (n–1) ареалов миграции».  

Предложена общая нелинейная многомерная миграционно-популяционная 

модель, в которой k видов мигрирует в 2k ареалов в условиях наличия k 

конкурентов размерности n = 3k, причем n  3. Изучена пятимерная модель 

«три конкурента – два ареала миграции», в которой учитывается влияние 

попарной межвидовой конкуренции в трех популяциях с двунаправленной 

миграцией только двух популяций. В разделе 2.5 рассмотрено компьютерное 

моделирование популяционных динамических систем «хищник – жертва» с 

учетом внутривидовой конкуренции и миграции видов. В разделе 2.6 

продолжено изучение моделей с трофическими взаимодействиями. 

Рассмотрены пищевые цепи вида «жертва – хищник – суперхищник» с учетом 

двунаправленной миграции жертвы в убежище. В разделе 2.7 получены 

условия сосуществования видов и условия устойчивости состояний 

равновесия с применением функций Ляпунова.  

В третьей главе осуществлена стохастизация изученных во второй главе 

моделей и их модификаций на основе аддитивных, мультипликативных и 

параметрических шумов, а также метода построения самосогласованных 

моделей. В разделе 3.2 для описания структуры стохастической модели 

использованы уравнения Фоккера–Планка и выполнен переход к системе 

уравнений в форме Ланжевена. В разделе 3.3 проведен сравнительный анализ 

результатов вычислительных экспериментов для детерминированных и 

стохастических моделей. В разделе 3.4 проведен сравнительный анализ 

траекторной динамики моделей, построенных с учетом аддитивных, 

мультипликативных шумов и с использованием метода построения 

самосогласованных стохастических моделей. Стохастическое моделирование 
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позволило выявить характер траекторий стохастических моделей с учетом 

вариативности параметра, характеризующего интенсивность шума. 

В четвертой главе приведены алгоритмы и программный комплекс 

моделирования миграционно-популяционных систем. В разделе 4.2 дано 

описание основных алгоритмов моделирования миграционно-популяционных 

систем; в разделе 4.3 приведена общая структура программного комплекса для 

построения и исследования популяционных моделей; в разделе 4.4 

представлено детальное описание модулей программного комплекса на 

соответствующих программных листингах. В разделе 4.5 приведен пример 

функционирования модулей программного комплекса для исследования 

модели вида «два конкурента – один ареал миграции». В разделе 4.6 

представлен анализ функциональности и дано обоснование рекомендаций 

использования программного комплекса. 

В заключении перечислены основные выводы и результаты, полученные 

в диссертации. 
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Глава 1. Аналитический обзор методов и результатов  

математического моделирования систем популяционной динамики 

 

1.1. Введение 
 

В главе 1 проведен обзор методов математического моделирования для 

исследования динамических режимов экологических систем. 

Охарактеризованы актуальные экологические проблемы, а также 

математические и компьютерные методы моделирования экосистем. 

Описание моделей задается с помощью многомерных нелинейных 

дифференциальных уравнений, обобщающих уравнения Лотки–Вольтерры. 

Предложено построение конечномерных динамических моделей экосистем с 

конкуренцией и миграцией. 

Одним из распространенных подходов к описанию экологических 

объектов является подход на основе популяционного описания с учетом 

свойства живых систем образовывать популяции. Популяционное описание 

живых систем использовано для формализации классических популяционных 

моделей, авторами которых являются А. Лотка и В. Вольтерра [46, 79, 108]. 

Важным направлением исследований является обобщение уравнений  

Лотки‒Вольтерры, проведение численного и качественного анализа решений. 

Классическим направлением исследования является построение 

траекторий и фазовых портретов для моделей динамики популяций с 

применением теории устойчивости динамических систем. Вопросы, 

связанные с изучением устойчивости популяционных моделей, рассмотрены, 

например, в [1, 14, 20, 29, 83, 87, 91, 112, 117–119, 125, 128, 133, 135, 146, 149, 

151]. Анализ устойчивости и компьютерное моделирование популяционных 

систем дает возможность оценить влияние параметров моделей на 

возможность длительного сосуществования видов, решить ряд задач 

прогнозирования численности популяций, обосновать использование того или 

иного набора параметров модели с учетом ее адекватности. 
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Популяционные динамические модели характеризуются тем, что при их 

описании необходимо учитывать различные типы взаимодействия в 

популяционном сообществе, например, внутривидовая конкуренция, 

межвидовая конкуренция, трофические взаимодействия, миграция, мутуализм 

[6, 24, 34–39, 54, 59, 68–71]. Проводятся исследования, связанные с изучением 

свойств многомерных экологических и демографических систем с учетом 

конкуренции и миграционных потоков [1, 2, 7, 8–12, 25, 50, 53, 60, 71, 81–84]. 

Как показывают результаты, влияние миграции может быть существенным, а 

наличие миграционных потоков приводит возникновению новых 

качественных эффектов. Наличие миграционных потоков в популяционной 

системе связано с адаптивным изменением поведения организма при 

изменившихся условиях среды, в частности, при ухудшении 

эпидемиологической обстановки или при возрастании популяционных 

плотностей [74]. При построении моделей мы можем описывать механизмы 

миграции с помощью линейных и нелинейных функций [2, 71, 149–152]. 

Устойчивость и качественное поведение миграционно-популяционных 

моделей рассматривались в [64, 90, 128, 137, 140]. 

Моделирование популяционно-миграционных систем осуществляется с 

применением различных программных средств, обладающих достаточно 

эффективным набором инструментов для построения компьютерных моделей 

и проведения вычислительных экспериментов. Тем не менее, некоторые 

программные продукты не располагают библиотеками для численно-

символьных расчетов и не обладают достаточной вычислительной 

сложностью. В связи с этим в ходе исследования моделей популяционно-

миграционных систем актуальным целесообразно привлекать прикладные 

математические пакеты и языки программирования общего назначения [47, 

78]. Такой подход к моделированию позволяет проводить исследование 

многомерных систем как с учетом различных типов внутривидовых и 

межвидовых взаимодействий, так и с учетом варьирования параметров.   
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При построении гауссовских стохастических моделей небольшой 

размерности используются одномерные уравнения Фоккера–Планка [5]. Для 

многомерных моделей чаще всего используются простейшие линейные 

модели с аддитивными шумами, однако, такой подход не полной мере 

учитывает стохастические процессы в системе. Разработанным направлением 

является стохастическое моделирование динамических систем на основе 

метода построения самосогласованных одношаговых моделей [14–23, 31, 32, 

40, 111, 112, 114]. С помощью указанного метода можно выполнить 

алгоритмизированный переход к стохастической модели и провести оценку 

влияния стохастики на качественные свойства модели. Данная оценка 

выполняется посредством сравнительного анализа детерминированных и 

стохастических моделей при выбранных наборах параметров. При изучении 

моделей высокой размерности выбор параметров можно осуществлять 

посредством применения эволюционных алгоритмов [3, 4, 13, 27, 28, 30, 42, 

48, 51, 52, 56, 58, 66, 67, 80]. Различные системы популяционной динамики (с 

конкуренцией, мутуализмом, миграцией) на основе самосогласованных 

моделей рассмотрены в [14, 19–23]. 

 

1.2. Аспекты применения методов математического моделирования для 

исследования систем популяционной динамики 

 

Одной из важных тенденций компьютерного моделирования 

популяционных систем является исследование многомерных моделей с 

учетом различных типов взаимодействий. Изучение математических моделей 

популяционной динамики относится к актуальным направлениям научных 

исследований в связи с постоянным возрастанием потребностей общества в 

биологических ресурсах, с необходимостью рационального использования 

этих ресурсов и с расширением возможностей прогнозирования 

эволюционного развития [73, 81, 110]. Для всех популяций характерны такие 

процессы, как рождение и гибель особей, а для некоторых популяций присущи 
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миграция в другой ареал обитания, внутривидовая и межвидовая конкуренция. 

Эти процессы связаны нелинейными зависимостями с большим количеством 

переменных. Анализ и синтез математических моделей популяционной 

динамики являются стандартными процедурами, позволяющими выявить 

характер взаимодействий между видами, оценить влияние параметров модели 

на траекторную динамику и устойчивость системы [1, 8, 11, 12, 14, 15, 20–22].  

В процессе анализа экологических моделей могут выявляться 

существенные особенности, понимание которых требует разработки новых 

методов исследования. Характер развития и взаимодействия видов, их 

конкуренция и миграция в другие ареалы обитания оказывают значимое 

влияние на эволюцию изучаемых экосистем. Одним из классических 

направлений исследования является построение траекторий и фазовых 

портретов для моделей динамики популяций с применением теории 

устойчивости динамических систем. Вопросы, связанные с изучением 

устойчивости популяционных моделей, рассмотрены, например, в [57, 83, 87, 

110, 140, 146]. Анализ устойчивости и компьютерное моделирование 

популяционных систем дает возможность оценить влияние параметров 

моделей на возможность длительного сосуществования видов, решить ряд 

задач прогнозирования численности популяций, обосновать использование 

того или иного набора параметров модели с учетом ее адекватности. 

Популяционные динамические модели характеризуются тем, что при их 

описании необходимо учитывать различные типы взаимодействия в 

популяционном сообществе, например, внутривидовая конкуренция, 

межвидовая конкуренция, трофические взаимодействия, миграция, мутуализм 

[30, 59, 146]. Например, проводятся исследования, связанные с изучением 

свойств многомерных экологических и демографических систем с учетом 

конкуренции и миграционных потоков [19, 54, 84]. Как показывают 

результаты, влияние миграции может быть существенным, а наличие 

миграционных потоков приводит возникновению новых качественных 

эффектов. Наличие миграционных потоков в популяционной системе связано 
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с адаптивным изменением поведения организма при изменившихся условиях 

среды, в частности, при ухудшении эпидемиологической обстановки или при 

возрастании популяционных плотностей [11, 36]. При построении моделей 

механизмы миграции, как правило, описываются с помощью линейных и 

нелинейных функций [147–150]. Устойчивость и качественное поведение 

миграционно-популяционных моделей рассматривались в [151, 152]. 

Направление, связанное с исследованием многомерных моделей 

популяционной динамики, является актуальным в связи с недостаточной 

изученностью нелинейных моделей большой размерности и в связи с 

прикладной значимостью для описания экосистем. Построение и 

исследование многомерных популяционных моделей направлено на решение 

задач прогнозирования поведения видов в различных условиях и на получение 

условий сохранения биологических ресурсов.   

В настоящее время изучение экологических проблем часто связано с 

описанием многомерных процессов и с обработкой больших массивов данных. 

С учетом этой тенденции современные исследования экосистем требуют 

привлечения методов и технологий математического и компьютерного 

моделирования, в том числе методов и технологий, связанных с машинным 

обучением, с нейронными сетями, с численной оптимизацией на основе 

эволюционных алгоритмов. 

Качественное и численное исследование динамических популяционных 

моделей высокой размерности требует привлечения методов и технологий 

математического и компьютерного моделирования, в том числе методов и 

технологий, связанных с машинным обучением, нейронными сетями и 

численной оптимизацией на основе эволюционных алгоритмов. 

Эволюционные алгоритмы основаны на применении таких понятий 

биологической эволюции, как отбор, мутация и воспроизводство особей. 

Технологии «мягких вычислений» включают в себя эволюционные методы 

оптимизации, нечеткую логику и нейронные сети. Дифференциальная 

эволюция является стохастическим популяционным алгоритмом, впервые 
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представленном Сторном и Прайсом в 1995 году для глобальной оптимизации 

функций с вещественными параметрами [56, 66, 67]. В настоящее время 

продолжается развитие метода. В [30] предложен модифицированный 

алгоритм, который объединяет методологию глобального поиска 

дифференциальной эволюции с возможностями локального поиска алгоритма 

байесовской оптимизации. Указанная модификация позволяет моделировать 

интеллектуальную среду управления водными ресурсами.  

Методология дифференциальной эволюции адаптирована к широкому 

спектру алгоритмов оптимизации, в то же время в отдельных задачах 

требуется дополнительный анализ производительности и адаптация к 

изучаемым математическим моделям. В миграционно-популяционных 

моделях при реализации алгоритма дифференциальной эволюции необходимо 

учитывать: 

– диапазоны параметров модели; 

– неотрицательность фазовых переменных; 

– расположение траекторий решений в неотрицательном ортанте 

фазового пространства; 

– возможность исследования многомерных моделей; 

– экологический смысл оптимизационных критериев. 

Отметим, что различные модификации дифференциальной эволюции 

могут использоваться при решении прикладных задач. Например, в [4] 

представлен алгоритм, который оптимизирует искусственные нейронные сети 

с использованием дифференциальной эволюции. Данный метод имеет отличия 

от классической дифференциальной эволюции при построении этапов 

мутации и скрещивания. Авторами создана новая самоадаптивная версия 

дифференциальной эволюции под названием MAD-ShaDE с уменьшенным 

количеством параметров. Алгоритм использует прямое кодирование с взаимно 

однозначным отображением между весами нейронных сетей и значениями 

индивидов в популяции. 



23 
 

Моделирование миграционно-популяционных систем осуществляется с 

применением различных программных средств, обладающих достаточно 

эффективным набором инструментов для построения компьютерных моделей 

и проведения вычислительных экспериментов [65]. Тем не менее, некоторые 

программные продукты не располагают библиотеками для численно-

символьных расчетов и не обладают достаточной вычислительной 

сложностью. В связи с этим в ходе исследования моделей миграционно-

популяционных систем актуальным целесообразно привлекать прикладные 

математические пакеты и языки программирования общего назначения. Такой 

подход к моделированию позволяет проводить исследование многомерных 

систем как с учетом различных типов внутривидовых и межвидовых 

взаимодействий, так и с учетом варьирования параметров.   

Как известно, что при построении гауссовских стохастических моделей 

небольшой размерности используются одномерные уравнения  

Фоккера–Планка. Для многомерных моделей чаще всего используются 

простейшие линейные модели с аддитивными шумами, однако, такой подход 

не полной мере учитывает стохастические процессы в системе. 

Перспективным направлением является стохастическое моделирование 

динамических систем на основе метода построения самосогласованных 

одношаговых моделей [31, 32, 40]. С помощью указанного метода мы можем 

выполнить алгоритмизированный переход к стохастической модели и 

провести оценку влияния стохастики на качественные свойства модели. 

Данная оценка выполняется посредством сравнительного анализа 

детерминированных и стохастических моделей при выбранных наборах 

параметров. При изучении моделей высокой размерности выбор параметров 

можно осуществлять посредством применения эволюционных алгоритмов [3, 

4, 27, 28]. Различные системы популяционной динамики с конкуренцией, 

мутуализмом, миграцией на основе самосогласованных моделей рассмотрены 

в [14–23]. 
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1.3. Обобщения и модификации классических моделей  

Лотки–Вольтерры 

 

Одним из распространенных подходов к описанию экологических 

объектов является подход на основе популяционного описания с учетом 

свойства живых систем образовывать популяции. Популяционное описание 

живых систем использовано для формализации классических популяционных 

моделей, авторами которых являются А. Лотка и В. Вольтерра [46, 108].  

С помощью метода популяционного описания иллюстрируется тот факт, что 

сложные динамические режимы численности популяции (колебания и 

вспышки численности) могут объясняться межвидовыми или 

внутривидовыми взаимодействиями. В. Вольтерра рассматривал системы 

дифференциальных уравнений, описывающих сосуществование двух видов – 

либо борющихся за одну пищу (одна из разновидностей конкуренции), либо 

случай пожирания одного вида другим (модель «хищник–жертва»). 

Для многомерного случая модель Лотки–Вольтерры задается с помощью 

следующей системы обыкновенных дифференциальных уравнений: 

1

, 1, , ,
n

i i i ij j
j

x x a p x i n


 
   

 
          (1.1) 

где xi – фазовые переменные, отвечающие плотностям популяций в момент 

времени t, ix – производные по времени, ai – коэффициенты естественного 

прироста, pii – коэффициенты внутривидового конкурентного взаимодействия, 

pij при i≠j – коэффициенты межвидового конкурентного взаимодействия. 

Система уравнений (1.1) определяет динамику такого биологического 

сообщества, для которого относительная скорость роста каждой из популяций 

не зависит от внутрипопуляционной структуры и линейно зависит от 

плотностей популяций, составляющих сообщество. В различных работах 

наряду с моделью (1.1) исследователи рассматривают модификации и 

обобщения модели (1.1) как с учетом добавления типов взаимодействий, так и 
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с учетом расширения набора функциональных зависимостей для описания 

взаимодействий [6, 33].  

При изучении популяционных систем теоретический и прикладной 

интерес представляют такие вопросы, как построение, аналитическое и 

численное исследование многомерных динамических моделей с учетом 

конкурентных взаимодействий и миграционных потоков. Указанные модели 

можно рассматривать в качестве обобщений классической модели  

Лотки–Вольтерры. 

Система уравнений Лотки‒Вольтерры и ее обобщения находят 

применение не только при моделировании экологических систем с учетом 

рассмотрения биомассы, но также используется при моделировании 

экономических систем с учетом рассмотрения капитала. В [70] дан обзор и 

проведен анализ некоторых моделей, базирующихся на модели «хищник–

жертва». В частности, рассмотрены следующие модели: «урбанистическая» 

модель, модель конкурентной среды фондовой биржи, банковская модель и 

модель замещения старых технологий новыми с использованием 

промежуточных технологий-связок.  

В [73] анализируется динамика математической модели экологической 

системы, состоящей из двух конкурирующих многолетних видов, каждый из 

которых ведет оседлый образ жизни. Это индивидуальная модель, в которой 

описывается рост каждой особи. Скорость этого роста ослабляется 

конкуренцией со стороны соседних особей. Сила влияния конкурентов 

зависит от их размера и расстояния до них. Предусмотрены условия, при 

которых имеет место конкурентное исключение одного из конкурентов или 

одновременное сосуществование обоих конкурентов. 

Важными методами изучения многомерных обобщений модели Лотки–

Вольтерры являются первый и второй методы Ляпунова [87, 140]. В [141] 

предложено обобщение классической системы Лотки–Вольтерра на случай, 

когда фазовые переменные в правых частях системы (1.1) заменяются на 

непрерывно дифференцируемые функции от указанных переменных. Такое 
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обобщение системы (1.1) позволяет рассматривать более широкий круг задач, 

возникающих в приложениях. В [141] сформулированы результаты о 

глобальной устойчивости решений обобщенных систем для двух классов 

матриц взаимодействий. Эти результаты получены на основе метода функций 

Ляпунова и применены для анализа моделей сообществ типа хищник–жертва 

и сообществ с конкурентными взаимодействиями. 

Следует отметить, что от детерминированной модели (1.1) возможен 

переход к различным типам соответствующих недетерминированных моделей 

[62, 119]. В [118] рассмотрен принцип сведения задачи об устойчивости 

дифференциального включения к задаче об устойчивости нечеткой системы 

применительно к популяционным системам. Получены теоремы об 

устойчивости на основе метода функций Ляпунова и перехода к 

дифференциальному включению и нечеткому дифференциальному 

уравнению. Для решения задач об устойчивости включения и нечеткого 

уравнения использован метод обобщенных функций Ляпунова. Важно 

отметить, что благодаря переходу от обыкновенной системы к 

дифференциальному включению и нечеткому дифференциальному 

уравнению удается рассмотреть модели, учитывающие разные скорости 

миграции видов в летний и зимний периоды, изменчивость в уровне 

доступности пищи, климатических условиях, уровне рождаемости и т.д. 

Теоретический и прикладной интерес представляет обобщение модели 

(1.1) на случай миграционных потоков. В частности, часть популяции может 

мигрировать из основного ареала в убежище, например, вследствие 

конкуренции в основном ареале или неблагоприятной эпидемиологической 

ситуации. Миграционные эффекты могут описываться с помощью добавления 

функций в правые части многомерного уравнения (1.1).  

Некоторые модели с миграционными потоками рассмотрены в [7, 8, 11, 

17, 18, 73, 109]. Например, в [11] изучены некоторые математические модели, 

описывающие эволюцию плотности населения и распространение эпидемий в 

популяционных системах с учетом того, что пространственное перемещение 
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особей зависит только от мест отправления и прибытия и не имеет явной связи 

с плотностью населения. Авторами использован полугрупповой подход к 

исследованию асимптотического поведения решений моделей миграции 

населения. Аналитическое и компьютерное исследование трехмерных и 

четырехмерных моделей с конкуренцией и миграционными потоками 

рассмотрены в [1, 2, 7, 8–12, 25, 50, 53, 60, 71, 81–84]. Отметим, что в [17, 18, 

111, 112, 114, 139] рассмотрено стохастическое обобщение миграционно-

популяционных моделей, причем в [114, 140] выполнен переход к задачам 

оптимального управления.  

Исследователи рассматривают, в частности, различные обобщения и 

модификации классических моделей Лотки–Вольтерры в направлениях 

повышения размерности и построения недерминированных моделей. При 

рассмотрении таких моделей возникает необходимость компьютерного 

исследования с учетом возможностей языков высокого уровня и прикладных 

математических пакетов. Численный анализ поведения и компьютерные 

исследования динамики траекторий связаны в том числе с новыми 

проблемами в изучении нелинейных процессов с учетом обработки больших 

массивов данных в условиях неопределенности. Для стохастического 

моделирования различных динамических систем на основе метода построения 

самосогласованных одношаговых моделей разработан программный комплекс 

[31, 32, 40]. Для управляемого случая предложен комплекс программ, 

сочетающий стохастизацию, оптимизацию и машинное обучение [135].   

