МЕЛЕШКЕВИЧ ТАТЬЯНА АНТОНОВНА

ТЕХНОЛОГИИ ДИФФЕРЕНЦИРОВАННОГО ПОДХОДА К ТЕРАПИИ САХАРНОГО ДИАБЕТА 2 ТИПА НА ОСНОВАНИИ ОЦЕНКИ ПРОГНОЗА ПРОГРЕССИРОВАНИЯ КОМОРБИДНОЙ ПАТОЛОГИИ

3.1.18. – Внутренние болезни

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора медицинских наук

Работа выполнена на кафедре госпитальной терапии с курсами эндокринологии, гематологии и клинической лабораторной диагностики медицинского института федерального государственного автономного образовательного учреждения высшего образования «Российский университет дружбы народов имени Патриса Лумумбы» Министерства науки и высшего образования Российской Федерации

Научный консультант: доктор медицинских наук, профессор **Курникова Ирина Алексеевна**

Официальные оппоненты:

Петунина Нина Александровна, доктор медицинских наук, профессор, член-корреспондент РАН, заведующая кафедрой эндокринологии института клинической медицины им. Н.В. Склифосовского Федерального государственного автономного образовательного учреждения высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский Университет)

Праскурничий Евгений Аркадьевич, доктор медицинских наук, профессор, заведующий кафедрой терапии Медико-биологического университета инноваций и непрерывного образования Федерального государственного бюджетного учреждения "Государственный научный центр Российской Федерации - Федеральный медицинский биофизический центр имени А. И. Бурназяна»

Резник Елена Владимировна, доктор медицинских наук, доцент, заведующая кафедрой пропедевтики внутренних болезней № 2 института клинической медицины Федерального государственного автономного образовательного учреждения высшего образования "Российский национальный исследовательский медицинский университет им. Н.И. Пирогова" Министерства здравоохранения Российской Федерации

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский университет медицины» Министерства здравоохранения Российской Федерации

Защита диссертации состоится «__»_____ 2025 г. в 11 часов на заседании диссертационного совета ПДС 0300.004 при ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы» (117292, г. Москва, ул. Вавилова, д. 61, Университетская клиническая больница имени В. В. Виноградова (филиал) ФГАОУ ВО "Российский университет дружбы народов имени Патриса Лумумбы")

С диссертацией можно ознакомиться в читальном зале УНИБЦ (Научная библиотека) ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы» по адресу: 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Автореферат разослан «______» ____2025 г.

Ученый секретарь диссертационного совета

доктор медицинских наук, профессор

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Сахарный диабет (СД) является хроническим коморбидным заболеванием, приводящим, вследствие осложнений и прогрессирования сопутствующей патологии, к инвалидизации пациентов, несмотря на все успехи современной медицины. По данным Всемирной организации здравоохранения (ВОЗ), в 2021 г. в мире насчитывалось 537 миллионов больных СД, а к 2045 г. ожидается прирост до 783 миллионов (Дедов И. И., 2021).

СД – это сложное многофакторное заболевание, а современная классификация СД подтверждает и многофакторность его происхождения, и множественность его проявлений. Знания об этом заболевании постоянно дополняются новыми данными, уточняются и раскрываются новые аспекты патогенетических механизмов. В научных кругах мирового сообщества активно обсуждается классификация СД с позиций нового патогенегического подхода с разделением пациентов с СД2 на 5 кластеров, один из которых включает наличие аутоантител к GAD и определяется как тяжелый аутоиммунный диабет (severe autoimmune diabetes, SAID) (Ahlqvist E., 2018; Xing L., 2021).

Однако на практике диагноз «СД2» как компонент полиэндокринного аутоиммунного заболевания мы выставляем, как правило, ретроспективно, когда клиническая картина заболевания развернута полностью, а осложнения уже сформировались.

Обменные нарушения, характерные для СД2, приводят к дискоординации деятельности всех органов и систем организма, включая один из наиболее функционально значимых сегментов эндокринной системы — гипоталамо-гипофизарно-тиреоидную ось (Свиридонова М. А., 2010). Очевидно, что эти нарушения по мере прогрессирования диабета наиболее часто приводят к формированию тиреоидной патологии, а это, с учетом той важной роли, которая отводится тиреоидным гормонам (ТГ) в обеспечении нормальной жизнедеятельности организма, существенным образом может сказаться на течении и прогнозе СД2 (Balzan S., 2009).

Однако вопрос о том, как влияет на динамику патологического процесса н скорость формирования осложнений СД, полиэндокринность поражения внутренних органов и аутоиммунный генез полиэндокринопатии, на сегодняшний день открыт, и целенаправленные исследования в этой области только начинают проводиться, что и определило выбор проблемы для нашего исследования. Приоритетными для нас являются вопросы риска формирования и прогрессирования осложнений СД и вопросы ведения пациентов с СД2 в структуре аутоиммунного полиэндокринного заболевания, особенно в сочетании с аутоиммунным поражением щитовидной железы (ЩЖ), так как это сочетание занимает первое место по распространенности среди аутоиммунных эндокринологических заболеваний

(Sotak Š., 2021).

Также открытым остается вопрос — нуждаются ли пациенты с аутоиммунными формами СД2 или, СД2 в структуре полиэндокринных синдромов (сочетание с АИТ), в особом терапевтическом подходе? Поэтому, изучение эффективности терапии СД2 при наличии доказанной аутоммунной составляющей и оценка прогноза развития и прогрессирования транссиндромальных и транснозологических осложнений при различных вариантах сахароснижающей терапии также оказалось в сфере наших научных интересов.

Степень разработанности темы исследования

Изучение аутоиммунных механизмов в патогенезе развития эндокринных заболеваний, в том числе и СД в последние годы начинает всё больше привлекать внимание ученых (Ма Х., 2022). Опубликованные данные научных исследований, дают основания считать, что аутоиммунные механизмы в патогенезе СД, в том числе СД2, имеют гораздо большее значение, чем было принято думать ранее, что привело к переоценке структуры патогенетических механизмов развития заболевания и стало абсолютно новым понятием в диабетологии (Pearson E.R., 2019).

В 2018 году Эмма Альквист с соавторами с учетом особенностей течения предложили вариант новой классификации СД2 с разделением на пять кластеров (Ahlqvist E., 2018). Это положило начало активному поиску причин для такого распределения (Xing L., 2021; Slieker R.C., 2021). Проведенное в 2021 году исследование IMI RHAPSODY (Replication and crossvalidation of type 2 diabetes subtypes based on clinical variables: an IMI-RHAPSODY study) c участием более 15 тысяч пациентов из трех европейских государств показало, что кластер **SIDD** (тяжелый инсулинодефицитный диабет) отличается наиболее прогрессированием СД2, требующим раннего назначения инсулинотерапии, по сравнению с другими. По формированию инсулиновой потребности далее шли кластеры: 3-й (SIRD), 4-й (MOD) и 5-й (MARD) (Slieker R.C., 2021). Однако структурированного разделения с выделением особенностей течения СД2 и осложнений, связанных с ним при выявлении аутоиммунного компонента в генезе заболевания сделано не было.

Некоторыми исследователями была отмечена более высокая провоспалительная активность у пациентов с СД2 сочетанным с аутоиммунным тиреоидитом наблюдалось снижение сывороточной концентрации С-пептида, значительное повышения концентрации цитокинов, интерлейкинов-2, -4 и фактора некроза опухолей-α, более выраженная проницаемость сосудистой стенки (Саприна Т.В., 2014). А также есть научные данные, свидетельствующие, что наличие аутоантител, в первую очередь, свидетельствует о срыве толерантности организма к тканевым антигенам собственного органа и формировании «запрещенного» пула лимфоцитов, распознающего аутоантитены (Плескановская А.С., 2022).

В связи с этим в кровотоке больных с тиреоидной патологией выявлены не только антитиреоидные антитела, но и другие специфически сенсибилизированные к тканям лимфоциты.

СД2, несомненно, относится числу коморбидных заболеваний К «транссиндромальной» (сосуществование у одного пациента двух или более синдромов патогенетически взавимосвязанных) «транснозологической» коморбидностью (сосуществование у одного пациента двух и более заболеваний с общими звеньями в патогенезе), и, по данным научной литературы и клинической практики, очень часто в группе сочетанных с СД2 заболеваний оказываются другие болезни эндокринных органов. Первое место среди них занимают аутоиммунные заболевания ЩЖ (Sotak Š., 2021). Поэтому естественно предположить, что при нарушении функции двух и более эндокринных желез развитие и прогрессирование осложнений только ускорится. Однако, ответ на этот вопрос не так однозначен, а исследования в этой области только начинают разворачиваться.

Хотя диагностика наличия АИТ у пациентов с СД2 не составляет трудностей, остается актуальным вопрос: существует ли различие в течение СД2, структуре осложнений и сопутствующих заболеваний у пациентов с СД2 и другими аутоиммунными заболеваниями? Может ли диагностированный АИТ служить клиническим маркером аутоиммунного генеза СД2, например, отнесения пациентов к кластеру SAID?

«Коморбидность» диабета проявляется и в других формах и также требует изучения. Особый интерес к проявлениям «хронологической» коморбидности (два и более заболеваний, патогенетически не связанных между собой, но совпадающих по времени) у пациентов с СД2 был вызван эпидемией Covid-19. Диабет, как известно, повышает риск летального исхода у пациентов с острым респираторным дистресс-синдромом. Например, пациенты с СД имели более высокую тяжесть течения инфекции, вызванной SARS-CoV-2 (Long H., 2022), а неудовлетворительный гликемический контроль увеличивал смертность (Codo A.C., 2020). Однако особенности течения тяжелых инфекционных процессов, таких как, SARS-CoV-2, у пациентов с СД и АИТ одновременно, оценены не были.

Цель исследования

Проанализировать особенности течения СД2 и прогностические риски развития и прогрессирования осложнений и сопутствующих заболеваний у пациентов с аутоиммунным и без аутоиммунного компонента в патогенезе диабета, оценить связь каждого из изученных факторов с эффективностью проводимой терапии и разработать технологии дифференцированного подхода к назначению сахароснижающей терапии.

Задачи исследования

- 1. Изучить частоту встречаемости и уровень коморбидности сопутствующей патологии с акцентом на аутоиммунные заболевания у пациентов с СД2, госпитализированных в специализированное (эндокринологическое) отделение стационара, по данным ретроспективного исследования.
- 2. Выявить отличия течения СД2 у пациентов с аутоиммунным компонентом (аутоиммунное поражение ЩЖ) по характеру нарушений, структуре осложнений, как проявления транссиндромальной коморбидности, оценить вклад изучаемых критериев в развитие и прогрессирование основного заболевания по данным ретроспективного анализа.
- 3. Выявить принципиальные отличия течения СД2 у пациентов с АИТ по транснозологической коморбидности.
- 4. При проспективном наблюдении оценить прогноз развития транссиндромальной и транснозологической коморбидности в зависимости от наличия или отсутствия аутоиммунного компонента в патогенезе СД2 и его влияние на эффективность проводимой терапии.
- 5. Оценить особенности течения острых процессов (хронологическая коморбидность) у пациентов с СД2 с аутоиммунным и без аутоиммунного компонента. Изучить особенности течения коронавирусной инфекции (COVID-19) и эффективность проводимой терапии в сравниваемых группах.
- 6. Оценить эффективность проводимой гипогликемизирующей терапии в зависимости от наличия или отсутствия аутоиммунного компонента, её связь с риском формирования и прогрессирования коморбидной патологии и разработать технологии дифференцированного подхода к сахароснижающей терапии СД2.

Научная новизна

В диссертационной работе впервые с позиций комплексного анализа было доказано влияние аутоиммунного компонента на течение заболевания, структуру осложнений и сопутствующих заболеваний у пациентов с СД2. Установлено, что у пациентов этой группы наибольший вклад в прогрессирование заболевания вносит сохранность секреции инсулина (что подтверждается уровнем С-пептида), а у пациентов без аутоиммунного компонента – длительность диабета, наличие гипертонической болезни (ГБ), ишемической болезни сердца (ИБС) и хронической артериальной недостаточности (ХАН) нижних конечностей.

Исследование вносит вклад в современную концепцию патогенеза СД2, поскольку представлены доказательства, что СД2 может протекать как аутоиммунное заболевание (и маркером такого варианта течения являются аутоиммунные заболевания других отделов эндокринной системы, наиболее часто встречающимся из них является АИТ) и как

неиммуногенное дисметаболическое заболевание. Доказано, что у пациентов с аутоиммунным компонентом в более ранние сроки наблюдается снижение остаточной секреции инсулина.

Проведена оценка вклада каждого из изучаемых факторов в прогрессирование СД2 у пациентов, не имеющих дополнительных аутоиммунных заболеваний, и у пациентов с СД2 в сочетании с АИТ (СД2+АИТ).

Впервые рассчитан прогностический риск развития и прогрессирования основных осложнений СД как проявлений транссиндромальной и транснозологической коморбидности у пациентов в зависимости от преобладания в патогенезе дисметаболических или аутоиммунных механизмов методом построения цепей Маркова (матрица переходных вероятностей с прогнозом на 1 и 5 лет).

Сравнительный анализ эффективности методов лечения СД2 и его осложнений в группах показал, что уровень С-пептида у пациентов с аутоиммунной составляющей определяет раннее назначение инсулина для профилактики развития транссиндромальной, транснозологической и хронологической коморбидности.

Впервые проведен анализ особенностей клинической картины и результатов лечения у пациентов с острыми воспалительными процессами (хронологическая коморбидность) при COVID-19 с учетом механизмов патогенеза СД2, который показал, что у пациентов с аутоиммунным компонентом выраженность воспалительных реакций и электролитных нарушений значительно выше, а одним из значимых факторов, позволяющих улучшить прогноз, является раннее назначение инсулинотерапии.

Теоретическая и практическая значимость работы

Разработана и апробирована прогностическая модель, позволяющая оценивать риск развития основных осложнений и соматических коморбидных заболеваний у пациентов с СД2 и, на основании полученных данных, создавать персонализированную схему терапии каждого пациента, направленную на предотвращение развития и прогрессирования осложнений и сопутствующих заболеваний.

Полученные в диссертационной работе данные позволили разделить пациентов с СД2 по наличию аутоиммунной составляющей на подгруппы: СД2 с преобладанием дисметаболических механизмов в патогенезе, СД2 с преобладанием аутоиммунных механизмов. Клинически значимым маркером патогенетически различных вариантов течения СД2 является наличие аутоиммунного заболевания других отделов эндокринной системы (в приведенном исследовании – АИТ).

Определены значимые клинические различия в протекании различных вариантов СД2 по критериям коморбидности, а также значимые различия в течение вариантов СД2 по критериям локального и суммарного рисков развития осложнений и сопутствующих

заболеваний у пациентов в зависимости от наличия или отсутствия в патогенетических механизмах аутоиммунного компонента. На основании полученных данных предложены практические рекомендации по ведению пациентов, направленные на снижение прогностического риска.

Оценено прогностическое значение нарушения показателей метаболического контроля, данных нейромиографии, эхокардиографии, уровня коморбидности и реабилитационного потенциала в сравниваемых группах для оценки рисков формирования и прогрессирования сопутствующей патологии и осложнений СД2.

