
Federal State Autonomous Educational Institution of Higher Education

«PEOPLES' FRIENDSHIP UNIVERSITY OF RUSSIA

NAMED AFTER PATRICE LUMUMBA»

 published as a manuscript

JAWOOSH KARRAR SAHIB NASSRULLAH

SYMBOLIC REGRESSION ALGORITHM FOR CONTROL OF NON-

HOLONOMIC WHEELED MOBILE ROBOTS

2.3.1. Systems analysis, management and information processing, statistics

(technical sciences)

Dissertation

for the degree of Ph.D. candidate of technical sciences

 Scientific supervisor:

 Doctor of Biological Sciences, Professor

 Ivan Viktorovich Stepanyan

Moscow – 2025

Федеральное государственное автономное

образовательное учреждение высшего образования

«РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

ИМЕНИ ПАТРИСА ЛУМУМБЫ»

На правах рукописи

ЖАВУШ КАРРАР САХИБ НАССРУЛЛА

АЛГОРИТМ СИМВОЛЬНОЙ РЕГРЕССИИ ДЛЯ УПРАВЛЕНИЯ

НЕГОЛОНОМНЫМИ МОБИЛЬНЫМИ РОБОТАМИ НА КОЛЁСАХ

2.3.1. Системный анализ, управление и обработка информации, статистика

(технические науки)

Диссертация

на соискание ученой степени кандидата технических наук

 Научный руководитель:

 Доктор биологических наук, профессор

 Иван Викторович Степанян

Москва – 2025

3

TABLE OF CONTENTS

ACKNOELEDGMENTS ... 6

ABSTRACT .. 7

INTRODUCTION .. 9

CHAPTER 1. LITERATURE REVIEW ... 14

 1.1 General Overview of Mobile Robots ... 14

 1.2. Some Types of Mobile Robots .. 15

1.2.1. Legged Mobile Robots ... 16

1.2.2. Tracked Mobile Robots .. 18

1.2.3. Wheeled Mobile Robots ... 19

 1.3. Wheel Types .. 20

1.3.1. Conventional Wheels ... 20

1.3.2. Special Wheels ... 22

 1.4. Drive Types ... 25

1.4.1. Differential Drive ... 26

1.4.2. Tricycle or Single Wheel Drive ... 27

1.4.3. Synchro Drive .. 28

1.4.4. Ackermann Steering ... 30

1.4.5. Omni-Directional Robots (ODR) ... 31

 1.5. WMR Maneuverability ... 34

 1.6. WMR Stability .. 37

 1.7. WMR Controllability .. 38

 1.8. Motion Modeling for Differential Drive Wheeled Mobile Robots ... 38

1.8.1. Kinematics of Differential Drive Wheeled Mobile Robots ... 40

 1.9. Motion Constraints .. 46

1.9.1. Holonomic Constraints ... 47

1.9.2. Nonholonomic Constraints ... 48

 1.10. Navigation of WMR .. 51

1.10.1. Motion Control ... 52

1.10.1.1. Posture Control (Posture Stabilization) ... 53

1.10.1.2. Trajectory-Tracking Control ... 54

1.10.1.3. Path-Following Control ... 55

1.10.1.4. Fault-Tolerant [77] .. 56

 1.11. Control Techniques for Wheeled Mobile Robots ... 57

1.11.1. Artificial Intelligence (Machine Learning) Techniques ... 58

1.11.1.1. Neural Network (NN) .. 58

1.11.1.2. Fuzzy Logic (FL) .. 59

4

1.11.1.3. Reinforcement Learning (RL) ... 59

1.11.1.4. Symbolic Regression (SR) .. 60

1.11.2. Traditional Techniques ... 61

1.11.2.1. Proportional Integral Derivative (PID Controller) .. 61

1.11.2.2. Backstepping Controller .. 61

1.11.2.3. Sliding Mode Controller (SMC) ... 62

1.11.2.4. Model Predictive Control (MPC) ... 62

1.11.2.5. Lyapunov-Based Controller ... 63

1.11.3. Hybrid Techniques ... 64

CHAPTER 2. METHODOLOGY .. 65

 2.1. The Problems of Machine Learning .. 65

2.1.1. Unsupervised machine learning ... 66

2.1.2. Supervised machine learning ... 66

 2.2. The Problem of Optimal Control .. 67

 2.3. The Problem of Control Synthesis .. 69

 2.4. The Problem of Synthesized Optimal Control (The Problem Statement of This Study) 72

2.4.1. First Step: Synthesis of Stabilization System ... 75

2.4.2. Second Step: Solution of the Problem of Optimal Control .. 76

 2.5. The General Methodology of Symbolic Regression ... 77

2.5.1. The Encoding Approach ... 78

2.5.2. The Search Algorithm .. 79

 2.6. The Small Variations Principle within the Basic Solution .. 80

 2.7. Variational Genetic Algorithm .. 82

 2.8. Symbolic Regression Techniques ... 84

 2.9. Synthesized Genetic Programming Technique (SGP) .. 84

2.9.1. Encoding Approach Using Synthesized Genetic Programming .. 84

2.9.2. Search Algorithm for Synthesized Genetic Programming ... 86

 2.10. Variational Synthesized Genetic Programming (VSGP) .. 89

 2.11. The synthesized genetic programming as a distinct and modern technique 91

2.11.1. Genetic Programming Technique (GP) .. 91

2.11.2. Cartesian Genetic Programming Technique (CGP) ... 92

2.11.3. Synthesized Genetic Programming Technique (SGP) ... 94

 2.12. The Search for the Effective Position of Points .. 95

CHAPTER 3. RESULTS ... 97

 3.1. Introduction ... 97

 3.2. Computational Experiment ... 97

 3.3. Summary ... 152

CONCLUSION ... 153

LIST OF ABBREVIATIONS .. 157

5

LIST OF SYMBOLS .. 158

REFERENCES ... 164

APPENDIX I. .. 182

APPENDIX II. .. 183

6

ACKNOELEDGMENTS

I express my gratitude to Allah, the Most Gracious and Merciful, for granting me the capability

and motivation to finish this research work, assisting and safeguarding me throughout the study duration.

Additionally, I extend my heartfelt thanks and appreciation to Prophet Muhammad and his noble family

for their continuous blessings and support.

I express my ongoing appreciation and profound gratitude to my supervisor, Professor Ivan

Viktorovich Stepanyan, for his invaluable support and unwavering guidance.

I genuinely wish to express my gratitude to all the professors who have guided my studies at

RUDN University since my enrollment in 2021.

I am deeply indebted to my family and would like to express my utmost gratitude to my mother,

sisters, and brothers for their lifelong support and encouragement.

I extend my heartfelt gratitude to my beloved wife for her unwavering support throughout my

academic journey, especially for assuming significant responsibilities during my travels and study

periods. My thanks and affection also go to my beloved son, Ali, for his endurance and patience during

my years of study.

Ultimately, I am unable to adequately convey my gratitude to my classmates for their interest

and unrelenting backing during the execution of this study.

7

ABSTRACT

The 20th century is renowned for the development of computer-based automatic control systems

utilized in industrial plants and manufacturing processes. In the 21st century, the contemporary control

systems necessitate the capacity to adapt, enhance, and acquire knowledge swiftly. Consequently,

mobile robots have emerged as a focal point of considerable scholarly interest in recent years. The

wheeled mobile robot (WMR) possesses an extensive variety of practical applications. However, despite

their potential and prospects, mobile robots have not yet achieved the best performance due to the

intrinsic challenges they encounter. Several critical problems have appeared in this domain, including

navigation and path planning, localization, and obstacle avoidance. Tracking of trajectories and the

problem of point stabilization are the two main control problems concerning this kind of robot.

The field of machine learning control (MLC) is well-suited to address these emerging difficulties.

The objective of machine learning control entails the identification of an unknown control function.

Through symbolic regression, control functions are automatically synthesized as closed-form

mathematical formulations. These formulations provide a structured and efficient framework for guiding

robotic motion toward target locations while circumventing environmental obstacles. Symbolic

regression methods are the exclusive means by which one can explore the very structure and parameters

associated with mathematical expressions.

This work is motivated by the construction of a control system for a pair of nonholonomic mobile

robots. The successful execution of the proposed control necessitates the establishment of a dual

feedback loop (two steps). In the internal loop (the first step), the robot is rendered stable concerning a

specific point within the state space. In order to address this objective, the general synthesis problem can

be solved by utilizing the numerical technique of symbolic regression, which is a machine learning

technique, to find feedback control functions. In the external loop (the second step), the problem of

achieving effective control over the robots is addressed by the utilization of an evolutionary algorithm

to influentially change the location of the stable points of equilibrium. The problem of control synthesis

is initially addressed using the suggested novel technique (variational synthesized genetic programming

technique). The control object achieves stability when it reaches an equilibrium point inside the state

space. These stabilization points can be changed, giving a chance to look up the coordinates of various

stabilization points in order to get the mobile robot to go from its starting point to its destination with

the improved quality criterion value and trajectory using the particle swarm optimization algorithm. The

state space's required trajectory must exhibit an attractive property for suitable solutions within a certain

vicinity.

8

The aforementioned methodology is referred to as the synthesized optimal control problem. This

novel methodology not only presents a fresh perspective on addressing a widely recognized challenge

in the field of optimal control but also introduces a novel problem statement that facilitates its numerical

solution.

The proposed methodology has been applied to a pair of mobile robots. The mobile robots are

tasked with modifying their planar coordinates to satisfy static phase conditions to achieve obstacle-free

navigation, with an additional imperative: to maintain collision-free trajectories relative to one another

throughout the mission. As demonstrated by the experimental outcomes, the two mobile robots

successfully navigated to their target configurations under full compliance with phase constraints and

without any occurrence of mutual collision, underscoring the efficacy of the control system. As seen

from the findings, the effective control exerts an attractive influence on the relevant state-space

component, without requiring kinematic matching with that component. It is widely recognized that the

speed of state evolution is reduced in the immediate neighborhood of an equilibrium point compared to

distant regions. Thus, for enhanced mobility, the control object should be maintained in the vicinity of

that point without settling into it, allowing for continuous and faster motion.

9

 INTRODUCTION

 Relevance and level of development of the research topic

Contemporary developments in industrial automation have been driven by the integration of

intelligent robotic systems that exhibit self-learning behaviors and a high degree of operational

autonomy. These advanced robots are designed to function across a broad spectrum of tasks without

requiring constant supervision. Specifically, mobile robots with non-holonomic constraints and wheel-

driven locomotion are widely utilized in industrial automation, supporting activities such as assembly

line processes, warehouse navigation, and facility maintenance.

This dissertation investigates a mobile nonholonomic robot characterized as a complex, nonlinear

system designed for autonomous locomotion. The primary focus lies in the formulation and analysis of

control algorithms for a pair of such robots, ensuring robust performance in heterogeneous operational

settings and enabling task execution without human intervention. The relevance of this research is

underscored by the increasing necessity for adaptive, intelligent robotic systems that can respond

effectively to unpredictable environmental changes while maintaining autonomous functionality.

Numerous studies in the scientific domain focus on the synthesis of control architectures and the

optimization of dynamic trajectories. Particular emphasis has been placed on analytical and

computational methods for resolving control challenges—areas that have been profoundly shaped by the

seminal contributions of renowned scholars, including S. Wolfram, W.R. Ashby, W. McCulloch, W.

Pitts, P.K. Anokhin, L.S. Pontryagin, A.I. Diveev, N. Wiener, and A.N. Kolmogorov.

The implementation of optimal control strategies faces a key challenge: the inability to directly

apply time-parameterized control functions to actual physical systems. This limitation arises from the

open-loop configuration, which offers no correction mechanism in the presence of disturbances,

potentially leading to substantial trajectory deviations and failure to meet performance criteria. In mobile

robotics, effective control necessitates robust stabilization and high-fidelity trajectory tracking. The

stability of the closed-loop system is commonly ensured by stabilizing the state trajectory near an

equilibrium point within the state space, which serves as a foundation for robust autonomous operation.

The Purpose of the Dissertation Work

This work seeks to contribute to the field of intelligent control by developing and improving

machine learning-based strategies for multi-agent systems, exemplified by a pair of non-holonomic

wheeled mobile robots. The pursuit of this goal necessitates addressing the following specific tasks:

10

1. An investigation into genetic programming methods, evolutionary optimization

techniques, and symbolic regression algorithms to advance automated model discovery

and control system design.