В частности, в [127] для изучения условий синхронизации миграционно-

связанных сообществ представлена и исследована модификация 

динамической модели «ресурс–потребитель». Проведено аналитическое и 

качественное исследование построенной модели, определены условия 

синхронизации колебаний рассматриваемых сообществ, изучено влияние 

миграционного взаимодействия между сообществами на динамику каждой 

популяции. В [50] предложено несколько математических моделей динамики 

популяций рыб с дискретным временем с учетом частичной миграции. Для 
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этих моделей изучены условия сосуществования мигрирующих особей и 

особей из основного ареала обитания. В [53] представлена и изучена модель 

миграционных сетей в различных популяциях фауны, обобщающая систему 

дифференциальных уравнений Лотки–Вольтерры.  

Как известно, многие популяционные модели с миграцией базируются на 

использовании обобщенных конечномерных моделей Лотки–Вольтерры, в 

которых учитываются взаимодействия внутривидовой и межвидовой 

конкуренции, естественный прирост популяций и миграционные потоки с 

одинаковыми и различными скоростями миграции (равномерная и 

неравномерная миграция). Одной из важных работ по изучению этого типа 

моделей является [84], в которой авторами рассмотрена такая модель с 

равномерной миграцией, которая задается системой трех обыкновенных 

дифференциальных уравнений. Для этой модели изучены эффекты 

использования линейной и нелинейной функций, описывающих миграцию, 

получены условия глобальной асимптотической устойчивости.  

Детерминированные и стохастические миграционно-популяционные 

модели изучены в [112, 121, 149]. В [112] рассмотрена трехмерная 

миграционно-популяционная модель с неравномерной миграцией, проведено 

качественное исследование решений, построена стохастическая модель, 

учитывающая конкуренцию и миграцию видов. Синтез осуществлен на основе 

применения метода построения стохастических самосогласованных моделей. 

В [150] разработано методическое обеспечение анализа и синтеза 

многомерных нелинейных динамических моделей, описывающих 

миграционные потоки с учетом воздействия широкополосных 

параметрических и аддитивных шумов. Аналитическое моделирование 

многомерных миграционных потоков при стохастических возмущениях 

проведено на основе методов нормальной аппроксимации и статистической 

линеаризации. Выполнено исследование устойчивости стационарных 

состояний и дана интерпретация эффектов, полученных для стохастических 

моделей. 
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В [60] рассматривалась четырехмерная модель двух конкурирующих 

видов с миграцией между двумя ареалами с учетом коэффициента 

асимметрии. Показано, что выбор ареала миграции осуществляется в 

зависимости от значения данного коэффициента. Коэффициент асимметрии 

влияет на то, в какой из ареалов виды мигрируют в первую очередь.  В [84] 

изучается модель Лотки–Вольтерры с конкуренцией и двумя ареалами 

миграции. Показано, что в течение длительного времени отсутствие 

конкуренции приводит или к вымиранию одного вида, или к сосуществованию 

двух видов, и результат конкуренции определяется силой межвидовой 

конкуренции и скоростью расселения.  

Переход к недетерминированному случаю на основе метода построения 

стохастических самосогласованных моделей (DSSM) позволяет выявить 

новые качественные свойства моделей и провести сравнительный анализ [14–

23, 31, 32, 40, 74, 109, 112]. Для различных типов популяционных моделей 

метод DSSM использован в [14–22]. В [22] рассмотрены вопросы синтеза и 

анализа многомерных управляемых моделей с учетом межпопуляционных 

взаимодействий «хищник–жертва» и с учетом миграционных потоков. 

Предложены новые постановки задач оптимального управления. Для поиска 

оптимальных траекторий разработан обобщенный алгоритм глобальной 

параметрической оптимизации. Представлены результаты по поиску 

оптимальных траекторий и генерированию функций управления. Предложен 

алгоритм перехода к стохастическим управляемым моделям, проведено 

компьютерное исследование построенных моделей, дан сравнительный 

анализ результатов в детерминированном и стохастическом случаях. 

 

1.4. Прикладные задачи, связанные с построением конечномерных  

моделей с конкуренцией и миграцией 

 

Основными объектами изучения в математической экологии долгое 

время являлись двумерные и трехмерные модели динамики популяций при 
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учете различных типов взаимодействий. Ряд важных результатов представлен, 

например, в [24, 110, 120, 121, 146]. Отметим, что трехмерная модель, которая 

описывает динамику взаимосвязанных видов в условиях, когда первый из них 

мигрирует в другой ареал, а в первом ареале конкурирует со вторым видом, 

изучалась в [119, 120]. В [84] рассмотрена миграционно-популяционная 

модель Лотки–Вольтерры с конкуренцией видов, описываемая системой трех 

обыкновенных дифференциальных уравнений. Аналитическое исследование 

проведено при константных значениях коэффициентов естественного роста и 

внутривидовой конкуренции. Выявлено, как линейная и нелинейная миграция 

приводит от вымирания одного вида к сохранению или глобальной 

асимптотической устойчивости всех видов. Различные модификации 

предложенной в [84] модели при неравномерной миграции с учетом 

управляющих воздействий изучены в [120, 149]. При увеличении числа 

модельных параметров установление характера устойчивости 

аналитическими методами затруднительно, поэтому возникает задача поиска 

такого набора параметров, при котором возможно сосуществование видов в 

общем ареале обитания и существование особей, имеющих возможность 

мигрировать в убежища. 

Существенный интерес представляют популяционные модели 

размерности n>3. Однако, даже четырехмерный случай связан с 

существенными трудностями ввиду громоздкости вычислений. В [19] изучены 

два вида четырехмерных моделей: модель с миграционными потоками и 

конкуренцией и модель с миграционными потоками, конкуренцией и 

мутуализмом. Для моделей с учетом конкуренции и миграционных потоков 

приведен обзор результатов, поясняющих влияние дополнительного вида 

взаимодействия в моделях на динамику и устойчивость. Для моделей 

динамики двух конкурентов с учетом отношений мутуализма и с учетом 

миграционных потоков получена оценка влияния конкурентов и мутуалиста 

на поведение системы. Проведен сравнительный анализ результатов 

компьютерного исследования, полученных для трехмерной и четырехмерной 
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стохастических моделей с миграционными потоками. Дано сравнение 

качественных свойств четырехмерных моделей с учетом изменения скоростей 

миграции, а также коэффициентов внутривидового и межвидового 

взаимодействия. Модель «хищник–хищник–жертва–жертва» с учетом 

конкуренции жертв рассматривалась в [125]. 

Трехмерная управляемая модель с конкуренцией и миграцией 

рассматривалась в [139]. Критерий качества управления для указанной модели 

рассмотрен в рамках задачи оптимального управления с фазовыми 

ограничениями. Компьютерное исследование нелинейной модели с 

конкуренцией и миграцией позволило получить результаты численных 

экспериментов по поиску законов управления, критерия качества управления 

и оптимальных траекторий. Трехмерная модель «хищник-жертва-один ареал 

миграции» рассматривалась в [16]. 

Одной из базовых миграционно-популяционных моделей с учетом 

конкуренции и миграционных потоков является трехмерная модель, которая 

описывает динамику двух взаимосвязанных сообществ, причем первый вид 

мигрирует в другой ареал, а в первом ареале конкурирует со вторым видом. 

Указанная модель задается системой дифференциальных уравнений вида: 
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     (1.2) 

где 1y  и 3y  – плотности популяций конкурирующих видов в первом ареале, 2y  

 – плотность популяции во втором ареале, ( )ijp i j  – коэффициенты 

межвидовой конкуренции, ( 1, 2, 3)iip i   – коэффициенты внутривидовой 

конкуренции, ( 1, 2, 3)ia i   – коэффициенты естественного прироста, ,   – 

коэффициенты миграции вида между двумя ареалами, при этом второй ареал 

является убежищем. 

При 13 311, 1, ,i iia p p p      анализ модели (1.2) и ее стохастического 

обобщения проводился в работах [149]. Модель (1.2) представляет собой 
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обобщение модели, рассмотренной в [7, 84], на случай несовпадающих 

скоростей миграции. Важно отметить, что модель (1.2) служит основой для 

перехода к построению многомерных нелинейных моделей с миграционными 

потоками.  

Переход от моделей типа «два конкурента – два ареала миграции» к 

моделям более высокой размерности позволяет охватить более широкий круг 

взаимодействий и изучить динамику популяций с учетом разнообразия видов 

и ареалов. Предлагается построение шестимерных миграционно-

популяционных моделей «три конкурента–три ареала миграции», при 

описании которых учитываются конкурентные взаимодействия и 

двунаправленные миграционные потоки относительно трех убежищ. 

Разработаны различные модельные модификации с описанием экологического 

смысла. Для указанного типа моделей предложены этапы компьютерного 

исследования с привлечением методов теории оптимизации и численного 

анализа на основе дифференциальной эволюции. Описаны особенности 

используемых методов и содержание компьютерных экспериментов. 

В [35, 37–39] изучались различные модификации моделей Лотки–

Вольтерры вида «хищник–жертва». В указанных работах получен ряд важных 

теоретических результатов, связанных с получением условий устойчивости и 

перманентного сосуществования, а также предложена обобщенная 

многомерная модель с учетом взаимодействия хищников и жертв. 

 

1.5. Численные методы поиска оптимальных параметров  

миграционно-популяционных моделей 

 

Для решения задач идентификации популяционных моделей могут быть 

использованы эволюционные алгоритмы [56, 66, 67, 126]. Эволюционные 

алгоритмы включают в себя генетические алгоритмы, эволюционную 

стратегию, эволюционное программирование, алгоритмы дифференциальной 

эволюции, а также генетическое программирование.  
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Суть парадигмы эволюционных алгоритмов состоит в использовании 

базовых принципов теории биологической эволюции – отбора, мутации и 

воспроизводства особей. Эволюционные алгоритмы являются частью более 

широкой технологии мягких вычислений, включающих в себя также нечеткую 

логику и нейронные сети. Направления этой технологии дополняют друг друга 

и используются в различных комбинациях или самостоятельно для создания 

интеллектуальных систем. 

Поиск параметров может осуществляться с помощью методов численной 

оптимизации, в том числе методов, инспирированных природой [126]. Одним 

из наиболее популярных методов оптимизации является метод 

дифференциальной эволюции [56, 66, 67]. Указанный метод обладает рядом 

таких свойств, как простота реализации, эффективность и способность 

работать с многомерными функциями. Дифференциальная эволюция 

базируется на алгоритме генетического отжига, разработанного К. Прайсом. 

Впоследствии дополнен Р. Сторном. Следует отметить, что 

дифференциальная эволюция применима только к вещественнозначным 

входным данным и не требует использования градиента оптимизируемой 

вектор-функции. Преимущество этого метода заключается в способности 

адаптироваться к зашумленным или неопределенным целевым функциям и 

эффективно находить оптимальные или близкие к оптимальным решения. 

Дифференциальная эволюция относится к метаэвристическим методам, 

основанным на популяциях, что представлено на рис. 1.1. 

Классическая дифференциальная эволюция и ее модификации внедрены 

в соответствующие библиотеки языков программирования Python, R, Julia, а 

также системы компьютерной математики MATLAB, Mathematica. Например, 

реализация пакета DEoptim использует набор алгоритмов для глобальной 

оптимизации на языке R и в среде статистических вычислений [51]. 
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Рис.1.1. Место дифференциальной эволюции среди методов 

оптимизации 

 

Функция DEoptim пакета DEoptim выполняет поиск минимумов целевой 

функции между нижней и верхней границами для каждого оптимизируемого 

параметра. В Python применяется несколько библиотек, поддерживающих 

метод дифференциальной эволюции. Например, в модуль SciPy.optimize 

встроена функция differential_evolution [78]. В языке программирования Julia 

используется пакет глобальной оптимизации BlackBoxOptim [47]. Указанный 

пакет поддерживает многокритериальные задачи оптимизации и 

ориентирован на эвристические и метаэвристические стохастические 

алгоритмы (например, дифференциальную эволюцию), которые не требуют 

дифференцируемости оптимизируемой функции. Пакет также поддерживает 

параллельные вычисления для ускорения оптимизации функций. 

 

1.6. Методы анализа стохастических систем популяционной  

динамики 

 

Для дальнейшего анализа качественных свойств моделей предлагается 

исследовать влияние введения стохастики. Для этой цели предлагается 
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построить стохастическую модель методом построения самосогласованных 

стохастических моделей [14–23, 31–32, 40]. Данный метод предполагает в ходе 

математических преобразований получение коэффициентов уравнения 

Фоккера—Планка из схемы взаимодействия, позволяющей реализовать 

символическую запись всех возможных взаимодействий в системе. Основные 

этапы данного метода представлены в описании алгоритма 1. 

 

Алгоритм 1. Получение модели из описания системы 

Исходные параметры: описание системы. 

Результат: Детерминированная и стохастическая модели (Системы ОДУ 

и СДУ). 

начало: 

1. Добавление взаимодействий в модель. 

2. Построение схемы взаимодействия модели. 

3. Построение операторов состояния системы из схемы 

взаимодействия (М и N). 

4. Построение оператора изменения состояния системы (R). 

5. Построение интенсивностей переходов (s). 

6. Построение коэффициентов уравнения Фоккера–Планка (A и B). 

7.   Построение СДУ. 

конец 

 

Данный алгоритм реализован на языке программирования Python с 

использованием библиотек NumPy и SciPy и описан в работах [25, 87]. 

Используемый в настоящей работе программный комплекс позволяет 

построить стохастическую модель динамической системы из ее описания, 

построить соответствующую детерминированную модель, получить 

численные решения ОДУ и СДУ, а также графическое представление 

решений. 
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Использование программной реализации данного метода [31, 32, 114] 

позволяет: (i) построить стохастическую модель динамической системы с 

учетом описания взаимодействий, (ii) построить соответствующую 

детерминированную модель, (iii) получить численные решения ОДУ и СДУ и 

графические представления решений. Для описания стохастической системы, 

согласно методу DSSM, достаточно записать уравнение Фоккера–Планка. 

Данный метод предполагает в ходе математических преобразований 

получение коэффициентов уравнения Фоккера—Планка из схемы 

взаимодействия, охватывающей символическую запись всех возможных 

взаимодействий в системе. В методе стохастизации с учетом аддитивных 

шумов учитывается лишь вектор сноса, совпадающий с уравнениями 

детерминированной системы, а в методе построения самосогласованных 

стохастических моделей учитываются как вектор сноса, так и матрица 

диффузии, содержащая случайные величины в структуре модели. 

 

1.7. Выводы по первой главе 
 

В первой главе проведен аналитический обзор методов и результатов 

математического моделирования систем популяционной динамики; 

перечислены аспекты применения методов математического моделирования 

для исследования систем популяционной динамики; описаны обобщения и 

модификации классических моделей Лотки–Вольтерры; рассмотрены 

прикладные задачи, связанные с построением конечномерных моделей с 

конкуренцией и миграцией; описаны численные методы поиска оптимальных 

параметров популяционно-миграционных моделей; представлены методы 

вероятностного анализа стохастических систем популяционной динамики. 
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Глава 2. Построение, компьютерное исследование и анализ  

устойчивости детерминированных миграционно-популяционных  

моделей с конкуренцией 

 

2.1. Введение 

 

В главе 2 рассмотрены вопросы, связанные с применением метода 

дифференциальной эволюции в задачах моделирования миграционно-

популяционных динамических систем. Построены и изучены различные 

модифицированные n-мерные модели Лотки–Вольтерры с учетом 

миграционных потоков при n>2. Указанные модификации используют 

трофические взаимодействия, внутривидовую и межвидовую конкуренцию. 

Кроме того, учитывается равномерность и неравномерность скоростей 

миграции и количество убежищ. 

Для двух классов динамических популяционных моделей с 

миграционными потоками рассмотрены вопросы аналитического и 

качественного исследования. Рассмотренные классы моделей учитывают 

конкурентные, трофические взаимодействия и миграционные потоки. 

Изучены случаи равномерной и неравномерной миграции. Для трехмерных 

динамических моделей получены условия сосуществования видов, 

проанализирована устойчивость положительных состояний равновесия с 

применением функций Ляпунова. 

 

2.2. Дифференциальная эволюция как метод прикладной  

оптимизации для поиска параметров миграционно-популяционных  

моделей  

 

Дифференциальная эволюция представляет собой простой алгоритм 

оптимизации действительных параметров. Этот алгоритм базируется на 

циклическом выполнении этапов, представленных на рис. 2.1 [124].  
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Рис. 2.1. Схема метода дифференциальной эволюции 

 

Дифференциальная эволюция выполняет поиск глобальной точки 

оптимума в n-мерном пространстве действительных параметров пространства 

Rn, при этом поиск принято разделять на шесть этапов, представленных на 

рис. 2.1. Указанные этапы состоят в следующем. 

Этап 1. На начальном этапе осуществляется инициализация случайной 

совокупности NP n-мерных действительных векторов. Каждый вектор 

формирует возможное решение задачи многомерной оптимизации. Обозначим 

последующие поколения через G = 0, 1..., Gmax. Поскольку векторы параметров 

будут изменяться с каждым новым поколением, примем следующую запись 

для представления i-го вектора популяции в текущем поколении: 

, 1, , 2, , , ,[ , , , ].i G i G i G n i GX x x x


  

Для каждого параметра задачи может существовать определенный 

диапазон, в пределах которого значение параметра должно быть ограничено 

(например, если одним из параметров является коэффициент воспроизводства 

видов в миграционно-популяционной динамической модели, то он не должен 

быть отрицательным). Исходная популяция (при G = 0) должна максимально 

охватывать этот диапазон путем равномерной рандомизации индивидов в 

пределах пространства поиска, ограниченного предписанными 

минимальными и максимальными границами:  

min 1,min 2,min ,min{ , , , }nX x x x


 , 

max 1,max 2,max ,max{ , , , }nX x x x


 . 

1 2 3 4 5 6

Инициализаци
я совокупности

• Генерируется 
случайная 
совокупность векторов, 
обеспечивающая 
начальную популяцию

Генерация 
возмущения

• Вычисляется разность 
между двумя 
случайными векторами 
из совокупности

Мутация

• Выбирается новый 
случайный вектор, 
который вместе со 
взвешенным вектором 
разности дает пробный 
вектор

Скрещивание

• Исходный вектор 
скрещивается с 
вектором мутации для 
генерации целевого 
вектора из пробных 
векторов. 

Выборка

• Вектор с меньшим 
значением целевой 
функции помечается 
как вектор с индексом 
0 следующей 
совокупности

Новый вектор

• Новый вектор 
популяции мутирует с 
помощью случайно 
сгенерированного 
возмущения



39 
 

Следовательно, необходимо инициализировать j- ю компоненту i-го 

вектора как , ,0 ,min , ,max ,min[0,1] ( ),j i j i j j jx x rand x x    где , [0,1]i jrand  – такое 

равномерно распределенное случайное число между 0 и 1 (0 ≤ , [0,1]i jrand  ≤ 1), 

которое создается независимо для каждого компонента i-го вектора. 

Этап 2. На этапе генерации возмущения вычисляется разность между 

двумя случайными векторами из совокупности векторов, полученной на 

первом этапе. В дальнейшем эта разность будет использоваться на этапе 

мутации (этап 3).  

Этап 3. На этапе мутации выбирается новый случайный вектор, который 

вместе со взвешенным вектором разности дает пробный вектор. В контексте 

эволюционных вычислений мутация рассматривается как разность случайных 

элементов. Родительский вектор из текущего поколения называется целевым 

вектором. Мутантный вектор, полученный в результате операции 

дифференциальной мутации, называется донорским вектором. Потомство, 

образованное путем рекомбинации донора с целевым вектором, называется 

пробным вектором.  

При построении донорского вектора для каждого i-го целевого вектора из 

текущей совокупности отбираются три других различных вектора 1 2 3, ,i i ir r rX X X
  

 

случайным образом. Индексы 1 2 3, ,i i ir r r  являются взаимоисключающими 

случайным образом выбранными из диапазона [1, NP] целыми числами, 

которые отличаются от индекса базового вектора i. Индексы 1 2 3, ,i i ir r r  

генерируются случайным образом один раз для каждого мутантного вектора. 

В этом случае разность любых двух из этих трех векторов масштабируется с 

учетом умножения на число F(0, k), k1. Масштабный коэффициент F 

является положительным действительным числом, которое контролирует 

скорость эволюции популяции. Хотя верхнего предела для F не существует, 

эффективные значения редко превышают 1. Затем масштабированная разность 
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добавляется к 1,r GX


, откуда получен донорский вектор ,i GV


. В соответствии с 

этапом 3 формула для нахождения донорского вектора имеет вид: 

1, 2, 3,, ( ).r G r G r Gi GV X F X X   
   

  

Этап 4. На этом этапе исходный вектор скрещивается с вектором 

мутации для генерации целевого вектора из пробных векторов. 