В качестве дополнительных факторов повышения риска развития и прогрессирования осложнений СД2 с позиций системного подхода предложены количественные критерии оценки: высокий уровень коморбидности (по CIRS выше 11 баллов) и низкий уровень реабилитационного потенциала (отклонения по показателю МФИ больше 1,0).

По результатам исследования для практического здравоохранения были разработаны новые патогенетически обоснованные методики лечения больных СД2 с сопутствующим АИТ, включающие сахароснижающую терапию.

Доказано, что наличие аутоиммунного поражения ЩЖ у пациентов с СД2 можно рассматривать как маркер аутоиммунного генеза диабета, при котором риск развития всех осложнений может быть снижен за счет своевременно назначенной инсулинотерапии.

Положения, выносимые на защиту

- 1. Среди пациентов специализированного стационара при ретроспективном анализе данных сочетание СД2 с другими аутоиммунными заболеваниями составляет не менее 20% от числа госпитализированных (наиболее часто АИТ). У пациентов с аутоиммунной составляющей общий уровень коморбидности был выше, чем у пациентов, не имеющих аутоиммунных заболеваний, и соответствовал «высокому» уровню более 16 баллов CIRS.
- 2. Пациентов с СД2 при сочетании с другими аутоиммунными заболеваниями наблюдаются значимые отличия в скорости прогрессирования диабета, структуре осложнений, а также в скорости их прогрессирования и эффективности ответа на проводимую сахароснижающую терапию в сравнении с пациентами без сопутствующих аутоиммунных заболеваний. У пациентов с аутоиммунным компонентом преобладает снижение собственной секреции инсулина, при СД2 без аутоиммунного поражения превалируют дисметаболические нарушения.
- 3. В группе пациентов без аутоиммунного компонента влияние коморбидности проявлялось различной значимостью в сравниваемых группах: для пациентов с СД2 дисметаболического генеза наиболее выраженным влиянием на прогрессирование заболевания обладают ГБ, ХАН,

хроническая сердечная недостаточность (XCH), (p<0,05), а при сочетании СД2 с аутоиммунным поражением влияние этих патологий менее значимо (p<0,1).

- 4. Скорость и тяжесть прогрессирования осложнений (проявления транссиндромальной коморбидности) определяется генезом диабета, что подтверждает необходимость разработки дифференцированного подхода к назначению терапии. В отличие от СД2 с преимущественно дисметаболическими нарушениями в патогенезе, эта группа пациентов нуждается в «раннем» назначении инсулинотерапии. И, напротив, раннее назначение инсулина без абсолютных показаний при СД2 с преимущественно дисметаболическими нарушениями может приводить к прогрессированию осложнений.
- 5. Выраженность воспалительных и электролитных нарушений на фоне COVID-19 достоверно выше у пациентов с аутоиммунной составляющей и требует обязательного назначения инсулинотерапии для стабилизации углеводного обмена.
- 6. Алгоритм назначения сахароснижающей терапии должен определятся наличием или отсутствием аутоиммунного компонента: показанием для назначения инсулинотерапии является уровень С-пептида ниже 1,21 нг/мл, для пациентов без АИТ инсулиновая потребность формируется при более низких значениях С-пептида (0,74 нг/мл) при условии достижения целевых уровней гликемии.

Степень достоверности

Достоверность результатов исследования определяется достаточным объемом и репрезентативностью изученной выборки, применением принципов, технологий и методов доказательной медицины, высокой информативностью современных методов обследования, адекватностью математических методов обработки данных поставленным задачам. Сформулированные выводы и практические рекомендации аргументированы и логически вытекают из результатов исследования.

Публикации и апробация работы

Основные положения диссертационного исследования отражены в 45 печатных работах, в перечне ВАК/РУДН/МБЦ-11, из них ИФ/К1,2/МБЦ-10 и 5 патентных изобретениях.

Результаты работы представлены на 4-м Всероссийском Конгрессе Эндокринологов (2001г., Санкт-Петербург); на Московской научно-практической конференции «Ампутация, протезирование, реабилитация. Настоящее и будущее» (2001г., Москва), на Российской научно-практической конференции «Медико-социальная экспертиза, медико-социальная реабилитация и реабилитационная индустрия на современном этапе» (20-21 декабря 2001г., Москва), на ІІ митинге Neurodiab Study Group of the EASD (29 августа-1сентября, 2002г., Венгрия, Балатон); на 18-ом конгрессе IDF (International Diabetes Federation Congress),

(24-29 августа 2003г.,Франция, Париж); на митинге DFSG Study Group of the EASD (7-10 сентября, 2005г.,Греция); на митинге DFSG Study Group of the EASD (10-13 сентября 2006г., Дания); на 21-ом митинге Neurodiab Study Group of the EASD (2011г., Porto), на международной конференции »Медицина и фармакология: научные приоритеты ученых» (25 ноября 2016 г., Казахстан); на конференции «Актуальные вопросы дерматовенерологии» (11 мая 2018 г., Курск); на конференции XV Московского городского съезда эндокринологов «Эндокринология столицы – 2019» (2019 г., Москва); на конференции XVII Московского городского съезда эндокринологов «Эндокринология столицы – 2021» (2021 г., Москва); на конференции по лечению и диагностике сахарного диабета «Фундаментальная и клиническая диабетология в 21 веке: от теории к практике» (2021 г., Москва); на XIII Международной конференции РУДН (2022 г., Москва); на 9-й международной конференции "Human Interaction & Emerging Technologies: Future Applications (IHIET-AI 2023)" (12–13 апреля 2023 г., Лозанна, Швейцария); на 25-м Европейском конгрессе эндокринологов (ЕСЕ 2023) (13–16 мая 2023 г., Стамбул, Турция); на XIX Национальном конгрессе терапевтов (20–22 ноября 2024 г., Москва), на ICBTEdinburgh (12-13 апреля 2025г., Эдинбург, Шотландия).

Апробация диссертации состоялась 11 ноября 2024 года на заседании профессорскопреподавательского состава кафедры госпитальной терапии с курсами эндокринологии, гематологии и клинической лабораторной диагностики медицинского института ФГАОУ ВО «Российского университета дружбы народов имени Патриса Лумумбы».

Внедрение результатов в практику

Результаты исследования внедрены в практическую работу ГБУЗ «Городская клиническая больница имени Ф.И. Иноземцева» Департамента здравоохранения города Москвы, ФГБУ ФБ МСЭ Минтруда России, а также в учебный процесс на кафедре госпитальной терапии с курсами эндокринологии, гематологии и клинической лабораторной диагностики медицинского института ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы».

Соответствие диссертации паспорту научной специальности

В работе проведено изучение клинических и патофизиологических проявлений патологии внутренних органов с использованием клинических лабораторных и других методов исследований у пациентов с различными вариантами течения СД2. Обоснованы методы совершенствования и оптимизации лечебных мероприятий для профилактики возникновения или обострения заболеваний внутренних органов у пациентов с СД2. Использована система анализа данных, результатов лабораторных и инструментальных исследований в разработке новых подходов в диагностике и лечении. Проведено

совершенствование методов персонализации лечения на основе внедрения пациенториентированного подхода в клиническую практику. Таким образом, диссертационная работа соответствует пунктам 2; 5; 6 паспорта специальности 3.1.18. «Внутренние болезни».

Личный вклад

Автор самостоятельно провела системный обзор литературы, определила актуальность темы, сформулировала цель и задачи исследования и разработала его дизайн. Автор лично участвовала в диагностике и лечении всех пациентов, самостоятельно интерпретировала полученные данные, создала и вела базу данных, обработала первичные медицинские документы, выполнила статистический анализ, вклад автора является определяющим в обсуждении результатов исследования, в научных публикациях, докладах и внедрении в практику.

Структура и объем диссертации

Работа состоит из введения, 3 глав (обзор литературы, описание материала и методов исследования, собственные результаты и обсуждение полученных результатов), обсуждения, выводов, практических рекомендаций и списка литературы, который включает 293 источника, из них: 74 работы отечественных и 219 работ иностранных авторов. Работа изложена на 273 странице машинописного текста, включает 57 таблиц и 33 рисунка.

Методология и методы исследования

проведено комплексное анамнестическое и клиническое обследование включенных пациентов. Из *лабораторных данных*: общий холестерин (XC), триглицериды, липопротеины высокой плотности (ЛПВП), липопротеины низкой плотности (ЛПНП), липопротеины очень низкой плотности (ЛПОНП), общий белок, трансаминазы, щелочная фосфатаза, билирубин, калий, натрий, кальций; общий анализ крови, мочи выполнен для оценки общеклинических лабораторных показателей. ТТГ, свободные Т3 и Т4, антитела к ТПО, УЗИ ЩЖ проведены для оценки тиреоидного статуса. АД, ЧСС, ЭКГ в стандартных отведениях, Эхо КГ, УЗИ артерий нижних конечностей – для оценки состояния сердечнососудистой системы. Для оценки функции почек были определены следующие показатели: мочевина, креатинин, СКФ, микроальбуминурия (в суточной моче), а также проведено УЗИ почек. С помощью гликемического профиля с расчетом среднесуточного уровня и вариабельности гликемии, С-пептида, НвА1с, инсулинорезистентности по индексу НОМА 2 оценивали контроль и состояние углеводного обмена. Исследование гемостаза и агрегации: протромбиновый индекс, коагулограмма, время свертывания и время кровотечения. Всем пациентам с СД2 и COVID-19, помимо стандартного обследования, при поступлении определяли уровни кортизола и АКТГ.

Инструментальные методы: стимуляционная электромиография (ЭМГ) с оценкой скорости проведения и амплитуды при стимуляции по двум сенсорным и двум моторным нервам с рук и ног, оценка шкалы признаков НДС (Neuropathy Disability Score или нейропатический дисфункциональный счет) на основании исследования порогов 4 видов чувствительности (тактильной, болевой, температурной и вибрационной) и исследования рефлексов (ахилловых и коленных), болевая нейропатия по шкале ВАШ; визометрия, рефрактометрия, биомикроскопия, прямая И обратная офтальмоскопии фоне когерентная томография медикаментозного мидриаза, глазного дна ДЛЯ оценки офтальмологического статуса.

Системные методы оценки: тип и уровень коморбидности по кумулятивной шкале рейтинга заболеваний (Cumulative Illness Rating Scale, CIRS); реабилитационный потенциал (РП) с определением морфофункционального индекса (МФИ). Также был рассчитан КАП (коэффициент активности аутоиммунного процесса ШЖ).

Базовый терапевтический комплекс назначался в соответствии с Алгоритмами специализированной медицинской помощи больным СД (ФНЦ ЭНЦ, 2018–2023 гг.).

Все группы пациентов с COVID-19 при наличии показаний получали ингибиторы интерлейкина-6 (тоцилизумаб, левилимаб, сарилумаб) или блокаторы ИЛ-6 (олокизумаб), или антагониста рецептора ИЛ-1α/ИЛ-1β (анакинра), антикоагулянтную терапию согласно временным клиническим рекомендациям по профилактике, диагностике и лечению новой коронавирусной инфекции COVID-19, согласно клиническим протоколам лечения больных новой короновирусной инфекцией (COVID-19), находящихся на стационарном лечении в медицинских организациях государственной системы здравоохранения города Москвы, под редакцией А.И. Хрипуна, 2021–2022 г.

Статистический анализ результатов исследования

Математико-статистическая обработка данных проводилась с использованием пакета прикладных программ STATISTICA (версия 10.0, StatSoft Inc., США) и SPSS 11.0. Для вариационных рядов с распределением, близким к нормальному, статистическая значимость различий между средними величинами оценивалась с помощью t-критерия Стьюдента. Различия средних величин и корреляционные связи считались статистически достоверными при двустороннем уровне значимости р <0,05.

В рядах с неправильным распределением данных использовался непараметрический метод обсчета Вилконсона и Манна — Уитни. Для расчета групп нормы использовался метод сигмальных отклонений при нормальном распределении и метод перцентилей в рядах, отличных от нормального распределения. Для оценки связи между признаками использовался коэффициент корреляции Пирсона и метод множественной линейной регрессии. Рассчитаны

и проанализированы парные и множественные коэффициенты корреляции, проверены гипотезы об их значимости, построены парные и множественные линейные регрессионные модели. Для каждой из моделей установлено ее соответствие анализируемым данным с помощью критерия Фишера, значимость коэффициентов регрессии бала проверена с помощью критерия Стьюдента, также для каждой построенной модели был рассчитан коэффициент детерминации (*R-квадрат*), является квадратом множественного коэффициента корреляции между зависимой переменной и объясняющими переменными. За уровень статистической значимости принимались значения коэффициента достоверности менее 0,05. Для прогноза различных состояний в динамике были построены цепи Маркова.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Характеристика больных

В соответствии с поставленными задачами на первом этапе проведен анализ 1 211 историй болезней пациентов, госпитализированных с диагнозом «СД2» за период с 2014 по 2017 г. на базе Центральной клинической больницы №2 имени Н.А. Семашко ОАО «РЖД». Из них было отобрано и проанализировано по структуре и уровню коморбидности 428 пациентов с СД2 с распределением в группы наблюдения. В 1-ю группу вошли 213 человек с СД2 и аутоиммунным поражением ЩЖ, в группу сравнения — 215 пациентов с СД2 без аутоиммунного поражения ЩЖ. На втором этапе исследования отобрано 226 пациентов для проспективного наблюдения с повторным наблюдением через 1 и 3 года на базе ГКБ им. Ф.И. Иноземцева ДЗМ с 2018 по 2023г.

Критерии включения в исследование (ретроспективный и проспективный этапы): наличие СД2 у пациентов в возрасте от 18 лет.

Критерии исключения: злокачественные опухоли, острые и хронические неврологические или психические расстройства, хронический алкоголизм, отказ пациента от участия в

Дополнительные *критерии включения* в наблюдательное исследование (госпитализированные с COVID-19): наличие СД2 у пациентов в возрасте от 18 лет, госпитализированных в специализированный стационар (COVID-19).

Дополнительные *критерии исключения* (госпитализированные с COVID-19): крайне тяжелое состояние пациентов, отсутствие признаков цитокинового шторма, пневмония по данным КТ4 (более 75% поражения легочной ткани), применение неинвазивной вентиляции легких (НИВЛ) и высокопоточной оксигенации (ВПО).

В группе наблюдения – 117 пациентов, в группе сравнения – 109 пациентов с оценкой прогрессирования транснозологической и транссиндромальной коморбидности,

эффективности лечения. На третьем этапе оценена хронологическая коморбидность у 203 пациентов с СД2 на фоне COVID-19 на базе ГКБ им. Ф.И. Иноземцева ДЗМ с 2021 по 2023 г., которые также были распределены в группы в зависимости от наличия других аутоиммунных заболеваний (конкретно АИТ): группа наблюдения — 101 пациент; группа сравнения — 102 пациента (Рисунок 1).

Рисунок 1 – Дизайн исследования

Отобранные группы были сопоставимы практически по всем параметрам, за исключением гендерных и уровня коморбидности. Основные клинико-анамнестические характеристики больных приведены в Таблице 1.