2. Development of a numerical control approach that guarantees collision avoidance

between two mobile robotic agents, as well as between each agent and the obstacles in

the workspace.

3. Development of a symbolic regression-based control synthesis method that exploits the

small variations principle to ensure stabilization of a robot towards a specified

equilibrium point inside the state space.

4. Application of an evolutionary algorithm to dynamically reposition stable equilibrium

points within a closed-loop control system that incorporates external feedback.

5. The outcome of the stabilization stage must be mathematically represented through a

system of differential equations.

Object of Research

The focus of this study is on the maneuvering behavior of a two-robot system consisting of

nonholonomic mobile platforms with differential drive actuation.

Subject of Research

The mathematical models and algorithmic support of the symbolic regression method,

particularly as applied to identifying interpretable control function expressions and their numerical

parameter values.

Methodology and Research Methods

The control object is endowed with a stabilization system that defines its essential dynamic

property: a stable point of equilibrium within the state space. Robot control is accomplished by

intelligently manipulating this point position, employing a methodological framework of an evolutionary

algorithm, symbolic regression, and mathematical modeling through systems of differential equations.

The inner-loop control system, designed to stabilize the system around an operating point of

equilibrium, is synthesized at an early stage and forms the cornerstone for the outer-loop control strategy

that governs equilibrium point positioning. Such points can be set statically or modified online to

accommodate environmental changes.

Through symbolic regression, control functions for mobile robots are automatically synthesized

in the form of human-readable mathematical expressions. These formalized algorithms govern system

behavior to meet mission objectives and maintain collision-free trajectories. Symbolic regression

11

facilitates the discovery of interpretable control functions by evolving both their functional form and

tunable parameters. It follows from the universality of symbolic representations that, in the general case,

symbolic regression can generate expressions that approximate the functional form of any neural

network to a desired degree of accuracy [192].

Scientific Novelty of the Work

In the dissertation study, the following scientific novelty results are obtained:

1. An enhanced control problem formulation has been developed for nonholonomic mobile

robotic systems, which includes additional design requirements to ensure the

development of the stabilization system.

2. A novel machine learning approach—symbolic regression—has been introduced to

facilitate the synthesis of control systems capable of achieving state-space stabilization.

3. The new approach synthesizes a dynamical system described by differential equations,

leveraging the principle of small variations in the evolutionary processes of a genetic

algorithm.

4. A new computational solution is contributed to the trajectory optimization problem for

paired nonholonomic robots, explicitly accounting for geometric and kinematic

constraints imposed by surrounding obstacles.

5. The fundamental problem of synthesizing control systems for nonlinear mobile robotic

systems with identification of dynamic equations has been solved.

Theoretical Significance of the Work

An optimal control problem is established under extended constraint conditions, including the

stipulation that the generated state-space trajectory must be attractive—that is, it must draw the system

state into a given neighborhood. The proposed solution tackles the synthesis of a stabilizing feedback

system for nonholonomic wheeled robots by engineering a stable point of equilibrium within the

system’s state space. And then, the control design is thereby reduced to the optimization of this point’s

location. The entire suite of computational tools employed is implemented as self-contained, automated

numerical procedures.

Practical Significance of the Work

This study presents a synthesized optimal control methodology designed to solve trajectory and

stability problems by explicitly controlling the location of the robot’s stable point of equilibrium. The

resulting methodology introduces a novel control paradigm based on equilibrium-point modulation.

12

The proposed methodology is specifically designed to address practical engineering challenges

by reducing the gap between the theoretical mathematical model of the controlled system and its physical

realization. This objective is accomplished through the integration of an inner-loop stabilization within

the control architecture. Additionally, symbolic regression techniques exhibit broad applicability in the

synthesis of control laws across diverse dynamical systems.

Main provisions to be defend

1. The developed control optimization method consists of two steps, where step one

exemplifies stabilization step so that one nonholonomic mobile robot moved from 14

initial points to one terminal point; while step two exemplifies optimization step, where

two nonholonomic mobile robots move from one initial point (different points) to a

terminal one (also different points).

2. The variational synthesized genetic programming technique (VSGP) matrix consisting of

6 rows and 20 columns is used to define the control function of a nonholonomic mobile

robot. The genetic algorithm parameters are: population size of 256, number of

generations of 1024, number of crossovers in each generation of 128, variation depth of

10, and mutation probability of 0.75. A total of 30 functions are used, which make up the

code space in the first stabilization stage. Two of these functions are binary operations,

and 28 are unary.

3. To change the position of the robot's equilibrium point, a particle swarm optimization

algorithm is used with control parameters : 𝛼 = 0.5, 𝛽 = 0.8, 𝛾 = 1.5, and 𝜎 = 1,

population size is 3500, number of generations is 150.

The Degree of Reliability of the Results

The proposed method’s effectiveness is supported by empirical results, including comparative

assessments against Cartesian genetic programming [206] and parse-matrix evolution [208]. This study

includes the development of a tailored mathematical model for simulating the dynamics of the Khepera

II nonholonomic robot. Computational experiments were conducted to verify the accuracy and

consistency of the dissertation’s outcomes.

Approbation of Research Results

The fundamental principles and results were deliberated upon and showcased at many

international and Russian scientific conferences:

1. Using Symbolic Regression Methods for Machine Learning to Control Robot Motion:

Advantages and Disadvantages. The XIV International Scientific and Practical

13

Conference “Modern strategies and digital transformations of sustainable development

of society, education and science”. – Moscow: December 12, 2023.

2. Comparison of recurrent neural networks and symbolic regression methods. The XXII

International Scientific and Practical Conference “Challenges of our time and

development strategies of society in the conditions of the new reality”. – Moscow:

December 15, 2023.

3. Problem of the Interpretability vs. Accuracy Trade-off in Symbolic Regression in robot

motion: causes and solution. The II International Scientific and Practical Conference

“Modern research: theory, practice, results”. – Moscow: December 29, 2023.

4. The 3rd International Conference on Engineering and Science, 3-4 May 2023 / Al-

SAMAWA / IRAQ.

Furthermore, The principal findings, theoretical contributions, and practical recommendations

derived from this dissertation have been disseminated through six peer-reviewed publications: four

indexed in Scopus and two published in journals recognized by the Higher Attestation Commission

(VAK).

Dissertation Structure

This dissertation is organized into several essential sections. Chapter 1 offers a thorough

literature review of contemporary research regarding the wheeled mobile robots. Chapter 2 delineates

the research methodology employed in this study, detailing the method of symbolic regression and the

small variations principle. Chapter 3 presents the study's findings, which include a computational

experiment of the synthesized optimal control strategy and its primary results. The thesis concludes with

a summary of the research outcomes, along with conclusions and recommendations for future research

directions.

14

CHAPTER 1. LITERATURE REVIEW

1.1 General Overview of Mobile Robots

The term "robot" can be traced back to its etymological origins in Slavic languages. The term

"robota" in the Polish language signifies the concept of work or labor. However, it should be noted that

in Czech or Slovenian, this word carries a more antiquated connotation and refers to statute labor or

corvée. The term "robot" was originally introduced by the renowned Czech author Karel Capek in his

science fiction drama titled R.U.R., an acronym for Rossum's Universal Robots. The robotic entities

depicted in the theatrical production can be classified as a form of artificially created human-like beings.

In contemporary parlance, the terms "cyborgs" or "androids" would be more suitable descriptors for

these entities. The play experienced significant popularity, leading to the widespread adoption of the

term "robot" in numerous global languages. Although the term "robot" has only been in existence for

around a century, the concept of mechanical beings has a long and rich historical background. The term

"mobile" originates from the Latin word "mobilis," which carries the same semantic connotation [1].

Mobile robots, as their designation suggests, possess the capacity for locomotion. These entities

have the ability to traverse various mediums, including terrestrial surfaces, bodies of water, submerged

environments, and aerial spaces. This stands in opposition to the prevalent use of fixed-base robotic

manipulators in manufacturing operations, such as automobile assembly, electronic parts assembly,

spray painting, and other related activities [2]. The significance of mobile robots is growing in various

fields, including manufacturing and automated warehouses [3–5], domestic and medical aid [6–8],

military uses [9-11], agricultural purposes [12-14], and rescue missions [15-16], and so on.

The emergence of mobile robots throughout the late 1960s and early 1970s marked the inception

of a novel field of study known as autonomous navigation. It is noteworthy to mention that the initial

navigation systems were presented during the inaugural International Joint Conference on Artificial

Intelligence (IJCAI 1969). The methods mentioned earlier were founded upon critical concepts that have

proven highly advantageous in the advancement of algorithms for robot motion planning. As an

illustration, during the year 1969, the mobile robot Shakey employed a grid-based methodology to

simulate and investigate the surrounding environment [17]. Similarly, in 1977, Jason utilized a visibility

graph constructed from the corners of obstacles [18]. Furthermore, in 1979, Hilare employed a technique

of decomposing the environment into convex cells that are free from collisions [19].

The concept of nonholonomic systems, derived from mechanics, was introduced in the literature

[20] concerning robot motion planning, specifically in the context of car parking, around ten years later.

15

The problem at hand remained unresolved despite the ground-breaking research conducted in the field

of mobile robot navigation. The scientific field of nonholonomic motion planning has gained significant

attention [21].

1.2. Some Types of Mobile Robots

In order for a mobile robot to achieve unrestricted movement within its surroundings, it requires

locomotion mechanisms. However, choosing a robot's strategy for locomotion is a crucial component of

mobile robot development due to the wide range of alternative movement methods available. Within the

laboratory setting, a diverse array of research robots has been developed with the capability to engage

in various locomotion behaviors such as walking, jumping, running [22], sliding, skating, swimming

[23], flying [24], and, naturally, rolling [25]. The majority of such locomotion mechanisms were

originally derived from their biological equivalents.

With one notable exception, however: the actively propelled wheel, a human creation that

achieves remarkable efficiency on level terrain. Biological systems already make use of something like

this process. As can be seen in Figure 1.1, our walking bipedal system can be represented by a rolling

polygon with sides of length b equal to the span of the step. The polygon evolves into a circular shape

or wheel as the step size decreases. However, the technology required for wheeled locomotion—a

completely spinning, dynamically propelled joint—was not developed by nature.

Figure 1.1. A walking bipedal system can be modelled using a rolling polygon [42]

16

Mobile robots often employ either wheeled systems, which are a widely recognized human

invention for automobiles, or a limited number of articulating legs, representing the simplest basic form

of biological locomotion.

In comparison to wheeled locomotion, legged locomotion often necessitates a higher number of

mechanical degrees of freedom. Wheels are not only easy to use but also work very well on level

surfaces. Rolling friction is reduced to a minimum on the railway's hard, flat steel surface, making it

perfect for wheeled transportation. Wheeled locomotion, however, becomes increasingly inefficient

when the surface softens as a result of rolling friction. At the same time, legged locomotion suffers

significantly less as it consists entirely of contacts of points with the ground.

The effectiveness of wheeled locomotion is significantly influenced by environmental factors,

specifically the levelness and firmness of the terrain. On the other hand, the effectiveness of legged

locomotion is contingent upon the mass of the legs and the overall body mass, in both cases of which

the robot should support them throughout different points of a legged gait.

It is comprehensible, hence, that nature exhibits a preference for locomotion, including legs, as

natural locomotion systems must function on uneven and disorganized surfaces. Similarly, the human

environment often has deliberately designed, polished surfaces found in both inside and exterior spaces.

Hence, it is comprehensible that nearly all industrial implementations of mobile robotics employ a

variant of wheeled mobility. In recent times, there has been notable advancement in the development of

hybrid and legged industrial robots, particularly in the context of creating more organic outdoor settings.

One prominent example of this improvement is the forestry robot.

1.2.1. Legged Mobile Robots

Legged mobile robots consist of many rigid bodies that are coupled through prismatic or, more

commonly, revolute joints. Certain entities in the context possess anatomical structures that constitute

the lower appendages, commonly referred to as feet, which intermittently make touch with the surface

of the earth in order to facilitate the process of movement. This category encompasses a diverse array of

mechanical structures, which frequently draw inspiration from the study of real organisms, known as

biomimetic robotics. These structures span from biped human beings to hexapod robots, with the

objective of emulating the biomechanical efficiency observed in insects.

The robot's legs make a variety of point contacts with the ground as it walks where two major

benefits comprehend adaptability and maneuverability in challenging terrain. As long as the robot has

17

sufficient ground clearance, it doesn't matter how uneven the ground is between the set of point contacts.