Дифференциальная эволюция скрещивает каждый вектор с мутантным 

вектором: 

,
,

,

при (0,1) или ,

в остальных случаях.

j
i G j r rand

i G
j
i G

V rand C j j
U

X

   





  

Вероятность скрещивания Cr[0,1] определяется пользователем и 

управляет значениями, которые копируются из мутантного вектора. Этап 

равномерного скрещивания сравнивает Cr с выходными данными генератора 

равномерных случайных чисел , [0,1]i jrand . Пробный вектор выбирается со 

случайным индексом randj . Если случайное число меньше или равно Cr, то 

пробный вектор наследуется от донорского вектора ,i GV


, в противном случае 

значение пробного вектора копируется из вектора ,i GX


. 

Этап 5.  На этом этапе вектор с меньшим значением целевой функции 

помечается как вектор с индексом 0 следующей совокупности. Чтобы 

сохранить численность популяции постоянной в течение последующих 

поколений, необходимо провести отбор вектора. Если выполнено условие 

«Пробный вектор ,i GU


имеет значение целевой функции, равное или меньшее, 

чем целевая функция вектора ,i GX


», то вектор ,i GU


 заменяет вектор ,i GX


в 

следующем поколении. Если условие не выполнено, то целевой вектор 

сохраняет свое место в популяции по крайней мере еще на одно поколение. 

Этап 6. На данном этапе новый вектор популяции мутирует с помощью 

случайно сгенерированного возмущения. После создания новой популяции 

процессы мутации, рекомбинации и отбора (этапы 3–5) повторяются до тех 

пор, пока не будет найден оптимум или не будет выполнен заранее 



41 
 
определенный критерий останова. Примером реализации критерия останова 

является достижение заданного максимума Gmax количества поколений.  

Если в результате работы алгоритма не достигнут оптимум, то 

происходит возврат на инициализацию новой совокупности векторов, т.е. 

осуществляется циклический переход от шестого этапа создания нового 

вектора к первому этапу генерации новой совокупности векторов.  

Пример реализации алгоритма дифференциальной эволюции на 

псевдокоде представлен на листинге 2.1, в котором учитываются этапы 1–6 

этого алгоритма. 

 

нц пока (критерий сходимости еще не выполнен) 

 xi определить вектор текущей векторной 

совокупности  

 yi определить вектор новой векторной совокупности  

 нц для i от 0 до NP  

  r1 = random(NP); //выберите случайный индекс из 

1, 2, ..., Np 

  r2 = random(NP); //выберите случайный индекс из 

1, 2, ..., Np 

  r3 = random(NP); //выберите случайный индекс из 

1, 2, ..., Np 

  ui = xr3 + F*(xr1 - xr2); 

  если (f(ui) <= f(xi)) 

   yi = ui; 

  иначе 

   yi = xi; 

кц пока 

 

Листинг 2.1. Пример реализации алгоритма дифференциальной эволюции 

 



42 
 
2.3. Построение и анализ популяционных динамических моделей типа «k 

конкурентов – k ареалов миграции» 

 

Рассмотрим модифицированную n-мерную модель Лотки–Вольтерры с 

учетом миграционных потоков: 

  

1 1
1

1 1

1,  3,  ,  2 1,  1,

,

(

 3, 2

) ,

( ) , 2 2

 ,  1

,4,

,  

,

n

i i i ij j i i i i
j

i i i ii i i i i i

x x a p x

x

i m j m

x x

x x a p x x i m

 

 

 


 

     

       

        



 

   (2.1) 

где ,1,  2,  ,  / 2m n  xi с нечетными индексами – плотности конкурирующих 

популяций, xi с четными индексами – плотности соответствующих популяций 

с учетом мигрирования в убежища. Модель (2.1) представляет собой модель 

типа «k конкурентов – k ареалов миграции», где k=n/2, а четное число n 

соответствует размерности модели. Параметры, фигурирующие в модели 

(2.1), представлены в табл. 2.1. 

 

Таблица 2.1. Переменные и параметры модели (2.1) 

Переменная /  

параметр 

Пояснение переменной / параметра 

xi  (i = 1, 3, 5, …) плотность конкурирующей популяции i-го вида в 

основном ареале 

xi  (i = 2, 4, 6, …) плотность популяции (i-1)-го вида в (i-1)-м убежище 

ai  (i = 1, 2, 3, …) коэффициент естественного прироста 

( )ijp i j  коэффициент межвидовой конкуренции 

( )ijp i j  коэффициент внутривидовой конкуренции 

i  (i = 2, 4, 6, …) коэффициент миграции (i-1)-го вида из основного 

ареала в (i-1)-е убежище 

i  (i = 1, 3, 5, …) коэффициент миграции i-го вида из i-го убежища в 

основной ареал 
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Таким образом, модель (2.1) описывает такие взаимодействия, при 

которых число конкурирующих видов совпадает с количеством ареалов 

миграции. Очевидно, что k2, n4. 

 

2.3.1. Четырехмерные модели 

Далее рассмотрим четырехмерную модель с конкуренцией и с 

миграционными потоками при n=4, k=2, а именно, модель «два конкурента – 

два ареала миграции».  Модель, в которой учитывается влияние межвидовой 

конкуренции в двух популяциях с двунаправленной миграцией обеих 

популяций, задается системой дифференциальных уравнений вида: 

2
1 1 1 11 1 13 1 3 2 1

2
2 2 2 22 2 1 2

2
3 3 3 33 3 31 1 3 4 3

2
4 4 4 44 4 3 4

,

,

,

,

x a x p x p x x x x

x a x p x x x

x a x p x p x x x x

x a x p x x x

 

 

 

 

    

   

    

   









       (2.2) 

где 1x  и 3x  – плотности популяций конкурирующих видов в первом ареале, 2x  

– плотность популяции во втором ареале (в первом убежище), 4x  – плотность 

популяции в третьем ареале (во втором убежище), ( )ijp i j  – коэффициенты 

межвидовой конкуренции, ( 1, 2, 3)iip i   – коэффициенты внутривидовой 

конкуренции, ( 1, 2, 3, 4)ia i   – коэффициенты естественного прироста, ,   – 

коэффициенты миграции вида между первым и вторым ареалами, при этом 

второй ареал является убежищем, ,   – коэффициенты миграции вида между 

первым и третьим ареалами, при этом третий ареал является убежищем. 

2 1,      

2.3.1.1. Упрощенная модель 

Перейдем к частному случаю модели (2.2), когда p13=p31=r, 

p11=p22=p33=p44=p, a1=a2=a3=a4=a,   ,   . В этом случае модель (2.2) 

принимает вид: 



44 
 

2
1 1 1 1 3 2 1

2
2 2 2 1 2

2
3 3 3 1 3 4 3

2
4 4 4 3 4

,

,

,

.

x ax px rx x x x

x ax px x x

x ax px rx x x x

x ax px x x

 

 

 

 

    

   
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







 (2.3) 

Переход к модели вида (2.3) позволяет упростить решение ряда задач, в 

частности, задач поиска параметров с помощью эвристических 

оптимизационных алгоритмов, задач анализа динамических режимов, а также 

задач, связанных с оценкой влияния параметров на динамику модели. 

С помощью дифференциальной эволюции получены значения 

параметров модели (2.3): )( , , , ,a p r    = (4.656449, 0.582056, 2.561047, 

4.365420, 2.037197). Соответствующий результат с учетом начальных условий 

(x1(0),  x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7)  приведен на рис. 2.2. 

 

Рис. 2.2. Траектории решений для системы (2.3) при (x1(0), x2(0), x3(0), 

x4(0)) = (0.5, 0.5, 1, 7)  

 

Вычислительные эксперименты, которые проведены с учетом 

варьирования начальных условий, показывают, что состояние равновесия S* = 

(1, 3, 5, 7) имеет характер устойчивого узла. Исходя из результатов 

экспериментальных исследований, модель (2.3) можно конкретизировать 

следующим образом: 
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




 (2.4) 

Следует отметить, что в [35] рассмотрены трехмерные модели 

популяционной динамики с учетом трофических цепей и конкурентных 

отношений, причем, в указанной работе изучены случаи наличия нескольких 

положительных состояний равновесия. Размерность модели позволила 

получить результаты в аналитическом виде. Для модели (2.4) по аналогии с 

[35] целесообразно рассмотреть существование нескольких положительных 

состояний равновесия. 

Подход к поиску параметров модели с целью получения положительных 

состояний равновесия базируется на методах интеллектуального поиска и 

позволяет найти численные значения компонент положительных состояний 

равновесия при заданных начальных условиях, а также идентифицировать 

соответствующие параметры системы. 

Качественный и численный анализ четырехмерной миграционно-

популяционной модели предполагает, в частности, поиск состояний 

равновесия, построение фазовых портретов и изучение динамики траекторий. 

Размерность модели и возможности использованного в ходе исследования 

прикладного программного обеспечения позволяют получить только часть 

решений алгебраической системы, получаемой приравниванием к нулю 

правых частей уравнений модели (2.3). С помощью библиотеки sympy языка 

программирования Python получены следующие особые точки: 

1 2 3(0, 0, 0, 0), 0,0, , , , ,0,0 ,
a a a a

S S S
p p p p

   
   
   
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Для заданного набора параметров )( , , , ,a p r    = (4.66, 0.58, 2.56, 4.37, 2.04) 

численно найдены дополнительные положительные состояния равновесия: 

S8(0.99, 2.99, 5.06, 7.04), S9(1.44, 3.55, 4.00, 6,64), S10(5.81, 6.87, 0.81, 5.08). 

Полученные значения согласуются с проведенным вычислительным 

экспериментом. 

Построены траектории для модели (2.3) при выбранных наборах 

параметров. Соответствующий результат с учетом начальных условий (x1(0), 

x2(0), x3(0), x4(0)) = (2, 1, 9, 7) приведен на рис. 2.3. Следует отметить, что 

популяции конкурентов x1 и x3 выходят на стационарный режим. Популяция 

x1 характеризуется более низкими значениями плотности по сравнению с 

остальными тремя популяциями. При этом наблюдается также стационарный 

режим.  

На рис. 2.4 предложена проекция фазового портрета на плоскость (x1, x2) 

с учетом x3=x4=0. Из рисунка видно, что ветви графика сходятся к одной точке. 

Вид проекции соответствует характеру устойчивого узла.  

На рис. 2.5 приведена для наглядности проекция фазового портрета в 

плоскости (х1, х2) в окрестности точки 3 , ,0,0
a a

S
p p

 
 
 

 при выбранном наборе 

параметров с учетом увеличенного диапазона изменения фазовых переменных 

x1 и x2. Здесь также прослеживается характер устойчивого узла. 

 

2 2 2 2

4

2 2 2 2

5

2 2 2 2

6

2 2 2 2

7

2 4 2 4
0,0, , ,

2 2

2 4 2 4
0,0, , ,

2 2

2 4 2 4
, ,0,0 ,

2 2

2 4 2 4
, ,0,0 .

2 2

a a a a
S

p p

a a a a
S

p p

a a a a
S

p p

a a a a
S

p p

   

   

   

   

      
  
 
      
  
 
      
  
 
      
  
 
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Рис. 2.3. Траектории решений для системы (2.3) при (x1(0),  x2(0), x3(0), 

x4(0))  = (2, 1,  9, 7),  )( , , , ,a p r    = (4.66, 0.58, 2.56, 4.37, 2.04) 

 

 

Рис. 2.4. Проекция фазового портрета на плоскость (x1, x2) с учетом 

x3=x4=0 

 

Проведенный анализ состояний равновесия не может быть 

всеобъемлющим по причинам, связанным с затруднениями вычислительного 

характера при исследовании четырехмерной динамической модели, но 

полученные результаты можно использовать для сравнения с траекториями, 

полученными в результате варьирования отдельных параметров модели. 
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Рис. 2.5. Проекция векторного поля на плоскость (x1, x2) с учетом x3=x4=0 

 

Рисунки 2.6 и 2.7 содержат графическое представление решений в 

пространстве (x1, x2, x3) при x4=0 с учетом двух наборов параметров (при 

варьировании коэффициента естественного прироста). Рисунок 2.6 

соответствует модели (2.3) с набором параметров a=4.66, p=0.58, r=2.56, 

β=4.37, δ=2.04. Рисунок 2.7 соответствует модели (2.3) с набором параметров 

a=9.60, p=0.58, r=2.56, β=4.37, δ=2.04. На рис. 2.8 представлена проекция 

фазового портрета для модели (2.3) в неотрицательном ортанте пространства 

(x1, x2, x3) с учетом x4=0. На рис. 2.9 представлена проекция фазового портрета 

в неотрицательном ортанте пространства (x1, x2, x3) с учетом x4=0. 

 

Рис. 2.6. Графическое представление решений в пространстве (x1, x2, x3) 

для модели (2.3) при  (x1(0),  x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7),  )( , , , ,a p r    

= (4.66, 0.58, 2.56, 4.37, 2.04) 
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Рис. 2.7. Графическое представление решений в пространстве (x1, x2, x3) 

для модели (2.3) при (x1(0),  x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7),  )( , , , ,a p r    

= (9.60, 0.58, 2.56, 4.37, 2.04) 

 

 

Рис. 2.8. Проекция фазового портрета в неотрицательном ортанте 

пространства (x1, x2, x3) при )( , , , ,a p r    = (4.66, 0.58, 2.56, 4.37, 2.04) 
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Рис 2.9. Проекция фазового портрета в неотрицательном ортанте 

пространства (x1, x2, x3) при )( , , , ,a p r    = (9.60, 0.58, 2.56, 4.37, 2.04) 

 

Рисунки 2.6 и 2.7 и рисунки 2.8 и 2.9 попарно соответствуют двум 

режимам сосуществования конкурирующих видов относительно трех ареалов 

(основного ареала и двух ареалов убежищ). Сравнение траекторий, 

соответствующих двум режимам, позволяет провести анализ динамики с 

учетом двунаправленной миграции обеих популяций и варьирования 

параметра воспроизводства видов. 

Сравнительный анализ результатов численных экспериментов по поиску 

траекторий направлен на оценку влияния различных параметров и на 

выявление качественных эффектов, характерных для моделей с 

миграционными потоками. Указанный анализ выявил существенное влияние 

параметров воспроизводства популяций и внутривидовой конкуренции на 

динамику траекторий при рассмотренных наборах коэффициентов.  

При наборе параметров, использованном для построения рис. 2.2, первый 

конкурирующий вид (переменная х1) оказывается в менее благоприятном 

положении по сравнению со вторым конкурирующим видом (переменная х3). 

В условиях убежища плотность популяции х2 на начальном этапе растет 

быстрее, чем х1. Плотность популяции х4 характеризуется достаточно 

высокими значениями по сравнению с другими фазовыми переменными. 

Популяция x1 характеризуется более низкими значениями плотности по 
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сравнению с остальными тремя популяциями. Рассматриваемые популяции 

выходят на стационарный режим. 

Продемонстрированные на рис. 2.6 и 2.7 графические представления 

решений модели (2.3) в пространстве (x1, x2, x3) при двух наборах параметров 

имеют различный характер. Следует отметить, что при реализации 

программных кодов для графических представлений можно варьировать 

набор фазовых переменных. 

Построенные на рис. 2.8 и 2.9 проекции фазового портрета в 

неотрицательном ортанте пространства (x1, x2, x3) с учетом x4=0 для двух 

наборов параметров позволяют получить геометрическое представление 

траекторий динамической системы в различных режимах. Состояния 

равновесия для каждого из рассмотренных режимов имеют характер 

устойчивого узла. 

 

2.3.1.2. Разные коэффициенты роста 

В случае, когда p13=p31=r, p11=p22=p33=p44=p,    ,    модель (2.2) 

принимает вид:  
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2
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2
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







    (2.4) 

Найдем соответствующие стационарные решения для системы (2.4), 

отвечающие возможным стационарным плотностям популяций. Для многих 

популяционных систем высокой размерности (в том числе для четырехмерной 

системы (2.4)) поиск особых точек в общем виде вызывает трудности даже при 

использовании вычислительных пакетов.  В связи с указанным 

обстоятельством в качестве базовых значений параметров примем за основу 

полученные в [12] значения параметров )( , , , ,a p r     = (4.656449, 0.582056, 

2.561047, 4.365420, 2.037197). Указанные значения параметров найдены с 



52 
 
помощью эволюционных алгоритмов оптимизации. Кроме того, рассмотрим 

значения коэффициентов ai (i=1, …, 4), близкие к окрестности значения 

а=4.656449. Система (2.4) является модификацией системы (2.2) с изменением 

коэффициента роста плотностей популяций. Значения параметров )( , ,,p r    

целесообразно выбрать прежними, с учетом округления до двух десятичных 

знаков. 

Представленные на рис. 2.10   траектории систем (2.3) и (2.4) получены с 

использованием следующих наборов начальных условий и коэффициентов. 

Для системы (2.3) выбраны значения (x1(0), x2(0), x3(0), x4(0)) = (0.5, 0.5, 1, 7) и 

r=2.56, β=4.37, δ=2.04, a=4.66, а для системы (2.4) выбраны значения (x1(0), 

x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7) и а1=4.10, а2=4.40, а3=4.70, а4=4,90, p=0.58, 

r=2.56, β=4.37, δ=2.04. Указанный набор для системы (2.4) будем называть 

первым набором параметров и обозначать 4-I. Таким образом, начальные 

условия, а также коэффициенты конкуренции и миграции для обеих систем 

совпадают, при этом варьируются коэффициенты воспроизводства. 

 

Рис. 2.10. Траектории систем (2.3) и (2.4) при х1(0)=0.5, x2(0)=0.5, 

x3(0)=1, x4(0)=7, а1=4.10, а2=4.40, а3=4.70, а4=4.90, p=0.58, r=2.56, β=4.37, 

δ=2.04, a=4.66 

  

На рис. 2.10 запись вида 𝑥𝑖(3), 𝑖 = 1, 2, 3, 4, обозначает траекторию, 

соответствующую фазовой переменной 𝑥𝑖 для модели (2.3), запись вида 𝑥𝑖(4-I) 
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обозначает траекторию, соответствующую фазовой переменной 𝑥𝑖 для модели 

(2.4) с учетом первого набора параметров. Проведенный вычислительный 

эксперимент соответствует случаю положительного состояния равновесия с 

учетом набора параметров модели (2.4): а1=4.10, а2=4.40, а3=4.70, а4=4.90. 

Указанный случай характеризуется близостью этого состояния равновесия к 

конфигурации устойчивого узла.  

Согласно рис.2.10, приближенные фазовые значения xi при выходе на 

стационарный режим имеют вид: x1 = 0.48, x2 =1.90, x3= 6.61, х4= 7.88. Эти 

данные согласуются с положительным состоянием равновесия, найденным 

для данной системы численными методами: 

x1 = 0.4792028607, x2 =1.926181657, x3= 6.647465720, х4= 7.893179424. 

Изменение коэффициента воспроизводства несущественно влияет на 

траекторную динамику при рассмотренных наборах коэффициентов. 

Траектории выходят на стационарный режим, что характеризует 

сосуществование всех четырех популяций. 

На рис. 2.11 приведена проекция фазового портрета системы (2.4) в 

плоскости (х1, х2) с учетом x3=x4=0. Вид проекции соответствует характеру 

устойчивого узла. 

 

Рис. 2.11. Проекция фазового портрета на плоскость (x1, x2) 
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Далее рассмотрим модель (2.4) при значениях (x1(0), x2(0), x3(0), x4(0)) и 

а1=4.10, а2=4.40, а3=0.70, а4=4,90, p=0.58, r=2.56, β=4.37, δ=2.04. Указанный 

набор для системы (2.4) будем называть вторым набором параметров и 

обозначать 4-II.  

 

Рис. 2.12. Траектории системы (2.4) при х1(0)=0.5, x2(0)=0.5, x3(0)=1, 

x4(0)=7,  а1=4.10, а2=4.40, а3=0.70, а4=4.90, p=0.58, r=2.56, β=4.37, δ=2.04, 

a=4.66 в сравнении с траекториями системы (2.3) 

 

На рис. 2.12 запись вида 𝑥𝑖(3), 𝑖 = 1, 2, 3, 4, обозначает траекторию, 

соответствующую фазовой переменной 𝑥𝑖 для модели (2.3), запись вида 𝑥𝑖(4-

II) обозначает траекторию, соответствующую фазовой переменной 𝑥𝑖 для 

модели (2.4) с учетом второго набора параметров. Набору (4-II) отвечает 

состояние равновесия со значениями х1=5.34, х2=6.37, х3=0.70, х4=5.38 при 

а1=4.10, а2=4.40, а3=0.70, а4=4,90.  

Проекция фазового портрета в плоскости (х3, х4) с учетом x1=x2=0 

изображена на рис. 2.13. По сравнению с проекцией, представленной на рис. 

2.11, в данном случае выбирается плоскость (x3, x4), так как варьируется 

параметр а3. 
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Рис. 2.13. Проекция фазового портрета на плоскость (x3, x4) 

 

С учетом сравнения результатов компьютерного моделирования 

применительно к системам (2.3) и (2.4) следует отметить, что при 

использованных наборах параметров изменение коэффициентов прироста 

незначительно влияет на характер траекторий и не нарушает стационарного 

режима. 

Решение оптимизационной задачи поиска параметров модели (2.4) с 

учетом условия позволило провести вычислительный эксперимент и найти 

соответствующий набор параметров при следующих начальных условиях 

(x1(0), x2(0), x3(0), x4(0)) = (0.5, 0.5, 1, 7). Указанный набор параметров имеет 

вид 1 2 3 4 )( , , , , , , ,a a a a p r    = (5.674e+00, 8.693e+00, 9.045e+00, 9.637e+00, 

3.595e-01, 7.522e-01, 3.252e+00, 7.500e-01). 