Таблица 1 – Основные клинико-анамнестические характеристики больных

Характеристика	Группа сравнения	Группа наблюдения	p
	(n = 215)	(n = 213)	
Возраст, лет, $M \pm SD$	$58,01 \pm 11,01$	$59,61 \pm 10,87$	0,13
Пол (муж/жен), п	131/84	66/147	0,05
Длительность СД (лет), Me (IQR)	7,00 (3,00; 12,00)	5,00 (1,00; 10,00)	0,06
ИМТ ($\kappa \Gamma / M^2$), $M \pm SD$	$31,50 \pm 6,02$	$32,60 \pm 6,13$	0,06
Бронхиальная астма, п (%)	1 (1,80%)	12 (5,60%)	0,04
Хронический пиелонефрит, п (%)	16 (7,40%)	28 (13,10%)	0,05
Псориаз, n (%)	1 (0,47%)	13 (6,10%)	0,001
ИБС, n (%)	110 (51,20%)	138 (64,80%)	0,004
XCH, n (%)	132 (61,40%)	107 (50,20%)	0,02
CIRS, $M \pm SD$	$11,41 \pm 2,37$	$16,72 \pm 3,43$	0,05

Примечания: ИМТ — индекс массы тела; XCH — хроническая сердечная недостаточность; CIRS (Cumulative Illness Rating Scale) — индекс коморбидности (кумулятивная шкала рейтинга заболеваний).

В группе наблюдения женщин (69%) было выявлено больше, чем мужчин, что связано с большей частотой развития аутоиммунных заболеваний ЩЖ именно у женщин. В обеих группах был отмечен высокий уровень коморбидности (более 11 баллов по CIRS), но в группе наблюдения этот

показатель был достоверно выше — более 16 баллов (p = 0.047). У пациентов с сочетанной патологией, помимо АИТ, в 5,60% случаев наблюдалась бронхиальная астма, у 3,30% пациентов — витилиго и алопеция, у 6,10% — псориаз, почти у 2% пациентов — ревматоидный артрит. Отмечена большая склонность к воспалительным заболеваниям (хронический пиелонефрит - 13,10%), что было подтверждено более высоким значением показателя NL (p = 0.007) (Таблица 2). Выявлена большая частота ИБС (64,80%) в группе СД2+АИТ (51,20%), однако признаки ХСН чаще встречались у пациентов без аутоиммунной составляющей (Таблица 1).

Средние значения биохимических лабораторных показателей не позволили нам выявить значимых различий по каким-либо из них, кроме уровня триглицеридов в группе наблюдения и статистически значимого повышение уровня альбумина в моче и СКФ в группе сравнения. При сравнении гормональных показателей различий в параметрах углеводного обмена не выявлено, а значения показателей тиреоидных гормонов и антитиреоидных антител, изменений структуры ЩЖ изначально служили критериями отбора в группу пациентов наблюдения. При оценке инструментальных данных выявлены следующие достоверные различия: ЭМГ показала, что показатели скорости проведения при стимуляции моторных нервов (п. medianus и п. peroneus) выше в группе сравнения. По данным УЗИ артерий нижних конечностей, в группе сравнения достоверно чаще выявлялись поражения только крупных (бедренных и подколенных) артерий. Параметры ЭхоКГ свидетельствовали, что все пациенты имели сохранную фракцию выброса (Таблица 2).

Таблица 2 – Основные достоверно различные лабораторно-инструментальные данные в исследуемых группах

Характеристика	Группа	Группа	p
	сравнения	наблюдения	
	(n = 215)	(n = 213)	
HOMA 2, Me (IQR)	2,10 (1,45; 2,79)	2,17 (1,66; 2,87)	0,43
HBA1C, %, M±m	$7,94 \pm 1,62$	$7,86 \pm 1,64$	0,64
Индекс NL, Me (IQR)	1,56 (1,20; 2,00)	1,66 (1,26; 2,08)	0,007
Триглицериды (ммоль/л), Me (IQR)	1,89 (1,36; 2,64)	1,98 (1,43; 2,83)	0,004
Суточный альбумин мочи, мг/сут, Me (IQR)	8,00 (4,00; 26,00)	7,00 (4,00; 23,00)	0,04
СКФ (СКD-EPI; мл/мин/1,73м ²), М±m	$69,70 \pm 15,60$	$65,00 \pm 14,50$	0,001
ТТГ, мкМЕ/мл, Me (IQR)	1,80 (1,35; 2,50)	1,87 (1,20; 2,98)	0,005
AT TПО, ME/мл, Me (IQR)	0,10 (0,00; 0,00)	1,40 (0,40; 7,80)	0,05
Объем щитовидной железы, см ³ , Me (IQR)	11,80 (10,10;	12,50 (10,10;	0,0001
	13,00)	16,80)	
УЗИ бедренных артерий, % окклюзии, Me (IQR)	0,00 (0,00; 25,00)	0,00 (0,00; 20,00)	0,01
УЗИ подколенных артерий, % окклюзии, Me (IQR)	0,00 (0,00; 25,00)	0,00 (0,00; 20,00)	0,007
СРВ моторного ответа n. medianus, (м/c), Me (IQR)	51,00(46,60;	51,40 (41,70;	0,05
	53,50)	54,30)	

Примечания: HBA1C — гликированный гемоглобин; HOMA2 — индекс инсулинорезистентности; индекс NL — коэффициент отношения нейтрофилов к лимфоцитам крови; СКФ — скорость клубочковой фильтрации; ТТГ — тиреотропный гормон; AT к ТПО — антитела к ТПО; СРВ — скорость распространения возбуждения по нерву.

Особенности структуры и проявлений осложнений СД2 в зависимости от наличия аутоиммунного компонента в патогенезе

В выделенных группах была проанализирована частота встречаемости поздних осложнений СД. При оценке нефропатии стадия микроальбуминурии в сравниваемых группах наблюдалась с одинаковой частотой, макроальбуминурия превалировала у пациентов группы сравнения: 5,10% и 1,90% (р <0,01) соответственно. Но выраженная терминальная нефропатия была достоверно выше в группе наблюдения -2,30%, в отличие от 1,40% в группе сравнения, р <0,05 (Рисунок 2).

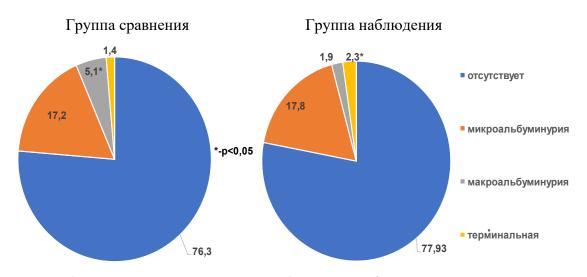


Рисунок 2 – Распределение по стадиям диабетической нефропатии в исследуемых группах

Оценены факторы, значимо влияющие на прогрессирование диабетической нефропатии: значительно выше в группе наблюдения (63,00%) – в группе сравнения (39,00%). Принципиальной оказалась разница в длительности СД2: в группе сравнения – 13,00%, в группе наблюдения – 6,00%. Параметры гликемического контроля имели статистически достоверную значимость различий по HbA1c: в группе пациентов с СД2 – на 5,00%. В группе с СД2 + АИТ выявлено влияние только сохранности секреции инсулина по уровню С-пептида на 2,00%, р <0,05. Выраженность значения в прогрессировании СД2 артериальной гипертензии (4,00%), ИБС (5,00%), ХАН (7,00%), ретинопатии (14,00%), нейропатии (8,00%) более значимо представлены в группе сравнения по сравнению с группой наблюдения ХАН-5,00%, ретинопатии – 10,00%, нейропатии – 4,00%. Суммарное влияние факторов в группе сравнения представлено на 66,00%, в группе наблюдения – на 50,00%, р <0,05 (Таблица 3).

Распределение пациентов по стадиям ретинопатии, включая макулопатию, в обеих группах достоверно не различались (Рисунок 3).

		1 1	es uperpresent essential members and		
Группа сравнен	кия		Группа наблюдения		
Название параметра	R^2 , %	p	Название параметра	R^2 , %	p
HBA1C	5	0,003	С-пептид	2	0,05
Альбуминурия	39	<0,0001	Альбуминурия	63	<0,0001
Длительность СД	13	<0,0001	Длительность СД	6	0,002
ГБ	4	0,006	XAH	5	0,002
ИБС	5	0,002	Ретинопатия	10	<0,0001
XAH	7	0,0004	Нейропатия	4	0,01
Ретинопатия	14	<0,0001	Объединенное влияние	50	<0,0001
			факторов		
Нейропатия	8	0,002			
Объединенное влияние	66	<0,0001			

Таблица 3 – Результаты значимых параметров прогрессирования нефропатии

Примечания: HBA1C — гликированный гемоглобин; ГБ — гипертоническая болезнь; ИБС — ишемическая болезнь сердца; ХАН — хроническая артериальная недостаточность.

факторов

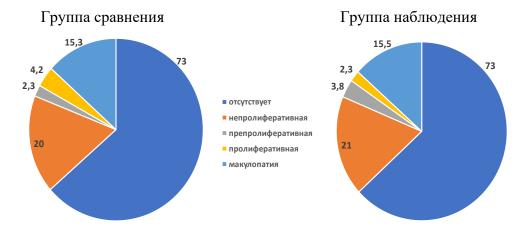


Рисунок 3 — Распределение пациентов в сравниваемых группах по стадиям диабетической ретинопатии

При оценке параметров, влияющих на прогрессирование диабетической ретинопатии (ДР), отмечены значимые различия. Наиболее выраженным являлась длительность диабета, в группе сравнения на 22,00%, в группе наблюдения — на 9,60%. Столь же принципиально значимой оказалась разница показателя альбуминурии, в группе наблюдения влияние составило 11,00%, в группе сравнения — 3,40% (Таблица 4).

Нейропатия и нефропатия имели более выраженное влияние на прогрессирование СД2 для пациентов группы сравнения: нефропатия — 14,00% (против 10,00% в группе наблюдения), нейропатия — 10,00% (против 6,40% в группе наблюдения). Уровень гликированного гемоглобина был статистически значим только для пациентов группы сравнения — 4,00%, также, как и постпрандиальная гликемия — 5,30% (2,3% в группе наблюдения), а уровень С-пептида и экскурсия гликемии, напротив, большее влияние имели для пациентов группы наблюдения (СД2 + АИТ) — 4,40 и 5,20% (в группе сравнения — 3,40 и

3,00%, р <0,05) (Таблица 4). Показатели транссиндромальной коморбидности имели статистически значимое влияние на прогрессирование СД только в группе сравнения: ГБ – на 2,50%, ИБС – на 4,80%, ХАН – на 2,80% (Таблица 4).

T (1 D					
\mathbf{I} аблица $\mathbf{A} = \mathbf{Pe}$	зультаты значимых	TanaMethor	прогресси	nobahna :	п етинопатии
таолица т то	JYJIDI AIDI JIIA IIIMIDIA	Hapamerpob	iipoi pecen	DODUITIN	permionarm

Группа сравне	Группа наблюдения				
Название параметра	R^2 , %	p	Название параметра	R^2 , %	p
HBA1C	4,00	0,01	С-пептид	4,40	0,007
Экскурсия гликемии	3,00	0,02	Экскурсия гликемии	5,20	0,003
Постпрандиальная гликемия	5,30	0,002	Постпрандиальная гликемия	2,30	0,05
С-пептид	3,40	0,015	Нейропатия	10,00	<0,0001
Альбуминурия	3,40	0,015	Альбуминурия	11,00	<0,0001
Длительность СД	22,00	<0,0001	Длительность СД	9,60	0,002
ГБ	2,50	0,04	Нефропатия	10,00	<0,0001
XAH	2,80	0,03	Нейропатия	6,40	0,001
ИБС	4,80	0,004	Объединенное влияние	23,00	<0,0001
			факторов		
Нейропатия	11,00	<0,0001			
Нефропатия	14,00	<0,0001			
Объединенное влияние	34,00	<0,0001			
факторов					

Примечания: HBA1C – гликированный гемоглобин; ГБ – гипертоническая болезнь; ИБС – ишемическая болезнь сердца; ХАН – хроническая артериальная недостаточность.

Анализ проявлений нейропатии показал, что нейропатия чаще наблюдается у пациентов без аутоиммунных проявлений. Легкая форма присутствовала примерно с равной частотой, умеренно-выраженная и выраженная чаще наблюдались в группе наблюдения, по болевым формам группы не различались (Рисунок 4).

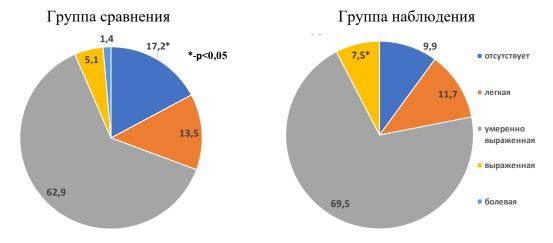


Рисунок 4 — Распределение по стадиям диабетической нейропатии в исследуемых группах

В группе сравнения наиболее значимыми параметрами гликемического контроля явились экскурсия гликемии (5,00%), постпрандиальная гликемия (8,70%), тогда как для группы наблюдения статистически значимым был, помимо экскурсии гликемии (4,00%) и постпрандиальной гликемии (7,50%), уровень С-пептида (2,20%). Длительность диабета

имела значение в обеих группах: на 18,00% в группе сравнения и на 10,00% в группе наблюдения (р <0,01) (Таблица 5).

Антитела к тиреопероксидазе (ТПО) влияли на прогрессирование нейропатии только у пациентов группы наблюдения (на 5,00%). ГБ (14,50%), ИБС (9,00%), ХАН (14,50%) имели значение только для группы сравнения. Ретинопатия на 11,00% и нефропатия на 8,00% вносят более выраженный вклад в прогрессирование нейропатии в группе сравнения – 6,00% (4,00% в группе наблюдения).

В группе наблюдения имела большее значение амплитуда M-ответа n. medianus (8,90%) и n. peroneus (7,00%) и не значимы для прогрессирования данные CPB по моторному и сенсорному ответу n. medianus, p < 0,05 (Таблица 5).

Таблица 5 – Результаты значимых параметров прогрессирования нейропатии

Группа сравнения			Группа наблюдения			
Название параметра	R^2 , %	p	Название параметра	\mathbb{R}^2 , %	p	
Экскурсия гликемии	5,00	0,004	Экскурсия гликемии	4,00	0,007	
Постпрандиальная гликемия	8,70	<0,0001	Постпрандиальная гликемия	7,50	0,0004	
ГБ	14,50	<0,0001	С-пептид	2,20	0,05	
ИБС	9,00	<0,0001	АТ к ТПО	5,00	0,003	
Длительность СД	18,00	<0,0001	Длительность СД	10,00	<0,0001	
XAH	17,00	<0,0001	Ретинопатия	6,00	0,001	
Ретинопатия	11,00	<0,0001	XAH	6,00	0,001	
Нефропатия	8,00	0,0002	Нефропатия	4,00	0,01	
СРВ Ампл. М-ответа <i>п</i> .	4,20	0,003	СРВ Ампл. М-ответа <i>п</i> .	8,90	<0,0001	
medianus			medianus			
${\rm CPB}$ моторного ответа n .	4,80	0,001	СРВ Ампл. сенсор. ответа <i>п</i> .	3,20	0,009	
medianus			medianus			
СРВ сенсор. ответа	11,60	< 0,0001	CPB ответа n. suralis	4,20	0,003	
n. medianus						
СРВ Ампл. сенсор. ответа n .	19,80	<0,0001	СРВ Ампл. ответа	11,40	<0,0001	
medianus			n. suralis			
CPB ответа n. suralis	13,20	<0,0001	СРВ Ампл. М-ответа <i>п</i> .	9,70	<0,0001	
			peroneus			
СРВ Ампл. ответа	18,20	<0,0001	СРВ М-ответа	5,20	0,0008	
n. suralis			n. peroneus			
${\rm CPB}$ Ампл. М-ответа n .	7,00	0,00009	Объединенное влияние	35,90	<0,0001	
peroneus			факторов			
СРВ М-ответа	7,00	0,00008				
n. peroneus			_			
Объединенное влияние	46,40	<0,0001				
факторов						

Примечания: ГБ – гипертоническая болезнь; ИБС – ишемическая болезнь сердца; ХАН – хроническая артериальная недостаточность; АТ к ТПО – антитела к ТПО; СРВ – скорость распространения возбуждения по нерву.