As a bonus, a walking robot can cross a gap as long as its reach is greater than the gap's breadth. The

ability to deftly move objects in the surroundings is the icing on the cake of the benefits of legged

locomotion. The dung beetle is a particularly impressive bug because of its ability to roll a ball with its

deft front legs while moving.

The primary drawbacks associated with legged locomotion encompass problems pertaining to

power consumption and mechanical intricacy. The leg, which may possess multiple degrees of freedom,

should have the ability to support a portion of the robot's overall weight. Additionally, numerous robots

must possess the capability to elevate and descend the robot. Moreover, the attainment of high

maneuverability is contingent upon the presence of an adequate quantity of degrees of freedom in the

legs, enabling the application of forces in various directions.

The legs must be lifted off the ground and set back down in order to move forward. Gait is the

coordinated motion of the whole body, including the feet, as they are placed and lifted (in timing as well

as place) to propel the walker forward.

In the context of legged mobile robots, it is often necessary to have at least two degrees of

freedom in order to facilitate the forward movement of a leg. This involves the act of raising the leg and

subsequently swinging it forward. The inclusion of an additional degree of freedom is an increasingly

prevalent practice in order to facilitate more intricate motions. The recent advancements in the

development of bipedal walking robots have resulted in the incorporation of an additional degree of

freedom at the ankle joint. The ankle joint allows the robot to manipulate the resultant force vector

generated by contact with the ground by controlling the position of the foot's sole through actuation.

In a broad sense, the incorporation of more degrees of freedom in a robotic leg enhances the

maneuverability offered by the robot. This augmentation encompasses an expanded capacity to traverse

diverse terrains and enables the robot to adopt various gaits during locomotion. The principal drawbacks

associated with the incorporation of supplementary joints and actuators have been primarily related to

energy consumption, control mechanisms, and overall bulk. The inclusion of supplementary actuators

necessitates both energy and control while also contributing to the overall mass of the leg, hence

amplifying the power and load demands placed on pre-existing actuators.

The coordination of legs for movement, often known as gait control, poses a significant challenge

in the context of a mobile robot with several legs. The quantity of potential gaits is contingent upon the

quantity of legs [26]. The main objective of early studies regarding multilegged walking robots

concentrated on the design of robot locomotion for traversing smooth or somewhat rough terrain,

navigating basic obstacles, moving on soft ground, and performing body maneuvers, among other related

18

aspects. These needs can be achieved by the implementation of periodic gaits and the utilization of binary

(yes/no) information regarding contact with the ground. Recent research has focused on the development

of quadrupedal robots capable of traversing challenging environments, including inaccessible roads and

highly intricate terrains such as mountainous regions, ditches, pits, and locations affected by seismic

activity. In such instances, it is important to possess further functionalities, together with comprehensive

assistance in determining reactions and forecasting the stability of robots [27-30].

1.2.2. Tracked Mobile Robots

Tracked robots exhibit enhanced flexibility and possess the ability to navigate over challenging

terrains. Nevertheless, their navigational capabilities are comparatively less precise when compared to

those of a wheeled robot. Tracked robots necessitate the utilization of dual motors, with each motor

assigned to a specific track located on either the left or right side. The locomotion of these robots is

facilitated by a pair of tracks, which are set in motion through the rotation of wheels that are positioned

within the sprockets of the robot [31].

Track mechanisms [32] are designed to provide precise linear motion and are well-suited for

navigating uneven terrains, a common challenge encountered in off-road conditions. In contrast, these

mechanisms exhibit a substantial size [33] and are distinguished by their somewhat lower energy

efficiency for rotational motion in comparison to alternative driving mechanisms. The utilization of skid

steering is prevalent in the operation of these vehicles. However, it is important for the reader to

acknowledge that these maneuvers entail a complex interplay between the ground track and slippage

events, which remains an area of an ongoing investigation within the discipline of ground mechanics. In

order to effectively model and operate robots of this nature, it is important to conduct extensive

experimentation prior to the formulation of the control scheme [34].

The skid steering principle, seen in Figure 1.2, operates by manipulating the relative velocities

of the two tracks, similar to the manner in which differential drive vehicles with wheels function.

Nevertheless, the task of controlling tracked locomotion presents a more intricate challenge due to the

variance in the relative velocity of both tracks, which leads to slippage, soil shearing, and compaction

as necessary mechanisms for achieving steering.

Tracked mobile robots have demonstrated their utility in various domains, including but not

limited to the agricultural sector, rescue and search, military operations, forestry management, mining

activities, and exploring other planets [35].

19

Figure 1.2. Principle of skid steering [35]

1.2.3. Wheeled Mobile Robots

The development of wheeled locomotion stands as a significant invention in human history. The

invention of the wheel is estimated to have occurred about in 3000 BCE, whereas the development of

the two-wheeled cart is believed to have taken place around 2000 BCE. Currently, the presence of four-

wheeled cars is pervasive, with the global automobile population exceeding one billion. The efficacy

and widespread usage of automobiles render them a logical selection as robotic platforms for terrestrial

locomotion [36].

Wheeled mobile robots (WMR), commonly known as "ground mobile robots" in the field of

robotics, typically have a stiff body, referred to as the base or chassis, and a wheel system that facilitates

movement on the ground [37]. Additional rigid bodies, such as trailers, which are likewise equipped

with wheels, can be linked to the base via revolute joints [38].

Wheeled robots are commonly used for the purpose of achieving mobility because of their

numerous advantages, such as an uncomplicated structure, high energy efficiency, rapid speed, and

inexpensive manufacturing cost, among others.

The wheel has emerged as the predominant mode of movement in the field of mobile robots and

across many man-made vehicles. The system is capable of attaining high levels of efficiency while

employing a rather straightforward mechanical design. Furthermore, the issue of balance is typically not

a subject of research in the realm of wheeled robot designs. This is mostly due to the fact that wheeled

robots are typically engineered in such a way that ensures continuous contact between all wheels and

the ground throughout their operation. According to previous research [39-41], it has been established

20

that the use of three wheels is adequate to ensure stable balance. However, it should be noted that stability

can also be achieved with two-wheeled robots.

In the context of robots intended for all-terrain conditions and those equipped with over three

wheels, it is typically necessary to integrate a suspension system in order to ensure continuous contact

between the wheels and the ground surface. One of the most straightforward methods for implementing

suspension is incorporating a degree of elasticity directly into the wheel structure. In the context of

certain indoor robots equipped with four wheels and castor wheels, the makers have implemented a

rudimentary suspension system by incorporating a deformable tyre made of soft rubber onto the wheel.

Naturally, this constrained method is unable to rival a developed suspension system in scenarios when

the robot necessitates greater dynamic suspension to navigate considerably uneven terrain [42].

Each one of the wheels in a wheeled mobile robot (WMR) possesses the ability to rotate

independently around an axis of its own. Consequently, there is a shared point that can be identified as

the point of intersection of all the wheels' axes. The term used to refer to this concept is the instantaneous

centre of rotation (ICR) or instantaneous centre of curvature. It designates a given point around which

all of the wheels exhibit uniform angular velocity during their circular motion, as stated by ICR [43].

Rather than prioritizing balance, the field of wheeled robot research prefers to concentrate on

addressing problems related to traction and stabilization, maneuverability, and control, which are

contingent upon the types of wheels and configurations (drives) employed.

1.3. Wheel Types

WMRs, or Wheeled Mobile Robots, commonly employ two primary categories of wheels:

conventional wheels as well as special wheels [38],[44]. There is significant variation in the kinematics

of mobile robots, leading to a substantial impact on overall kinematics based on the chosen wheel type.

1.3.1. Conventional Wheels

There are three distinct categories of conventional wheels, as illustrated in Figures 1.3 and 1.4,

accompanied by the corresponding icons that will be employed for their representation:

• The fixed wheels or powered fixed wheels: The propulsion of these wheels is facilitated

by motors that are affixed to stationary locations on the vehicle. The wheel has the ability

21

to undergo rotation around an axis that passes through its centre and is perpendicular to

the plane of the wheel. The wheel is affixed firmly to the chassis, resulting in a consistent

orientation of the chassis with regard to the wheel.

• The caster wheels: These wheels lack power but possess a pair of axes of rotation.

However, the vertical axis cannot cross the wheel's center, instead being consistently

displaced by a fixed offset. This configuration induces the wheel to rotate spontaneously,

swiftly matching it with the chassis' direction of motion. The introduction of this

particular form of wheel serves the purpose of offering a backing point for static

equilibrium while maintaining the maneuverability of the base. Caster wheels, for

example, find widespread application in shopping carts and wheeled chairs.

• The steerable wheels or powered steering wheels: Each wheel operates under

independent motorized drive and is capable of steering through rotation about an axis

orthogonal to its rotational axis, enhancing navigational flexibility. The wheels in

question have the potential to exist either equipped with offset or without offset, resulting

in a scenario where the rotational and steering axes do not cross. There are a pair of axes

of rotation present. The initial wheel is identical to a fixed wheel, whereas the subsequent

wheel is oriented vertically and passes across the wheel's central axis. This mechanism

enables the wheel to alter its orientation relative to the chassis.

Figure 1.3. The three common types of conventional wheels and their corresponding icons [38]

22

Figure 1.4. Conventional wheels (A) fixed wheel, (B) caster wheel, (C) powered steering wheel

without any offset, and (D) powered steering wheel with longitudinal offset [44]

In comparison to special wheel structures, conventional wheels have superior load capabilities

and greater resilience towards terrain disturbances. However, owing to their nonholonomic restrictions,

these wheels do not possess true omnidirectionality.

1.3.2. Special Wheels

The design of these wheels enables them to exhibit active traction in a particular direction and

passive movement in another one, hence enhancing maneuverability in crowded conditions. There exist

three primary categories of special wheels:

• Universal wheel

• Mecanum wheel or Swedish wheel

• Ball wheel or spherical wheel

Figure 1.5 illustrates the universal wheel, which offers a blend of restricted and unrestricted

motion when turning. The wheel is equipped with little rollers positioned orthogonally to the axis of

rotation around its external diameter. Additionally, to perform the normal rotation of the wheel, this

mechanism enables the wheel to roll parallel to its axis.

Figure 1.5. Three configurations of universal wheel [44]

23

The mecanum wheel [45-49], also known as the Swedish wheel, as depicted in Figure 1.6, is a

type of wheel that is analogous to the universal wheel with the exception that its rollers are positioned

at an angle ψ, typically around ±45° and other than 90°.

Figure 1.6. (A) Mecanum wheel with ψ = 45° (left wheel), (B) Mecanum wheel with ψ = -45° (right

wheel), and (C) an actual functioning mecanum wheel [44]

The omnidirectional wheel is depicted in Figure 1.6 A and B, showcasing its appearance when

observed from the bottom through a glass floor. The force Fr generated by the rotational motion of the

wheel is transmitted to the ground through the roller that is in contact with the ground. It is assumed that

the ground is sufficiently level and free from any abnormalities. At this particular roller, the applied

force can be separated into two components: a parallel force, denoted as Fr1, which parallels the axis of

the roller, and a perpendicular force, denoted as Fr2, which is oriented at a right angle to the axis of the

roller. The force acting perpendicular to the axis of the roller induces a small rotational motion in the

roller at a velocity denoted as 𝑣𝑣. Conversely, the force acting parallel to the axis of the roller applies a

force on the wheel, consequently on the auto leading to hub velocity, 𝑣ℎ. The resultant velocity (𝑣𝑡) of

the auto is the sum of the horizontal velocity (𝑣ℎ) and the vertical velocity (𝑣𝑣). The actual functioning

mecanum wheel is depicted in Figure 1.6 C.

The Swedish wheel operates similarly to a normal wheel, but it also offers reduced resistance in

an additional direction, sometimes orthogonal to the traditional direction. The passive nature of the small

rollers positioned along the periphery of the wheel is complemented by the active power exerted solely

through the wheel's major axis joint. One notable benefit of this particular design is its ability to provide

movement along various trajectories with minimal friction, despite the fact that the rotation of the wheel

is solely propelled along the major axis (by the axle). This design enables the wheel to traverse not only

forward and backward paths but also numerous other potential trajectories.

24

Figure 1.7. A practical application of a ball wheel [44]

The ball or spherical wheel does not impose direct limitations on motion, as it possesses

omnidirectional capabilities similar to castor or special mecanum and universal wheels. Put otherwise,

the wheel’s rotational axis is capable of assuming any arbitrary orientation. One potential method for

accomplishing this objective involves employing an active ring that is powered by a motor as well as a

gearbox. This active ring serves to convey power to the ball through the utilization of rollers and friction.