С учетом округления до двух знаков после запятой набор параметров 

примет вид: 5.67, 8.7, 9.05, 9.64, 0.36, 0.75, 3.25, 0.75. С использованием 

найденного набора параметров получено положительное состояние 

равновесия: x1=5.09, x2=17.73, x3=15.84, x4=25.99. Рассмотренный подход к 

поиску состояний равновесия представляет интерес  в связи с тем, что для 

многих популяционных систем высокой размерности (в том числе для 

четырехмерных систем (2.2)–(2.4)) нахождение состояний равновесия в общем 

виде вызывает трудности даже при использовании вычислительных пакетов.  
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Далее рассмотрим построение проекций фазовых портретов для модели 

(2.4). Проекция фазового портрета на плоскости (х1, х2) с учетом x3=15.84, 

x4=25.99 представлена на рис. 2.14. Проекция фазового портрета в 

пространстве (x1, x2, x4) с учетом x3=15.84 для модели (2.4) представлена на 

рис. 2.15. 

 

Рис. 2.14. Проекция фазового портрета на плоскости (х1, х2) для системы 

(2.4) при (x1(0),  x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7),  а1=5.67, а2=8.7, а3=9.05, 

а4=9.64, p=0.36, r=0.75, β=3.25, δ=0.75 

 

 

Рис. 2.15. Проекция фазового портрета в пространстве (x1, x2, x4) для 

системы (2.4) при (x1(0),  x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7),  а1=5.67, а2=8.7, 

а3=9.05, а4=9.64, p=0.36, r=0.75, β=3.25, δ=0.75 
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Согласно рис. 2.14 и рис. 2.15, состояние равновесия x1=5.09, x2=17.73, 

x3=15.84, x4=25.99 представляет собой устойчивый узел. Построение проекций 

фазовых портретов позволило проанализировать характер зависимости 

фазовых переменных друг от друга.  

 

2.3.1.3. Разные коэффициенты миграции 

Интерес для изучения представляет случай, когда все миграционные 

параметры являются различными. Для перехода к этому случаю рассмотрим 

далее обобщение модели (2.2) следующего вида 
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      (2.5) 

где   – коэффициент миграции первого вида из первого ареала во второй,  γ  

– коэффициент миграции первого вида из второго ареала в первый, при этом 

второй ареал является убежищем,   – коэффициент миграции второго вида из 

первого ареала в третий, ε – коэффициент миграции второго вида из третьего 

ареала в первый, при этом третий ареал является убежищем. Таким образом, β 

и γ – миграционные параметры, отвечающие первому убежищу, ε и δ – 

миграционные параметры, отвечающие второму убежищу. 

Предложенная модель «два конкурента – два ареала миграции» является 

такой модификацией модели (2.2), для которой все миграционные параметры 

различны, при этом как для модели (2.2), так и для модели (2.5) скорости 

внутривидовой и межвидовой конкуренции совпадают. 

Для модели (2.5) в качестве базовых значений параметров примем за 

основу полученные в [125] значения параметров )( , , , ,a p r   = (4.656449, 

0.582056, 2.561047, 4.365420, 2.037197). Указанные значения параметров 

найдены с помощью эволюционных алгоритмов оптимизации. 
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Значения параметров ,, , ,a p r    выбраны с учетом округления до двух 

десятичных знаков. Для модели (2.5) необходимо использовать расширенный 

набор миграционных параметров. В связи с этим примем значения γ=4.90 и 

ε=2.50. Набор параметров )( ,, , ,, ,a p r      = (4.66, 0.58, 2.56, 4.37, 2.04, 4.90, 

2.50) для системы (2.5) будем называть первым набором параметров и 

обозначать через 5-I. С учетом первого набора параметров в математическом 

пакете найдены следующие приближенные состояния равновесия: 𝑃1(0, 0, 0, 

0), 𝑃2(0, 0, 8.42, 7.61), 𝑃3(7.72, 8.33,0, 0), 𝑃4(0.75, 2.78, 6.08, 6.85), 𝑃5(2.21, 4.57, 

2.95, 5.58), 𝑃6(5.14, 6.85, 1.01, 4.51). 

Траектории систем (2.2) и (2.5) представлены на рис. 2.16 с учетом 

начальных условий (x1(0), x2(0), x3(0), x4(0)) = (0.5, 0.5, 1, 7) и набора 

параметров 5-I. Горизонтальная ось соответствует изменению времени. 

 

Рис. 2.16. Траектории систем (2.2) и (2.5) при (x1(0), x2(0), x3(0), x4(0)) 

= (0.5, 0.5, 1, 7) и a=4.66, p=0.58, r=2.56, β=4.37, δ=2.04, γ=4.90, ε=2.50. 

 

На рис. 2.16 запись вида 𝑥𝑖(2), 𝑖 = 1, 2, 3, 4, обозначает траекторию, 

соответствующую фазовой переменной 𝑥𝑖 для модели (2.2) с набором 

параметров a=4.66, p=0.58, r=2.56, β=4.37, δ=2.04, запись вида 𝑥𝑖(5-I) 

обозначает траекторию, соответствующую фазовой переменной 𝑥𝑖 для модели 

(2.5) с учетом набора параметров 5-I. 
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Результаты численного решения систем (2.2) и (2.5) при выбранных выше 

наборах параметров показывают, что выход на стационарный режим 

происходит при следующих значениях: х1=0.71, х2=2.66, х3=6.05, х4=6.76, что 

отвечает траекториям, представленным на рис. 2.20. Эти результаты 

согласуются с результатами выполненного поиска положительного состояния 

равновесия 𝑃4 для данной системы c помощью численных методов решения 

системы алгебраических уравнений.  

На рис. 2.17 приведено графическое представление решений в 

пространстве (x1, x2, x3) при x4=0. Рис. 2.17а соответствует модели (2.2) с 

набором параметров a=4.66, p=0.58, r=2.56, β=4.37, δ=2.04. Рис. 2.17б 

соответствует модели (2.5) с набором параметров 5-I. Различными цветами на 

рис. 2.17 обозначены траектории, при этом, красный, синий, зеленый цвета 

отвечают фазовым переменным x1, x2, x3 соответственно.  

Выбор пространства для трехмерной визуализации решений обусловлен 

тем, что в соответствии с экологическим смыслом и задачи исследования мы 

предполагаем использование фазовых переменных x1 и x3 и одной из 

переменных x2 или x4 для иллюстрации влияния одного миграционного потока 

на динамику при отсутствии другого. 

 

  а)         б)  

Рис. 2.17. Графическое представление решений в пространстве (x1, x2, x3)  

для а) модели (2.2) и б) модели (2.5). 
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Для проведения сравнительного анализа выполним моделирование с 

учетом следующего набора параметров: )( ,, , ,, ,a p r      = (4.66, 0.58, 2.56, 

4.37, 2.04, 2.50, 4.90). Указанный набор для системы (2.5) будем называть 

вторым набором параметров и обозначать 5-II. В математическом пакете 

найдены следующие приближенные состояния равновесия: Q1(0, 0, 0, 0), Q2 (0, 

0, 9.49, 5.57), Q3(9.12, 6.52, 0, 0), Q4(0.33, 1.47, 8.33, 5.21), Q5(2.42, 3.49, 2.75, 

2.91), Q6(8.74, 6.39, 0.11, 0.46). 

Траектории систем (2.2) и (2.5) представлены на рис. 2.18 с учетом 

прежних начальными условий, а также с учетом набора a=4.66, p=0.58, r=2.56, 

β=4.37, δ=2.04 и набора 5-II соответственно. Горизонтальная ось соответствует 

изменению времени. 

 

Рис. 2.18. Траектории систем (2.2) и (2.5) при х1(0)=0.5, x2(0)=0.5, 

x3(0)=1, x4(0)=7,  а=4.66, p=0.58, r=2.56, β=4.37, δ=2.04, γ=2.50, ε=4.90. 

 

На рис. 2.18 запись вида 𝑥𝑖(2), 𝑖 = 1, 2, 3, 4, обозначает траекторию, 

соответствующую фазовой переменной 𝑥𝑖 для модели (2.2), запись вида 𝑥𝑖(5-

II) обозначает траекторию, соответствующую фазовой переменной 𝑥𝑖 для 

модели (2.5). Результаты численного решения систем (2.2) и (2.5) при 

выбранных выше наборах параметров показывают, что выход на 

стационарный режим происходит при следующих значениях: x1 = 0.29, x2=1.33, 
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x3=8.37, x4=5.21, что отвечает траекториям, представленным на рис. 2.17. Эти 

результаты согласуются с результатами выполненного поиска 

положительного состояния равновесия Q4 для данной системы в 

математическом пакете.  

Рисунки 2.16, 2.18 соответствуют режимам сосуществования двух 

конкурирующих видов относительно трех ареалов (основного ареала и двух 

ареалов убежищ). Сравнение траекторий, соответствующих двум режимам, 

позволяет провести анализ динамики с учетом двунаправленной миграции 

обеих популяций и изменения скоростей миграции.  

На рис. 2.19 приведены проекции фазовых портретов для модели (2.5) с 

учетом начальных условий х1(0)=0.5, x2(0)=0.5, x3(0)=1, x4(0)=7 и наборов 

параметров 5-I и 5-II. В случае а) проекция фазового портрета осуществлена 

на плоскость (x1, x2), соответствующую первому виду в основном ареале и в 

первом убежище, а в случае б) – на плоскость (x3, x4), соответствующую 

второму виду в основном ареале и во втором убежище. В обоих случаях 

положительное состояние равновесия, по отношению к которому проводится 

анализ поведения системы, имеет характер устойчивого узла. 

 

            а)       б)  

Рис. 2.19. Проекции фазовых портретов для случаев а) плоскости (x1, x2)  

и б) плоскости (x3, x4). 

 

Проекция фазового портрета в пространстве (x1, x2, x4) с учетом x3=56.37 

для модели (2.5) представлена на рис. 2.20. 
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Рис. 2.20. Проекция фазового портрета в пространстве (x1, x2, x4) для 

системы (2.5) при (x1(0),  x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7), а=10.00, p=0.10, 

r=0.10, β=5.67, δ=9.01, γ=7.42, ε=6.48 

 

Согласно рис. 2.20, приближенному равновесному решению x1=58.01, 

x2=90.71, x3=56.37, x4=91.00 соответствует устойчивый узел. 

 

2.3.1.4. Разные коэффициенты миграции и межвидовой  

конкуренции 

Перейдем от модели (2.5) к модели, в которой учитывается 

неравномерность коэффициента межвидовой конкуренции r. Обозначим 

оценочный параметр конкурентного воздействия второго вида на первый 

через p13. Соответственно коэффициент воздействия первого вида на второй 

обозначим через p31. Получим, таким образом, систему дифференциальных 

уравнений следующего вида: 
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     (2.6) 

где a – коэффициент естественного прироста,   – коэффициент миграции 

первого вида из основного ареала в первое убежище,  γ  – коэффициент 

миграции первого вида из первого убежища в основной ареал,   – 
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коэффициент миграции второго вида из основного ареала во второе убежище, 

ε – коэффициент миграции второго вида из второго убежища в основной ареал,

( )ijp i j  – коэффициенты межвидовой конкуренции.  

В табл. 2.2 приведены характеристики моделей (2.5) и (2.6) с учетом 

первого и второго критериев оптимальности. Набор параметров, полученный 

с помощью первого критерия оптимальности, обозначим через i-I, i=5, 6.  

Набор параметров, полученный с помощью второго критерия оптимальности, 

обозначим через i-II, i=5, 6.  Наборы параметров, представленные в таблице 

2.2, мы используем в процессе компьютерных экспериментов, связанных с 

анализом траекторной динамики моделей (2.5) и (2.6).  

 

Таблица 2.2. Сводная таблица характеристик моделей (2.5) и (2.6) при 

начальных условиях (x1(0), x2(0), x3(0), x4(0)) = (0.5, 0.5, 1, 7). 

Состояния равновесия Параметры 

Модель (2.5) с набором 5-I 

x1 = 58.04, x2 =90.75,  

x3= 56.42, х4= 91.04 

a=10.00, p = 0.10, r=0.10, =5.67, =9.01, γ=7.42, 

ε=6.48 

Модель (2.5) с набором 5-II 

x1 = 58.27, x2 =90.79,  

x3= 56.09, х4= 91.17 

a=10.00, p = 0.10, r=0.10, =7.32, =9.99, γ=9.97, 

ε=7.03 

Модель (2.6) с набором 6-I-а 

х1=57.78, х2=90.46,  

х3=56.89, х4=90.70.   

a=10.00, p = 0.10, p13=0.50, p31=0.70, =5.67, 

=9.01, γ=7.42, ε=6.48 

Модель (2.6) с набором 6-I-б 

x1 = 58.31, x2=90.39,  

x3=56.58, x4=90.71 

a=10.00, p = 0.10, p13=0.70, p31=0.50, =5.67, 

=9.01, γ=7.42, ε=6.48 

Модель (2.6) с набором 6-II-а 

x1 = 71.34, x2=98.80,  

x3=6.06, x4=43.60 

a=10.00, p = 0.10, p13=0.50, p31=0.70, 

=7.32, =9.99, γ=9.97, ε=7.03 
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Модель (2.6) с набором 6-II-б 

x1 = 6.16, x2=41.57,  

x3=69.73, x4=99.63 

a=10.00, p = 0.10, p13=0.70, p31=0.50,  =7.32, 

=9.99, γ=9.97, ε=7.03 

 

На рис. 2.21 представлены траектории системы (2.6) для набора 

параметров 6-I-a в сравнении с соответствующими траекториями системы 

(2.5) при полученном наборе параметров 5-I.    

 

Рис. 2.21. Траектории систем (2.5) и (2.6) при (x1(0), x2(0), x3(0), x4(0)) 

= (0.5, 0.5, 1, 7), наборе параметров 5-I: a=10.00, p=0.10, r=0.10, β=5.67, 

δ=9.00, γ=7.42, ε=6.48 и наборе параметров 6-I-a: a=10.00, p = 0.10, p13=0.50, 

p31=0.70, =5.67, =9.01, γ=7.42, ε=6.48. 

 

На рис. 2.22 представлены траектории системы (2.6) для набора 

параметров 6-I-б в сравнении с соответствующими траекториями системы 

(2.5) при полученном наборе параметров 5-I. Согласно рис. 2.21, 2.22 

плотности соответственных популяций для моделей (2.5) и (2.6) сохраняются 

на одном уровне на выбранном временном интервале.  
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Рис. 2.22. Траектории систем (2.5) и (2.6) при (x1(0), x2(0), x3(0), x4(0)) 

= (0.5, 0.5, 1, 7), наборе параметров 5-I: a=10.00, p=0.10, r=0.10, β=5.67, 

δ=9.00, γ=7.42, ε=6.48 и наборе параметров 6-I-б: a=10.00, p = 0.10, p13=0.70, 

p31=0.50, =5.67, =9.01, γ=7.42, ε=6.48. 

 

Далее рассмотрим некоторые проекции фазовых портретов модели (2.6) 

на плоскости и в пространстве. Проекция фазового портрета на плоскости 

(х1, х2) для системы (2.6) с учетом х3=56.89, х4=90.70 представлена на рис. 2.23.  

 

Рис. 2.23. Проекция фазового портрета на плоскости (х1, х2) для системы 

(2.6) при (x1(0),  x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7), a=10.00, p=0.10, p13=0.10, 

p31=0.10, β=2.56, δ=2.19, γ=2.52, ε=2.30 
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Проекция фазового портрета в пространстве (x1, x2, x3) с учетом x4=90.70 

для модели (2.6) представлена на рис. 2.24. 

 

Рис. 2.24. Проекция фазового портрета в пространстве (x1, x2, x3) для 

системы (2.6) при (x1(0),  x2(0), x3(0), x4(0))  = (0.5, 0.5,  1, 7), a=10.00, p=0.10, 

p13=0.10, p31=0.10, β=2.56, δ=2.19, γ=2.52, ε=2.30 

 

Представленный анализ моделей (2.5) и (2.6) проведен при двух наборах 

параметров каждой из модели и направлен на изучение двух режимов 

сосуществования видов для определенного методом дифференциальной 

эволюции состояния равновесия. 

 

2.3.2. Шестимерные модели «три конкурента – три ареала миграции» 

 

2.3.2.1. Упрощенная модель 

Изучена такая шестимерная модель попарного экологического 

взаимодействия, в которой учитывается влияние попарной межвидовой 

конкуренции в трех популяциях с двунаправленной миграцией всех 

популяций при n=6, k=3. Указанная модель задается системой обыкновенных 

нелинейных дифференциальных уравнений вида: 
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где 1x , 3x  и 5x  – плотности трех  популяций конкурирующих видов в ареале 

совместного обитания, 2x  – плотность первой популяции в убежище, 4x  – 

плотность второй популяции в убежище, 6x – плотность третьей популяции в 

убежище, ( )ijp i j  – коэффициенты межвидовой конкуренции, 

( 1, 2, 3,4,5,6)iip i   – коэффициенты внутривидовой конкуренции, 

( 1, 2, 3, 4,5,6)ia i   – коэффициенты естественного прироста, ,   – 

коэффициенты миграции вида между ареалом совместного обитания и 

убежищем первой популяции, ,   – коэффициенты миграции вида между 

ареалом совместного обитания и убежищем второй популяции, ,   – 

коэффициенты миграции вида между ареалом совместного обитания и 

убежищем третьей популяции.  

Упрощенная модель имеет вид 
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       (2.8) 

Дальнейшие исследования моделей (2.7)–(2.8) предполагают нахождение 

параметров с помощью дифференциальной эволюции, нахождение 

стационарных состояний, построение траекторий и установление характера 

устойчивости.   
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Для шестимерной модели (2.8) разработано алгоритмическое и 

программное обеспечение для реализации шагов 1–3. В результате работы 

этого программного обеспечения получены модельные параметры и 

компоненты вектора S* (см. табл. 2.3). Набор параметров модели (2.8), 

полученный с помощью первого критерия оптимальности, обозначим через 8-

I.  Набор параметров, полученный с помощью второго критерия 

оптимальности, обозначим через 8-II.   

 

Таблица 2.3. Результаты реализации шагов 1–3 для модели (2.8)  

Начальные 
условия 

(x1(0), x2(0), x3(0), x4(0), х5(0), х6(0)) = (0.5, 0.5, 1, 7, 2,  9) 

Вектор S* Набор параметров 8-I 

x1 = 66,  

x2 =73,  

x3= 24,  

х4= 92, 

x5= 39,  

х6= 86. 

a=10.00, p = 0.10, r=0.10, =5.10, =7.51, γ=2.68, ε=2.75, 

ξ=5.73, η=9.60. 

Состояние 
равновесия 

Набор параметров 8-II 

x1=57.14,  

х2=43.51,  

х3=51.90,  

х4=66.28,  

х5=33.80,  

х6=82.26. 

a=10.00, p = 0.10, r=0.10, =9.96, =8.03, γ=3.29, ε=9.65, 

ξ=5.84, η=9.92. 

 

Траектории системы (2.8) для плотностей популяций x1, x3, x5 

представлены на рис. 2.25 с учетом указанных в табл. 2.3 начальных условий 

и наборов параметров 8-I и 8-II. Горизонтальная ось соответствует изменению 

времени. На рис. 2.25 запись вида 𝑥𝑖(8-I), 𝑖 = 1, 3, 5, обозначает траекторию, 
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соответствующую фазовой переменной 𝑥𝑖 для модели (2.8) с набором 

параметров 8-I: a=10.00, p = 0.10, r=0.10, =5.10, =7.51, γ=2.68, ε=2.75, ξ=5.73, 

η=9.60. Запись вида 𝑥𝑖(8-II) обозначает траекторию, соответствующую 

фазовой переменной 𝑥𝑖 для модели (2.8) с учетом набора параметров 8-II: 

a=10.00, p = 0.10, r=0.10, =9.96, =8.03, γ=3.29, ε=9.65, ξ=5.84, η=9.92.  

 

 

Рис. 2.25. Траектории системы (2.8) для плотностей популяций x1, x3, x5 с 

учетом наборов параметров 8-I (a=10.00, p = 0.10, r=0.10, =5.10, =7.51, 

γ=2.68, ε=2.75, ξ=5.73, η=9.60) и  8-II (a=10.00, p = 0.10, r=0.10, =9.96, 

=8.03, γ=3.29, ε=9.65, ξ=5.84, η=9.92). 

 

Аналогичным образом можно представить траектории системы (2.8) для 

плотностей популяций x2, x4, x6 с учетом начальных условий и наборов 

параметров 8-I и 8-II из табл. 2.3. Сравнительный анализ поведения траекторий 

модели (2.8) с учетом наборов параметров 8-I и 8-II согласно рис. 2.25 

показывает, что: 

1) наблюдается соответствующее стационарному режиму как 

сосуществование всех видов в основном ареале, так и существование 

мигрирующих видов в убежищах;  

2) выбор критерия оптимальности существенно влияет на характер 

траекторий, при этом плотность популяции х3 при наборе параметров 8-I 
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меньше по сравнению с плотностью популяции х3 при наборе параметров 8-II, 

а плотность популяции х2 при наборе параметров 8-I больше по сравнению с 

плотностью популяции х2 при наборе параметров 8-II;  

3) плотности популяций x1, x4, x5, x6 изменяются незначительно при 

переходе от одного критерия к другому. 