При оценке параметров, влияющих на прогрессирование суммарных осложнений (микрососудистых и нейропатии) наиболее выраженное влияние оказывала длительность СД2 в группе сравнения – 32,00%, в группе наблюдения – 17,00% (Рисунок 5).

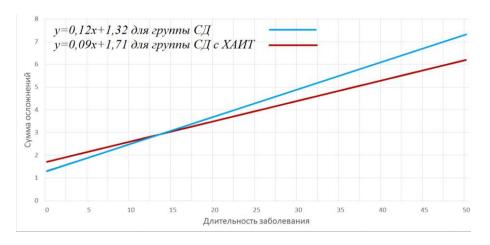


Рисунок 5 — Зависимость прогрессирования суммарного осложнения от длительности сахарного диабета

Таблица 6 — Результаты значимых параметров прогрессирования суммарного осложнения (микроангиопатии + нейропатия)

Группа сравнения			Группа на	Группа наблюдения			
Название параметра	R^2 , %	p	Название параметра	R^2 , %	p		
Экскурсия гликемии	5,10	0,02	Экскурсия гликемии	5,50	0,01		
Постпрандиальная	11,20	0,0002	Постпрандиальная	4,90	0,02		
гликемия			гликемия				
С-пептид	6,00	0,009	С-пептид	10,00	0,0008		
(y = 3.0 - 0.74x)			(y = 3.65 - 1.21x)				
Альбуминурия	13,00	0,001	Альбуминурия	35,00	<0,0001		
Длительность СД	32,00	<0,0001	Длительность СД	17,00	<0,0001		
ГБ	12,00	<0,0001	ИБС	11,00	<0,0001		
ИБС	9,00	<0,0001	ХАН	9,00	<0,0001		
XAH	15,00	<0,0001	Объединенное влияние	47,00	<0,0001		
			факторов				
Объединенное влияние	51,00	<0,0001					
факторов							

Примечания: ГБ – гипертоническая болезнь; ИБС – ишемическая болезнь сердца; ХАН – хроническая артериальная недостаточность.

Вторым по степени значимости параметром оказалось количество суточного белка в моче, причем в группе сравнения этот параметр определял прогрессирование на 13,00%, а при сочетании СД2 с АИТ доля его влияния увеличивалась до 35,00%. Показатели, характеризующие состояние гликемического контроля и достижение целевых значений гликемии, среди совокупных факторов влияния у пациентов с АИТ имеют значительно меньшую долю: постпрандиальная гликемия – 4,90% (группа сравнения – 11,20%).

Однако у группы наблюдения большее значение имела сохранность инсулиновой секреции и вариабельность гликемии (Таблица 6). ХАН (15,00%), ИБС (9,00%), ГБ (12,00%) имели большее значение для пациентов группы сравнения, оказывая влияние на суммарный риск развития осложнений. Напротив, в группе наблюдения выявлено более выраженное

влияние ИБС (11,00%) и ХАН (9,00%), хотя этот показатель был ниже, чем в группе сравнения (Таблица 6). У пациентов группы наблюдения все перечисленные показатели имеют суммарное влияние на 47,00%, в группе сравнения — на 51,00%, р <0,05. Обращает на себя внимание, что прогрессирование осложнений менее выражено в группе наблюдения, несмотря на то, что изначально (при выявлении СД2) осложнения у пациентов этой группы были более значимы (Таблица 6).

Особенности структуры и проявлений сопутствующей патологии СД2 в зависимости от наличия аутоиммунного компонента в патогенезе СД2

При оценке транснозологической коморбидности выявлены существенные различия в сравниваемых группах. Частота встречаемости различных стадий ГБ достоверно не отличалась в исследуемых группах (Рисунок 6).

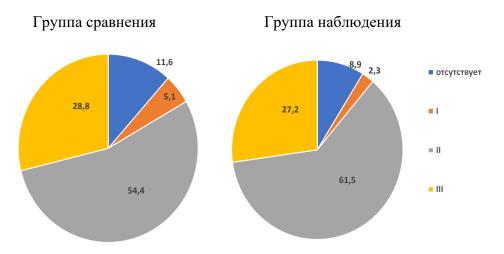


Рисунок 6 – Распределение по стадиям гипертонической болезни в исследуемых группах

Среди исследуемых факторов, влияющих на прогрессирование ГБ в группе СД2 выявлены взаимосвязи с ХСН (10,40%), ИБС (19,50%), ХАН (6,10%), тяжесть нейропатии (6,30%), нефропатии (4,50%) и ретинопатии (1,80%), р< 0,05. Тогда как в группе наблюдения прогрессирование ГБ ассоциировано только с ИБС (2,70%) и НРС (3,90%) (Таблица 7).

Среди оценочных параметров ЭхоКГ только диаметр аорты на (1,70%) имеет значение в группе наблюдения при оценке ГБ, тогда как в группе сравнения такими критериями явились: фракция выброса (13,50%), толщина стенки правого желудочка (3,80%), толщина задней стенки левого желудочка (2,60%), толщина межжелудочковой перегородки (3,80%). Суммарное влияние факторов в группе сравнения проявлялось на 31,00%, в группе наблюдения – на 16,00%, р<0,05 (Таблица 7).

Таблица 7 — Результаты значимых параметров прогрессирования гипертонической болезни

Группа сравнения			Группа наблюдения			
Название параметра	R^2 , %	p	Название параметра	R^2 , %	p	
HBA1C	2,40	0,02	HBA1C	1,70	0,05	
Постпрандиальная	2,50	0,02	ИБС	2,70	0,02	
гликемия						
С-пептид	2,00	0,04	Нарушение ритма сердца	3,90	0,004	
Длительность СД	3,00	0,01	Диаметр аорты	1,70	0,05	
XCH	10,40	<0,0001	Объединенное влияние	16,00	<0,0001	
			факторов			
ИБС	19,50	<0,0001				
XAH	6,10	0,0002				
Нейропатия	6,30	0,0002				
Нефропатия	4,50	0,002				
Ретинопатия	1,80	0,05				
Фракция выброса	13,50	0,0001				
Толщина стенки правого	3,80	0,004				
желудочка						
Толщина задней стенки	2,60	0,02				
лев желудочка						
Толщина	3,80	0,004				
межжелудочковой						
перегородки						
Объединенное влияние	31,00	< 0,0001				
факторов						

Примечания: HBA1C — гликированный гемоглобин; XCH — хроническая сердечная недостаточность; ИБС — ишемическая болезнь сердца; XAH — хроническая артериальная недостаточность.

В группе наблюдения стенокардия напряжения II ФК встречалась в 23,60%, а в группе сравнения — 19,50%, ПИКС — в 11,70% (группа сравнения — 11,20%), также и оперативные вмешательства чаще проводились в этой же группе (Рисунок 7).

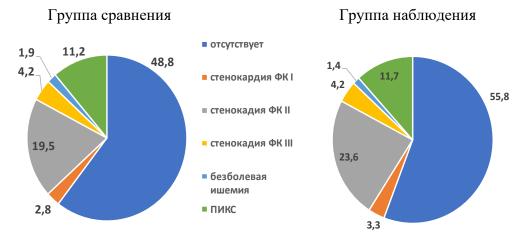


Рисунок 7 — Распределение по формам ишемической болезни сердца в исследуемых группах

Наиболее значимый вклад в прогрессирование ИБС в обеих группах вносило наличие ГБ (более 40,00%). В группе наблюдения имели значение ХСН (5,10%), ХАН (9,50%), НРС (10,10%). По оценочным параметрам ЭхоКГ фракция выброса (7,40%) и диаметр аорты (2,80%) имеют значение при диагностике ИБС в группе наблюдения. В группе сравнения имели значение нейропатия (6,00%), нефропатия (3,10%), ретинопатия (1,70%), проявления дислипидемии. Выявлены параметры ЭхоКГ более значимые при оценке прогрессирования ИБС в группе сравнения: фракция выброса (2,40%) и толщина межжелудочковой перегородки (2,10%), Суммарное влияние факторов в группе сравнения составило 48,00%, в группе наблюдения – 53,30%, р <0,05 (Таблица 8).

В группе пациентов с сочетанной аутоиммунной патологией (СД2 + АИТ) отмечена большая частота встречаемости различных НРС, в первую очередь фибрилляций предсердий – 10,30% (р <0,0001), с постоянной формой – 6,60% (р <0,01) и желудочковых экстрасистолий – 7,00% (р <0,05). В той же группе чаще проводилась установка электрокардиостимуляторов-10 (Рисунок 8).

Таблица 8 — Результаты значимых параметров прогрессирования ишемической болезни сердца

Группа сравнения			Группа наблюдения				
Название параметра	R^2 , %	p	Название параметра	R^2 , %	p		
HBA1C	3,10	0,009	XCH	5,10	0,0009		
Экскурсия гликемии	1,90	0,04	ГБ	48,00	<0,0001		
Постпрандиальная гликемия	4,20	0,003	ХАН	9,50	<0,0001		
С-пептид	3,50	0,006	Нарушение ритма сердца	10,10	<0,0001		
ЛПОНП	2,50	0,02	Фракция выброса	7,42	<0,0001		
Триглицериды	1,90	0,04	Диаметр аорты	2,80	0,02		
Длительность СД	3,00	0,01	Объединенное влияние	53,30	<0,0001		
			факторов				
ГБ	43,20	<0,0001					
Нейропатия	6,00	0,0003					
Нефропатия	3,10	0,009					
Ретинопатия	1,70	0,05					
Фракция выброса	2,40	0,02					
Толщина межжелудочковой	2,10	0,04					
перегородки							
Объединенное влияние	48,00	<0,0001					
факторов							

Примечания: HBA1C — гликированный гемоглобин; XCH — хроническая сердечная недостаточность; XAH — хроническая артериальная недостаточность; $\Gamma Б$ — гипертоническая болезнь; ЛПОНП — липопротеины очень низкой плотности.

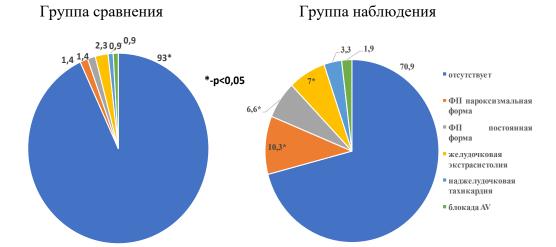


Рисунок 8 – Распределение по формам нарушений ритма сердца в исследуемых группах При оценке параметров, влияющих на прогрессирование НРС в обеих группах отмечены: ХСН (12,30% в группе наблюдения и 9,20% в группе сравнения, р<0,0001). Для пациентов группы наблюдения значимым оказалось влияние ИБС (3,10%), нефропатии (2,00%) и). По параметрам ЭХО КГ наибольшее значение имела оценка толщины стенки правого желудочка (8,10% в группе наблюдения и 5,20% в группе сравнения), толщины задней стенки левого желудочка (6,00% в группе наблюдения и 3,30% в группе сравнения) и диаметра аорты (3,50%) в группе наблюдения. Суммарное влияние факторов в группе сравнения – 11,60%, в группе наблюдения – 18,60%, р <0,05 (Таблица 9).

Таблица 9 — Результаты значимых параметров прогрессирования нарушений ритма сердца

Группа сравнения			Группа наблюдения			
Показатель	\mathbb{R}^2 , %	p	Название параметра	R^2 , %	p	
XCH	9,20	<0,0001	XCH	12,30	<0,0001	
Толщина стенки	5,20	0,0008	ИБС	3,10	0,01	
правого желудочка						
Толщина стенки	3,30	0,008	Нефропатия	2,00	0,04	
левого желудочка						
Объединенное влияни	re 11,60	<0,0001	Толщина стенки правого	8,10	<0,0001	
факторов			желудочка			
			Диаметр аорты	3,50	0,007	
			Толщина стенки левого	6,00	0,0003	
			желудочка			
			Объединенное влияние	18,60	<0,0001	
			факторов			

Примечания: XCH – хроническая сердечная недостаточность; ИБС – ишемическая болезнь сердца.

В группе сравнения почти у половины пациентов проявления XCH не были зафиксированы. В группе наблюдения признаки XCH отсутствовали только у 38,00% (р <0,01). Степень тяжести диагностированной XCH по структуре имела значимые отличия только на стадии 2Б и выше у пациентов группы наблюдения (Рисунок 9).

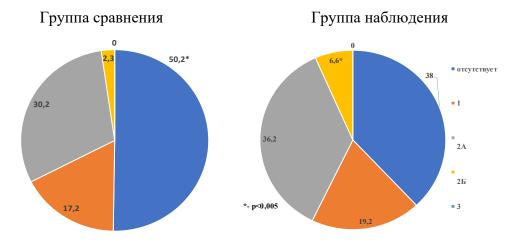


Рисунок 9 — Распределение по стадиям хронической сердечной недостаточности в исследуемых группах

Таблица 10 – Результаты значимых параметров прогрессирования хронической сердечной недостаточности

Группа сравнения			Группа наблюдения			
Название параметра	R^2 , %	p	Название параметра	R^2 , %	p	
Экскурсия гликемии	2,60	0,02	HBA1C	2,70	0,01	
Длительность СД	6,20	0,0002	С-пептид	2,20	0,03	
ГБ	26,00	<0,0001	Альбуминурия	11,00	<0,001	
ИБС	12,30	<0,0001	Длительность СД	9,50	<0,0001	
XAH	7,10	<0,0001	ГБ	25,70	<0,0001	
Нейропатия	8,90	<0,0001	ИБС	7,90	<0,0001	
Нефропатия	2,90	<0,0001	XAH	3,90	0,004	
Ретинопатия	2,20	0,03	Нейропатия	2,40	0,02	
Нарушение ритма сердца	9,20	<0,0001	Нефропатия	4,20	0,002	
Фракция выброса	5,20	0,0007	Нарушение ритма сердца	12,30	<0,0001	
Толщина стенки правого	7,80	<0,0001	Фракция выброса	5,60	0,0002	
желудочка						
Толщина задней стенки	4,40	0,002	Размер стенки правого	4,70	0,001	
левого желудочка			желудочка			
Диаметр аорты	4,40	0,002	Размер задней стенки левого желудочка	6,50	0,0002	
Толщина	7,10	<0,0001	Диаметр аорты	3,60	0,005	
межжелудочковой						
перегородки						
Объединенное влияние	53,00	<0,0001	Толщина межжелудочковой	3,90	0,004	
факторов			перегородки			
			Объединенное влияние факторов	53,00	<0,0001	

Примечания: ГБ – гипертоническая болезнь; ИБС – ишемическая болезнь сердца; ХАН – хроническая артериальная недостаточность; НВА1С – гликированный гемоглобин.