Notably, the ball possesses the ability to rotate freely in any direction without delay. Due to its intricate

design, the ball wheel remains seldom employed in practical applications. Figure 1.7 illustrates a

particular variant of a ball wheel. One approach to executing this spherical design involves emulating

the functionality of a computer mouse, wherein powered rollers are employed to make contact with the

upper surface of the sphere and generate rotating force.

Wheeled mobile robots (WMR) are extensively employed in various applications to accomplish

robot locomotion. In a broad sense, wheeled robots tend to exhibit lower energy consumption and higher

velocity compared to alternative locomotion systems such as legged robots or tracked vehicles. From a

control perspective, the simplicity of their mechanisms and the lessened occurrence of stability issues

result in a decreased need for control effort. Despite the inherent challenges posed by rugged terrain and

uneven conditions of the ground, wheeled mobile robots have proven to be well-suited for a wide range

of target situations in various practical applications [50].

The selection of wheel kinds for a mobile robot has become inextricably connected to the

selection of wheel arrangement, often known as wheel geometry. When building the locomotion system

of a wheeled robot, the mobile robot engineer must take into account two concurrent difficulties. What

is the significance of wheel kind and wheel geometry? The decisions made in designing a robot have a

direct impact on three essential attributes: controllability, maneuverability, and stability [51-52].

25

A plethora of design alternatives exist regarding wheeled mobile robots. The design problems

associated with a single-body mobile robot encompass the choice of wheel types, the optimal positioning

of wheels, and the precise determination of kinematic parameters. The specification of design targets

should be contingent upon the specific target circumstances and tasks, in addition to considering the

initial costs and operational expenses associated with the operation of a robot.

In contrast to automobiles, which are primarily engineered to operate inside a standardized

environment such as the road network, mobile robots are specifically intended to cater to a diverse range

of applications and scenarios. Automobiles exhibit commonality in their wheel configurations due to the

existence of a specific region within the design space that optimizes their controllability,

maneuverability, and stability within the typical environment they operate in, namely, the paved

roadway. As a result, a notable drawback associated with wheeled robots is their reliance on a paved

road or a level terrain for effective locomotion. Nevertheless, it is important to note that there is no

singular wheel configuration that optimizes these characteristics for the diverse range of environments

encountered by various mobile robots.

1.4. Drive Types

Wheeled robots, as demonstrated in Figure 1.8, represent a minimalistic yet effective design

paradigm in mobile robotics, which commonly incorporates one or more powered wheels to facilitate

motion, as seen by the solid rectangles in the illustration. Additionally, they may feature passive caster

wheels, represented by hollow rectangles, which serve to enhance stability. Likewise, it is possible for

these vehicles to possess steered wheels, often represented by wheels depicted within a circular shape to

indicate their axis of rotation. Typically, the driving and steering mechanisms for a mobile robot

necessitate the utilization of a pair of motors in the overall design [53-57].

Figure 1.8. Various drive types used for the design of wheeled mobile robots [56]

The drives of Wheeled Mobile Robots (WMRs) can be categorized into the following:

26

1.4.1. Differential Drive

A differential drive system is characterized by two motors mounted in a fixed orientation on

the robot's lateral sides, each providing independent propulsion to a single wheel. As this configuration

provides only two points of ground contact, supplemental passive elements—such as caster wheels or

sliders—are integrated to fulfill the minimum requirement of three ground-contact points for static

stability. Furthermore, it is acknowledged that the interaction between the wheels of a robot and the

ground is characterized by a state of non-slipping and pure rolling [58]. The differential drive system is

considered to be mechanically more straightforward compared to the single-wheel drive system, as it

eliminates the need for the rotating motion of a driving motor. Nevertheless, Compared to single-wheel

drive systems, differential drive robots exhibit increased control complexity in directional navigation,

attributable to the need for precise synchronization between the two driven wheels.

The presence of only one passive wheel in a differential drive system restricts the ability to

position the driven wheels centrally, as such a configuration would compromise stability. Consequently,

the robot rotates about a pivot point located between the two driven wheels, which is offset from the

center. With two passive wheels (front and rear), however, the robot can achieve rotation about its center,

enhancing directional control and operational efficiency. Nevertheless, this particular design may give

rise to surface contact problems due to its utilization of four contact points rather than the more

conventional three.

A differential drive robot's driving operations are depicted in Figure 1.9. When both motors

operate at equal speeds, the robot moves in a linear path, either forward or backward. However, if one

motor operates at a higher speed compared with the other, the robot follows a curved trajectory along

the curve of an instantaneous circle. Moreover, To achieve a point turn, the control system commands

the left and right motors to run at equal speeds in reverse directions, causing the platform to rotate about

the center of its driving wheel axis.

• Driving linear forward or backward: 𝑣𝑙 = 𝑣𝑟 , 𝑣𝑙 > 0

• Driving in a rightward curve: 𝑣𝑙 > 𝑣𝑟

• Rotation in a clockwise direction on the spot: 𝑣𝑙 = – 𝑣𝑟 , 𝑣𝑙 > 0

27

Figure 1.9. Driving operations of differential drive. (A) Straight path, (B) Curved path, (C) Circular

path, and (D) Obstacle-free navigation to move from an initial to a final state [44]

1.4.2. Tricycle or Single Wheel Drive

The present mechanism is equipped with a solitary wheel that fulfills the dual functions of driving

and steering. In order to ensure stability, a configuration involving two unpowered fixed wheels

positioned at the rear is employed, hence maintaining the necessary three-point contact at all times. The

system necessitates the utilization of two motors, with one motor dedicated to driving the vehicle's wheel

and the other motor dedicated to turning. One notable benefit of this design is the complete decoupling

of the driving and turning motions through the utilization of two distinct motors. Consequently, the

control software designed for maintaining straight trajectories or executing curved paths will exhibit a

high degree of simplicity. When driving in a straight line, the wheel is placed in the central position and

operated at the desired velocity, see Figure 1.10A. Once the front wheel becomes inclined, the vehicle

has a trajectory that is curved, see Figure 1.10B. When the front wheel is set at a 90° angle, the robot

will undergo rotational motion along a circular trajectory. This circular path is centered at the midpoint

of the rear wheels rather than the geometric center of the robot, as depicted in Figure 1.10C. This implies

that the WMR lacks the ability to rotate in place. The minimal turning radius refers to the measurement

of the distance separating the frontal wheel and the midway of the two rear wheels. Nonholonomic

wheeled mobile robots (WMRs), such as tricycle or differential drive robots, are unable to execute

parallel parking procedures directly. However, they can achieve parallel parking through a series of

28

maneuvers involving both forward and backward movements, as seen in Figure 1.10D. The utilization

of tricycle drive is prevalent in the field of mobile robotics due to the inherent stability provided by the

three wheels, enabling the robot to maintain an upright position autonomously.

Figure 1.10. Tricycle WMR driving modes (A―D), (E) A tricycle example [44]

1.4.3. Synchro Drive

The drive in question consists of a minimum of three wheels that are interconnected in a manner

that ensures simultaneous rotation in an identical direction and at an identical speed. Additionally, these

wheels pivot collectively around their respective steering axes when executing a turn. A conventional

synchro drive system is characterized by the presence of three wheels that are symmetrically positioned

in an equilateral triangle configuration around the center of the vehicle. In this system, all wheels are

guided in synchrony, resulting in their rotation axes consistently maintaining parallel alignment.

Furthermore, the Instantaneous Center of Rotation (ICR) point is positioned at an infinite distance. There

are different methods available for achieving mechanical steering synchronization, such as utilizing a

belt, a chain, or a gear drive. The synchro drive system can be understood as an expansion of a single

steered and driven wheel, hence maintaining a limited number of degrees of freedom, specifically two.

Characterized by its near-holonomic kinematics, the synchro drive WMR exhibits omnidirectional

mobility, allowing for movement along any path in the plane, typically requiring a cylindrical chassis to

support omnidirectional movement.

Nevertheless, it is incapable of simultaneously driving and rotating. In order to transition from

forward to lateral movement, the WMR (Wheeled Mobile Robot) must come to a halt and readjust the

29

alignment of its wheels. Figure 1.11A visually illustrates the movement and rotation of a three-wheel

WMR (Wheeled Mobile Robot) equipped with a synchro drive.

Figure 1.11. (A) An example of WMR motion with a synchro drive, (B) The two separate belts

subsystems, and (C) A synchro drive example [44]

The utilization of a belt- or chain-based synchro drive results in diminished steering precision

and alignment. The occurrence of this problem can be avoided by implementing a gear drive mechanism.

In order to ensure proper functionality, it is necessary to employ two distinct motor-drive subsystems

that operate using belt, chain, and gear mechanisms. These subsystems serve two distinct purposes: one

of them for steering and another to control the driving shaft, as depicted in Figure 1.11B. The initial

motor is responsible for regulating the rotational movement of the wheels along the horizontal axis,

thereby supplying the force that drives (traction) the robot. The second motor governs the rotational

movement of the wheels along the vertical axis, thus influencing their orientation.

It should be noted that the direction of the chassis remains constant throughout the action.

Frequently, the inclusion of one more motor is observed in the design of such robots, with the purpose

of enabling autonomous rotation of the upper section of the chassis, commonly referred to as a turret, in

relation to the bottom section. This method could potentially be advantageous for the purpose of

orienting a directional sensor, such as a camera, without any specific constraints or, alternatively, for

correcting any errors in orientation [38].

One illustrative assignment that showcases the benefits of a synchro-drive system is the

achievement of "complete area coverage" by a robot within a designated location. The practical use of

this work can be observed in the context of cleaning or vacuuming floors.

30

1.4.4. Ackermann Steering

In a rear-wheel-drive vehicle, power is delivered to the rear wheels via a differential-connected

motor, while the front wheels are passive and responsible for steering via synchronized actuation. The

phenomenon referred to is commonly recognized as Ackermann steering, and offers comparative

benefits and limitations when contrasted with the differential drive paradigm. A notable benefit is the

ease of maintaining linear motion, as the rear wheels are driven through a single mechanical axis.

However, this design limits maneuverability, as the vehicle cannot rotate in place and instead requires a

minimum turning radius.

In Ackermann steering configurations, a distinct control interface is necessary because linear and

angular velocities are produced by independent actuators, leading to full decoupling. This structural

separation simplifies control, notably improving the accuracy and stability of straight-line travel. The

driving library features dual independent control units: one responsible for the velocity and positional

regulation of the rear wheels, and the other for the steering control of the front wheels. The inclusion of

a position controller is necessary for the steering system since it is responsible for accurately setting the

front wheels to a specific steering angle.

In contrast, the velocity controller is utilized to ensure a consistent speed is maintained by the

back wheels. Slippage is observed in the rear driving wheels during the execution of turns. In order to

accurately steer the front wheels, it is necessary to have supplementary sensors that can detect the zero

position, as well as potentially the maximum right and left positions.

The Ackerman steering mechanism is specifically engineered to achieve a common cross point,

known as the instantaneous center of rotation (ICR), for all-wheel axes during turns. This design feature

aims to prevent wheel slippage resulting from geometric factors. It is able to find the equations from

Figure 1.12 as follows:

𝑐𝑜𝑡𝛽𝑠 =
𝑎+𝐸

𝑉
, 𝑐𝑜𝑡𝛽𝑜 =

2𝑎+𝐸

𝑉
, 𝑐𝑜𝑡𝛽𝑖 =

𝐸

𝑉
, (1.1)

By eliminating E, it can get

𝑐𝑜𝑡𝛽𝑠 =
𝑎

𝑉
+ 𝑐𝑜𝑡𝛽𝑖 , 𝑜𝑟 𝑐𝑜𝑡𝛽𝑠 = 𝑐𝑜𝑡𝛽𝑜 −

𝑎

𝑉
 , (1.2)

where 𝛽𝑠 represents the automobile’s true steering angle and 𝛽𝑜 , 𝛽𝑖 represent the outer and inner wheel’s

steering angles, respectively.

31

Figure 1.12. The intersection point (ICR) of the rotating axes across all wheels [44]

The limitation in the movement of an Ackerman-steered automobile is depicted in Figure 1.13.

The automobile is currently situated in a location where there are two inaccessible circular areas, one on

the left side and one on the right side. The reason for this limitation is that the robot is unable to execute

turns (either to the right or left) when following a trajectory with a radius lower than a predetermined

minimum value. Hence, the act of parallel parking necessitates a substantial degree of maneuvering.