 

2.4. Построение и качественное исследование популяционных  

динамических моделей типа «k конкурентов – (k–1) ареалов миграции» 

 

2.4.1. Трехмерные модели 

В [149] предложена общая нелинейная многомерная миграционно-

популяционная модель, в которой k видов мигрирует в 2k ареалов в условиях 

наличия k конкурентов размерности n = 3k, причем n  3. Указанная модель 

имеет достаточно сложную структуру, и в настоящее время изучены 

отдельные частные случаи этой многомерной модели. Далее приведем 

описание миграционно-популяционной модели в случае n=3, k=1, которая 

задается системой обыкновенных нелинейных дифференциальных уравнений 

вида 
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    (2.9) 

где 1x  и 3x  – плотности популяций конкурирующих видов в первом ареале, 2x  

– плотность популяции в убежище, ( )ijp i j  – коэффициенты межвидовой 

конкуренции, ( 1, 2, 3)iip i   – коэффициенты внутривидовой конкуренции, 

( 1, 2, 3)ia i   – коэффициенты естественного прироста, 1 2 1 2, , ,     – 

коэффициенты миграции вида между первым и вторым ареалами, при этом 

второй ареал является убежищем, функции Fi(xi, t) непрерывны и определены 

в неотрицательном ортанте фазового пространства. На фазовые переменные и 

параметры накладываются ограничения вида 
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Модель (2.9) имеет достаточно сложную структуру для исследования, 

поэтому выполним переход к упрощенным модификациям этой модели. 

Сравнительный анализ поведения модифицированных моделей позволит 

выявить качественные эффекты, связанные с влиянием различных параметров 

(например, коэффициентов миграции).         

Положим в модели (2.9) 1 1 2 1 1 2 2 2( , ) 1, ( , ) 1, ( , ) 1, ( , ) 1F x t F x t F x t F x t     для 

всех значений x, t. В этом случае система (2.9) примет вид: 
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Частным случаем модели (2.10) при 1 2 1 2,         является 

модель вида: 
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      (2.11) 

Модели (2.10), (2.11) являются упрощениями модели (2.9) и 

соответствуют разным случаям миграционных взаимодействий. В частности, 

в модели (2.9) коэффициенты миграции различны, а в модели (2.10) 

коэффициенты миграции попарно равны. Коэффициенты миграции могут 

использоваться для оценки изменения численности популяций. 

Вариативность коэффициентов миграции может использоваться при 

управлении популяциями, например, в ситуациях, когда необходимо 

регулирование численности хищников или контроль над инвазивными 

видами.  Коэффициенты миграции могут учитываться при анализе 

генетической структуры популяций. Большие значения коэффициентов 

миграции могут способствовать обоснованию генетического разнообразия 

популяции, а низкие значения – обоснованию инбридинга или потери 

генетического разнообразия. 
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Проведена серия вычислительных экспериментов по поиску 

оптимальных параметров для моделей (2.10) и (2.11) с учетом заданных 

начальных условий. Полученные наборы параметров приведены в таблице 2.4. 

Таблица 2.4. Наборы параметров для моделей (2.10), (2.11), полученные 

с помощью дифференциальной эволюции 

Модель Набор параметров 

(2.10) a1=8.141, a2=10.928, a3=10.998, p11=0.478, p22=0.100, p33=0.100, p13= 

0.137, p31=0.100, 1= 0.124, γ1= 0.310, 2= 10.908, γ2= 10.864. 

(2.11) a1=10.013, a2=10.885, a3=10.934, p11=0.359, p22=0.100, p33=0.101, 

p13= 0.101, p31=0.184, = 3.839, γ= 9.133. 

Найденные наборы параметров использованы для анализа траекторной 

динамики популяций, построения фазовых портретов и сравнительного 

анализа динамических режимов моделей (2.10), (2.11). На рис. 2.26 

представлены траектории системы (2.10) для плотностей популяций x1, x2, x3 в 

сравнении с соответствующими траекториями системы (2.11). 

 

Рис. 2.26. Траектории систем (2.10), (2.11) для плотностей популяций  

x1, x2, x3 с учетом набора параметров модели (2.10): a1=8.141, a2=10.928, 

a3=10.998, p11=0.478, p22=0.100, p33=0.100, p13= 0.137, p31=0.100, 1= 0.124,  

γ1= 0.310, 2= 10.908, γ2= 10.864 и набора параметров модели (2.11): 

a1=10.013, a2=10.885, a3=10.934, p11=0.359, p22=0.100, p33=0.101, p13= 0.101, 

p31=0.184, = 3.839, γ= 9.133. 
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Согласно рис. 2.26, наблюдается соответствующее стационарному 

режиму как сосуществование двух видов в основном ареале, так и 

существование мигрирующего вида в убежище. Разные скорости миграции 

значительно влияют на плотность популяций как в основном ареале, так и в 

убежище. Плотность популяции x1 в основном ареале обитания и плотность 

популяции x2 в убежище для модели (2.10) значительно выше, чем плотности 

соответствующих популяций для модели (2.11). Однако для модели (2.10) 

наблюдается убывание плотности популяции x3, которая не имеет 

возможности мигрировать в убежище, по сравнению с плотностью 

соответствующей популяции модели (2.11). 

Построены фазовые портреты моделей (2.10), (2.11) в неотрицательном 

ортанте пространства (x1, x2, x3) с учетом начальных условий (x1(0), x2(0), x3(0)) 

= (0.5, 0.5, 1) и наборов параметров из таблицы 2.4, а также проекции фазовых 

портретов моделей (2.10), (2.11) на плоскости. В частности, на рис. 2.27 

представлен фазовый портрет модели (2.10) в неотрицательном ортанте 

пространства (x1, x2, x3), а на рис. 2.28 приведена проекция фазового портрета 

системы (2.11) на плоскости (х1 , х2). Вид проекции соответствует характеру 

устойчивого узла.  

 

 

Рис. 2.27.  Фазовый портрет модели (2.10) в неотрицательном ортанте 

пространства (x1, x2, x3) 
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Рис. 2.28. Проекция фазового портрета модели (2.11) на плоскости (x1, x2) 

 

В ходе компьютерных экспериментов выявлены эффекты, связанные с 

влиянием коэффициентов миграции на траекторную динамику численности 

популяций. Сравнительный анализ поведения траекторий моделей (2.10), 

(2.11) показывает, что разные скорости миграции оказывают значительное 

влияние на численности популяций как в основном ареале обитания, так и в 

убежище. При оптимальных наборах параметров, полученных с учетом 

заданного критерия качества, наблюдается сосуществование двух 

конкурентов в основном ареале и существование мигрирующего вида в 

убежище как в случае с разными скоростями миграции, так и в случае попарно 

одинаковых миграционных коэффициентов. 

 

2.4.2. Пятимерные модели 

Изучена пятимерная модель «три конкурента – два ареала миграции», в 

которой учитывается влияние попарной межвидовой конкуренции в трех 

популяциях с двунаправленной миграцией только двух популяций. Указанная 

модель задается системой обыкновенных нелинейных дифференциальных 

уравнений вида 
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 (2.12) 

где x1, x3 и x5 – плотности трех  популяций конкурирующих видов в ареале 

совместного обитания, x2 – плотность первой популяции в убежище, x4 – 

плотность второй популяции в убежище,  ijp i j  – коэффициенты 

межвидовой конкуренции,  1, 2, 3, 4, 5iip i   – коэффициенты внутривидовой 

конкуренции,  1, 2, 3, 4, 5ia i   – коэффициенты естественного прироста, ,   

– коэффициенты миграции вида между ареалом совместного обитания и 

убежищем первой популяции, ,   – коэффициенты миграции вида между 

ареалом совместного обитания и убежищем второй популяции.  

С учетом a1=a2=a3=a4=a5=a, p11=p22=p33=p44=p55=p, 

p13=p15=p31=p35=p51=p53=r от модели (2.12) можно перейти к упрощенной 

модели, описание которой имеет вид 
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             (2.13) 

Исследования модели (2.13) предполагают нахождение параметров с 

помощью дифференциальной эволюции, нахождение стационарных 

состояний, построение траекторий и установление характера устойчивости. 

В результате работы алгоритма получен следующий набор параметров x: 

[10.99, 0.18, 0.10, 4.99, 9.57, 4.36, 7.63]. Траектории системы (2.13) для 

плотностей популяций xi (i=1, …, 5) представлены на рисунке 2.29 с учетом 

начальных условий (x1(0), x2(0), x3(0), x4(0), х5(0)) = (0.5, 0.5, 1, 7, 2) и 

найденного набора параметров.  
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Рис. 2.29. Траектории системы (2.13) для плотностей популяций x1, x2, x3, 

x4, x5 с учетом набора параметров: a=10.99, p = 0.18, r=0.10, =4.99, =9.57, 

γ=4.36, ε=7.63 

 

Согласно рисунку 2.29, траектории, соответствующие плотностям 

популяций x1, x2, x3, x4, выходят на стационарный режим. При этом 

численность популяции x5 уменьшается с сохранением стационарного режима, 

что соответствует штрихпунктирной линии. Таким образом, анализ поведения 

траекторий модели (2.13) с учетом найденного набора параметров показывает, 

что наблюдается соответствующее стационарному режиму сосуществование 

всех видов в основном ареале и существование мигрирующих видов в 

убежищах, однако, численность популяции третьего вида в отсутствие 

убежища уменьшается. 

 

2.5. Компьютерное моделирование популяционных динамических 

систем «хищник – жертва» с учетом внутривидовой конкуренции и  

миграции видов 

 

2.5.1. Модель «два хищника – две жертвы» 

Четырехмерная модель «два хищника – две жертвы» с межвидовой 

конкуренцией хищников и жертв. Указанная модель описывается следующей 

системой дифференциальных уравнений: 
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     (2.14) 

причем, все параметры, приведенные в таблице 2.5, должны быть 

положительными. 

Таблица 2.5.  Переменные и параметры модели (2.14) 

Переменная / 

параметр 

Пояснение переменной / параметра 

xi  (i = 1, 2) плотность конкурирующей популяции i-ой жертвы 

yi  (i = 1, 2) Плотность конкурирующей популяции i-го хищника 

ri  (i = 1, 2) коэффициент естественного прироста жертвы 

( )ija i j  коэффициент межвидовой конкуренции жертв 

( )ija i j  коэффициент внутривидовой конкуренции жертв 

bi  (i = 1, 2) коэффициент взаимодействия между видами 

ci  (i = 1, 2) коэффициент естественной убыли хищников 

d i  (i = 1, 2) коэффициент прироста хищников за счет жертв 

e i  (i = 1, 2) коэффициент межвидовой конкуренции хищников 

 

Все коэффициенты больше нуля, поэтому для удобства проведения 

расчетов можно упростить систему (2.14), разделив каждое уравнение на 

коэффициент роста (убыли). В результате получим: 
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Для системы (2.15) рассмотрим оптимизационную задачу поиска такого 

набора модельных параметров, при котором обеспечивается сосуществование 

двух видов хищников и двух видов жертв. 

В результате работы алгоритма при заданных начальных условиях (x1(0), 

x2(0), y1(0), y2(0)) = (0.3, 0.7, 1.1, 0.8) получен следующий набор параметров: 

 11 12 21 22 1 2 1 2 1 2, , , , , , , , ,a a a a b b d d e e = (0.82447403, 0.32409468, 0.30016064, 

0.30410982, 0.30027106, 1.03948847, 3.5623893, 8.94912896, 0.31805242, 

6.4181793). Траектории системы (2.15) для плотностей популяций x1, x2, y1, y2 

с учетом приведенных начальных условий и полученного набора параметров, 

представлены на рис. 2.30. 

 

Рис. 2.30. Траектории системы (2.15) при (x1(0), x2(0), y1(0), y2(0)) = (0.3, 

0.7, 1.1, 0.8) с учетом набора параметров  11 12 21 22 1 2 1 2 1 2, , , , , , , , ,a a a a b b d d e e = 

(0.82447403, 0.32409468, 0.30016064, 0.30410982, 0.30027106, 1.03948847, 

3.5623893,  8.94912896, 0.31805242, 6.4181793) 

 

Полученный с помощью модифицированного метода дифференциальной 

эволюции набор параметров использован для построения проекций фазовых 

портретов. На рис. 2.31 а, б, в представлены проекции фазовых портретов 

системы (2.15) на плоскости (x1, x2), (x1, y1), (x1, y2) соответственно.  
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Рис. 2.31. Проекции фазовых портретов системы (2.15) на плоскости  

(y1, y2), (y1, y3) и (y1, y4) 

Проекции фазовых портретов системы (2.15) на плоскости (x2, y1), (x2, y2), 

(y1, y2) можно построить аналогичным образом. Результаты, полученные в 

ходе вычислительных экспериментов, подтвердили адекватность выбранного 

критерия качества, обеспечивающего сосуществование всех видов 

популяционной модели «два хищника–две жертвы». 

 

2.6. Компьютерное исследование миграционно-популяционных моделей 

с конкуренцией и трофическими взаимодействиями 

 

Построены n-мерные модели с трофическими взаимодействиями и 

миграционными потоками (при n=4 и n=5) и проведен сравнительный анализ. 

Для исследования предложены две детерминированные популяционные 

модели: 

– модель «жертва – ареал миграции – хищник – суперхищник» 

описывается системой дифференциальных уравнений вида 
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– модель «две жертвы – один ареал миграции – хищник – суперхищник» 

описывается системой дифференциальных уравнений вида   
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  (2.17) 

 

Пояснения переменных и параметров моделей (2.16) и (2.17) приведены в 

табл. 2.6. 

Таблица 2.6. Переменные и параметры моделей (2.16) и (2.17) 

Переменная / 

параметр 

Пояснение переменной / 

параметра модели (1) 

Пояснение переменной / 

параметра модели (2) 

x1 плотность популяции 

жертвы в основном ареале 

плотность популяции первой 

жертвы в основном ареале 

x2 плотность популяции 

жертвы в убежище 

плотность популяции первой 

жертвы в убежище 

3x    плотность популяции 

хищника 

плотность популяции второй 

жертвы в основном ареале 

4x  плотность популяции 

суперхищника 

плотность популяции 

хищника 

x5 - плотность популяции 

суперхищника 

ai  (i = 1, 2) коэффициенты 

естественного прироста 

жертвы в основном ареале 

и убежище соответственно 

коэффициенты естественного 

прироста первой жертвы в 

основном ареале и убежище 

соответственно 

a3 - коэффициент естественного 

прироста dnjhjq жертвы в 

основном ареале 
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, 1, 2, 3, 4iip i   коэффициенты 

внутривидовой 

конкуренции 

коэффициенты 

внутривидовой конкуренции 

p55 - коэффициент внутривидовой 

конкуренции суперхищника 

13 14 34, , q q q  коэффициенты 

взаимодействия хищника, 

суперхищника и жертвы  

- 

q14, q15, q34, q35, 

q45 

- коэффициенты 

взаимодействия хищника, 

суперхищника и жертв  

ci  (i = 3, 4) коэффициенты 

естественной убыли 

хищника и суперхищника 

- 

ci  (i = 4, 5) - коэффициенты естественной 

убыли хищника и 

суперхищника 

13  d  коэффициент прироста 

хищника за счет жертвы 

- 

14d  коэффициент прироста 

суперхищника за счет 

жертвы 

- 

34d  коэффициент прироста 

суперхищника за счет 

хищника 

- 

d14, d34 - коэффициенты прироста 

хищника за счет жертв 

d15, d35 - коэффициенты прироста 

суперхищника за счет жертв 
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d45 - коэффициент прироста 

суперхищника за счет 

хищника 

β, γ коэффициенты миграции 

жертвы 

коэффициенты миграции 

первой жертвы 

 

Анализ моделей (2.16) и (2.17) предполагает нахождение состояний 

равновесия, что в аналитическом виде затруднительно из-за высокой 

размерности системы и большого числа параметров. Однако в данном случае 

возможен численный подход с использованием эволюционных алгоритмов 

оптимизации. В частности, можно провести оптимизационный поиск таких 

параметров моделей (2.16) и (2.17), при которых обеспечивается 

сосуществование всех популяций в основном ареале и существование вида в 

убежище. Для решения этой задачи применяется алгоритм дифференциальной 

эволюции. 

С помощью программы, созданной на языке Python в среде Jupyter 

Notebook, проведен вычислительный эксперимент для поиска набора 

параметров моделей (2.16) и (2.17). Решение оптимизационной задачи поиска 

параметров моделей (2.16) и (2.17) позволило провести вычислительный 

эксперимент и найти соответствующий набор параметров при следующих 

начальных условиях (x1(0), x2(0), x3(0), x4(0)) = (3.0, 2.0, 1.0, 1.5) и (x1(0), x2(0), 

x3(0), x4(0), x5(0))=(4.0, 3.0, 5.0, 5.5, 3.5). Полученные наборы параметров и 

найденные с помощью них состояния равновесия приведены в табл. 2.7. 

 

Таблица 2.7. Наборы параметров и состояния равновесия  

моделей (2.16) и (2.17) 

 Модель (2.16) Модель (2.17) 

Начальные 

условия 

(x1(0), x2(0), x3(0), x4(0)) 

= (3.0, 2.0, 1.0, 1.5) 

(x1(0), x2(0), x3(0), x4(0), x5(0)) =  

(4.0, 3.0, 5.0, 5.5, 3.5) 
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Набор 

параметров 

 a1 = 20.00, a2 = 20.00,  

p11 = 4.00, p22 = 2.00,  

q13 = 0.30, q14 = 0.30,  

q34 = 0.38, β = 0.50,  

γ = 0.10, c3 = 7.74,  

p33 = 0.12, c4 = 0.10,   

p44 = 4.80, d13 = 4.36,  

d14 = 3.06, d34 = 3.76 

 a1 = 9.94, a2 = 3.50, a3 = 11.72,  

p11 = 1.00, p13 = 0.10, p22 = 0.91, 

p33 = 0.75, p31 = 0.23, q14 = 0.18, 

q15 = 0.29, q34 = 0.10, q35 = 0.10, 

q45 = 0.10, β = 10.00, γ = 10.00,  

c4 = 1.37, p44 = 1.01, c5 = 9.00,  

p55 = 1.00, d14 = 0.74, d34 = 0.97, 

d15 = 0.45, d35 = 0.16, d45 = 0.95 

Состояние 

равновесия 

x1 = 3.31, x2 =9.77, 

x3= 14.08, х4= 13.09 

x1=4.34, х2=4.21, 

х3=11.70, х4=12.40, х5=6.59 

 

На рис. 2.32 представлены траектории системы (2.16) для плотностей 

популяций x1, x2, x3, x4 с учетом начальных условий и набора параметров из 

таблицы 2.7. На рис. 2.33 представлены траектории системы (2.17) для 

плотностей популяций x1, x2, x3, x4, x5 с учетом начальных условий и набора 

параметров из табл. 2.7. 

 

 

Рис. 2.32. Траектории системы (2.16) при заданных начальных условиях 

и найденном наборе параметров 

 



84 
 

 

 

Рис. 2.33. Траектории системы (2.17) при заданных начальных условиях 

и найденном наборе параметров 

 

Результаты анализа представленных на рис. 2.32 и 2.33 траекторий систем 

(2.16), (2.17) и показывают сосуществование видов жертв, хищника и 

суперхищника, а также существование вида в убежище. Траектории решений 

системы дифференциальных уравнений выходят на стационарный режим.  

 

2.7. Получение условий сосуществования видов и условий  

устойчивости состояний равновесия с применением функций Ляпунова 

 

2.7.1. Описание миграционно-популяционных моделей  

Рассмотрим нелинейную модель, учитывающую конкуренцию и 

миграцию видов, описываемую системой трех дифференциальных уравнений 

вида 

   

1 1 1 2 1

2 2 2 1 2

1

(1 ) ,

(1 ) ,

(1 ),

x x x r y x x

x x x x x

y y rx

 
 

    
   
 







      (2.18) 

где x1 и y – плотности двух популяций конкурирующих видов в ареале 

совместного обитания, x2 – плотность первой популяции в убежище, r > 0 – 

коэффициент конкуренции видов в первом ареале,  и  – коэффициенты 
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миграции видов между двумя ареалами, при этом   . Модель (2.18) является 

модификацией модели, рассмотренной в [84], на случай, когда скорости 

миграции различны. Кроме того, коэффициент внутривидовой конкуренции 

второго вида равен нулю, коэффициенты межвидовой конкуренции равны.  

Частным случаем модели (2.18) является упрощенная модель с учетом 

равномерной миграции. Указанная модель задается системой уравнений вида 

   
1 1 1 2 1

2 2 2 1 2

1

(1 ) ,

(1 ) ,

(1 ),

x x x r y x x

x x x x x

y y r x

 
 

    
   
 







     (2.19) 

где β=γ=μ. Далее будут представлены результаты поиска состояний равновесия 

моделей (2.18) и (2.19) и сформулированы теоремы о сосуществовании 

популяций и теоремы об устойчивости. 