По результатам регрессионного анализа на прогрессирование XCH в группе наблюдения значимыми оказались уровень гликированного гемоглобина и С-пептида.

Длительность диабета оказывала влияние более выраженное в группе наблюдения (повышение риска на 9,5%), а ГБ, ИБС, ХАН, нейропатия, ретинопатия были более выражены в группе сравнения (Таблица 10).

При оценке ХАН у пациентов с легкими нарушениями (1-я стадия) была статистически значимо выше в группе наблюдения - 19,20%, (в группе сравнения - 10,70%). Доля пациентов с выраженной стадией 2Б в группе наблюдения — 6,10% (в группе сравнения - 10,70%) (Рисунок 10). Также в группе сравнения больше количество проведенных стентирований артерий нижних конечностей — 3 (в группе наблюдения — 0).

При оценке параметров, влияющих на прогрессирование ХАН, отмечены: уровень экскурсии гликемии, постпрандиальной гликемии, С-пептида и длительность диабета. Альбуминурия имела значение в группе сравнения на 2,00%, ХБП – на 1,20%. Влияние ГБ для пациентов группы сравнения значимо на 6,10%, ХСН – на 7,00%, нейропатии – 12,30%, нефропатии – на 5,90%, ретинопатии – на 2,20% (Таблица 11).

В группе наблюдения: ИБС влияет на 2,60%, XCH – на 3,90%, нейропатия – на 8,00%, нефропатия – на 3,40%, ретинопатия – на 4,00%. ЛПОНП отмечены значимыми только в группе наблюдения на 3,10%. При оценке параметров УЗИ артерий нижних конечностей в группе сравнения имеют значение окклюзии бедренных артерий достоверно на 80,20%, подколенных артерий на 59,60%, передних большеберцовых артерий на 56,80%, задних большеберцовых артерий на 56,30%. В группе наблюдения: окклюзии бедренных артерий достоверно на 80,90%, подколенных артерий на 82,80%, передних большеберцовых артерий на 65,80%, задних большеберцовых артерий на 53,80% с суммарным влиянием факторов в группе сравнения на 84,20%, в группе наблюдения – на 87,50%, р <0,05 (Таблица 11).

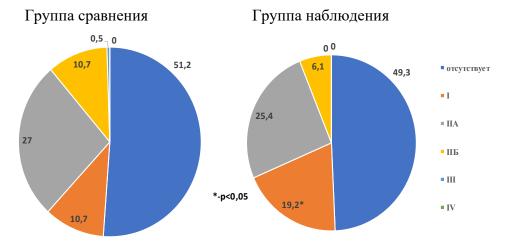


Рисунок 10 — Распределение по стадиям хронической артериальной недостаточности в исследуемых группах

Таблица 11 — Результаты значимых параметров прогрессирования хронической артериальной недостаточности

Группа сравнения			Группа наблюдения			
Название параметра	R^2 , %	p	Название параметра	R^2 , %	p	
Экскурсия гликемии	1,60	0,05	Экскурсия гликемии	3,20	0,009	
Постпрандиальная гликемия	2,50	0,003	Постпрандиальная гликемия	4,00	0,02	
Альбуминурия	2,00	0,04	С-пептид	3,80	0,004	
Длительность СД	7,70	<0,0001	Длительность СД	9,10	<0,000	
					1	
ГБ	6,10	0,0002	ИБС	2,60	0,02	
XCH	7,00	<0,0001	XCH	3,90	0,004	
Нейропатия	12,30	<0,0001	Нейропатия	8,00	<0,000	
					1	
Нефропатия	5,90	0,0003	Нефропатия	3,40	0,007	
Ретинопатия	2,20	0,03	Ретинопатия	4,00	0,003	
Фракция выброса	4,80	0,001	ЛПОНП	3,10	0,009	
Толщина задней стенки левого	4,80	0,001	Объединенное влияние	87,50	<0,000	
желудочка			факторов		1	
Диаметр аорты	3,00	0,01				
Толщина межжелудочковой	3,30	0,008				
перегородки						
Объединенное влияние	84,20	<0,0001				
факторов						

Примечания: $\Gamma Б$ — гипертоническая болезнь; И Б C — ишемическая болезнь сердца; X C H — хроническая сердечная недостаточность; $J \Pi O H \Pi$ — липопротеины очень низкой плотности.

Данные проспективного наблюдения

На этапе проспективного наблюдения группы пациентов, включенных в исследование, оказались сопоставимы по возрасту, длительности СД2, ИМТ, индексу НОМА (Таблица 12).

Таблица 12 – Основные клинико-анамнестические характеристики больных

Характеристика	Группа	Группа	p
	сравнения	наблюдения	
	(n = 109)	(n = 117)	
Возраст, лет, М±т	$58,90 \pm 11,20$	$60,30 \pm 10,00$	0,32
Пол (муж/жен), п	66/43	41/76	0,001
Длительность СД, лет, Me (IQR)	6,00(2,00; 12,00)	7,00 (3,00; 12,00)	0,06
ИМТ ($\kappa \Gamma/M^2$), M $\pm m$	$32,50 \pm 6,60$	$32,60 \pm 6,10$	0,9
CIRS, M±m	$10,41 \pm 2,32$	$16,32 \pm 3,53$	0,0001
HOMA 2, Me (IQR)	2,00 (1,35; 2,67)	2,00 (1,67; 2,77)	0,53
Морфофункциональный индекс (МФИ), Me (IQR)	0,40 (-1,00; 2,00)	0,00 (-1,00; 1,30)	0,50
Индекс коморбидности (ИК), Me (IQR)	0,10 (-1,00; 0,40)	0,00 (-0,20; 0,30)	0,50

Примечания: ИМТ – индекс массы тела; CIRS (Cumulative Illness Rating Scale) – индекс коморбидности (кумулятивная шкала рейтинга заболеваний; НОМА2 – индекс инсулинорезистентности.

Средние значения биохимических лабораторных показателей не выявили значимых различий в группах при динамическом наблюдении (Таблица 13). Данные гормональных показателей и гликемии на начальном этапе наблюдения и через 3 года отличались только по

уровню антител к ТПО в группе наблюдения (p < 0.05), увеличения уровня статистически более значимого по сравнению с начальным этапом не выявлено в обеих группах; отмечено достоверное снижение экскурсии гликемии в группе наблюдения по сравнению с начальным наблюдением, что свидетельствовало об эффективности проводимой терапии (p < 0.0001) (Таблица 13).

Таблица 13 — Основные достоверно различные лабораторно-инструментальные данные в исследуемых группах

Характеристика		Группа сравнения	Группа наблюдения	p
		(n = 109), p*	(n = 117), p*	
НвА1с (%),М±m	изначально	$7,80 \pm 1,40$	$7,90 \pm 1,70$	0,60
	3 года	7,60±1,40/0,30	$7,70 \pm 1,40/0,30$	0,60
ТТГ, мкМЕ/мл,	изначально	1,90 (1,40; 2,40)	1,60 (1,20; 2,50)	0,80
(0,35–4,3), Me (IQR)	3 года	2,60(1,40;2,40)/0,84	1,70(1,20;2,60)/0,66	0,80
АТ к ТПО, МЕ/мл,	изначально	0,00 (0,00; 0,00)	61,00 (0,20; 222,10)	0,05
Me (IQR)	3 года	0,00(0,00;0,00)/0,60	93,60(0,30;299,60)/0	0,05
			,28	
С-пептид, нг/мл,	изначально	0,90 (0,60; 1,20)	0,90 (0,80;1,20)	0,50
(1,0–4,8), Me (IQR)	3 года	0,90(0,60;1,20)/0,53	0,90(0,70;1,20)/0,48	0,60
Экскурсия гликемии,	изначально	1,80 (1,10; 2,80)	2,20 (1,00; 3,10)	0,40
Me (IQR)	3 года	2,20(1,20;3,40)/0,30	2,10(0,90;3,00)/	0,90
			0,00001	
Суточный альбумин	изначально	10,00(4,00;24,00)	6,00 (3,00; 15,00)	0,30
мочи, мг/сут, Ме	3 года	18,00(9,00;61,00)/0,0	13,00(7,00;34,60)/0,	0,70
(IQR)		03	00001	
СКФ (СКД-ЕРІ;	изначально	$69,90 \pm 15,20$	$66,70 \pm 13,80$	0,10
$мл/мин/1,73 м^2$)	3 года	65,20±14,30/0,02	59,00±14,10/0,0000	0,13
			1	
Объем щитовидной	изначально	11,20(9,20;13,00)	13,10 (10,10; 16,50)	0,02
железы, см ³ , Ме	3 года	11,20(9,70;13,00)/0,9	13,70(10,30;18,50)/0	0,01
(IQR)		8	,32	

Примечания: HeA1c — гликированный гемоглобин; $TT\Gamma$ — тиреотропный гормон; AT к $T\Pi O$ — антитела к тиреоидной пероксидазе; $CK\Phi$ — скорость клубочковой фильтрации. p * — достоверность между первичной группой и через 3 года.

Было выявлено значимое различие по диаметру стенки аорты в группе сравнения (p <0,05) и фракции выброса в группе наблюдения (p <0,0001). Через 3 года отмечены процессы прогрессирования в обеих группах по сравнению с начальным уровнем: в группе сравнения – увеличение процента окклюзии бедренных, передних большеберцовых, задних большеберцовых артерий (p <0,05), подколенных артерий (p <0,001). В группе сравнения в динамике отмечено достоверное увеличение толщины стенки правого желудочка, межжелудочковой перегородки, задней стенки левого желудочка (p <0,001), диаметра стенки аорты (p <0,05). В группе наблюдения через 3 года отмечено достоверное увеличение толщины стенки правого желудочка, диаметра стенки аорты (p <0,05), толщины задней стенки левого желудочка (p <0,001).

При оценке данных ЭМГ при начальном обследовании достоверной разницы между группами выявлено не было, через 1 год и 3 года отмечена разница в снижении скорости нервов *medianus* и *peroneus* в группе сравнения (p<0,05) по сравнению с группой наблюдения. Через 3 года в обеих группах отмечено достоверное прогрессивное снижение по всем показателям ЭМГ (p<0,001).

Для оценки прогноза прогрессирования осложнений СД2 были построены цепи Маркова. Наиболее выраженные изменения возможны через 5 лет в группе наблюдения в отношении прогрессирования транссиндромальной и транснозологической коморбидности.

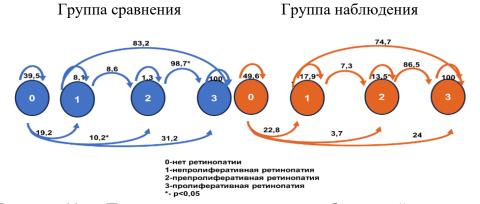
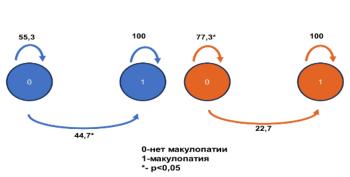



Рисунок 11 — Прогноз прогрессирования диабетической ретинопатии на 5 лет в исследуемых группах

Вероятность значимого прогрессирования ДР по всем стадиям, включая макулопатию, отмечена в группе сравнения через 5 лет: у 10,20% пациентов, ранее не имевших ДР возможно развитие препролиферативной стадии ДР (p=0,05). Низкий риск прогрессирования непролиферативной ДР у 8,10% пациентов группы сравнения и 17,90% пациентов группы наблюдения (p=0,03), а также прогрессирования препролиферативной стадии у 1,30% пациентов группы сравнения и 13,50% группы наблюдения (p=0,0006) (Рисунок 11).

Группа наблюдения

Группа сравнения

Рисунок 12 — Прогноз прогрессирования макулопатии на 5 лет в исследуемых группах Через 5 лет отсутствие макулопатии возможно у 55,30% пациентов в группе сравнения и у 77,30% в группе наблюдения. При этом признаки макулопатии могут появиться у 44,70% пациентов в группе сравнения и у 22,70% в группе наблюдения (р = 0,0005) (Рисунок 12).

Отмечена более быстрая вероятность прогрессирования диабетической нефропатии в

группе сравнения. Через 5 лет возможно не будет достоверного прогрессирования микроальбуминурии 69,60% пациентов группы сравнения и 42,30% (p = 0,00001) группы наблюдения; 6,40% и 43,10% (p = 0,00001) могут иметь прогрессирование до стадии макроальбуминурии; 31,10% пациентов группы сравнения и 100% пациентов группы наблюдения (p = 0,00001), которые уже имели проявления макроальбуминурии возможно не будут иметь прогрессирования; 36,60% в группе сравнения имеют высокую вероятность ухудшения нефропатии до терминальной стадии, а 32,00% могут улучшить свое состояние и будут иметь проявления микроальбуминурии (Рисунок 13).

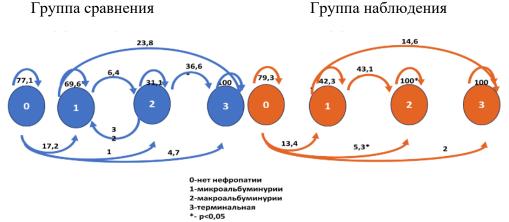


Рисунок 13 – Прогноз прогрессирования нефропатии на 5 лет в исследуемых группах

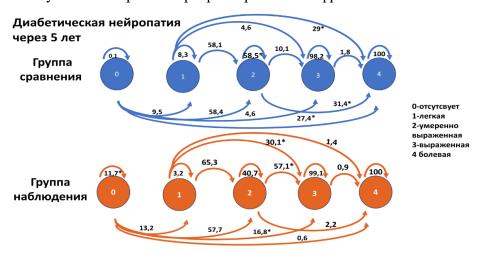


Рисунок 14 – Прогноз прогрессирования нейропатии на 5 лет в исследуемых группах

Прогноз нейропатии: у 0,10% группы сравнения и 11,70% группы наблюдения за 5 лет согласно построенным цепям Маркова может не прогрессировать нейропатия (p= 0,0002), что свидетельствует о более медленном развитии нейропатии в группе наблюдения, однако тяжесть проявлений нейропатии (выраженная) по прогнозам выше в группе наблюдения 16,80% по сравнению 4,60% в группе сравнения (p = 0,03); а болевая форма в группе сравнения 27,40% и 0,60% (p = 0,00001). Отмечено, что выраженные формы более значимо представлены в группе наблюдения, однако они медленнее прогрессируют, а болевые формы статистически достоверно более выражены в группе сравнения (Рисунок 14).

Вероятность прогрессирования ХСН за 5 лет сохраняется низкой у 49,80% пациентов

группы сравнения и 32,80% группы наблюдения (p = 0,009); сохранения стадии XCH1 28,90% пациентов группы сравнения и 15,60% (p = 0,02) группы наблюдения и 65,90% пациентов группы сравнения и 81,50% (p = 0,008) группы наблюдения стадии XCH 2A; вероятен высокий риск прогрессирования от отсутствия XCH до стадии XCH 2A 25,30% группы сравнения и 44,90% группы наблюдения (p = 0,002); из стадии XCH 1 в XCH 2A 59,20% группы сравнения и 75,70% группы наблюдения (p = 0,00001) и из стадии XCH 2A в XCH 3 28,40% группы сравнения и 15,00% группы наблюдения (p = 0,00001) (Рисунок 15). Таким образом, по составленным цепям Маркова, прогрессирование XCH более значимо в группе сравнения.