It is noteworthy to mention that in order to prevent slippage, it is necessary for both of the front

wheels to possess distinct orientations as the vehicle traverses a curve. Specifically, the internal wheel

should be somewhat more steered in comparison to the external wheel.

Figure 1.13. The inaccessible shaded areas by the Ackerman-steered robot [44]

1.4.5. Omni-Directional Robots (ODR)

As can be seen in Figure 1.14, a total of three, four, or even more omnidirectional wheels can

be used to achieve this type of driving. As can be seen in Figure 1.14A, the universal wheels used on

32

three-wheeled WMRs all have a roller angle of 90 degrees (Figure 1.5). Mecanum wheels, as in Figure

1.6, are arranged like in Figure 1.14B on four-wheeled omnidirectional WMRs.

Figure 1.14. Omnidirectional WMRs. (A) Three-wheel example, (B) four-wheel example with roller

angle various than 90° (typically ψ = ±45°) [44]

Figure 1.15. A conventional omnidirectional WMR uses a four-mecanum-wheel configuration [44]

Figure 1.15, it can observe four wheels total; two are designated as the left-side (L) wheels, while

the other two are designated as the right-hand (R) wheels. Roller angle ψ = 45° on the left-side wheels

and ψ = -45° on the right-hand wheels. As a result, the usual design of a four-wheel omnidirectional

WMR is depicted in Figure 1.15.

Figure 1.16 illustrates the six fundamental movements performed by a four-wheel ODR,

specifically denoted as (A) forward movement, (B) left shifting, (C) clockwise rotating (in place), (D)

backward movement, (E) right shifting, and (F) anticlockwise rotating. The arrows located on both the

33

left and right sides of the vehicle serve to indicate the intended direction of motion for the respective

wheels.

The arrows depicted on the automobile platform indicate the corresponding directions of motion

for the WMR. Specifically, when the automobile is moving ahead, all wheels are required to travel in

the forward direction, as shown in Figure 1.16A. In the case of left shifting, wheels 1 and 3 move forward

while wheels 2 and 4 move backward, and so forth. The depicted locomotions in Figure 1.16 happen

when all wheels are in motion at an identical velocity. The ability to achieve movement in any orientation

on a two-dimensional plane using a WMR can be accomplished by adjusting the amount of the wheel

speeds. Several instances are depicted in Figure 1.17.

Figure 1.16. Six fundamental movements performed by a four mecanum wheels ODR [44]

The various movements observed in Figures 1.16 and 1.17 are easily elucidated by referring to

the velocity or force diagrams depicted in Figure 1.6 A and B, respectively. For instance, due to the

symmetrical configuration of the wheels on both sides (see Figure 1.15), when all wheels move in the

forward direction, there exist four forward-pointing vectors that are combined, along with four sideways-

pointing vectors—two towards the right and two towards the left—that mutually nullify each other.

Therefore, altogether, the WMR demonstrates progress. The left (L) and right (R) wheels have the

potential to be exchanged, meaning that the front wheels can be placed between each other as well as

the back wheels. Furthermore, it should be noted that by incorporating the appropriate motion of the

wheels, it is possible to achieve several kinds of omnidirectional mobility with this particular

configuration.

34

Figure 1.17. Six more movements: (A) forward-right, (B) forward-left, (C) curved right, (D)

backward-right, (E) backward-left, and (F) lateral arc [44]

1.5. WMR Maneuverability

The maneuverability of WMRs, denoted as 𝑀𝑤, can be mathematically expressed as

𝑀𝑤 = 𝐺𝑚 + 𝐺𝑠 (1.3)

where 𝐺𝑚 represents the mobility degree, and 𝐺𝑠 represents the steerability degree.

The mobility degree: The mobility degree the value of 𝐺𝑚 is contingent upon the number of

separate (independent) constraints that are imposed on the robot's motion capability by the kinds of

wheels and configuration they have. The motion of the system is solely constrained by the presence of

conventional wheels, whether they are fixed or steered. The utilization of omnidirectional wheels does

not put any constraints on the mobility of the robot. A comprehensive understanding of the separate

(independent) kinematic constraints concerning a wheeled mobile robot (WMR) can be achieved by

examining the geometric characteristics of the robot, specifically focusing on the Instantaneous Center

of Curvature (ICC) or Instantaneous Center of Rotation (ICR). As an illustration, it is worth noting that

one conventional wheel lacks the capability to execute lateral movement, specifically along the line

defined by its rotational axis. The line mentioned above is commonly referred to as the zero-motion line

of the wheel. This implies that the wheel is limited to traversing an instantaneous circular path of radius

Rai, where the center of this circle is positioned on the zero-motion line. A bicycle is composed of two

wheels: the front wheel, which is steered, and the rear wheel, which remains fixed (see Figure 1.18).

35

Every wheel produces its own distinct zero motion line, which operates independently. The

intersection of the two lines occurs at the Instantaneous Center of Rotation (ICR). In the scenario of a

differential drive-wheeled mobile robot (DDWMR), as depicted in Figure 1.19, it can be observed that

the zero motion lines of the two wheels, which share a common axis, synchronize with each other.

Figure 1.18. A bicycle's two wheels represent two independent constraints [44]

Figure 1.19. Determination of the WMR rotation's instantaneous radius Rai [44]

Consequently, the motion of these wheels is not independent. This implies that there exists a

single independent kinematic constraint. Any point located along the common zero motion line has the

potential to serve as an Instantaneous Center of Rotation (ICR). The Ackerman steering mechanism is

characterized by the presence of four conventional wheels on a wheeled mobile robot (WMR), with two

separate (independent) kinematic constraints, as depicted in Figure 1.12. The presence of two rear wheels

in a vehicle, such as in a differential drive system, introduces a singular constraint.

Additionally, the two front-steered wheels present a second singular kinematic constraint. This

is due to the fact that these wheels intersect at an Instantaneous Center of Rotation (ICR), which lies on

the zero-motion line specified by the common axis of the rear wheels. The highest mobility degree 𝐺𝑚

is equal to 3 in cases if nonkinematic constraints are present. This scenario occurs when every one of

36

the wheels of the wheeled mobile robot (WMR) possesses omnidirectional capabilities. In a broad sense,

the mobility degree can be considered as being equivalent to:

𝐺𝑚 = 3 − 𝑁𝑐 (1.4)

where 𝑁𝑐 represents the number of separate (independent) constraints.

The steerability degree, 𝐺𝑠, is determined by the number of steering parameters that can be

controlled separately (independently). The range of 𝐺𝑠 is bounded by the period 0 ≤ 𝐺𝑠 ≤ 2. In the

absence of any wheels capable of being steered, the value of 𝐺𝑠 is equal to zero. The condition 𝐺𝑠 = 2

is satisfied just in instances where the robot does not possess any fixed standard wheels. In this scenario,

it is possible to implement a platform using two distinct steerable conventional wheels, such as those

found in a two-steer bicycle or a three-wheeled two-steer wheeled mobile robot (WMR). According to

the above information, a value of 𝐺𝑠 = 2 indicates that the WMR (Wheeled Mobile Robot) possesses

the capability to position its Instantaneous Center of Rotation (ICR) at any location inside the plane. The

prevailing scenario occurs when 𝐺𝑠 equals 1, a condition that arises when the robot's configuration

incorporates at least one steerable conventional wheel. The utilization of a conventional wheel that is

guided has the potential to reduce the overall mobility of the robot while simultaneously increasing its

steerability. Indeed, while the immediate orientation of the steering wheel enforces a kinematic

constraint, its capacity to modify the orientation may enable the exploration of supplementary

trajectories. Table 1.1 displays the maneuverability (𝑀𝑤), mobility degree (𝐺𝑚), and steerability degree

(𝐺𝑠) for various common configurations of WMRs.

Two further distinguishing parameters of WMRs are the "differential degrees of freedom"

(𝐷𝐷𝑂𝐹) and the "degrees of freedom" (𝐷𝑂𝐹), which are related by the following relation:

 𝐷𝐷𝑂𝐹 ≤ 𝑀𝑤 ≤ 𝐷𝑂𝐹 (1.5)

A bicycle possesses the capability to attain any given position (x, y, φ) within a plane through a

series of maneuvers, so indicating that it possesses three degrees of freedom, 𝐷𝑂𝐹 = 3. However, its

differential degrees of freedom, 𝐷𝐷𝑂𝐹 = 𝐺𝑚 = 1. The omnirobot under consideration possesses three

omnidirectional wheels, resulting in 𝐺𝑚 = 3, indicating a 𝐷𝐷𝑂𝐹 = 3. Additionally, the omnirobot

manifests a 𝐷𝑂𝐹 = 3. In a similar vein, it can be observed that a tricycle possesses a differential degree

of freedom 𝐷𝐷𝑂𝐹 = 𝐺𝑚 = 1, and a degree of freedom 𝐷𝑂𝐹 = 3. This is due to its capability to attain

any desired position (x, y, φ) with suitable maneuvering [44].

37

Table 1.1. Mobility Degree and Steerability Degree (𝐺𝑚, 𝐺𝑠) of popular WMRs [44]

Configuration 𝑮𝒎 𝑮𝒔 𝑴𝒘 Notation

Bicycle 1 1 2 (1,1)

Differential drive 2 0 2 (2,0)

Synchro drive 1 1 2 (1,1)

Tricycle 1 1 2 (1,1)

Ackerman steer 1 1 2 (1,1)

Two-steer 1 2 3 (1,2)

Omni-steer 2 1 3 (2,1)

Omnidirectional 3 0 3 (3,0)

1.6. WMR Stability

Interestingly, it has been found that a minimum of two wheels is sufficient to achieve static

stability. A differential-drive robot with two wheels can attain static stability when the center of mass is

positioned below the axle of the wheels [59]. Nevertheless, in typical scenarios, the implementation of

such a resolution necessitates wheel widths that are excessively big and, therefore, not feasible. The

presence of dynamics in a two-wheeled robot can result in the robot making contact with the floor at a

third point, such as when there are strong motor torques applied from a stationary position. In accordance

with conventional wisdom, static stability necessitates the presence of at least three wheels. It is

important to note that the gravity center is required to be situated within the triangular region produced

by the points of contact between the wheels and the ground. Enhancing stability can be achieved by

increasing the number of wheels. However, it should be noted that when the number of connecting points

surpasses three, the geometric configuration becomes hyperstatic, necessitating the implementation of a

flexible suspension system to accommodate uneven terrain [42].

38

1.7. WMR Controllability

In general, there exists a negative link between controllability and maneuverability. An instance

of this can be seen in omnidirectional designs, such as the configuration with four castor wheels, which

necessitates substantial processing in order to turn the required rotational and linear velocities into

specific orders for each wheel. Moreover, it is worth noting that omnidirectional designs frequently

exhibit a higher number of degrees of freedom in the wheel mechanism. As an illustration, the Swedish

wheel is equipped with a collection of unrestricted rollers positioned along the circumference of the

wheel. The presence of the degrees mentioned above of freedom leads to the occurrence of slippage,

which has a detrimental effect on the accuracy of dead-reckoning and also contributes to an increase in

the complexity of the design.

The task of directing an omnidirectional robot towards a specific direction of motion is inherently

more challenging and frequently exhibits lower levels of accuracy in comparison to less maneuverable

robot designs. As an illustration, a vehicle equipped with an Ackerman steering mechanism is capable

of maintaining a straight trajectory by immobilizing the steerable wheels while powering the drive

wheels. In the context of a differential-drive vehicle, it is imperative to ensure that the two motors

connected to the two wheels are driving at an identical velocity profile. However, achieving this

synchronization can pose difficulties due to inherent variations among the wheels, motors, and the

outside environment. The challenge becomes more complex when utilizing a four-wheel omni-drive

system, exemplified by the Uranus robot equipped with four Swedish wheels. In this configuration,

maintaining a precise straight trajectory necessitates the synchronization of all four wheels to operate at

identical speeds [42].

In conclusion, it can be stated that no universally optimal drive design may effectively optimize

stability, maneuverability, and controllability all at once. Every mobile robot application imposes

specific constraints on the design challenge, and the designer's objective is to select the best suitable

drive configuration among the range of trade-offs available.

1.8. Motion Modeling for Differential Drive Wheeled Mobile Robots

Motion models are utilized to describe the kinematics of robots. There has been a notable focus

on the mathematical aspects of robot motion, disregarding the underlying causes like forces or torques.