 

2.7.2. Условия сосуществования видов и анализ устойчивости 

В результате решения соответствующих алгебраических уравнений для 

модели (2.18) получены следующие состояния равновесия: O(0, 0, 0),  

1 1 2( , , 0)A x x  и  2 1 2ˆ ˆ ˆ, ,A x x у . Координаты 1x  , 2x  , 1x̂  , 2x̂  , у̂  имеют вид:  

2/3 1/3 2/3 1/3 2/3 1/3

1 21/3 1/3

4 (1 ) ( 4 (1 ) )( 2 (1 ) )
, ,

6 36

W W H W W H W W H
x x

W W

  


        
   

 

 

2

2 2 2

2

2

1

2

1
ˆ

,

2 4
,

2

2 4 2 2 2

,

ˆ
2

ˆ
r r r r r r

r

r r r r r

x

r r r

x

r
y

r

r

   

      

     

       


 


 

где  

2 3 2 4 2 2 4 3 2 2 3

2 2 1/2 2 2

72 8 12 3 (4 8 4 12 20 20 12

11 22 11 2 2 1)) 36 36 24 36 24 8,

(W            

         

         

           
 

2 24 12 4 12 8 .H          

Дальнейшее исследование заключается в нахождении значений β > 0 и 

 > 0, при которых существуют неотрицательное состояние равновесия 
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1 1 2( , ,0)A x x  и положительное состояние равновесия   2 1 2ˆ ˆ ˆ, ,A x x у . 

Сформулируем достаточные условия существования положительного 

состояния равновесия A2 для модели (1) в виде следующей теоремы, 

доказательство которой базируется на решении системы неравенств с 

параметрами. 

Теорема 1. Пусть для системы (1) выполнено условие: 

0 < β < 1, 0 < γ < 1, r>1. 

Тогда система (2.18) имеет единственное положительное состояние 

равновесия  2 1 2ˆ ˆ ˆ, ,A x x у . 

Сформулируем достаточные условия существования неотрицательного 

состояния равновесия A1 в виде следующей теоремы, при доказательстве 

которой учитываются ограничения, исчерпывающие все возможные случаи 

существования указанного состояния равновесия. 

Теорема 2. Пусть для системы (2.18) выполнено одно из условий: 

(Р1) 0 < β < 1,   > 1 – β , 

(Р2) β > 0,    > β. 

Тогда система (2.18) имеет единственное неотрицательное состояние 

равновесия 1 1 2( , , 0)A x x . 

Для доказательства существования неотрицательного состояния 

равновесия приравняем правые части системы (2.18) к нулю и преобразуем 

полученные уравнения системы к виду 

  1 1 2(1 ) 0,x x x      (2.20) 

  2 2 1(1 ) 0.x x x      (2.21) 

Так как  x1 = x2 (x2 + β – 1)/, производя замену в (2.20), получим 

x2 (x2) = 0, где  

2
3 2

2 2 2

1 2( 1) 1 ( 1) 1
( ) 1 1x x x x

  
    

     
         

  
. 

Очевидно, что  
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1
(0) 1





  ,  2
(1)

  


  . 

Аналогичным образом используя замену переменной x2 в (2.21), получим 

1
(0) 1





  , 2
(1) ( )

  


  . 

С учетом рассмотрения всех случаев ограничений для функций (x) и 

(x), можно показать, что при перечисленных в теореме 2 условиях 

неотрицательное состояние равновесия A1 существует. 

Перейдем к анализу модели (2.19). В результате решения 

соответствующих алгебраических уравнений для модели (2.19) получены 

следующие состояния равновесия: O(0, 0, 0),  B1(1, 1, 0), и  * * *
2 1 2ˆ ˆ ˆ, ,B x x у . 

Координаты *
1̂x , *

2x̂ , *у̂  имеют вид 

 

 

2

2 2

2

* *

2

1

2

*

2

.

1
ˆ

2 4
,

2

ˆ,
2

2 4 2 2
ˆ

2

r r r r r r

r

r r r r r r r r r
y

x

r

x
r

   

      

     

        

 



 

Далее, рассмотрим вопрос о существовании положительного состояния 

равновесия B2 для модели (2.19) в виде следующей теоремы, доказательство 

которой базируется на решении системы неравенств с параметрами. 

Теорема 3. Пусть для системы (2.19) выполнено условие: 

r > 1, 0 < μ < 1. 

Тогда система (2.19) имеет единственное положительное состояние 

равновесия  * * *
2 1 2ˆ ˆ ˆ, ,B x x у . 

Замечание. В результате решения алгебраической системы уравнений, 

соответствующей (2.19), найдено состояние равновесия 

1 2

2 24 1 4 11 1
, , 0.

2 2 2 2
x x y

 
 

   
        Нетрудно показать, что 
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указанное состояние равновесия существует только при значении 
1

2
   и 

совпадает с  O(0, 0, 0).  

Изучим с помощью метода функций Ляпунова вопрос об 

асимптотической устойчивости в целом положения равновесия A2 модели 

(2.18). Рассмотрим для системы (1) вспомогательную функцию  

  
2

3
1

ˆ ˆ ˆ ˆ ˆ ˆ( ln( / )) ( ln( / ))i i i i i i
i

V k x x x x x k y y y y y


      , (2.22) 

где ki, i = 1, 2, 3, – положительные постоянные. Как известно, для функции V 

должен выполняться ряд условий [70, 82, 91, 129, 152]. Для рассматриваемого 

в настоящей работе случая условия принимают следующий вид: V0 в , где 

 – компактное подмножество множества 3R ; V=0 только при 

1 1 2 2ˆ ˆ ˆ, , .x x x x y y    

Найдем и оценим производную функции V вдоль траекторий  

системы (2.18):  

 

1 1 1 1 1 2 1 2 1(1)

2 2 2 2 2 1 2 1 2 3 1 1

2 2
1 1 1 2 2 2 1 1 1 3

1 2 1 2
1 1 1

1 1

ˆ ˆ ˆ ˆ ˆ/ ( )[ ( ) ( ) ( / / )]

ˆ ˆ ˆ ˆ ˆ ˆ( )[ ( ) ( / / )] ( )[ ( )]

ˆ ˆ ˆ ˆ( ) ( ) ( )( )( )

ˆ ˆ
ˆ( )

ˆ

dV dt k x x x x r y y x x x x

k x x x x x x x x k y y r x x

k x x k x x x x y y k r k r

x x x x
k x x

x x







        

          

         

 
  

 
2 1 2 1

2 2 2
2 2

ˆ ˆ
ˆ( ) .

ˆ
x x x x

k x x
x x


 

   
 

 (2.23) 

Из (2.23) следует выполнение неравенства  dV/dt (1)  0. Выбор такой 

функции Ляпунова V показывает, что, согласно теореме Барбашина–

Красовского [91, 152], состояние равновесия  2 1 2ˆ ˆ ˆ, ,A x x у является 

асимптотически устойчивым. Отметим, что аналогичные функции Ляпунова 

для различных модификаций популяционных моделей рассматривались  

в [111, 116–120]. 

Кроме того, для модели (2.19) построена функция Ляпунова вида (2.22) с 

учетом проверки ее свойств для положительного состояния равновесия B2. 

Найдем и оценим производную функции V вдоль траекторий системы (2.19):  
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1 1 1 1 1 2 1 2 1(2)

2 2 2 2 2 1 2 1 2 3 1 1

2 2
1 1 1 2 2 2 1 1 1 3

1 2 1 2
1 1 1

1 1

ˆ ˆ ˆ ˆ ˆ/ ( )[ ( ) ( ) ( / / )]

ˆ ˆ ˆ ˆ ˆ ˆ( )[ ( ) ( / / )] ( )[ ( )]

ˆ ˆ ˆ ˆ( ) ( ) ( )( )( )

ˆ ˆ
ˆ( )

ˆ

dV dt k x x x x r y y x x x x

k x x x x x x x x k y y r x x

k x x k x x x x y y k r k r

x x x x
k x x

x x







        

          

         

 
  

 
2 1 2 1

2 2 2
2 2

ˆ ˆ
ˆ( ) .

ˆ
x x x x

k x x
x x


 

   
 

 (2.24) 

С использованием (2.24) нетрудно показать справедливость неравенства 

dV/dt (2)  0, откуда следует асимптотическая устойчивость состояния 

равновесия B2. Таким образом, показано, что для систем (2.18) и (2.19) выбор 

функции Ляпунова (2.22) является эффективным. 

Кроме того, рассмотрена трехмерная модель с трофическими 

взаимодействиями, в которой изучается динамика популяции хищника, а 

также популяции жертвы в основном ареале и в ареале миграции. Учтен 

случай одинаковых и различных скоростей двунаправленной миграции. 

Найдены состояния равновесия, сформулированы условия существования 

видов и исследована устойчивость положительного состояния равновесия.  

 

2.8. Выводы по второй главе 
 

В главе 2 рассмотрены аспекты применения методов математического 

моделирования и численной оптимизации для исследования динамических 

режимов экологических систем, относящихся к следующим типам: 

– два конкурента – один ареал миграции; 

– два конкурента – два ареала миграции; 

– три конкурента – два ареала миграции; 

– три конкурента – три ареала миграции; 

– две жертвы – ареал миграции – хищник; 

– жертва – ареал миграции – хищник – суперхищник; 

– две жертвы – один ареал миграции – хищник – суперхищник.  

Сравнительный анализ результатов компьютерных экспериментов для 

указанных моделей позволил выявить благоприятные условия для развития 
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популяций конкурентов, жертв, хищника и суперхищника как в основном 

ареале обитания, так и в убежище, и охарактеризовать ряд новых 

качественных эффектов.   

Проведенное аналитическое и качественное исследование модификаций 

трехмерных популяционных моделей типа «два конкурента – один ареал 

миграции» и «жертва – ареал миграции – хищник», описывающих 

взаимодействие видов с учетом конкуренции, трофических взаимодействий и 

миграционных потоков, позволило получить достаточные условия 

сосуществования видов и условия устойчивости положительных состояний 

равновесия на основе построения функции Ляпунова. Выявлена аналогия 

между состояниями равновесия моделей «два конкурента – ареал миграции 

первого конкурента» и «хищник –жертва – ареал миграции жертвы». 

Указанная аналогия позволила получить эквивалентные условия 

сосуществования видов для разных типов миграционно–популяционных 

моделей.  
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Глава 3. Построение, анализ и компьютерное исследование  

стохастических миграционно-популяционных моделей с конкуренцией 

 

3.1. Введение 

 

В главе 3 осуществлена стохастизация изученных во второй главе 

моделей и их модификаций на основе аддитивных шумов, мультипликативных 

шумов и метода построения самосогласованных моделей. Для описания 

структуры стохастической модели использованы уравнения Фоккера–Планка 

и выполнен переход к системе уравнений в форме Ланжевена. Численное 

решение стохастических систем дифференциальных уравнений реализовано 

методом Эйлера–Маруямы. С помощью программного комплекса на языке 

Python проведены компьютерные эксперименты, построены траектории для 

детерминированного и стохастических случаев. Проведен сравнительный 

анализ детерминированной и соответствующих ей стохастических моделей. 

 

3.2. Построение и анализ стохастических популяционных моделей  

с применением аддитивных и мультипликативных гауссовых шумов 

 

Переход к стохастической модели, соответствующей каждой из 

рассмотренной в главе 2 детерминированной системы, осуществлен на основе 

введения аддитивного и мультипликативного шумов. Стохастическое 

дифференциальное уравнение (СДУ) в форме уравнения Ланжевена, 

эквивалентное уравнению Фоккера–Планка, записано следующим образом: 

   , , ,dx a x t dt b x t dW   где nx R  – функция состояния системы;  nW R  – 

стандартное броуновское движение, которое описывается случайным 

винеровским процессом; n>2 – количество уравнений в системе; a(x,t) – правая 

часть системы дифференциальных уравнений, представленной в векторной 

форме; для системы стохастических дифференциальных уравнений с 
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аддитивным шумом b(x,t) представляет собой единичную матрицу размера 

nхn. Для системы СДУ с мультипликативным шумом в тривиальном случае 

имеем 

   

1

2

3

4

0

0

0

0
,

0

0 0

0 0 0

0 0 0

0 0

0 0

0
,

0 0

n

x

x

x
b x t

x

x









 
 
 
 

  
 
 
  
 









     



       (3.1) 

где σ — параметр интенсивности шума. С учетом матрицы (3.1) получим две 

системы стохастических уравнений, соответствующих детерминированной 

системе, в зависимости от вида стохастических возмущений.  

Приведем для каждой модели из главы 2 систему стохастических 

дифференциальных уравнений с учетом добавления аддитивных, 

мультипликативных и параметрических шумов. 

1) Два конкурента – один ареал миграции. 

В случае аддитивных гауссовых шумов имеем: 
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В случае мультипликативных шумов имеем: 
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Далее рассмотрим стохастическую модель с учетом введения 

множителей, содержащих случайный винеровский процесс, к скоростям 

миграции: 
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где σ1, σ2  — интенсивности шума, W — винеровский процесс. Таким 

образом, система (3.3) учитывает случайный характер параметров миграции. 

Аналогичным образом получены результаты стохастизации для 

следующих динамических моделей. 

2) Четырехмерная стохастическая модель «два конкурента – два ареала 

миграции»: 
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   (3.4) 

где ( , ), 1, ,4i i i      – аддитивный гауссов шум, добавленный в правую 

часть каждого уравнения детерминированной системы (2.6). 

3) Пятимерная модель «три конкурента – два ареала миграции». 

Аналогичная стохастическая модель: 
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где ( , ), 1, ,5i i i      – аддитивный гауссов шум, добавленный в правую 

часть каждого уравнения детерминированной системы (2.13). 

4) Шестимерная модель «три конкурента – три ареала миграции». 

Аналогичная стохастическая модель: 
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где ( , ), 1, ,6i i i      – аддитивный гауссов шум, добавленный в правую 

часть каждого уравнения детерминированной системы (2.8). 

Перейдем к стохастическому случаю для моделей с трофическими 

взаимодействиями. Далее рассмотрена детерминированная шестимерная 

модель взаимодействия двух конкурирующих популяций хищников, двух 

конкурирующих популяций жертв в основном ареале обитания при наличии 

миграции жертв в соответствующие ареалы «два хищника–две жертвы–два 

ареала миграции жертв»:  
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 (3.7) 

В (3.7) приняты следующие обозначения: x1 и x3 – плотности популяций 

жертв №1 и №2 в первом ареале (основном ареале обитания); x2 – плотность 

популяции жертвы №1 во втором ареале (убежище); x4 – плотность популяции 

жертвы №2 в третьем ареале (убежище); x5 и x6 – плотности популяций 

хищников; ( 1,2,3,4,5,6)iip i   – коэффициенты внутривидовой конкуренции;  

p13, p31 – коэффициенты межвидовой конкуренции жертв; p56, p65 –  

коэффициенты межвидовой конкуренции хищников; q15, q16, q35, q36  и  d15, d16, 

d35, d36 – коэффициенты взаимодействия хищника и жертвы; 

( 1, 2, 3, 4,5,6)ia i   – коэффициенты естественного прироста; β, γ – 

коэффициенты миграции вида между двумя ареалами,  при этом один из 

ареалов является убежищем; δ, ε – коэффициенты миграции вида между двумя 

ареалами, при этом один из ареалов является убежищем. На фазовые 

переменные накладываются ограничения неотрицательности. 

Разработанный алгоритм поиска параметров методом дифференциальной 

эволюции позволяет идентифицировать параметрические наборы, при 
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которых модель (3.7) характеризуется переходом к стационарным режимам. В 

частности, получен следующий набор параметров:  

a1=9.87107026, a2=9.97602024, a3=9.94653833, a4=9.96876543, a5=1.42213144, 

a6=7.54755514, p11=0.10331098, p22=0.10190956, p33=0.14403938, 

p44=0.10093958, p55=2.44771688, p66=4.59652965, p13=0.12519358, 

p31=0.10242677, p56=0.97589257, p65=0.27400194, q15=0.10455808, 

q16=0.10524564, q35=0.11179302, q36=0.1032072, d15=6.31530649,  

d35= 7.24952535, d16=8.66821615, d36=8.96873736, β=3.47237116, γ=3.53131469, 

δ=3.15533821, ε= 3.04329167. 

Рассмотрим пятимерную модель с трофическими взаимодействиями и 

миграционными потоками «две жертвы – ареал миграции жертвы – хищник – 

суперхищник» и добавим случайные факторы в каждое из уравнений  

системы (2.17). 

В случае аддитивных гауссовых шумов имеем: 
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  (3.8) 

где (0,1)  – случайное число, сформированное с помощью нормального 

распределения, соответствующее каждому уравнению системы. В случае 

мультипликативных гауссовых шумов получим 
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 (3.9) 

Далее рассмотрим четырехмерную стохастическую модель «жертва – 

ареал миграции жертвы – хищник – суперхищник» с учетом введения 
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множителей, содержащих случайный винеровский процесс, к скоростям 

миграции системы (2.16): 
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где σ1, σ2  — интенсивности шума, W — винеровский процесс. Таким 

образом, система (3.10) учитывает случайный характер параметров миграции. 

Перейдем к рассмотрению детерминированной четырехмерной модели 

«две жертвы – хищник – суперхищник» с функцией реакции на хищничество 

по Холлингу II типа [34] и функциональным откликом Беддингтона – 

ДеАнгелиса [6, 64], а также с учетом межвидовой конкуренции между 

жертвами. Тип II функционального отклика Холлинга характеризуется 

замедлением скорости потребления пищи. Коэффициенты для функции 

Беддингтона – ДеАнгелиса показывают способность хищников к поиску 

добычи в определенных зонах. 

Как правило, в экологии жертвы из данной структуры являются 

продуцентами, хищники – консументы (потребители) первого порядка, 

суперхищники – консументы (потребители) второго порядка. Модель 

описывается дифференциальными уравнениями вида:     
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   (3.11) 

где  x1,x2 – плотности популяции жертв, y – плотность популяции хищника, z – 

плотность популяции суперхищника;  μ1, μ2 — коэффициенты естественной 

смертности хищника и суперхищника соответственно; μ3, μ4 – коэффициенты 
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внутривидовой конкуренции; η1, η2, η3, η4 – коэффициенты пищевой ценности; 

d1, d2 — коэффициенты, описывающие контакты видов; a1, a2 – коэффициенты 

естественного прироста жертв; параметры bi (i = 1, 2, 3, 4) используются для 

моделирования функционального отклика Хoллинга II типа  и 

функционального отклика Беддингтона – ДеАнгелиса. Рост жертвы 

описывается логистическим законом. На фазовые переменные накладываются 

ограничения неотрицательности. 

Разработанный алгоритм поиска параметров позволяет 

идентифицировать параметрические наборы, при которых модель (3.11) 

характеризуется переходом к стационарным режимам. В частности, получен 

следующий набор параметров: b1=2.15644028, b2=2.34425047, b3=2.56804225, 

b4=4.43860317, η1=6.25492394, η2=9.87359181, η3=9.34585317, η4=9.7430215, 

d1=1.62546413, d2=9.08351081, a1=9.77191477, a2=9.5850759, μ1=0.87808252, 

μ2=1.26623592, μ3=0.31335236, μ4=0.33900644. С использованием найденного 

набора параметров получено положительное состояние равновесия: 

x1=6.702283, x2=6.783375, y=17.698620, z=22.953251. 

 

3.3. Сравнительный анализ результатов вычислительных  

экспериментов для детерминированных и стохастических моделей 

 

Для дальнейшего анализа качественных свойств моделей необходимо 

исследовать влияние введения стохастики. На рис. 3.1 представлены 

траектории решений систем (3.1)–(3.3) для каждой фазовой переменной в 

сравнении с решением детерминированной системы (2.11). 

На рис. 3.2 представлены траектории модели (3.4) с учетом набора 

параметров, полученного для соответствующей детерминированной модели 

(2.6): a=10.00, p = 0.10, p13=0.70, p31=0.50,  =7.32, =9.99, γ=9.97, ε=7.03. 
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Рис. 3.1. Траектории модели (2.11) и соответствующих стохастических 

моделей (3.1)–(3.3) 

 

 

Рис. 3.2. Траектории стохастической модели (3.4) (обозначены жирными 

линиями) и траектории соответствующей детерминированной модели (2.2) 

(обозначены тонкими линиями) 

 

На рис. 3.3 представлены траектории модели (3.5) с учетом набора 

параметров, полученного для соответствующей детерминированной модели 

(2.13): a=10.98542733, p = 0.1799789, r=0.103919, =4.99860784, =9.57398696, 

γ=4.3645713, ε=7.62890926. На рис. 3.4 представлены траектории модели (3.6) 

с учетом набора параметров, полученного для соответствующей 

детерминированной модели (2.8). На рис. 3.5 представлены траектории 
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соответствующей стохастической модели, полученной в результате перехода 

от детерминированной модели (3.7). Траектории построены с учетом 

идентифицированного набора параметров и с учетом начальных условий 

(x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)) = (0.5, 0.5, 1, 2, 7, 9). 

 

Рис. 3.3. Траектории стохастической модели (3.5) (обозначены жирными 

линиями) и траектории соответствующей детерминированной модели (2.13) 

(обозначены тонкими линиями) 

 

 

Рис. 3.4. Траектории стохастической модели (3.6) (обозначены 

сплошными линиями) и траектории соответствующей детерминированной 

модели (2.8) (обозначены пунктирными линиями) 
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Рис. 3.5. Траектории стохастической системы (3.7) при рассмотренных 

начальных условиях и найденном наборе параметров 

 

Согласно рис. 3.5, введение стохастики оказывает незначительное 

влияние на поведение модели. Как и в детерминистическом случае, 

траектории решений системы стохастических дифференциальных уравнений 

выходят на стационарный режим. 