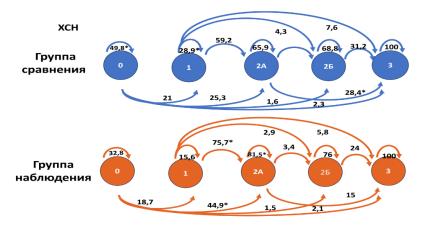


Рисунок 15 — Прогноз прогрессирования хронической сердечной недостаточности на 5 лет в исследуемых группах

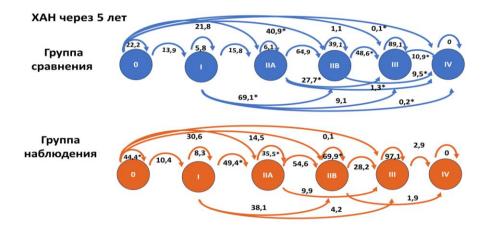


Рисунок 16 – Прогноз прогрессирования хронической артериальной недостаточности на 5 лет в исследуемых группах

Прогноз ХАН артерий нижних конечностей через 5 лет выявил достоверные различия в сравниваемых группах: вероятность развития ХАН низкая у 22,20% пациентов группы сравнения и 44,40% группы наблюдения (p = 0,0004) и прогрессирования стадии IIA 35,50% группы наблюдения и 6,10% группы сравнения; IIB группы сравнения в 39,10% и группы наблюдения 69,90%; прогноз прогрессирования от полного отсутствия ХАН до стадии IIB отмечен в группе сравнения в 40,90% и в 14,50% группы наблюдения (p = 0,00001) и IV стадия

в 0,10% может развиться только в группе сравнения. Таким образом, статистически значимое прогрессирование по всем стадиям ХАН отмечено в группе сравнения (Рисунок 16).

Разработка технологического дифференцированного подхода к сахароснижающей терапии СД2

Произведена оценка влияния исследуемых видов сахароснижающей терапии на риск развития транссиндромальной и транснозологической коморбидности. Первоначально оценены параметры, включающие в себя оценку прогрессирования ретинопатии, нефропатии, нейропатии.

Таблица 14 — Динамическое исследование прогрессирования по группам лечения суммарно микрососудистых осложнений (нефропатии, ретинопатии) и нейропатии

Этапы наблюдения	R^2 p		R^2	р		
Метформин						
	Группа срав	нения, n = 30	Группа наблюдения, n = 29			
Начальное исследование	0,80	0,96	2,90	0,72		
1 год	2,40	0,83	6,50	0,83		
3 года	8,60	0,54	10,90	0,75		
Комбинирова	нная пероралы	ная сахаросни	жающая тераі	ІИЯ		
	Группа срав	нения, n = 28	Группа наблюдения, n = 34			
Начальное исследование	5,90	0,11	0,50	0,96		
1 год	17,80	0,96	32,10	0,005		
3 года	22,50	0,007	62,50	0,002		
Комбин	ированная сах	ароснижающ	ая терапия			
	Группа срав	нения, n = 26	Группа наблюдения, n = 28			
Начальное исследование	1,20	0,91	6,50	0,52		
1 год	2,60	0,05	6,80	0,83		
3 года	13,60	0,05	9,90	0,43		
Интенсивный режим инсулинотерапии						
	Группа сравнения, n = 25		Группа наб	людения, $n = 26$		
Начальное исследование	26,00 0,24		25,00	0,04		
1 год	47,80	0,05	22,50	0,23		
3 года	50,50	0,02	13,30	0,62		

В 1-й группе, получавшей метформин, влияния на развитие микрососудистых осложнений и нейропатии не отмечено (это касается обеих исследуемых групп за весь период наблюдения). Во 2-й группе, получавшей пероральную комбинированную терапию, также не было выявлено достоверного влияния на прогрессирование осложнений в группе сравнения. В группе наблюдения на начальном этапе отмечено влияние на развитие осложнений – на 0,50% недостоверно, через 1 год – 31,20% (р = 0,05), через 3 года – 62,50% (р = 0,002). Таким образом, у пациентов группы наблюдения применение комбинированной пероральной сахароснижающей терапии длительно приводит к прогрессированию микрососудистых осложнений и нейропатии. В 3-й группе, получавшей интенсивную инсулинотерапию, на начальном этапе исследования не было отмечено достоверного влияния на прогрессирование

осложнений в группе сравнения, однако через 1 год риск прогрессирования составляет 47,80% с достоверностью p = 0,05, через 3 года – 50,50% (p = 0,02). В группе наблюдения риск прогрессирования осложнений на начальном этапе – 25,00% (p = 0,04), через 1 год и через 3 года достоверного влияния на прогрессирование исследуемых осложнений не выявлено. Пациенты 4-й группы, получавшие комбинированную сахароснижающую терапию (группа сравнения), на начальном этапе исследования достоверного влияния на прогрессирование осложнений не имели, через 1 год – 2,60% (p = 0,05), через 3 года риск прогрессирования составил 13,60% с достоверностью p = 0,05. В группе наблюдения данная терапия не влияет на прогрессирование транссиндромальной коморбидности (Таблица 14).

Таблица 15 — Динамическое исследование прогрессирования по группам лечения суммарно гипертонической болезни, хронической артериальной недостаточности, хронической сердечной недостаточности, ишемической болезни сердца

Этапы наблюдения	R^2 p		R^2	p		
Метформин						
	Группа срав	нения, n = 30	Группа наб.	людения, n = 29		
Начальное исследование	11,00	0,41	11,60	0,24		
1 год	12,00	0,59	13,10	0,79		
3 года	27,30	0,60	17,80	0,48		
Комбинирова	Комбинированная пероральная сахароснижающая терапия					
	Группа срав	нения, n = 28	Группа наб.	людения, n = 34		
Начальное исследование	38,00	0,55	28,00	0,49		
1 год	37,00	0,28	17,20	0,59		
3 года	17,20	0,59	11,60	0,83		
Комбин	ированная сах	ароснижающ	ая терапия			
	Группа срав	нения, n = 26	Группа наблюдения, n = 28			
Начальное исследование	7,00	0,56	30,60	0,02		
1 год	12,00	0,39	19,10	0,09		
3 года	17,30	0,08	17,80	0,28		
Интенсивный режим инсулинотерапии						
	Группа срав	нения, n = 25	Группа наб.	людения, n = 26		
Начальное исследование	26,40 0,34		28,00	0,49		
1 год	37,00	0,28	17,20	0,59		
3 года	47,20	0,05	11,60	0,83		

При оценке параметров учитывалось суммарное прогрессирование ГБ, ХАН, ХСН, ИБС. В 1-й группе, получавшей метформин, влияния на развитие исследуемых осложнений не отмечено (это касается обеих исследуемых групп за весь период наблюдения). Во 2-й группе, получавшей пероральную комбинированную терапию, не было выявлено достоверного влияния на прогрессирование осложнений в обеих группах. В 3-й группе, получавшей интенсивную инсулинотерапию, на начальном этапе исследования и через 1 год достоверного влияния на прогрессирование осложнений в группе сравнения нет, однако через 3 года риск

прогрессирования составляет 47,20% с достоверностью p = 0.05. В группе наблюдения риск прогрессирования осложнений в течение всего периода наблюдения отсутствовал.

Пациенты 4-й группы, получавшие комбинированную сахароснижающую терапию, в группе сравнения за 3 года достоверного влияния на прогрессирование осложнений не имели. В группе наблюдения данная терапия влияла на прогрессирование в 30,60% случаев с достоверностью р = 0,02 на начальном этапе, через 1 год и 3 года достоверного влияния отмечено не было. С учетом полученных данных можно сделать вывод, что инсулинотерапия на прогрессирование транснозологической коморбидности не оказывает существенного влияния в обеих группах (Таблица 15).

Рисунок 17 – Алгоритм тактики назначения сахароснижающей терапии в исследуемых группах

Рекомендован разработанный в ходе исследования для профилактики осложнений алгоритм диагностики аутоиммунности СД2 с последующей тактикой назначения сахароснижающей терапии с использованием инсулинотерапии по уровню С-пептида, рекомендованного в каждой из групп при условии достижения целевых уровней гликемии (Рисунок 17).

Оценка прогностических рисков и основы дифференцированного подхода к терапии СД2 в условиях развития проявлений хронологической коморбидности (COVID-19)

При оценке прогностических рисков на фоне COVID-19 группы не различались по возрасту, длительности СД, тяжести состояния при поступлении, ИМТ, в обеих группах отмечалась тенденция к избыточной массе тела и ожирению. В группе наблюдения отмечено преобладание лиц женского пола и статистически достоверно более выраженные индекс коморбидности, степень поражения легких при КТ-исследовании, явления надпочечниковой

недостаточности (Таблица 16).

Таблица 16 – Клинические и лабораторные данные групп исследования при поступлении с COVID-19

КритерииГруппа сравнения (n = 102)Группа наблюдения (n = 101)Возраст, лет, М \pm m67,09 \pm 12,8868,85 \pm 11,56	p 0,31 0,03
$(n = 102)$ $(n = 101)$ Возраст, лет, М±т $67,09 \pm 12,88$ $68,85 \pm 11,56$	-
	-
	0,03
Пол (муж/жен), п 47/55 32/69	
Длительность СД, лет, Me (IQR) 7,00 (5,00;	0.51
10,00) 5,00 (3,00; 6,00)	0,51
ИМТ, $\kappa \Gamma / M^2$, $M \pm m$	0,10
ГБ, стадии, Me (IQR) 2,00(1,00; 3,00) 2,00(1,00; 3,00)	0,96
CIRS, M±m $12,12 \pm 3,80$ $17,12 \pm 5,80$	0,00001
Тяжесть состояния при поступлении 66,00/64,70 59,00/58,40	0,36
средняя, п/%	
Тяжесть состояния при поступлении 36,00/35,30 42,00/41,60	0,36
тяжелая, n/%	
Надпочечниковая недостаточность, n/% 45,00/44,10 85,00/84,20	0,00001
Пневмония, KT-стадии, Me (IQR) 1,00 (1,00; 1,00 (0,00; 3,00)	0,001
2,00)	
KT-1 (n) 58,00/56,90 56,00/55,50	0,84
KT-2 (n) 31,00/30,40 9,00/8,90	0,0001
KT-3 (n) 13,00/12,70 36,00/35,60	0,0001
Кортизол крови, нмоль/л, (176-629), Ме 425,13 (266,22; 395,00 (287,79;	0,72
(IQR) 695,02) 482,72)	
АКТГ, пг/мл, (7,2-63,3), Me (IQR) 6,50 (5,15; 11,80 (9,00;	0,14
16,5) 19,70)	

Примечания: ИМТ – индекс массы тела; CIRS (Cumulative Illness Rating Scale) – индекс коморбидности (кумулятивная шкала рейтинга заболеваний); ГБ – гипертоническая болезнь; КТ – компьютерная томография; АКТГ – адренокортикотропный гормон.

Выраженность лабораторных проявлений имела некоторые различия в сравниваемых группах: в группе наблюдения достоверно ниже был уровень лимфоцитов, выше нейтрофильно-лимфоцитарный индекс, уровень СРБ, ферритин, ниже уровень фибриногена. На начало исследования в сравниваемых группах были выявлены различия в показателях минерального обмена. В частности, в группе наблюдения отмечался более низкий уровень натрия. По остальным показателям достоверных различий между группами не наблюдалось (Таблица 17).

В результате лечения наблюдалась стабилизация общевоспалительных проявлений в наблюдаемых группах. При этом в группе наблюдения стабилизация была значимо более выражена, что проявлялось в повышении уровня лимфоцитов на 33,65% (по сравнению с 12,1% в группе сравнения), стабилизации уровня нейтрофилов на 10,84%, NL (Таблица 17).

Таблица 17 – Лабораторные показатели у пациентов с COVID-19 сравниваемых групп в динамике

Показатели					% группы	р между
		сравнения	сравнения по	наблюде-	наблюдения	группами
		(n = 102)	сравнению с	ния	по сравне-	
			началом ле-	(n = 101)	нию с нача-	
			чения/р		лом лече-	
					ния/р	
Лимфоциты,	изначально	20,25	12,10\(\gamma/0,07\)	12,72	33,65 \(\)/0,05	
%, Me (IQR)		(12,63;		(8,2;		0,0001
		27,88)		18,7)		
	в конце	22,7		17 (13,45;		0,0003
		(16; 34,88)		29,43)		
Индекс NL, Me	изначально	3,55	20,56\\/0,04	4,53(2,86;	8,17↑/0,001	0,0005
(IQR)		(2,34; 6,21)	· ·	9,99)		
	в конце	2,82		4,9(2,11;		0,01
		(1,61; 4,63)		9,16)		
			88,961/0,001	63(26,4;	90,63\(\text{/0,007} \)	0,04
СРБ, мг/л, Ме		(21,64; 94,5)		251,76)		
'.		5,3 (2,7;	1	5,9 (2,3;		0,69
		15,2)		13,7)		
Ферритин,	изначально	340(246;	11,32↑/0,71		15,38↑/0,98	0,0001
мкгр/л, Ме		502,5)		750)		
	в конце	378,5(263;		375(167,5	1	0,4
		585)		; 850)		
Фибриноген,	изначально	5,4(4,56;	5,19\\/0,23	4,87(3,76;	4,17↓/0,16	0,002
г/л, Me (IQR)		6,89)	· ·	5,56)		
	в конце	5,12 (4,1;		4,6 (3,96;	1	0,73
		6,1)		5,8)		
Калий,	изначально	4,1(3,96;	2,44↑/0,9	3,97(3,86;	2,77↑/0,91	0,05
ммоль/л, Ме		4,49)		4,44)		
(707)		4,2 (3,9;		4,08(3,65;		0,88
		4.46)		4,49)		
Натрий,		134(130,27;			7,19↑/0,02	0,00001
ммоль/л, Ме		139,15)		(122,72;		
(IQR)				132,45)		
· - ·	в конце	135,75	1	138,65	1	0,04
	,	(136,48;		(135,75;		
1	1	140,68)	i	141,48)	1	1

Примечания: Индекс NL – коэффициент отношения нейтрофилов к лимфоцитам крови; CPБ – С-реактивный белок.

В группе наблюдения, получавшей инсулинотерапию, у 100% пациентов параметры гликемического контроля в процессе лечения были компенсированы и достигли целевого диапазона. В ходе исследования 48,00% пациентам потребовался интенсивный режим инсулинотерапии, 52,00% пациентов были переведены на комбинированный вариант сахароснижающей терапии (инсулин пролонгированного действия в комбинации с препаратами сульфонилмочевины). При поступлении в стационар, на старте терапии, 4,00% пациентов находились на интенсивном режиме инсулинотерапии, 16,00% – на

комбинированной терапии, остальные получали пероральную сахароснижающую терапию. В группе сравнения в 68,00% случаев потребовалась инсулинотерапия: из них 30,00% пациентов получали интенсивный режим инсулинотерапии и 64,00% – комбинированную сахароснижающую терапию. На старте заболевания 30,00% получали интенсивный режим инсулинотерапии, 17,00% – комбинированную сахароснижающую терапию, 53,00% находились на таблетированной сахароснижающей терапии.