The kinematic model elucidates the inherent geometric relationships within the system. This statement

39

elucidates the correlation between the inputs (control parameters) and the behavior of a system as

delineated by its state-space representation. The kinematic model pertains to the velocities of a system

and is represented by a collection of differential equations of the first degree.

Dynamic models are utilized to depict the motion of a system in response to the application of

forces. These models incorporate the principles of physics pertaining to motion, encompassing the

utilization of forces, energy, mass of a system, velocity, and inertia parameters. The dynamic models’

description can be expressed by second-order differential equations.

In the field of wheeled mobile robotics, it is well-accepted that kinematic models are typically

adequate for the purpose of designing locomotion strategies. However, in the case of other systems

involving robots operating in air, space, water, or walking robots, the inclusion of dynamic modeling

becomes necessary [60].

As previously said, the Differential Drive Wheeled Mobile Robot (DDWMR) is considered to

be a straightforward and efficient structure among the various types of mobile robots [61]. The

DDWMRs possess the capability to navigate inside a predetermined operational environment in order

to accomplish a specified path or trajectory [62]. The capacity for mobility renders them highly

advantageous for a wide range of applications in both structured and non-structural environments. The

differential drive system consists of a pair of wheels positioned at opposite ends of a mobile platform.

These wheels can be operated independently in terms of both position and velocity [63]. In certain

instances, the implementation of an additional wheel known as the Castor wheel can be used to maintain

equilibrium in the event of any potential instability [64]. Various scenarios occur during the DDWMR

rotation. When the two wheels of the DDWMR rotate in the same direction at equal speeds, the robot

travels in a straight trajectory [65]. Additionally, when one wheel is in motion while the other remains

stationary, the DDWMR exhibits circular motion, with the center of the circle being the pivotal point of

the stationary wheel. Similarly, if the roles are reversed, the DDWMR follows a circular trajectory, with

the center being the pivotal point of the rotating wheel [66].

The classification of Differential Drive Wheeled Mobile Robots (DDWMRs) encompasses four

distinct models:

• The posture kinematic model

• The configuration kinematic model

• The posture dynamic model

• The configuration dynamic model

40

The kinematic models of the DDWMR characterize its behavior through a mathematical function

that relates the velocity and orientation of its wheels. On the other hand, the dynamic models of the

DDWMR describe its behavior by a mathematical function that relates the generalized forces exerted by

the actuators. The posture models exclusively focus on the robot's position and orientation as state

variables, in contrast to configuration models that incorporate other internal variables, such as the

wheels' angular displacement [67-69].

1.8.1. Kinematics of Differential Drive Wheeled Mobile Robots

The field of robot kinematics encompasses the study of the configuration (arrangement) of robots

within their operational environment, Robot kinematics encompasses the analysis of the geometric

configuration of robotic systems, the functional dependencies between their structural parameters, and

the kinematic constraints imposed on their trajectories—all of which are fundamentally determined by

the robot’s physical architecture. The choice of wheel type, the number of wheels, and the manner in

which they are connected to the chassis of the robot have a substantial impact on the kinematics of

mobile robots [70].

A comprehensive understanding of kinematics is an essential foundation for studying the

principles of dynamics, the analysis of stability characteristics, and the implementation of control

mechanisms in the field of robotics. Ongoing research is being conducted on the development of novel

and special robotic kinematic structures, with the aim of creating robots capable of executing advanced

and intricate tasks in various industrial and societal domains [71-76].

The nonholonomic mechanical system, known as the DDWMR, as depicted in Figure 1.20,

serves as a representative illustration. The system under consideration comprises a rigid body, referred

to as the base, which incorporates a pair of conventional fixed wheels that are driven by separate

actuators, such as direct current motors. These wheels enable the system to achieve both movement and

orientation. Additionally, a third wheel is present, and occasionally a fourth wheel, which are passive

and solely serve the purpose of providing support to the DDWMR. The influence of these passive wheels

on the dynamics of the DDWMR is considered to be trivial [77].

The posture vector, denoted as 𝜁 = [𝑥 𝑦 𝜃]𝑇, represents the characteristics of the system. Here,

𝑥 and 𝑦 denote the coordinates of point C, which serves as both the mass center as well as the guidance

point. These coordinates are defined within the inertial coordinate system OXOYO. Additionally, 𝜃

represents the angle of orientation of the mass center coordinate system of the DDWMR CXCYC relative

41

to the inertial coordinate system OXOYO. The OXOYO frame, referred to as the inertial reference frame,

also represents the fixed frame of reference in the robot's surroundings within which it operates. On the

other hand, the DDWMR CXCYC frame, known as the robot frame, denotes a local coordinate system

that is affixed to the robot itself [78].

Figure 1.20. DDWMR and systems of coordinates [77]

The local coordinates of mechanical systems are capable of being represented using the

generalized coordinate vector Q, where Q = [Q1, Q2, . . . ,Qn]
T ∈ ℜn. In numerous scenarios, the motion

of mechanical systems is governed by a range of constraints that are consistently upheld throughout the

movement. These constraints manifest as algebraic relationships between the velocities and positions of

the system's points [79].

The parameter nomenclature employed in the DDWMR study, as depicted in Figure 1.20 and

enumerated in Table 1.2.

The DDWMR depicted in Figure 1.20 exhibits three kinematic restrictions, as documented in

references [80-82]. The initial constraint pertains to the inability of the DDWMR to undergo lateral

sliding, thereby adhering to a non-slipping constraint. Consequently, the DDWMR is only capable of

movement along the perpendicular direction to the actuated wheels' symmetry axis. The constraint

mentioned above can be expressed as

𝑦̇ cos(𝜃) − 𝑥̇ sin(𝜃) = 0, for C = P, (1.6)

𝑦̇ cos(𝜃) − 𝑥̇ sin(𝜃) − 𝑑𝜃̇ = 0, for C ≠ P. (1.7)

42

The next two constraints pertain to the wheel's rotation, namely the pure rolling constraints.

Table 1.2. DDWMR Parameters [77]

Parameter Description

P Intersection of the axis of the symmetry with the wheels’ axis.

C Center of mass or point of guidance.

d The distance between point P and point C.

rA Radius of left or right wheel.

2a The distance between the actuated wheels and the axis of symmetry.

𝜑̇𝑙, 𝜑̇𝑟 The angular velocities of the left and right wheels.

𝜔, 𝜐 The angular and linear velocities of DDWMR.

Q The generalized coordinate vector.

These constraints ensure that the actuated wheels do not experience any incorrect rotation. They

can be expressed as follows:

 𝑥̇ cos(𝜃) + 𝑦̇ sin(𝜃) + 𝑎𝜃̇ − 𝑟𝜑̇𝑟 = 0, for C = P and C ≠ P, (1.8)

 𝑥̇ cos(𝜃) + 𝑦̇ sin(𝜃) − 𝑎𝜃̇ − 𝑟𝜑̇𝑙 = 0, for C = P and C ≠ P. (1.9)

where 𝜑𝑙 and 𝜑𝑟 represent angular displacements of the left and right wheels, respectively.

Equations (1.8) and (1.9) can be expressed as follows:

 𝜐 + 𝑎𝜔 = 𝑟𝜑̇𝑟, for C = P and C ≠ P, (1.10)

 𝜐 − 𝑎𝜔 = 𝑟𝜑̇𝑙, for C = P and C ≠ P, (1.11)

since

 𝜐 = 𝑥̇ cos(𝜃) + 𝑦̇ sin(𝜃), (1.12)

 𝜔 = 𝜃̇. (1.13)

43

By utilizing Equations (1.10) and (1.11), it is possible to establish a correlation between the

angular velocities of the right and left wheels (𝜑𝑟 , 𝜑𝑙) of the DDWMR, and the angular and linear

velocities of the mass center of the DDWMR (𝜔, 𝜐). This correlation yields the following relationship:

 [
𝜑̇𝑟

𝜑̇𝑙
] = 𝛀 [

𝜐
𝜔

] = [

1

𝑟

𝑎

𝑟
1

𝑟

−𝑎

𝑟

] [
𝜐
𝜔

], (1.14)

and vice versa:

 [
𝜐
𝜔

] = 𝛀−1 [
𝜑̇𝑟

𝜑̇𝑙
] = [

2

𝑟

𝑎2

𝑟

𝑏 −𝑏
] [

𝜑̇𝑟

𝜑̇𝑙
], (1.15)

where 𝑏 =
𝑟

2𝑎
 .

Kinematic constraints are prevalent in a wide range of applications. Equations (1.6)–(1.9)

represent linear relationships involving the generalized coordinate vector. These relationships can be

described in matrix format as:

 𝑨(𝑸)𝑸̇ = 0. (1.16)

The state vector is denoted by a set of five generalized coordinates,

 𝑸 = [𝜻𝑇𝝋𝑇]𝑇 = [𝑥 𝑦 𝜃 𝜑𝑟 𝜑𝑙]
𝑇, (1.17)

the three constraints are able to be expressed in the format of Equation (1.16), i.e.,

 𝑨(𝑸)𝑸̇ = [

−sin (𝜃) cos (𝜃) 0 0 0
−cos (𝜃) −sin (𝜃) −𝑎 𝑟 0
−cos (𝜃) −sin (𝜃) 𝑎 0 𝑟

]

[

𝑥
𝑦̇

𝜃̇
𝜑̇𝑟

𝜑̇𝑙

̇

]

, for C = P, (1.18)

 𝑨(𝑸)𝑸̇ = [

−sin (𝜃) cos (𝜃) −𝑑 0 0
−cos (𝜃) −sin (𝜃) −𝑎 𝑟 0
−cos (𝜃) −sin (𝜃) 𝑎 0 𝑟

]

[

𝑥
𝑦̇

𝜃̇
𝜑̇𝑟

𝜑̇𝑙

̇

]

, for C ≠ P, (1.19)

The referential of DDWMR velocity is determined by the angular velocity of the left and right

wheels (𝜑̇𝑙 and 𝜑̇𝑟), respectively,

 𝒗 = [
𝜑̇𝑙

𝜑̇𝑟
]. (1.20)

44

By assuming neglect of the inertia and mass of the motors and wheels, it may be postulated that

the DDWMR adheres to the principles of pure rolling and non-slipping conditions [83]. Therefore, the

matrix 𝑨(𝑸) that encompasses the nonholonomic constraints is simplified to:

 𝑨(𝑸) = [− sin(𝜃) cos(𝜃) 0], for C = P, (1.21)

 𝑨(𝑸) = [− sin(𝜃) cos(𝜃) − 𝑑], for C ≠ P, (1.22)

in such a way that the displacements are limited to the direction of the axis of symmetry of the actuated

wheels and

 𝑸 = 𝜻 = [𝑥 𝑦 𝜃]𝑇. (1.23)

Furthermore, it should be noted how the referential velocity of the DDWMR is determined by its

linear velocity (𝜐) and angular velocity (𝜔), i.e.,

 𝒗 = [
𝜐
𝜔

]. (1.24)

It is crucial to highlight that the system's configuration space, denoted as n, consists of the

generalized coordinate vector 𝑸 and the number of constraints represented by p. Consequently, the

dimension of the velocity vector is m = n - p, where in this particular case, m = 2, indicating the system's

degrees of freedom.

The objective is to eliminate the limitations imposed by the constraints [79] on the Jacobian

matrix 𝑺(𝑸). This matrix, consisting of a collection of linearly independent and smooth vector fields, is

of complete rank (n - p) and is dispersed inside the null space of 𝑨(𝑸), i.e.,

 𝑨(𝑸)𝑺(𝑸) = 0. (1.25)

Based on Equations (1.16) and (1.25), it is feasible to determine an auxiliary velocity vector,

denoted as 𝒗 ∈ ℜ𝑝×1, which is dependent on time. This vector satisfies the condition for all values of t:

 𝑸̇ = 𝑺(𝑸)𝒗 . (1.26)

The configuration kinematic model, denoted as matrix 𝑺(𝑸), is provided as follows:

▪ From Equations (1.18) and (1.19):

 𝑺(𝑸) =

[

𝑏 𝑎 cos(𝜃)
𝑏 𝑎 sin(𝜃)

𝑏
1
0

𝑏 𝑎 cos(𝜃)
𝑏 𝑎 sin(𝜃)

−𝑏
0
1]

, for C = P, (1.27)

45

 𝑺(𝑸) =

[

𝑏(𝑎 cos(𝜃) − 𝑑 sin(𝜃)

𝑏(𝑎 sin(𝜃) + 𝑑 cos(𝜃)
𝑏
1
0

𝑏(𝑎 cos(𝜃) + 𝑑 sin(𝜃)

𝑏(𝑎 sin(𝜃) − 𝑑 cos(𝜃)
−𝑏
0
1]

 , for C ≠ P, (1.28)

where 𝑏 =
𝑟

2𝑎
 .