На рис. 3.6 представлены траектории систем (3.8) и (3.9) для плотностей 

популяций x1, x2, x3, x4, x5 с учетом начальных условий и набора параметров из 

таблицы 2.7. На рис. 3.7 представлены траектории системы (3.10) для 

плотностей популяций x1, x2, x3, x4 с учетом начальных условий и набора 

параметров из таблицы 2.7. Для каждой фазовой переменной приведены 

траектории решения в сравнении с детерминистическим случаем. 

Результаты анализа представленных на рис. 3.6 и 3.7 траекторий систем 

(2.17), (2.16) и их стохастических вариантов (3.8)–(3.10) показывают 

сосуществование видов жертв, хищника и суперхищника, а также 

существование вида в убежище. Введение стохастики оказывает значительное 

влияние на поведение моделей в случае добавления случайных возмущений в 

параметры миграции. Траектории решений системы стохастических 

дифференциальных уравнений выходят на стационарный режим.  
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Рис. 3.6. Траектории стохастических моделей (3.8) и (3.9) и траектории 

соответствующей детерминированной модели (2.17) (обозначены 

сплошными линиями) 

 

 

Рис. 3.7. Траектории стохастической модели (3.10) и траектории 

соответствующей детерминированной модели (2.16) (обозначены 

сплошными линиями) 
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Качественный и численный анализ четырехмерной миграционно-

популяционной модели (3.11) предполагает изучение динамики траекторий и 

построение фазовых портретов. На рис.3.8 представлены такие траектории 

модели (3.11), которые построены с учетом найденного набора параметров и 

при заданных начальных условиях (x1(0), x2(0), y(0), z(0)) = (1, 2, 0.5. 0.7). 

Стохастизация модели (3.11) осуществлена путем добавления аддитивного 

гауссова шума в правую часть каждого уравнения детерминированной 

системы (3.11) ( , ), 1, ,4i i i     . 

 

Рис. 3.8. Траектории модели (3.11) и соответствующей стохастической 

модели 

 

Результаты анализа представленных на рис. 3.8 траекторий решений 

модели (3.11) показывают, что наблюдается сосуществование двух видов 

жертв, хищника и суперхищника, поедающего три вида. Введение стохастики 

оказывает незначительное влияние на поведение модели. Как и в 

детерминистическом случае, траектории решений системы стохастических 

дифференциальных уравнений выходят на стационарный режим. 

Стохастическое моделирование позволило выявить схожий характер 
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траекторий модели (3.11) и соответствующей стохастической модели при 

найденном наборе параметров, который получен с учетом условий, 

гарантирующих сосуществование двух популяций жертв, популяций хищника 

и суперхищника.  Таким образом, при указанном наборе параметров модели 

(3.11) для изучения траекторной динамики достаточно провести 

вычислительный эксперимент только в детерминированном случае. 

 

3.4. Сравнительный анализ методов стохастизации моделей  

на основе аддитивных, мультипликативных шумов и с использованием 

самосогласованных одношаговых процессов 

 

Для проведения сравнительного анализа методов стохастизации 

необходимо построить траектории стохастической модели. В случае 

построения модели методом самосогласованных одношаговых процессов 

используется специализированный программный комплекс, разработанный в 

[31, 32, 40, 111]. В качестве входных данных указанный программный 

комплекс использует описание взаимодействий, происходящих в системе. 

Одним из результатов работы программного комплекса является схема 

взаимодействия [109], для представления которой используется 

интерактивная оболочка Jupyter. В табл. 3.1. представлена обобщенная схема 

для разных типов взаимодействий в биологических популяциях: конкуренция 

видов внутри популяции, межвидовая конкуренция, трофические 

взаимодействия между хищниками и жертвами, миграция видов в убежище. 

 

Таблица 3.1. Обобщенная схема взаимодействий 

Параметр Описание Вид 

взаимодействия 

ai  (i = 1, 2, … n) коэффициенты естественного 

прироста жертвы или конкурента 

как в основном ареале, так и в 

i

i i2
a

x x  
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убежище 

pii, (i=1, 2, …, n) коэффициенты внутривидовой 

конкуренции всех видов 
2  

iip

i ix x  

ci  (i = 1, 2, …, n) коэффициенты естественной 

убыли хищника или суперхищника 

i

i 0
c

x   

pij, i=1, 3, …, n, 

j=1, 3, …, n, i≠j 

коэффициенты межвидовой 

конкуренции всех видов 
 

ijp

i j jx x x   

 
jip

i j ix x x   

βi, γi , i=1, 2, …, 

n/2,  j=1, 2, …, n/2 

коэффициенты миграции жертвы 

или конкурента 
i j j i,   

i i

x x x x
 

   

qij , i=1, 2, …, n, 

j=1, 2, …, n 

коэффициенты взаимодействия 

хищника или суперхищника и 

жертвы (поедание жертвы) 

ij

i j j

q

x x x   

dij, i=1, 2, …, n, 

j=1, 2, …, n 

коэффициенты прироста: 

– хищника за счет жертвы; 

– суперхищника за счет жертвы; 

– суперхищника за счет хищника. 

2
ijd

i j i jx x x x    

Согласно предложенной схеме, например, системе (2.2) «два конкурента 

– два ареала миграции» будет соответствовать схема взаимодействия 

следующего вида: 

1 2

1 1 2 2 2 ,            2 ,
a a

x x x x   
3 4

3 40,                 0,
c c

x x   

11

1 12  
p

x x , 
22

2 22  
p

x x , 
33

3 32  
p

x x , 
44

4 4        2  
p

x x , 

13 3414

1 3 3 1 4 4 3 4 4,       ,        
q qq

x x x x x x x x x      , 

13 3414

1 3 1 3 1 4 1 4 3 4 3 42 ,       2 ,      2 ,
d dd

x x x x x x x x x x x x          

1 2 2 1,   x x x x
 

  . 

Для численного решения систем обыкновенных дифференциальных 

уравнений используется программная реализация стандартных методов 

Рунге–Кутты 4-порядка, а для решения соответствующих стохастических 
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дифференциальных уравнений используется специально разработанная 

библиотека, подробное описание которой содержится в [31, 32]. 

Выполним анализ результатов численных экспериментов. Согласно 

графикам, приведенным в [75, 76], введение стохастики оказывает 

незначительное влияние на поведение модели. Также, как и в 

детерминистическом случае, траектории решений стохастических 

дифференциальных уравнений, соответствующих модели (2.3), выходят на 

стационарный режим, а значения близки к значениям стационарного 

состояния, полученного для детерминистической модели. 

Использование программной реализации метода DSSM [14–23, 31, 32, 40, 

109, 111] позволяет: (i) построить стохастическую модель динамической 

системы с учетом описания взаимодействий, (ii) построить соответствующую 

детерминированную модель, (iii) получить численные решения ОДУ и СДУ и 

графические представления решений. Для описания стохастической системы, 

согласно методу DSSM, достаточно записать уравнение Фоккера–Планка. 

Коэффициенты уравнения Фоккера–Планка для модели (2.3) получены с 

помощью программного комплекса и представлены на рис. 3.9.  

 

Рис. 3.9. Коэффициенты уравнения Фоккера–Планка для модели (2.3) 

 

На рис. 3.10 и рис. 3.11 приведены графики численного решения для 

детерминистического и стохастического случая модели (2.3) с учетом наборов 

параметров 1-I и 2-I-а из таблицы 2.1.  Для численного решения систем ОДУ 

мы используем программную реализацию стандартных методов Рунге–Кутты 

4-го порядка. Для решения соответствующих СДУ мы используем специально 
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разработанную библиотеку, подробное описание которой содержится  

в [31, 32].  

 

Рис. 3.10. Траектории системы (2.3) и соответствующей стохастической 

системы при (x1(0), x2(0), x3(0), x4(0)) = (0.5, 0.5, 1, 7) и  наборе параметров 1-I: 

a=10.00, p=0.10, r=0.10, β=5.67, δ=9.00, γ=7.42, ε=6.48 

 

 

Рис 3.11. Траектории системы (2.3) и соответствующей стохастической 

системы при (x1(0), x2(0), x3(0), x4(0)) = (0.5, 0.5, 1, 7) и наборе параметров 2-

II-b: a=10.00, p = 0.10, p13=0.70, p31=0.50,  =7.32, =9.99, γ=9.97, ε=7.03 

 



107 
 

Компьютерные эксперименты показали отсутствие влияния введения 

стохастики на поведение систем, описываемых системой уравнений (2.3). Так 

же, как и в детерминистическом случае, решения стохастических 

дифференциальных уравнений выходят на стационарный режим. На рис. 3.11, 

где изменению плотности популяции x1 в основном ареале обитания отвечает 

диапазон от 0 до 10, визуально наблюдается флуктуационный характер 

траекторной динамики в стохастическом случае. Для того, чтобы 

пронаблюдать такой характер для остальных переменных, можно выбрать 

увеличенный масштаб рисунка. Например, фрагмент детерминированной и 

стохастической траекторий модели (2.3) для плотности популяции х4 в ареале 

миграции с учетом увеличенного масштаба представлен на рис. 3.12. 

 

Рис. 3.12. Фрагмент детерминированной и стохастической траекторий 

для модели (2.3) с набором 2-II-b 

 

Стохастическое моделирование позволило выявить схожий характер 

траекторий моделей на основе (2.3) при рассмотренных наборах параметров, 

причем начальный набор параметров получен с учетом условий, 

гарантирующих сосуществование двух популяций в основном ареале 

обитания и положительную численность каждого вида в убежищах.  Таким 

образом, при рассмотренных наборах параметров модели (2.3) для изучения 

траекторной динамики достаточно провести вычислительный эксперимент 

только в детерминированном случае.  
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Для модели (2.12) «три конкурента–два ареала миграции» данный 

программный комплекс с помощью модуля PopModel.py позволил получить 

схему взаимодействия для рассматриваемой системы, которая имеет 

следующий вид (рис. 3.13): 

 

Рис. 3.13. Схема взаимодействия для стохастизации модели (2.12) 

 

В приведенной схеме первые 5 строк описывают естественное 

размножение, следующие 5 строк – внутривидовую конкуренцию, строки 11–

16 отвечают за межвидовую конкуренцию, а последние 4 строки описывают 

миграцию популяций.  

На следующем этапе с помощью модуля IstoDE.py из схемы 

взаимодействия получены коэффициенты уравнения Фоккера–Планка  

(рис. 3.14): 

А=  

В=  

Рис. 3.14. Коэффициенты уравнения Фоккера–Планка для модели (2.12) 
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Согласно полученным результатам, матрица сносов полностью 

соответствует правой части системы уравнений для модели (2.12). Указанное 

соответствие свидетельствует о возможности корректного использования 

матрицы сносов для исследования детерминистического поведения системы. 

Полученная система стохастических дифференциальных уравнений, 

соответствующая модели (2.12), может быть использована с целью выявления 

влияния стохастики.  Для численного решения системы стохастических 

дифференциальных уравнений используется специально разработанная 

библиотека, подробное описание которой приведено в [31]. 

В [75, 76] приведены графики численного решения для 

детерминистического и стохастического случаев с учетом выбранных 

начальных условий и наборов параметров.  Выполненный с учетом 

рассмотренных параметров численный эксперимент показал, что введение 

стохастики незначительно влияет на динамику численностей двух обитающих 

в основном ареале и имеющих возможность мигрировать в убежища 

популяций, которым соответствуют фазовые переменные x1 и x3.  Также 

выявлено незначительное влияние введение стохастики на динамику 

численностей этих двух популяций в убежищах, которым соответствуют 

фазовые переменные x2 и x4. Аналогично детерминистическому случаю, 

траектории решений стохастических дифференциальных уравнений для этих 

переменных выходят на стационарный режим. Однако в стохастическом 

случае наблюдается убывание численности той популяции, которая 

соответствует фазовой переменной x5 и не имеет возможности мигрировать в 

убежище.  

В качестве входных данных для модели (2.16) «жертва – ареал миграции 

– хищник – суперхищник» программный комплекс использует описание 

взаимодействий, происходящих в системе. Одним из результатов работы 

программного комплекса является схема взаимодействия, для представления 

которой используется интерактивная оболочка Jupyter. Системе (2.16) будет 

соответствовать схема взаимодействия следующего вида: 
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1 2

1 1 2 2 2 ,           2 ,
a a

x x x x 
3 4

3 40,                0,
c c

x x   

11

1 12  
p

x x ,          
22

2 22  
p

x x ,        
33

3 32  
p

x x , 
44

4 4        2  
p

x x , 

13 3414

1 3 3 1 4 4 3 4 4,      ,       
q qq

x x x x x x x x x      , 

13 3414

1 3 1 3 1 4 1 4 3 4 3 42 ,      2 ,     2 ,
d dd

x x x x x x x x x x x x          

1 2 2 1,  x x x x
 

   

  На рис. 3.15 представлен результат работы функций получения 

коэффициентов уравнения Фоккера–Планка для модели, соответствующей 

схеме взаимодействия модели (2.16). 

 

Рис. 3.15. Результат вывода функций получения коэффициентов 

уравнения Фоккера–Планка 

 

Коэффициенты уравнения Фоккера–Планка имеют следующий вид: 

   

2
1 1 11 1 13 1 3 14 1 4 1 2

2
2 2 22 2 1 2

2
13 1 3 33 3 34 3 4 3 3

2
14 1 4 34 3 4 44 4 4 4

 a x p x q x x q x x x x

a x p x x x
A

d x x p x q x x x с

d x x d x x p x x с

 
 

     
        
 

    

   

    

11 1 2

1 2 22

33

44

00

00
    

00 0

00 0

B x x

x x B
B

B

B

 
 

  
   
 
 
 

,    (3.12) 

где 2
11 1 1 11 1 13 1 3 14 1 4 1 2 , B a x p x q x x q x x x x        2

22 2 2 22 2 1 2 B a x p x x x      ,  

2
33 13 1 3 33 3 34 3 4 3 3  B d x x p x q x x x с    , 2

44 14 1 4 34 3 4 44 4 4 4 B d x x d x x p x x с    . 
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Таким образом, с применением программного комплекса выполнено 

построение модели «жертва – ареал миграции – хищник – суперхищник» в 

стохастическом и детерминированном случаях. После построения моделей 

могут быть применены остальные модули программного комплекса для 

численного исследования системы, основанные на методах Рунге–Кутты [32, 

33, 113]. 

Результаты численных экспериментов приведены на рис 3.16. В качестве 

значений параметров заданы те же самые значения, что и при численном 

решении СДУ с аддитивным и мультипликативным шумом.   

 

 

  

Рис. 3.16. Визуализация численного решения системы (2.16) 

 

На основе результатов численных экспериментов можно сделать вывод, 

что самосогласованная стохастическая модель имеет иной качественный 

характер. Решения СДУ также выходят на стационарных режим. Однако для 

данной модели введение стохастики описанным способом приводит к 

вымиранию популяций обоих хищников, а жертва продолжает существовать и 

в основном ареале, и в убежище. 
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3.5. Выводы по третьей главе 
 

В разработанной на языке Python в среде Jupyter Notebook компьютерной 

программе решение систем СДУ реализуется с помощью метода Эйлера–

Маруямы. Суть этого метода заключается в дискретизации времени и 

пошаговом приближенном вычислении решения СДУ с учетом как 

детерминированной, так и стохастической составляющих. 

Реализация алгоритмов стохастизации каждой из моделей путем введения 

аддитивного и мультипликативного шумов, а также стохастизации по 

заданным схемам взаимодействия, позволила провести анализ траекторной 

динамики стохастических вариантов модели в сравнении с 

детерминированной моделью. Компьютерные эксперименты показали 

незначительное влияние введения стохастики. Так же, как и в 

детерминированном случае, решения стохастических дифференциальных 

уравнений выходят на стационарный режим. Стохастическое моделирование 

позволило выявить схожий характер траекторий моделей с учетом 

вариативности параметра, характеризующего интенсивность шума. Таким 

образом, рассмотренный подход к моделированию позволяет оценить влияние 

аддитивного и мультипликативного шумов на траекторную динамику и 

выявить качественные эффекты стохастизации.  
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Глава 4. Алгоритмическое обеспечение, структура программного  

комплекса и анализ результатов компьютерных экспериментов 

 

4.1. Введение 
 

В главе 4 приведены результаты разработки алгоритмического 

обеспечения для решения задач моделирования, а также описана структура 

программного комплекса для исследования миграционно-популяционных 

моделей следующих типов:  

– «k конкурентов – m ареалов миграции»;  

– «k жертв – k ареалов миграции – m хищников»; 

– «k жертв – k ареалов миграции – хищник – суперхищник», 

где k, m – целые числа. 

Для каждого типа моделей разработан программный модуль с целью 

проведения численного исследования соответствующей модели, поиска 

параметров, обеспечивающих сосуществование всех популяций в основном 

ареале обитания и существование популяции в убежище. Программные 

модули объединены в программный комплекс на языке Python в среде Jupyter 

с привлечением библиотек sympy, scipy, matplotlib, sdeint. Программный 

комплекс предназначен для исследования миграционно-популяционных 

моделей различной размерности. В главе 4 описаны основные алгоритмы и 

приведены стадии реализации последовательного решения задач 

моделирования систем. Разработанное алгоритмическое обеспечение лежит в 

основе следующих модулей программного комплекса:  

1. Модуль нахождения состояний равновесия и проверки устойчивости.  

2. Модуль поиска коэффициентов метаэвристическими методами. 

3. Модуль построения траекторий детерминированных моделей. 

4. Модуль визуализации на фазовой плоскости и в неотрицательном 

ортанте пространства. 

5. Модуль стохастизации моделей с учетом аддитивных и 

мультипликативных шумов. 
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6. Модуль проведения сравнительного анализа детерминированных и 

стохастических моделей. 

Основные результаты четвертой главы опубликованы в [26, 75, 76, 93–

107, 113, 115, 122, 124, 134]. 

 

4.2. Описание основных алгоритмов моделирования миграционно- 

популяционных систем 

 

При разработке алгоритмического обеспечения и при создании 

программного комплекса учитывалась возможность последовательного 

решения задач, возникающих при моделировании миграционно-

популяционных систем. Реализация последовательного решения содержит 

следующие стадии. 

1. Формализация детерминированной модели с учетом типов 

взаимодействий.  

2. Поиск параметров на основе методов численной оптимизации. 

3. Численное решение системы ОДУ с полученными параметрами. 

4. Поиск состояний равновесия путем решения алгебраической системы 

уравнений. 

5. Визуализация решений системы ОДУ для анализа траекторной 

динамики. 

6. Построение проекций фазовых портретов. 

Стадии реализации последовательности задач, решаемых с помощью 

программного комплекса моделирования миграционно-популяционных 

систем, представлены на рис. 4.1. Для каждой стадии разработано несколько 

алгоритмов, из которых можно выбрать определенный алгоритм для решения 

задачи и проведения сравнительного анализа.  

На рис. 4.2 приведена блок-схема алгоритма в формате UML для первой 

стадии исследования выбранной модели. Для уточнения модели реализация 

каждого шага алгоритма может осуществляться несколько раз. 
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Рис. 4.1. Стадии реализации последовательности задач  

анализ устойчивости

проекции фазовых портретов на плоскости проекции фазовых портретов в пространстве

6. Построение проекций фазовых портретов

анализ траекторной динамики

двумерная визуализация трехмерная визуализация

5. Визуализация решений системы ОДУ

решение алгебраической системы уравнений

аналитическое решение (в случае 
реализуемости) численное решение

4. Поиск состояний равновесия

3. Численное решение системы ОДУ с полученными параметрами

выбор метода решения настройка точности решения

дифференциальная эволюция

2. Поиск параметров на основе методов численной оптимизации

задание начальных условий задание предполагаемого 
вектора решения

выбор метода численной 
оптимизации

1. Формализация детерминированной модели с учетом типов взаимодействий

k конкурентов - k 
ареалов миграции

k конкурентов - (k-1)
ареалов миграции

жертвы - ареалы 
миграции - хищники

жертвы - ареал 
миграции - хищник -

суперхищник
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На рис. 4.3 представлены инструментальные средства для реализации 

этапов компьютерного исследования миграционно-популяционных моделей, 

соответствующего первой стадии концепции создания программного 

комплекса. На этапах 1 и 3 используется функция differential_evolution из 

библиотеки scipy.optimize языка Python. На этапе 2 применяется команда solve 

системы компьютерной математики sympy, являющейся библиотекой языка 

Python. На этапе 4 для решения системы дифференциальных уравнений 

используются методы из пакета scipy.integrate, а для вывода графика 

траекторий – matplotlib  языка Python. Выбор инструментальных средств 

связан с их возможностями и ограничениями изучения такого типа моделей, а 

также с опытом проведения вычислений и компьютерных экспериментов 

миграционно-популяционных моделей. 

 

 

Рис. 4.2. Блок-схема алгоритма исследования выбранной модели 
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Рис. 4.3. Инструментальные средства для реализации этапов 

компьютерного исследования миграционно-популяционных моделей 

 

Реализация этапов 1–4, представленных на рис. 4.3, целесообразна в 

рамках повторяющихся компьютерных экспериментов для сравнительного 

анализа результатов и верификации моделей. Этапы 1 и 3 содержат алгоритмы 

численной оптимизации.  