У пациентов с коронавирусной инфекцией отмечены проявления вторичной надпочечниковой недостаточности. У всех пациентов определены уровни кортизола крови и АКТГ до начала лечения. Рассчитаны корреляционные зависимости уровня натрия от кортизола – 0,19, от АКТГ – 0,44 (р <0,05). Коэффициент корреляции уровня калия по отношению к кортизолу – 0,09 и АКТГ – 0,18 (р <0,05). В результате применения гидрокортизона уровень натрия и калия был нормализован до референсных значений, р <0,001 (Таблица 19). При статистической обработке полученных данных выявлены параметры, определяющие длительность приема гидрокортизона: начальный уровень АКТГ наиболее значимо на 19,00% (г² = 0,19) влияет на количество дней приема препарата (р <0,0001). Использована следующая расчетная модель сроков приема гидрокортизона на основании уравнения линейной регрессии: у = 2,60 + 0,08х, где у – количество дней приема гидрокортизона, необходимого для восстановления электролитных нарушений, х – уровень АКТГ, формула рассчитана с точностью 95%.

Выводы

- 1. При ретроспективном анализе данных пациентов, госпитализированных в специализированный эндокринологический стационар с диагнозом «СД2», сочетание этого заболевания с АИТ отмечено у 18,7% пациентов. В процессе сравнительного анализа у пациентов с АИТ чаще встречались другие аутоиммунные заболевания (15,5%) по сравнению с пациентами с СД2 без АИТ (0,5%). У пациентов с аутоиммунной составляющей в патогенезе показатель коморбидности (CIRS) был выше (16,72 \pm 3,43 против 11,41 \pm 2,37, p = 0,05).
- 2. У пациентов с СД2 в сочетании с АИТ преобладало снижение собственной секреции инсулина (уровень С-пептида), что отражено в структуре транссиндромальной коморбидности: выше показатель тяжелых форм нейропатии (за счет влияния С-пептида) 2,20%, постпрандиальной гликемии 7,50%, антител к ТПО 1,70%, длительности диабета 10,00% (р<0,05) и тяжесть течения микроангиопатии (значимые факторы влияния С-пептид, альбуминурия, длительность СД, нейропатия). В группе СД2 без АИТ были более выражены дисметаболические нарушения. Тяжесть нейропатии с преобладанием болевых форм в этой группе обусловлена влиянием ХАН 14,50%, ИБС 9,00%, длительности диабета 18,00%, ГБ –14,50%, постпрандиальной гликемии 8,70% (р<0,05). На течение диабетической

- микроангиопатии влияли ИБС, ХАН, ГБ, уровень гликированного гемоглобина, постпрандиальной гликемии, альбуминурии, длительности СД, нейропатии.
- 3. Прогрессирование транснозологической коморбидности определяется существенным вкладом длительности СД2, показателей компенсации СД2, микрососудистыми осложнениями, нейропатией и выраженным взаимным влиянием друг на друга ГБ, ХСН, ХАН, ИБС, НРС. В группе СД2 без аутоиммунного компонента в структуре транснозологической коморбидности преобладали на ГБ, ИБС и ХСН. Для развития и прогрессирования ГБ имело значение влияние ИБС (2,70%), НРС (3,90%), уровня гликированного гемоглобина (1,70%) (р <0,05). ИБС, ХСН, ХАН, НРС прогрессируют под влиянием С-пептида, показателей компенсации СД2, микрососудистых осложнений, нейропатии, длительности СД2, ГБ (р<0,01).
- 4. В структуре проспективного наблюдения транссиндромальных коморбидность в более тяжелой форме проявлялась в группе СД2 + АИТ, однако скорость прогрессирования была выше в группе СД2 без АИТ. Более быстрое прогрессирование болевых форм нейропатии (27,40%) и диабетической макулопатии (44,70%) выявлено на основании матриц вероятного прогноза через 5 лет в группе без аутоиммунной составляющей (р <0,05). В структуре транснозологической коморбидности тяжесть течения и степень прогрессирования ИБС и НРС была выше в группе СД2+АИТ. ХСН Скорость прогрессирования ХСН оказалась выше у пациентов с аутоиммунной составляющей, а тяжесть течения более выражена в группе с СД2 без АИТ. ХАН сосудов нижних конечностей по тяжести и степени прогрессирования выше у пациентов с СД2 без АИТ.
- 5. Проявления воспалительных и электролитных нарушений у пациентов с острым инфекционным заболеванием (COVID-19) на фоне СД2 достоверно выше при наличии аутоиммунной составляющей в патогенезе и значимо снижаются (p<0,05) при назначении инсулинотерапии.
- 6. Режим назначения сахароснижающей терапии должен быть различным в группах с СД2 и СД2+АИТ на основе оценки статистических рисков. Риск прогрессирования микрососудистых осложнений и нейропатии в группе пациентов с СД2 + АИТ, получающих комбинированную пероральную сахароснижающую терапию составил 62,50 (p<0,001), на комбинированной терапии и интенсивном режиме инсулинотерапии (ИИ) повышение риска прогрессирования отмечено не было. У пациентов с СД2, получающих комбинированную сахароснижающую терапию, риск прогрессирования 13,30% (p <0,005), на ИИ 50,50% (p <0,002). При оценке трехлетнего риска прогрессирования сердечно-сосудистых заболеваний методом регрессионного анализа установлено, что вариант сахароснижающей терапии не имеет

значения у пациентов с СД2 + АИТ, но повышает риск на 47,20% (р <0,05) у пациентов с СД2, получающих интенсивный режим инсулинотерапии.

Практические рекомендации

- 1. Пациентам с СД2 рекомендовано включить в комплексное диагностическое обследование выявление аутоиммунных процессов, в первую очередь АИТ, наличие которого подтверждает наличие аутоиммунной составляющей в патогенезе СД2.
- 2. Показанием для назначения инсулинотерапии пациентам без аутоиммунного компонента при стабильном течении СД2 и удовлетворительных показателях гликемического контроля является уровень С-пептида ниже 0,74 нг/мл, а с СД2 + АИТ уровень С-пептида ниже 1,21 нг/мл.
- 3. Для диагностики диабетической нейропатии рекомендовано оценивать данные ЭМГ у пациентов без аутоиммунного компонента как показатели прогрессирования нейропатии с оценкой скорости распространения возбуждения (СРВ) моторной и сенсорной порции нерва *medianus*, сенсорной порции нерва *suralis*, моторной порции нерва *peroneus*. В группе СД2 + АИТ прогностическое значение имеет амплитуда М-ответа нервов *medianus* и *peroneus*.
- 4. У пациентов с СД2 + АИТ, перенесших COVID-19, рекомендовано обследование на предмет вторичной надпочечниковой недостаточности (АКТГ, кортизол крови утром, кортизол слюны вечером, суточная моча на кортизол). При выявлении вторичной надпочечниковой недостаточности в качестве препарата выбора использовать гидрокортизон в дозе 10 мг в сутки с длительностью приема, определяемого по формуле y = 2,60 + 0,08x, где y количество дней приема гидрокортизона, необходимого для стабилизации (и восстановления) электролитных нарушений, x уровень АКТГ.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТЦИИ

- 1. **Мелешкевич, Т.А.** Применение Актовегина как универсальный метод лечения осложнений сахарного диабета / **Т.А. Мелешкевич**, Е.И. Лучина, М. Е. Лукашова // Фарматека. -2014. -№ 18 (291). C. 60–63. [ВАК К2]
- Мелешкевич, Т.А. Самоконтроль еще раз о самом важном / Т.А. Мелешкевич, М.Е. Шевченко, Е.И. Лучина, П.С. Попов, Г.А. Слонимская // Медицинский совет. 2016. № 17. С. 138–142. [ВАК К1]
- 3. Курникова, И.А. Уровень коморбидности и эффективность медицинской реабилитации больных СД 2 го типа / И. А. Курникова, Г. И. Ахмадуллина, С. А. Зыкина, А. У. Уалиханова, **Т.А. Мелешкевич**, Т. В. Никишова, В. Н. Сергеев, В. И. Михайлов // Вестник неврологии, психиатрии, нейрохирургии. 2016. № 12. С. 10—16. [ВАК К2]

- 4. Тавлуева, Е.В. Применение левилимаба у пациентов с новой короновирусной инфекцией (COVID-19) в реальной клинической практике / Е.В Тавлуева, И.Г. Иванов, К.А. Лыткина, П.А. Плесовский, Т.В. Безуглая, С.Р. Фридман, **Т.А. Мелешкевич**, В.В. Стрижелецкий, Г.Г. Мелконян, Г.Ю. Мелик-Оганджанян, М.А. Уфнаева, Е.А. Безуглая, Д.Н. Хоботников, В.В. Младов, П.С. Пухтинская // Клиническая фармакология и терапия. − 2021. − № 30 (3). − С.31− 37. [ВАК К1]
- 5. Майоров, В.А. Оценка влияния структуры и уровня коморбидности у пациентов с пневмонией или COVID-19 на риск развития хронической болезни почек / В. А. Майоров, А. А. Майоров, И. А. Курникова, **Т.А. Мелешкевич**, М.А. Завалина // Терапия. 2024. Москва, 20—22 ноября. С. 379. [ВАК К2]
- 6. **Мелешкевич, Т.А.** Опыт лечения острой надпочечниковой недостаточности, развивишейся на фоне COVID-19 (короновирусной инфекции), у пациента с сахарным диабетом / **Т.А. Мелешкевич,** И. А. Курникова, Ю.А. Верзина, Е.В. Тавлуева, М.И Савеленок, М.А. Завалина, А.С. Журавлева // Клинический разбор в общей медицине. − 2025. ¬№3 (6). − С. 76-81.
- 7. Стуров, Н.В. Состояние кишечной микробиоты у пациентов с сахарным диабетом 2 типа в зависимости от наличия хронического пиелонефрита на додиализных стадиях хронической болезни почек-наблюдательное исследование «случай-контроль» / С.В. Попов, Ж.Д. Кобалава, И.И. Беликов, В.А. Жуков, Т.В Ляпунова, **Т.А. Мелешкевич** // Фарматека, 2025. № 2. С 116-123. [ВАК К2]
- 8. White, W.B. Alogliptin after acute coronary syndrome in patients with type 2 diabetes/ W.B. White, C.P. Cannon, S.R. Heller, N. Barchha, B. Knapp, **T.A. Meleshkevich** et al. // Austrian Journal of Clinical Endocrinology and Metabolism. 2014. Vol. 7 (2). P. 77. [Scopus]
- 9. Zinman, B. Empagliflozin and progression of kidney disease in type 2 diabetes / Ch. Wanner, J.M. Lachin, D. Fitchett, E. Bluhmki, S.Hantel, M. Mattheus, T. Devins, O.E. Johansen, H.J. Woerle, U.C. Broedl, S.E. Inzucchi, D. Aizenberg, M. Ulla, J. Waitman, L. De Loredo, J. Farias, H. Fideleff, M. Lagrutta, N. Maldonado, **T.A. Meleshkevich** et al. // New England Journal of Medicine. 2015. Vol. 373 (22). P. 2117-2128. [Scopus]
- 10. Курникова, И.А. Качество гликемического контроля в оценке формирования инсулиновой потребности у больных с коморбидной патологией на фоне сахарного диабета 2 типа / И. А. Курникова, А. У. Уалиханова, **Т.А. Мелешкевич,** Л. В. Кирьянова // Сахарный диабет. − 2018. − № 21 (2). − С. 118–127. [Scopus]
- 11. **Мелешкевич, Т.А.** Факторы риска формирования сосудистых и нейропатических осложнений у пациентов с сахарным диабетом 2 типа и аутоиммунным тиреоидитом / **Т.А. Мелешкевич,** И.А. Курникова, А.Е. Митичкин, Е.И. Лучина, М.Е. Шевченко, Г.А.

- Слонимская, Е.В. Зернова, Е.Н. Мартынова, Л.В. Кирьянова // Клиническая медицина. 2020. № 98 (9-10). С. 699—708. [RSCI]
- 12. **Мелешкевич, Т.А.** Диабет и ваше зрение/ **Т.А. Мелешкевич,** Ю.Б. Слонимский, Н.С. Казей // Диабет: Образ жизни. 1997. № 1. С. 12-16.
- 13. **Мелешкевич, Т.А.** Диабетическая ретинопатия/ **Т.А. Мелешкевич,** Н.С. Казей //Бизнес медицина. 1998. апрель. С.10-12.
- 14. Гурьева И.В. Диабетическая стопа. Возможно ли эффективное предотвращение? / И.В. Гурьева, Я.И. Котухова, **Т.А Мелешкевич**// Русский Медицинский Журнал. 2001. –№ 24(9). С. 803-806.
- 15. **Мелешкевич, Т.А.** Тиоктацид БВ: последние исследования и новые возможности / **Т.А. Мелешкевич,** И.В. Гурьева // Фарматека. −2007. −№3. –С. 74-77.
- 16. **Мелешкевич, Т.А.** Тиоктацид БВ: анализ последних исследований/ **Т.А. Мелешкевич,** И.В. Гурьева // Фармакотерапия в эндокринологии. 2008. №2. —С. 26-32.
- 17. **Мелешкевич, Т.А.** Опыт применения мильгамма композитум в условиях эндокринологического стационара/ **Т.А. Мелешкевич,** Е.И. Лучина, М. Е. Лукашова // Русский Медицинский Журнал. 2010. №14. –С. 907-910.
- 18. **Мелешкевич, Т.А.** Двойной эффект актовегина в лечении поздних осложнений диабета/ **Т.А. Мелешкевич,** Е.И. Лучина, М. Е. Лукашова // Русский Медицинский Журнал. 2011. №13 (19). —С. 858-860.
- 19. **Мелешкевич, Т.А.** Многогранность эффектов актовегина в лечении осложнений сахарного диабета/ **Т.А. Мелешкевич,** Е.И. Лучина, М. Е. Лукашова // Эндокринология. 2013. №2. –С. 26-30.
- 20. **Мелешкевич, Т.А.** Диабетическая полинейропатия и ретинопатия/ **Т.А. Мелешкевич** // Диабет образ жизни. 2013. №5. –С. 27-28.
- 21. **Мелешкевич, Т.А.** Диабетическая полинейропатия. Коротко о главном/ **Т.А. Мелешкевич,** Е.И. Лучина, М.Е. Шевченко // Терапия 2016. №4(8). С. 18-22.
- 22. **Мелешкевич, Т.А.** Определение параметров прогрессирования диабетической ретинопатии у пациентов с сахарным диабетом 2 типа в зависимости от наличия аутоиммунного поражения щитовидной железы / **Т.А. Мелешкевич**, И.А. Курникова, Р.В. Саргар, Г.А. Слонимская, И.В. Пантелеев, А.Е. Митичкин, Л.В. Кирьянова // Вестник «Биомедицина и социология». $-2018. \mathbb{N} \ 3$ (4). -C. 96-99.
- 23. Курникова, И.А. Определяющие факторы эффективности медицинской реабилитации пациентов с аутоиммунным тиреоидитом / И.А. Курникова, Р.В. Саргар, **Т.А. Мелешкевич** // Вестник «Биомедицина и социология». 2018. № 3 (4). С. 79–85.

24. Mohammed, I. Comparative Analysis Methods in Optimizing Corticosteroid Therapy in Patients with Covid-19 and Diabetes Mellitus / I. Mohammed, **T. Meleshkevich,** I. Verzina, V. Maiorov, E. Taylueva, I. Kurnikova // Human Interaction and Emerging Technologies (IHIET-AI 2023). –2023. – Vol. 70. – P. 319-326.