In a similar vein, the posture kinematic model, represented by the matrix 𝑺(𝑸), leads to:

▪ From equations. (1.21) and (1.22):

 𝑺(𝑸) = [
cos(𝜃) 0

sin(𝜃) 0
0 1

], for C = P, (1.29)

 𝑺(𝑸) = [
cos(𝜃) −𝑑 sin(𝜃)
sin(𝜃) d cos(𝜃)

0 1

], for C ≠ P, (1.30)

An alternative approach to expressing the posture kinematic model Equations (1.29) and (1.30)

involves leveraging the velocity of the DDWMR in terms of 𝑥̇, 𝑦̇, and 𝜃̇ as depicted in Figure (1.19),

i.e.,

 {

𝑥̇ = 𝜐 cos(𝜃)
𝑦̇ = 𝜐 sin(𝜃)

𝜃̇ = 𝜔

 , for C = P, (1.31)

 {

𝑥̇ = 𝜐 cos(𝜃) − 𝜔𝑑 sin(𝜃)

𝑦̇ = 𝜐 sin(𝜃) + 𝜔𝑑 cos(𝜃)

𝜃̇ = 𝜔

 , for C ≠ P. (1.32)

It is imperative to underscore the necessity of conducting an investigation into the correlation

between the wheels and the DDWMR in order to ascertain the matrices 𝑨(𝑸) and 𝑺(𝑸). The method for

deducing these matrices has been analyzed in [67-69].

46

Figure 1.21. The depiction of the DDWMR velocities of Figure 1.20. [77]

1.9. Motion Constraints

All robotic systems are bound by different constraints on their motion, but not each of these is

capable of being articulated as constraints on their configuration. An illustrative instance of this kind of

system involves an automobile. At lower velocities, both automobile rear wheels exhibit unrestricted

rotational movement in the direction they are oriented while impeding any lateral sliding motion in the

direction perpendicular to them. This constraint indicates that the automobile is unable to move laterally.

It has been empirically observed that the velocity constraint lacks any constraints on the configurations

of the automobile. In other words, the automobile has the ability to attain any location or orientation

inside the plane that does not contain obstacles. Indeed, the hindered lateral displacement can be

estimated through the execution of parallel parking maneuvers.

The no-slip constraint can be classified as a nonholonomic constraint, which specifically pertains

to the velocity of the system. Besides the condition of rolling without slipping, the principle of

conservation of angular momentum is frequently encountered as a prevalent origin of nonholonomic

constraints with mechanical systems.

Suppose we shift our perspective from perceiving the automobile as a system that adheres to a

motion constraint. Instead, we acknowledge that merely two control inputs (the speed and steering angle)

are available to govern the automobile's three degrees of freedom. In that case, it is plausible to

categorize the system as underactuated. Underactuated systems are characterized by a fewer number of

controls than the present degrees of freedom [84].

47

Kinematic constraints are able to be classified into two categories: holonomic constraints and

nonholonomic constraints. The mobility of a robot is restricted in some directions due to nonholonomic

constraints [85]. The concept of holonomic constraints is closely linked to the dimensionality associated

with the system's state description, specifically in generalized coordinates.

Nonholonomic constraints manifest in two principal fashions [15]:

1. In the context of rolling motion without slipping constraints. An instance that illustrates

the interdependence of translation and rotation occurs when a wheel undergoes rolling

motion without sliding. Some examples that can be provided are a WMR, a unicycle, a

vehicle, and a tractor-trailer.

2. In systems characterized by the conservation of angular momentum. Some examples of

robotic applications include the utilization of satellites and space robots, as well as the

development of robots for gymnastics, diving, and running.

The expression of holonomic constraints is achieved by the utilization of equations that

incorporate generalized coordinates. The equations mentioned above can be employed to exclude a

subset of generalized coordinates, reducing the number of necessary generalized coordinates for

describing a given system. Nonholonomic constraints have no effect on the reduction of the

dimensionality of the generalized coordinates; instead, they only affect the dimensionality of the

generalized velocity space. The inclusion of nonholonomic constraints has a significant impact on the

problem of path planning [60], [86].

The problem of motion planning for a nonholonomic system can be formulated as follows: given

a representation of the environment containing obstacles in the workspace, a robot that is constrained by

nonholonomic constraints, the initial position, and the final position, the objective is to determine a

feasible path that is free from collisions between the initial and final positions. The resolution of this

issue necessitates the consideration of both the constraints imposed by obstacles inside the configuration

space as well as the nonholonomic constraints. The methods that have been created to tackle this issue

effectively integrate techniques from both motion planning as well as control theory. Constraints arising

from obstacles are explicitly represented in the configuration space, which is a manifold. However,

nonholonomic constraints are described within the tangent space [87-91].

1.9.1. Holonomic Constraints

The holonomic constraints are contingent upon the utilization of generalized coordinates. In a

system characterized by n generalized coordinates 𝑸 = [𝑄1, … , 𝑄𝑛]𝑇, a holonomic constraint can be

mathematically represented as follows:

48

 𝑓(𝑸) = 𝑓(𝑄1, … , 𝑄𝑛) = 0, (1.33)

where 𝑓 and its associated derivatives are assumed to be continuous functions, this constraint establishes

a subspace within the set of all the possible configurations in the generalized coordinates, wherein

Equation (1.33) holds valid. Constraint (1.33) is capable of being employed to eliminate specific

generalized coordinates, as it can be represented in terms of n − 1 other coordinates.

Typically, there exists a possibility of having m holonomic constraints, where (m < n). If the

mentioned constraints are linearly independent, they establish a subspace of dimension (n − m), which

corresponds to the genuine configuration space of the system with (n − m) degrees of freedom.

1.9.2. Nonholonomic Constraints

Nonholonomic constraints impose limitations on the possible system velocities or the possible

motion directions. The formulation of the nonholonomic constraint is capable of being expressed by

 𝑓(𝑸, 𝑸̇) = 𝑓(𝑄1, … , 𝑄𝑛, 𝑄̇1, … , 𝑄̇𝑛) = 0, (1.34)

where 𝑓 represents a smooth function possessing continuous derivatives, whereas 𝑸̇ is the vector

containing the velocities of the system within the generalized coordinates. If the system lacks constraints

(1.34), it is unconstrained in its range of motion directions.

A kinematic constraint (1.34) becomes holonomic in the academic context if it satisfies the

condition of integrability. Integrability implies that the velocities 𝑄̇1, … , 𝑄̇𝑛 are able to be omitted from

Equation (1.34), resulting in the constraint being represented in the format of Equation (1.33). If the

constraint denoted by equation (1.34) lacks integrability, it can be classified as nonholonomic.

If there are m nonholonomic constraints in the form of Equation (1.34) that are linearly

independent, then the dimension of the velocity space becomes (n − m). The system's velocities are

constrained by nonholonomic constraints. An instance of a differential drive vehicle, such as a

wheelchair, has the capability to travel in the direction determined by the current orientation of its

wheels, but lacks the ability to move laterally.

Considering linear constraints in the equation 𝑸̇ = [𝑄̇1, … , 𝑄̇𝑛]𝑇, equation (1.34) is able to be

expressed as

 𝑓(𝑸, 𝑸̇) = 𝒂𝑇(𝑸)𝑸̇ = [𝑎1(𝑸) … 𝑎𝑛(𝑸)] [
𝑄̇1

⋮
𝑄̇𝑛

] = 0, (1.35)

49

where 𝒂𝑇(𝑸) represents the parameter vector of the constraint. To obtain a constraint matrix for a system

with m nonholonomic constraints, the following matrix is employed:

 𝑨(𝑸) = [
𝒂1

𝑇(𝑸)
⋮

𝒂𝑚
𝑇 (𝑸)

], (1.36)

and all of nonholonomic constraints are presented in matrix representation

 𝑨(𝑸)𝑸̇ = 𝟎. (1.37)

At every given time interval, the matrix denoting the set of attainable motion directions is

represented as 𝑺(𝑸) = [𝒔1(𝑸),… , 𝒔𝑛−𝑚(𝑸)]. The number of constraints determines the number of

attainable directions, which is equal to (n-m). The kinematic model is defined by this matrix in the

following manner:

 𝑸̇(𝑡) = 𝑺(𝑸)𝒗(𝑡), (1.38)

where 𝒗(𝑡) represents the control vector. The resultant matrix obtained by multiplying the constraint

matrix 𝑨 and the kinematic matrix 𝑺 is a matrix consisting entirely of zeros

 𝑨𝑺 = 𝟎 . (1.39)

The idea of holonomic motion is defined by the relative values of a robot's degree of freedom

(𝐷𝑂𝐹) and the mobility degree (𝐺𝑚). A robot exhibits holonomic motion when the mobility degree is

equal to degrees of freedom (𝐺𝑚 = 𝐷𝑂𝐹). Conversely, a robot demonstrates nonholonomic motion

when the mobility degree is less than the degrees of freedom (𝐺𝑚 < 𝐷𝑂𝐹). A holonomic robot, such as

the omni robot, possesses the capability to exert direct control over all of its degrees of freedom (𝐷𝑂𝐹)

without necessitating complex maneuvers. Figure 1.23 illustrates the relative ease with which the

omnidirectional robot equipped with three Swedish wheels, as depicted in Figure 1.22, is able to execute

parallel parking.

Figure 1.22. An omni-directional robot equipped with three Swedish wheels [92]

50

An automobile and a robot equipped with differential drive belong to non-holonomic systems

due to their limited mobility degree (𝐺𝑚). The automobile has a mobility degree of 1, while the robot

has a mobility degree of 2. This is lower than their degrees of freedom (𝐷𝑂𝐹), which is 3 for both

systems. Due to this restricted mobility degree, these vehicles necessitate intricate steering maneuvers,

such as those employed during parallel parking. A notable disparity exists between both of these

vehicles.

Figure 1.23. Parallel parking maneuvers by an omni-directional robot [92]

The DDWMR requires three distinct movements, which are characterized by simplicity: left

rotation, backward motion, and right rotation, as depicted in Figure 1.24a. The automobile also

necessitates three distinct motions, albeit executing them accurately proves exceedingly challenging (see

Figure 1.24b). One must determine the optimal initiation point of the maneuver, the degree of curvature

for each turn, and the distance to be covered between successive turns. The greater mobility degree (𝐺𝑚)

of the DDWMR provides a notable benefit in the given scenario [92].

Figure 1.24. (a) Non-holonomic DDWMR parallel parking. (b) Non-holonomic automobile parallel

parking [92]

51

1.10. Navigation of WMR

The process of robot navigation involves deliberate design strategies aimed at reaching a

specified destination while simultaneously circumventing any encountered obstacles. The principal

objective in the field of navigation involves either attaining a pre-established objective or following a

predefined path while avoiding any instances of collision. A mobile robot possesses the capability to

move intelligently throughout a wide range of environments, including static, dynamic, uncluttered, and

unpredictable settings, among others [93]. Navigation is a fundamental methodology employed to

facilitate the movement of a robotic entity across diverse environments, enabling it to traverse from an

initial position to a desired destination [94]. The dependability of maps in navigational approaches is

often called into question as a result of the dynamic and unexpected nature of applications in the real

world [95]. The process depicted in Figure 1.25 [96-100] comprises four fundamental components: (i)

perception, the system of perception refers to the ability of a robot to identify objects in its surrounding

environment in real-time. This information is then transmitted to the decision-making system, which

enables the robot to effectively reason concerning future actions necessary to accomplish the intended

task [101]; (ii) localization, on the other hand, pertains to the robot's capability to accurately determine

its precise position within a given map in the real world [102]; (iii) cognition and path planning, involve

the process of determining a path that avoids collisions and optimizes specific objectives, such as

minimizing the distance navigated or energy consumption, from an initial location to a desired goal

location [103-104]; (iv) motion control, refers to the robot's ability to adjust its motor output in order to

reach the intended route [105]. Furthermore, the successful navigation of a mobile robot necessitates the

acquisition of supplementary skills, encompassing control aptitude, planning of trajectory, obstacle

avoidance, and the establishment of secure distances to the intended destination. These competencies

are imperative for mobile robots to execute optimal navigation performance. In order to ensure the

successful completion of all tasks, it is essential for every navigation system to take into account those

mentioned above basic design [106-107]. The navigation problem, as a whole, has been constructed

based on the suitable answer to three fundamental questions. In which location am I currently situated?