Рассмотрим подробно алгоритм модифицированной дифференциальной 

эволюции для поиска оптимальных параметров модели. На рис. 4.4 

представлен фрагмент блок-схемы алгоритма в форме UML-диаграммы 

деятельности (UML Activity Diagram) для реализации основных этапов 

дифференциальной эволюции. 

На рис. 4.5 приведен подробный алгоритм дифференциальной эволюции 

с выбором стратегии. По сравнению с классическим подходом, предложенным 

в [56, 66, 67], в диссертационной работе рассмотрена модифицированная 

стратегия best1bin дифференциальной эволюции с учетом коэффициента 

биномиального распределения [124]. Указанная стратегия обеспечивает 

наилучшее решение, найденное в родительской популяции, а также более 

быстрое приближение к оптимальному решению. В случае популяционно-
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миграционных динамических моделей высокой размерности целесообразно 

управлять такими параметрами, как погрешность вычислений, оптимальный 

выбор масштабного коэффициента F и вероятности распределения пробного 

вектора Cr. 

 

 

Рис. 4.4. Блок-схема реализации этапов дифференциальной эволюции 

 

Согласно рис. 4.4 и рис. 4.5, алгоритм содержит следующие шаги.   

Шаг 1. Инициализировать параметры. На этом шаге необходимо задать 

начальные параметры F, CR, population_size, dimension, max_generations, а 

также создать начальную популяцию в виде: population = случайные векторы 

в пределах границ. 

Шаг 2. Выбрать родительские векторы для проведения мутации. На 

указанном шаге используется циклическая конструкция, обрабатывающая 
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значения для каждого поколения (generation) от 1 до max_generations. 

Вложенный цикл для каждого индивидуума (i) в популяции содержит 

следующие действия: 

        – найти лучшее решение в популяции с помощью команды 

        best = argmin(objective_function(population)); 

        – выбрать два случайных индивидуума (a, b), отличных от i; 

        – создать мутантный вектор mutant = best + F * (a - b); 

        – ограничить мутантный вектор в пределах границ с помощью  

                команды mutant = clip(mutant, 0, 1); 

        – создать пробный вектор (trial); 

        – произвести селекцию, т.е. заменить вектор текущей популяции  

                population[i] на пробный вектор trial при выполнении условия 

        objective_function(trial) < objective_function(population[i]). 

Шаг 3. Вернуть лучшее решение в финальной популяции с помощью 

команды best_solution = argmin(objective_function(population)). 

 

 

 

1 

2 

3 
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Рис. 4.5. Блок-схема алгоритма модифицированной дифференциальной 

эволюции 

 

Для поиска оптимальных параметров моделей высокой размерности 

можно варьировать входящие параметры метода дифференциальной 

эволюции, использовать несколько видов целевой функции, а также заменять 

дифференциальную эволюцию другими методами глобальной оптимизации. 

2 

3 
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На рис. 4.6 приведена схема исследования детерминированных 

миграционно-популяционных моделей и соответствующих им стохастических 

моделей, согласованная с модулями программного комплекса.  

 

 

Рис. 4.6. Схема исследования миграционно-популяционных моделей 

 

Отметим в качестве замечания, что представленная на рис 4.6 схема 

исследования относится к стохастизации миграционно-популяционных 

моделей. Стохастическая часть может исследоваться путем добавления 

различных шумов в уравнения системы и согласуется с методом построения 

самосогласованных одношаговых моделей, изученных в [31, 32, 40, 111]. 
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4.3. Общая структура программного комплекса для построения  

и исследования популяционных моделей 

 

Общая структура программного комплекса, состоящего из модулей 1–6, 

приведена на рис. 4.7. 

 

Рис. 4.7. Структура программного комплекса для исследования  

миграционно-популяционных моделей 

 

В первом модуле нахождения состояний равновесия и проверки 

устойчивости разработанного программного комплекса с помощью 

библиотеки символьных вычислений SymPy языка программирования Python 

получены состояния равновесия для упрощенных моделей типа «два 

конкурента – один ареал миграции», «жертва – миграция жертвы – хищник» и 

«два конкурента – два ареала миграции», а также найдены достаточные 

условия существования положительного и неотрицательного состояний 

равновесия указанных моделей. Программный модуль базируется на 

результатах аналитических вычислений разделов 2.3 и 2.7. 

С помощью второго модуля поиска коэффициентов метаэвристическими 

методами осуществляется нахождение оптимальных параметров моделей на 

основе предложенного алгоритма дифференциальной эволюции. 

1. Модуль нахождения 
состояний равновесия и 
проверки устойчивости 

2. Модуль поиска 
коэффициентов 

метаэвристическими 
методами

3. Модуль построения 
траекторий 

детерминированных 
моделей

4. Модуль визуализации 
на фазовой плоскости и в 
неотрицательном ортанте 

пространства

5. Модуль стохастизации 
моделей с учетом 

аддитивных и 
мультипликативных 

шумов

6. Модуль проведения 
сравнительного анализа 
детерминированных и 

стохастических моделей
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Программный модуль базируется на теоретических сведениях из разделов 1.5 

и 2.2. 

В третьем модуле построения траекторий детерминированных моделей 

на основе найденных параметров выполняется конкретизация и уточнение 

моделей, а также проводится исследование траекторной динамики 

детерминированных моделей. Механизмы варьирования параметров 

позволяют выявить новые качественные эффекты моделей, провести 

сравнительный анализ траекторной динамики. Указанный программный 

модуль создан с привлечением библиотеки Matplotlib языка 

программирования Python. 

Для дальнейшего анализа поведения систем создан четвертый модуль 

визуализации решений в положительном квадранте фазовой плоскости, а 

также в положительном ортанте фазового пространства. В результате модуль 

позволяет построить проекции фазовых портретов для каждой пары или 

триады фазовых переменных соответственно. В частности, для трехмерных 

моделей предусмотрено построение фазовых портретов в пространстве, а 

также построение векторных полей направлений и создание графических 

интерпретаций траекторий. 

Модуль 5 используется для введения стохастики в изученные модели 

путем добавления аддитивного гауссова шума и мультипликативного шума в 

правые части уравнений соответствующих систем. Кроме того, проведена 

стохастизация путем введения параметрического шума для коэффициентов 

роста и скоростей миграции.  Программный модуль базируется на 

теоретических сведениях из раздела 3.2. 

С помощью программного кода 6 модуля производится сравнительный 

анализ траекторной динамики детерминированных моделей и 

соответствующих им стохастических моделей. В качестве методов 

стохастизации рассматривается не только аддитивный, мультипликативный и 

параметрический шумы, но и метод построения самосогласованных 

одношаговых стохастических моделей. Программный модуль базируется на 
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компьютерных экспериментах, произведенных в рамках раздела 3.4, а также 

использованы результаты работы программного комплекса, созданного 

коллективом авторов РУДН.  

 

4.4. Детальное описание модулей программного комплекса 
 

Детальное описание модулей программного комплекса представлено на 

соответствующих листингах. На листинге 4.1 приведем листинг на языке 

Python для первого модуля нахождения состояний равновесия упрощенной 

модели «два конкурента – один ареал миграции» (2.18). Аналитическое 

решение системы уравнений производится с помощью метода solve 

библиотеки sympy языка Python. Результат работы модуля приведен  

в разделе 2.7. 

 

Листинг 4.1. Поиск состояний равновесия системы (2.18) 

 

Далее приведем программный код второго модуля для поиска 

коэффициентов детерминированных моделей с помощью дифференциальной 

эволюции.  Модуль содержит в себе следующие функциональные элементы: 

целевую функцию, содержащую критерий оптимальности (минимум целевой 

функции); встроенный в библиотеку scipy метод differential_evolution с 

указанием границ диапазонов коэффициентов и дополнительных параметров; 
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решение системы дифференциальных уравнений, нахождение стационарных 

состояний и визуализация траекторной динамики с учетом найденного набора 

параметров модели. В приведенном на листинге 4.2 фрагменте кода критерием 

оптимальности является максимизация интеграла произведений функций, 

характеризующих плотности популяций. 

 

Листинг 4.2. Целевая функция и параметры метода дифференциальной  

эволюции 

 

В указанном коде производится расчет оптимальных параметров, а также 

происходит построение траекторий выбранной модели с учетом найденных 

параметров. Для моделей вида «n конкурентов – m ареалов миграции» (при 

m=n или m=n–1) ввод уравнений и их параметров можно упростить с учетом 

построения обобщенной модели для любого значения n. При этом следует 

учитывать, что при увеличении количества уравнений системы время для 

поиска параметров существенно увеличивается. Для ускорения процесса 

обработки можно пренебречь точностью расчетов. Параметры, влияющие на 

точность, учитывают следующие факторы: 

– количество точек и шаг сетки при численном решении задачи Коши 

системы ОДУ; 

– значение параметра tol, содержащемся в методе differential_evolution; 
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– выбор стратегии дифференциальной эволюции; 

– выбор целевой функции (критерия оптимальности). 

На листинге 4.3 представлен фрагмент кода поиска оптимальных 

параметров обобщенных моделей вида «n конкурентов – n ареалов миграции». 

 

Листинг 4.3. Формирование модели вида «n конкурентов – n ареалов  

миграции» 

 

Для указанной модели целевая функция оптимизации формируется на 

основе предположения о существовании случайного n-мерного 

положительного вектора, компоненты которого соответствуют 

приближенному состоянию равновесия. 

 

Листинг 4.4. Целевая функция на основе предположения о существовании 

случайного n-мерного положительного вектора 
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Аналогичным образом проводятся расчеты для обобщенных моделей 

вида «n конкурентов – n–1 ареалов миграции» для нечетного количества 

уравнений без учета трофических взаимодействий. 

 

Листинг 4.5. Формирование модели вида «n конкурентов – n–1 ареалов  

миграции» 

 

Рассмотрим программный код третьего модуля построения траекторий 

детерминированных моделей. Для проведения анализа полученных 

траекторий необходимо ввести отдельные параметры, настроить масштаб и 

сохранить графические результаты. На листинге 4.6 приведем фрагмент кода 

для анализа параметров модели «два конкурента – два ареала миграции». 

 
Листинг 4.6. Интерактивная функция для изменения параметров модели 
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В указанном фрагменте листинга 4.6 можно варьировать коэффициенты 

естественного прироста, остальные параметры модели фиксированы. Для 

управления параметрами используются методы interact и widgets из 

библиотеки ipywidgets. Например, для изменения значения параметра a1 от 0 

до 10 с помощью слайдера (ползунка) команда имеет вид 

 @interact(a1=widgets.FloatSlider(min=0, max=10, step=0.1, value=1)).  

Далее рассмотрим фрагмент кода четвертого модуля для визуализации 

решений на фазовой плоскости и в неотрицательном ортанте пространства. 

Для каждой пары фазовых переменных можно построить проекцию фазового 

портрета на неотрицательном квадранте плоскости, а для каждой тройки 

фазовых переменных изобразить проекцию фазового портрета в 

неотрицательном ортанте пространства. На листинге 4.7 приведен 

программный код для графической визуализации поля направлений первых 

двух уравнений системы (2.2). 

 

Листинг 4.7. Построение поля направлений 
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На рис. 4.8 приведен результат работы кода модуля, позволяющий 

изобразить графически поле направлений двумя способами с помощью 

методов quiver и streamplot из библиотеки matplotlib. 

 

Рис. 4.8. Построение поля направлений 

 

В пятом модуле реализовано построение системы стохастических 

дифференциальных уравнений (СДУ) с добавлением гауссова шума в правую 

часть каждого уравнения системы. В языке программирования Python 

существует библиотека sdeint, которая позволяет решить систему 

стохастических дифференциальных уравнений с помощью интегралов Ито и 

Стратоновича. В методе решения с помощью интеграла Ито в качестве 

параметров функции применяются вектор сноса и матрица диффузии. Для 

простого гауссова шума в качестве матрицы диффузии используется 

единичная матрица требуемого размера.  

 

 

Листинг 4.8. Решение системы СДУ с помощью метода sdeint.itoint 

 

Метод sdeint.itoint, используемый в листинге 4.8, не во всех случаях 

приводит к сходимости решения. Параметры метода не позволяют добавлять 

случайный шум в отдельные уравнения системы и применять 
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мультипликативные или параметрические шумы. Для решения таких задач 

целесообразно применять метод Эйлера–Маруямы. На листинге 4.9 приведен 

фрагмент кода стохастизации модели «два конкурента – два ареала миграции» 

под воздействием гауссова шума с варьированием параметров шума μ и σ.  

 

 

Листинг 4.9. Реализация метода Эйлера–Маруямы для решения системы СДУ 

 

Приведем фрагменты программного кода модуля 6 для проведения 

сравнительного анализа разных способов стохастизации на примере 

четырехмерной модели. На листинге 4.10 представлено описание 

стохастической системы с добавлением аддитивного гауссова шума в правую 

часть каждого уравнения. 

 

Листинг 4.10. Стохастизация модели с помощью добавления аддитивного 

шума 
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Далее на листингах 4.11 – 4.14 приведены фрагменты кода для 

проведения сравнительного анализа соответствующих стохастических 

моделей вида «два конкурента – один ареал миграции». 

 

 

Листинг 4.11. Стохастическая модель с аддитивным шумом 

 

 

Листинг 4.12. Стохастическая модель с мультипликативным шумом 

 

 

Листинг 4.13. Стохастическая модель с шумом для скоростей миграции 

β и γ 

 

 

Листинг 4.14. Стохастическая модель с шумом для скоростей миграции 

β и γ и гауссовым шумом в правой части 
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Результаты работы модулей 5 и 6 приведены в главе 3. Полученные 

графики траекторной динамики позволяют провести сравнительный анализ 

влияния различных видов шумов на поведение модели.  

 

4.5. Пример функционирования модулей программного комплекса 
 

Разработанный программный комплекс предназначен для построения и 

анализа конечномерных миграционно-популяционных динамических 

моделей, учитывающих трофические взаимодействия и конкуренцию видов. 

Основной программный модуль поддерживает следующие модели: 

– два конкурента – один ареал миграции; 

– два конкурента – два ареала миграции; 

– три конкурента – два ареала миграции; 

– три конкурента – три ареала миграции; 

– две жертвы – ареал миграции – хищник; 

– две жертвы – ареал миграции – два хищника; 

– две жертвы – два ареала миграции – два хищника; 

– жертва – ареал миграции – хищник – суперхищник. 

Для поиска оптимальных параметров моделей, минимизирующих 

целевую функцию, используется метод дифференциальной эволюции. 

Результаты моделирования отображаются в виде графиков динамики 

переменных состояния системы. Для многомерного случая вместо фазовых 

портретов возможно построение двумерных проекций фазовых портретов на 

плоскости, соответствующих плотностям двух популяций из множества 

фазовых переменных системы. Разработан графический интерфейс 

пользователя (GUI), который позволяет выбирать тип модели из списка с 

соответствующими этому типу заданными начальными условиями, а также 

запускать модуль реализации алгоритма для оптимизации параметров модели 

и модуль визуализации траекторной динамики.  
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Рассмотрим пошаговый пример использования, проиллюстрированный 

на рис. 4.9 – 4.11. 

1. Пользователь выбирает модель из списка. Например, на рис. 4.9 

выбрана модель «два конкурента – один ареал миграции». 

 

 

Рис. 4.9. Выбор модели 

 

2. Для выбранной модели автоматически производится оптимизация 

параметров с помощью дифференциальной эволюции. Результат работы 

алгоритма представлен на рис. 4.10. 

 

 

 

Рис. 4.10. Результат поиска оптимальных параметров 
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3. С учетом найденных оптимальных параметров программа отображает 

графики динамики переменных состояния системы (см. рис. 4.11). 

 

 

Рис. 4.11. Траектории модели «два конкурента – один ареал миграции» 

 

Полученные графические представления можно сохранить в отдельный 

файл. Методы библиотеки matplotlib поддерживают такие форматы файлов, 

как PNG, PDF, SVG, EPS. 

 

4.6. Анализ функциональности и обоснование рекомендаций  

использования программного комплекса 
 

Использование программного комплекса является важным фактором 

эффективности моделирования популяционных систем. Анализ 

функциональности позволил выявить соответствие целям и задачам, которые 

необходимо решить в процессе исследования.  К основным преимуществам 

использования программного комплекса относятся следующие преимущества.  

1. Универсальность. Программный комплекс поддерживает широкий 

спектр детерминированных и стохастических моделей, что делает его 

применимым при решении задач нелинейной динамики, связанных с 

моделированием экологических, физических и химических процессов.   
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2. Автоматизация подбора параметров. Использование методов 

оптимизации (дифференциальная эволюция) позволяет автоматически 

находить оптимальные параметры моделей.   

3. Наглядность. Встроенные инструменты визуализации (графики 

динамики популяций, двумерные и трехмерные поля направлений, а также 

фазовые портреты) обеспечивают простоту интерпретации результатов.   

4. Экономия ресурсов. Программа снижает затраты на проведение 

экспериментов и численных исследований за счет использования 

эффективных алгоритмов.   

5. Удобный графический интерфейс обеспечивает выбор модели и метода 

исследования в интуитивно понятной форме. Система Jupyter поддерживает 

совместную и удаленную работу, предоставляя доступ через веб-браузер. 

Указанная система включает средства аутентификации пользователей, 

позволяет создавать простые интерактивные интерфейсы, поддерживает 

форматирование текста с помощью Markdown и предоставляет функции 

экспорта результатов в LaTeX. Для визуализации данных используется 

библиотека matplotlib, которая обеспечивает высокое качество графиков. 

В процессе использования программного комплекса можно выявить 

следующие аспекты технического и эксплуатационного характера: 

– достигается высокая точность моделирования динамических систем за 

счет применения современных численных методов;   

– осуществляется возможность прогнозирования устойчивости системы и 

ее поведения в течение длительного времени;  

– производится оптимизация параметров моделей для достижения 

целевых показателей (например, устойчивость популяций, выход системы на 

стационарный режим);   

– происходит ускорение процесса принятия решений за счет 

автоматизации и визуализации данных.   

Созданный программный комплекс можно рекомендовать для 

использования в процессе решения задач построения и исследования 

популяционных систем высокой размерности. Выбор программного 

комплекса обусловлен сложностью детерминированных и стохастических 

моделей, простотой освоения и поддержкой интерактивности, надежностью 

расчетов и воспроизводимостью (возможностью модификации и 
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масштабируемости как типов моделей, так и методов исследования). 

Указанный программный комплекс может быть использован при решении 

задач глобальной параметрической оптимизации, компьютерного 

моделирования многомерных экологических систем, а также задач 

прогнозирования поведения в системах химической кинетики, при описании 

демографических процессов. 

 

4.7. Выводы по четвертой главе 
 

В 4 главе приведено описание алгоритмического обеспечения разработки 

и применения программного комплекса для моделирования миграционно-

популяционных систем. На основе анализа алгоритмов, архитектуры 

программного решения и результатов компьютерных экспериментов сделаны 

следующие выводы. 

Разработанные алгоритмы моделирования обеспечивают высокую 

точность при расчете динамики популяций с учетом миграционных потоков и 

нелинейных взаимодействий между видами. Использование современных 

численных методов оптимизации позволяет найти параметры моделей, 

обеспечивающих сосуществование видов в ареале обитания и существование 

популяций в убежище. 

Структура программного комплекса построена по модульному принципу, 

что обеспечивает гибкость, масштабируемость и удобство сопровождения. 

Программный комплекс можно адаптировать под различные типы задач 

вычислительной экологии для исследования систем высокой размерности. 

Программный комплекс может быть рекомендован для решения 

прикладных задач в области экологии, управления природными ресурсами и 

управления численностью популяций. Преимуществами программного 

комплекса являются удобный графический интерфейс, поддержка 

интерактивного взаимодействия, интеграция с системой Jupyter для 

совместной и удалённой работы, возможность экспорта результатов в формате 

LaTeX и высокое качество графики благодаря библиотеке matplotlib. 
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Заключение 
 

Основные выводы и результаты диссертационной работы заключаются в 

следующем. 

1. Построены и изучены модели популяционной динамики с учетом 

конкуренции видов и миграционных потоков. 

2. Проведено моделирование процессов взаимодействия видов в условиях 

конкуренции и миграционных потоков.  

3. С помощью дифференциальной эволюции и других метаэвристических 

методов глобальной оптимизации сформулирована и решена 

оптимизационная задача поиска параметров с учетом критериев 

оптимальности, обеспечивающих сосуществование популяций в условиях 

конкуренции видов в основном ареале с учетом миграции этих видов.  

4. Выполнены серии компьютерных экспериментов, изучена траекторная 

динамика, построены проекции фазовых портретов, выявлены качественные 

эффекты и дан сравнительный анализ полученных результатов для изученных 

модификаций моделей.  

5. Получены условия существования неотрицательных состояний 

равновесия.  

6. Исследована устойчивость в смысле Ляпунова состояний равновесия.  

7. Осуществлена стохастизация моделей с учетом аддитивных, 

мультипликативных и параметрических шумов.  

8. Проведен сравнительный анализ детерминированных и стохастических 

моделей. 

К перспективным направлениям исследований, развивающим тему 

диссертации, относятся следующие направления:  

– изучение управляемых многомерных моделей с конкуренцией и 

миграцией; 

– анализ возможностей поиска положительных состояний равновесия 

многомерных моделей в аналитическом виде; 

– исследование моделей в нечетких случаях, характеризующихся 

неопределенностями, которые свойственны процессам развития 

биологических сообществ.  
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