Методические пособия и материалы конференций:

- 25. **Мелешкевич, Т.А.** Клинико-функциональные корреляции синдрома диабетической стопы и диабетической ретинопатии/ **Т.А Мелешкевич,** И.В. Гурьева, А.С. Аметов // Материалы 4-го Всероссийского Конгресса Эндокринологов. Санкт-Петербург. 2001. С. 130.
- 26. **Мелешкевич, Т.А.** Влияние вазоактивной терапии на диабетическую ретинопатию при медико-социальной реабилитации больных с синдромом диабетической стопы /**Т.А Мелешкевич,** И.В. Гурьева, А.С. Аметов // Материалы Московской научно-практической конференции «Ампутация, протезирование, реабилитация. Настоящее и будущее». Москва. 2001. С. 182-183.
- 27. **Мелешкевич, Т.А.** Медико-социальная реабилитация больных с сочетанным поражением органа зрения и ишемической формой синдрома диабетической стопы при проведении вазоактивной терапии/ **Т.А Мелешкевич,** И.В. Гурьева, А.С. Аметов // Материалы Российской научно-практической конференции «Медико-социальная экспертиза, медико-социальная реабилитация и реабилитационная индустрия на современном этапе». Москва. 20-21 декабря 2001. С. 141-142.
- 28. **Meleshkevich, T.A.** Clinical and functional correlation of diabetic foot syndrome and retinopathy / **T.A. Meleshkevich,** I.V. Gurieva, I.S. Ametov // II Joint Meeting of the Neurodiab and DFSG (Diabetic Foot Study Group of the EASD). Hungary, Balaton. 29 August-1 September 2002. P. 180.
- 29. Gurieva, I. V. The Diabetic Foot and Diabetic Retinopathy from the point of view of advanced Diabetic Neuropathy/ I. V. Gurieva, I.V. Kuzina, Y.I. Kotukhova, **T.A. Meleshkevich** // 4th International Symposium on Diabetic Foot. –The Netherlands, Noordwijkerhout, 22-24 May 2003. P. 104-105.
- 30. **Meleshkevich, T.A.** Influence of peripheral and autonomic neuropathy on the development diabetic retinopathy / **T.A. Meleshkevich,** I.V. Gurieva, I.S. Ametov // Diabetes Metabolism, 18th International Diabetes Federation Congress. France, Paris. –24-29 August 2003. P. 343.
- 31. **Meleshkevich, T.A.** Course of diabetic peripheral neuropathy in patients with proliferative diabetic retinopathy undergoing thioctacid treatment / **T.A. Meleshkevich,** I.V. Gurieva // Meeting of the DFSG. Greece, Chalkidiki. 7-10 september 2005. P.72.

- 32. **Meleshkevich, T.A.** Long-term follow up of patient with diabetic foot syndrome and retinopathy / **T.A**. **Meleshkevich,** I.V. Gurieva // Meeting of the DFSG. Denmark. –10-13 september 2006. P.112.
- 33. Lukashova, M.E. The Use of Actovegin in the Treatment of Patients with Diabetes and Neuroischemic Syndrome in combination with Diabetic retinopathy / E.I Luchina, M.E. Lukashova, **T.A. Meleshkevich** // 21 st. Annual meeting of the diabetic Neuropathy Study Group of the EASD. Porto. 8-11 september 2011. –P.108.
- 34. Уалиханова, А.У. Вторичная инсулинорезистентность в диагностике / А. У. Уалиханова, И. А. Курникова, Э.Р. Мавлялиева, Л.Ю. Моргунов, **Т.А. Мелешкевич** // Сборник научных трудов по материалам международной конференции: Медицина и фармакология: научные приоритеты ученых. Казахстан. 25 ноября 2016. С. 175–176.
- 35. **Мелешкевич, Т.А.** Кожные проявления как маркеры аутоиммунных состояний у пациентов с эндокринопатиями / **Т.А. Мелешкевич**, И. А. Курникова, А.Е. Митичкин, Л.В. Кирьянова // Актуальные вопросы дерматовенерологии. Сборник научных трудов по материалам Всероссийской научно-практической конференции с международным участием, посвященной 80-летию кафедры дерматовенерологии КГМУ и 100-летию со дня рождения профессора В. А. Леонова. Под общей редакцией Л. В. Силиной, Т. П. Исаенко. Курск. 2018. С. 113–117.
- 36. **Мелешкевич, Т.А.** Влияние на прогрессирование хронической сердечной недостаточности различных параметров гликемического контроля у больных сахарным диабетом 2 типа и в сочетании сахарного диабета 2 типа с хроническим аутоиммунным тиреоидитом / **Т.А. Мелешкевич,** А.Е. Митичкин, Е.В. Тавлуева, Е.В. Зернова, Е.И. Лучина, И.В. Пантелеев, Г.А. Слонимская // Московская медицина. 2019. № 30 (2). С. 82–83.
- 37. **Мелешкевич, Т.А.** Влияние различных параметров гликемического контроля на течение послеоперационного периода у больных сахарным диабетом при выполнении экстренного оперативного лечения / **Т.А. Мелешкевич,** А.Е. Митичкин, А.А. Щеголев, И.В. Пантелеев, О.Н. Вагнер, М.В. Васильев, Е.И. Лучина, И.А. Курникова, А.И. Оразвалиев // Московская медицина. − 2019. − № 34 (6). − С. 70.
- 38. **Мелешкевич, Т.А.** Влияние различных параметров гликемического контроля на послеоперационное течение у больных сахарным диабетом при проведении хирургического лечения гнойно-инфекционных заболеваний челюстно-лицевой области / **Т.А. Мелешкевич,** Е.И. Лучина, И. А. Курникова, А.Е. Митичкин, А.И. Оразвалиев, И.В. Пантелеев // Материалы конференции XVII Московского городского съезда эндокринологов «Эндокринология столицы 2021». Москва, 2–4 апреля 2021. С. 56–57.

- 39. Kurnikova, I. Novel Trends for the Use of X-ray Computed Tomography for the Etiological Diagnosis of Iodine Metabolism Disorders / I. Kurnikova, R. Sargar, I. Tomashevsky, N. Zabrodina, **T. Meleshkevich** // Human Systems Engineering and Design (IHSED 2021). 2021. Vol. 156. P. 1-8.
- 40. Sarykova, A. Phenotypes of dyslipidemia in patients with acute coronary syndrome affected by obesity and type 2 diabetes mellitus / A. Sarykova, I.A. Kurnikova, I. Mohammad, Sh. Gulova, **T.A. Meleshkevich** // SCIENCE4HEALTH2022. XIII международная научная конференция: сборник научных трудов. Москва. 2022. С. 83.
- 41. **Meleshkevich, T.** Assessment of the impact of glycemic variability on the duration of the perioperative period in patients with diabetes mellitus and purulent infection of the maxillofacial region / **T. Meleshkevich,** E. Luchina, A. Orazvaliev, A. Ametov, I. Kurnikova, M. Shevchenko, I. Verzina // 25th European Congress of Endocrinology. Turkey. 2023. Vol. 90.
- 42. **Meleshkevich, T.** Comparative study on the efficacy and safety of various regimens of glucocorticoid therapy in patients with COVID-19 and Diabetes Mellitus / **T. Meleshkevich,** I. Verzina, I. Kurnikova, A. Ametov, E. Luchina, E. Taylueva // 25th European Congress of Endocrinology. Turkey. 2023. Vol. 90.
- 43. **Мелешкевич, Т.А.** Офтальмологические осложнения сахарного диабета: учебное пособие / Т.А. Мелешкевич, И. А. Курникова, А. С. Журавлева. Москва: издательство РУДН, 2023. 60 с. ISBN 978-5-209-11921-0.
- 44. Современные аспекты диагностики, дифференциальной диагностики и лечения коморбидных заболеваний: учебное пособие / И. А. Курникова, Н.Д. Кислый, **Т.А. Мелешкевич** [и др.]. Москва: издательство РУДН, 2024. 221 с. ISBN 978-5-209-11815-2.
- 45. Kurnikova, I. Computer technologies in differential diagnostics of iodine deficiency and iodine -induced thyroid dysfunction/ I. Kurnikova, **T. Meleshkevich,** N.O. Danilina, R. V. Sargar, N. Zabrodina, T.Krapivnitskaya, A.Kuzmina // The international Conference on Business and Technology (ICBTEdinburgh,2025). –2025. The University of Edinburgh-United Kingdom. 12-13 april. –P 126-128.

Патенты на изобретение

- 1. **Патент № 2728261**. Способ дифференциальной диагностики йодиндуцированного и йоддефицитного нарушения функции щитовидной железы у лиц, проживающих в регионах с йодным дефицитом. № 2019115812: заявл. 22.05.2019: опубл. 28.07.2020 / И. А. Курникова, И. О. Томашевский, Р.В. Саргар, Н.Д. Кислый, **Т.А. Мелешкевич**, Г. С. Щепеткова, А.Ю. Юровский; заявитель, патентообладатель.
- 2. Патент № 2722740. Способ ранней диагностики первичного гипотиреоза. № 2019115956:

- **заявл. 23.05.2019: опубл. 03.06.2020** / И. О. Томашевский, И. А. Курникова, Н.Д. Кислый, **Т.А. Мелешкевич**, А. Ю. Юровский, Г. С. Щепеткова, С.Н. Кислая; заявитель, патентообладатель.
- 3. **Патент № 2706500.** Способ оценки риска нарушения гормонообразовательной функции непосредственно в щитовидной железе. **№ 2019118121: заявл. 11.06.2019: опубл. 19.11.2019** / И. А. Курникова, И. О. Томашевский, Н.Д. Кислый, **Т.А. Мелешкевич**, А. Ю. Юровский, Г. С. Щепеткова, Н. Н. Малютина; заявитель, патентообладатель.
- 4. **Патент № 2824450.** Способ коррекции электролитных нарушений у пациентов с коронавирусной инфекцией COVID-19. **№ 2023111901: заявл. 07.05.2023: опубл. 07.08.2024** / **Т.А. Мелешкевич,** И. А. Курникова, Ю.А. Верзина, Е. В. Тавлуева, А.Р. Мелкумян, А.Э. Маркаров, Е. В. Зернова; заявитель, патентообладатель.
- 5. Патент №049049. Способ определения оптимальной дозы глюкокортикоидов с одновременным уточнением проведения глюкокортикоидной терапии у пациентов с короновирусной инфекцией и сахарным диабетом. № 2024000142: заявл. 16.07.2024: опубл. 19.02.2025/ Ю.А. Верзина, Т.А. Мелешкевич, И. А. Курникова, Е. В. Тавлуева, Е. Н. Мартынова, Е. В. Зернова; заявитель, патентообладатель.

СПИСОК СОКРАЩЕНИЙ

CIRS	Индекс коморбидности (кумулятивная шкала рейтинга заболеваний)	СД1	Сахарный диабет 1-го типа
HbA1c	Гликированный гемоглобин	СД2	Сахарный диабет 2-го типа
HOMA	Индекс инсулинорезистентности	CH	Сердечная недостаточность
NL	Нейтрофильно-лейкоцитарный	СКФ	Скорость клубочковой
	индекс		фильтрации
R-квадрат	Коэффициент детерминации	СРБ	С-реактивный белок
АИТ	Аутоиммунный тиреоидит	CPB	Скорость распространения возбуждения
АКТГ	Адренокортикотропный гормон	ТПО	Тиреоидная пероксидаза
Анти ТПО	Антитела к тиреопероксидазе	ТТГ	Тиреотропный гормон
ГБ	Гипертоническая болезнь	У3ДГ	Ультразвуковая доплерография
ДН	Диабетическая нефропатия	УЗИ	Ультразвуковое исследование
ДПН	Диабетическая полинейропатия	УЗИ	Ультразвуковое исследование
		ЖЩ	щитовидной железы
ДР	Диабетическая ретинопатия	ФК	Функциональный класс
ИБС	Ишемическая болезнь сердца	XAH	Хроническая артериальная недостаточность нижних конечностей
ИЛ	Интерлейкин	ХБП	
ИМТ	Индекс массы тела	XCH	Хроническая болезнь почек Хроническая сердечная
			недостаточность
KT	Компьютерная томография	ЧСС	Число сердечных сокращений
ЛПВП	Липопротеины высокой	ЭМГ	Электромиография
	плотности	o ke	n 1
ЛПНП	Липопротеины низкой плотности	ЭхоКГ	Эхокардиография
ЛПОНП	Липопротеины очень низкой плотности		
МФИ	Морфо-функциональный индекс		
НДС	Нейропатический		
	дисфункциональный счёт		
HPC	Нарушения ритма сердца		
ПИКС	Постинфарктный кардиосклероз		
САД	Систолическое артериальное давление		
свТ3	Свободный трийодтиронин		
свТ4	Свободный тироксин		
СД	Сахарный диабет		

Мелешкевич Татьяна Антоновна (Российская Федерация)

Технологии дифференцированного подхода к терапии сахарного диабета 2 типа на основании оценки прогноза прогрессирования коморбидной патологии

В диссертационном исследовании было установлено, что клинически значимым маркером патогенетически различных вариантов течения СД2 является наличие аутоиммунного заболевания (в приведенном исследовании – АИТ). У пациентов с АИТ преобладает снижение собственной секреции инсулина, при СД2 без аутоиммунного поражения превалируют дисметаболические нарушения, наиболее выраженные при наличии сопутствующей патологии - ГБ, ХАН, ХСН. Для снижения скорости и тяжести прогрессирования транснозологической и транссиндромальной коморбидности разработан алгоритм назначения сахароснижающей терапии, который определятся наличием аутоиммунного компонента: показанием для назначения инсулинотерапии является уровень С-пептида ниже 1,21 нг/мл у пациентов с СД2+АИТ (при СД2 без АИТ инсулиновая потребность формируется при значениях С-пептида 0,74 нг/мл) при достижении целевых показателей гликемии. Выраженность воспалительных и электролитных нарушений при оценке хронологической коморбидности на фоне COVID-19 достоверно выше у пациентов с аутоиммунной составляющей и требует обязательного назначения инсулинотерапии.

Tatiana Antonovna Meleshkevich (Russian Federation)

Technologies of a differentiated approach to the treatment of type 2 diabetes mellitus based on an assessment of the prognosis for the progression of comorbid pathology

In a dissertation study, it was found that a clinically significant marker of pathogenetically different variants of the course of T2DM is the presence of an autoimmune disease (in the given study - AIT). In patients with an autoimmune component predominantly shows a decline in their own insulin secretion. Dysmetabolic disorders predominate in diabetes without an autoimmune lesion, most pronounced in the presence of concomitant pathology - hypertension, chronic hypertension, and chronic heart failure. To reduce the rate of development and severity of progression of trans-nosological and trans-syndromal comorbidity, an algorithm for prescribing hypoglycemic therapy has been developed, which is determined by the presence or absence of an autoimmune component. An indication for prescribing insulin therapy is a C-peptide level below 1.21 ng / ml in patients with DM2+AIT (with DM2 without AIT, insulin requirement is formed at C-peptide values of 0.74 ng/ml), when target glycemic values are achieved. When assessing chronological comorbidity, the severity of inflammatory and electrolyte disturbances is significantly higher in patients with autoimmune diseases, who is having the history of COVID-19; and it requires mandatory insulin therapy to stabilize carbohydrate metabolism.