To what destination am I headed? Furthermore, what is the most efficient approach for reaching that

destination? The fundamental philosophy of all research within this discipline is to provide answers to

these three fundamental questions [108-109].

52

Figure 1.25. Mobile robot systems reference navigation scheme [42]

Since the primary focus of this study pertains to motion control, encompassing its various

problem kinds and the most significant previous research in the field, all of these will be addressed

sequentially.

1.10.1. Motion Control

In kinematic-based formulations of the motion control problem, it is assumed that the control

inputs directly determine the generalized velocities of the wheeled mobile robot. There are two primary

reasons for adopting this simplified assumption. Initially, given appropriate assumptions, it is feasible

to nullify the dynamic influences by employing state feedback, so effectively shifting the control

problem to the second-order kinematic model and then to the first-order kinematic model. Furthermore,

in most cases of mobile robots, direct command over wheel torques is not feasible due to the presence

of low-level loops of control that are embedded within either the hardware or the software construction.

The loops in question are designed to receive a reference value through the angular speed of the wheel

as input. This reference value is then replicated as precisely as possible via the use of typical regulation

actions, such as PID controllers. In this scenario, the accessible inputs for high-level controls consist

exclusively of the reference velocities [38]. Furthermore, it is worth noting that in most mobile robot

53

platforms, the internal torque controller is pre-installed, allowing users to focus on commanding the

appropriate velocities of the system by considering its kinematics [60].

There exists a variety of tools that can be utilized for controlling nonholonomic systems.

Nevertheless, up until now, there has been no definitive identification of a control method or collection

of tools that exhibits superior performance compared to others. This can be attributed mostly to the

following concrete proofs. A well-designed control law should possess two fundamental characteristics.

Firstly, the system should be guided from its starting state to the destination state in a simple manner.

Secondly, it should exhibit robustness against discrepancies between the model and the actual system,

as well as measurements of noise and approximate knowledge regarding initial conditions. Open loop

techniques have the capability to provide the initial item. However, their robustness remains uncertain,

though they can be effectively utilized in the development of robust iterative designs.

Conversely, closed-loop techniques possess the likelihood for enhanced robustness, yet the

inherent dynamics of the closed-loop system may lack naturalness. The closed-loop system may exhibit

oscillatory behavior, which is not essential or demanded for reaching the required final point. It is worth

noting that closed-loop techniques have the potential to be more robust compared to open-loop ones

[110].

The motion of a mobile robot can be classified into one of the following scenarios:

1.10.1.1. Posture Control (Posture Stabilization)

The first potential approach is posture control, which refers to the ability to control both the

position as well as the orientation of the robot in order to achieve the intended position and orientation.

The term "posture" encompasses both the position as well as the orientation of the robot. In the context

of the DDWMR, it is possible to divide the task into two distinct subtasks. The first subtask involves

guiding the robot towards a destination position (𝑥𝑑 , 𝑦𝑑) within the navigation plane, beginning with an

initial position (𝑥𝑖 , 𝑦𝑖) within the same plane. The second subtask entails rotating the robot around its

vertical axis (𝜃𝑑) in order to correct its orientation subsequent to reaching the destination position.

It should be noted that this capability is only applicable to the particular robot under

consideration, as it possesses the ability to rotate without altering its position. Another significant

characteristic in this scenario is that the trajectory used by the robot to reach the destination position is

inconsequential. The problem merely specifies the desired destination point as well as the intended

orientation at this point for the robot without specifying any particular trajectory that should be taken

54

[111]. It is not possible for the nonholonomic mobile robot to get a point stabilization using a feedback

law that is time-invariant and continuous in the variables of state. There are feedback laws that are time-

varying and discontinuous, which have been shown to achieve the desired task [112-113]. Due to the

provision of solely the initial and final postures, with the trajectory between these locations being

arbitrary, novel opportunities arise, including the ability to select an "optimal" trajectory. It is imperative

to emphasize the selection of a feasible trajectory that incorporates considerations of environmental,

dynamic, and kinematic constraints. Typically, this results in an extensive array of possible trajectories,

from which a specific trajectory is selected based on further criteria such as distance, curvature, time

frame, energy consumption, and similar factors. The trajectory can be explicitly set and adjusted during

movement, or it can be implicitly determined through the implementation of a control algorithm to get

the desired position [60]. Figure 1.26 illustrates the specific task under consideration, wherein the

DDWMR effectively tracks possible trajectories. To clarify, stabilizing a system can be understood as

the process of attaining a particular point of equilibrium for the system's state [77].

Figure 1.26. Example of posture control task [77]

1.10.1.2. Trajectory-Tracking Control

The second potential approach is trajectory-tracking control, wherein the robot is tasked with

precisely tracking a specific trajectory. A trajectory refers to a vanishing point, which is a point located

in the plane for ground robots or in 3D space for aerial robots. This point's position changes throughout

time. This implies that the intended location is presently represented by the coordinates (𝑥𝑑(𝑡), 𝑦𝑑(𝑡))

or (𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 𝜃𝑑(𝑡)), which undergo motion at velocities (𝑥̇𝑑(𝑡), 𝑦̇
𝑑
(𝑡)) or (𝑥̇𝑑(𝑡), 𝑦̇𝑑(𝑡), 𝜃̇𝑑(𝑡)). In

this scenario, the robot should increase its velocities beyond the ones of the trajectory in order to surpass

them. Subsequently, the robot should decrease its velocity, so it matches the trajectory's velocity, thereby

maintaining its position above it. Figure 1.27 depicts a trajectory tracking challenge in which a

DDWMR, denoted as R, endeavors to reach a target position, denoted as M while adhering to specific

timing constraints relative to a reference curve. In robotics, trajectory tracking is a commonly employed

55

technique to provide collision avoidance within a controlled environment. In such scenarios, DDWMRs

are required to adhere to specific postures at certain time instances [77].

Figure 1.27. An illustration of a trajectory tracking control task [77]

It is worth noting that there are two variations of the tracking of trajectory problem that can be

taken into consideration. The primary aim in the first scenario is to control the position of the robot

solely; however, in the second scenario, the target extends to encompass simultaneously the orientation

and position of the robot [114-115]. It should be noted that achieving flawless tracking is only possible

when the trajectory used as a reference is feasible for a real robot [112], [116]. Additionally, it is essential

to recognize that a trajectory that is feasible for a DDWMR may not necessarily be feasible for either a

car-like robot. In the context of nonholonomic robots such as the DDWMR, the feasibility of a reference

trajectory is contingent upon its generation by a reference robot that shares identical kinematic

constraints with the real robot. For example, the majority of trajectories generated using an

omnidirectional robot cannot be feasible for any nonholonomic mobile robot. Nevertheless, it should be

noted that the lack of feasibility does not always mean that the reference trajectory is unable to be tracked

to some extent, albeit with minor tracking errors that are not zero [116].

1.10.1.3. Path-Following Control

The third possible approach involves following a specified path, akin to the actions of an

individual operating a car on a designated road. In order to remain on the road, it is imperative for the

driver to maintain a target velocity that is consistently tangent relative to the path. Alternatively, if the

velocity vector is not tangent to the vehicle's path, it will deviate from the road. To begin, the act of

following a path entails initially identifying the point along the supplied path that is in closest proximity

to the robot and subsequently directing the robot to attain the point in question. Secondly, the subsequent

56

procedure entails ensuring that the robot evolves a velocity consistently tangent to that path, irrespective

of its magnitude. This implies that the value of the velocity is freely determined along the path. This

implies that individuals have the freedom to choose any velocity, even zero, resulting in the vehicle

coming to a temporary halt along its path, similar to when a car pauses at a red traffic light [111]. Hence,

the primary goal is to control the robot's lateral displacement concerning the designated path by

manipulating the robot's orientation or steering mechanism [114]. The path-following task is depicted in

Figure 1.28. The objective of the task is for the DDWMR, denoted as R, to follow the reference curve

and reach the point M, closest to the robot's current position on that curve, without any specific time

constraints [77].

Figure 1.28. An illustration of a path-following control task [77]

1.10.1.4. Fault-Tolerant [77]

Fault tolerance can be conceptualized as the capacity of a system to successfully do a designated

task, notwithstanding the existence of either software or hardware imperfections where the control

system is reconfigured following the specific defect that has been isolated.

The primary distinction observed in the initial three instances is that posture control solely entails

the definition of a desired destination without any specification of path or velocity. In contrast, trajectory

tracking involves the determination of the vehicle's velocity, considering both its magnitude and

direction, based on the trajectory currently being tracked. On the other hand, in path-following, the

vehicle's velocity is determined by the designer and is constrained to be tangent to the followed path

continuously [111].

From a control perspective, the unique characteristics of nonholonomic kinematics result in path

following and trajectory tracking being comparatively simpler to control than posture stabilization. This

is due to the availability of continuous time-invariant feedback laws that can stabilize the intended

motions. Indeed, it is widely acknowledged that the attainment of feedback stabilization at a specific

57

posture is unattainable through the implementation of smooth time-invariant control strategies. This

statement suggests that the issue at hand is genuinely nonlinear in nature, rendering linear control

methods ineffectual, even locally. As a result, novel design approaches are required [111-112]. In

addition, when considering various types of robot control methods, such as trajectory-tracking and path-

following, posture stabilization is generally not regarded as a favorable solution for real-world

environments. This is primarily due to the lack of predictability regarding the robot's movement

trajectory and the potential occurrence of unforeseen collisions. It is evident that compelling the robot

to navigate along or in proximity to a predetermined trajectory significantly diminishes the likelihood of

collisions [38], [77].

These three cases are capable of being shown using commonplace everyday scenarios. When an

individual boards a bus that reaches their workplace and subsequently falls asleep throughout the

journey, they are left unaware of both the duration of the commute and the specific route taken by the

bus. It is worth noting that the intended goal, namely the arrival at the workplace, has been successfully

achieved, and this represents posture control. In the context of trajectory tracking, a pertinent illustration

may be found in the role of a bus driver who possesses precise knowledge of the specific moments at

which the bus is expected to reach each designated stop. This implies that the driver must possess

knowledge of the timetable in order to effectively execute the responsibility of arriving at every bus stop

punctually. To illustrate the concept of path-following, let us create a scenario where an individual

operates a car on a roadway. Occasionally, individuals have the ability to increase their speed in order

to travel at a faster speed. Still, at other times, it is necessary for them to decelerate in order to comply

with prescribed speed limits on the road or to come to a complete halt when encountering a red traffic

signal. The individual follows the designated path, specifically the roadway, during a variable timeframe,

which is of negligible significance as temporal constraints are absent in this particular scenario.

1.11. Control Techniques for Wheeled Mobile Robots

In recent years, the rapid progress in mobile robotics and advancements in information

processing and automation technologies have necessitated the development of control systems to

enhance the autonomy of mobile robots across various work environments. The controlling of

trajectories (trajectory-tracking) and the control of position and orientation (posture stabilization) have

been prominent topics in the advancements within this field [117]. These topics have been approached

through various traditional control methodologies, including nonlinear model predictive control,

continuous time-varying adaptive controllers, back-stepping control with asymptotic stability, PID

controllers, and others. In traditional control methodologies, the design of a controller often involves

58

utilizing the system's model and acquiring its parameters. Various current strategies can be employed to

modify these parameters. The result of this process is an algorithm, commonly referred to as a control

law, which obtains the inputs and computes the optimal action for effectively executing the control [118].

In contrast, Machine Learning (ML) techniques typically derive a law of control from data,

wherein an agent autonomously adjusts its internal parameters to handle a given problem effectively. In

recent times, there has been a shift towards the adoption of these novel paradigms in place of

conventional ones. This topic can be approached using machine learning techniques, which offer

alternative solutions and yield intriguing results. For instance, symbolic regression methods, neural

networks, and fuzzy logic are among the several approaches that can be applied [118].

In this study, the strategies for posture and trajectory-tracking control have been classified into

three categories based on previous research: artificial intelligence (machine learning) techniques,

traditional techniques, and hybrid techniques.

1.11.1. Artificial Intelligence (Machine Learning) Techniques

1.11.1.1. Neural Network (NN)

A neural network comprises several individual units known as neurons, which form connections

with one another. Every unique neuron possesses several inputs, a node of processing, and a solitary

output. Every connection between two neurons is accompanied by a weight. The processing within a

neural network occurs concurrently for all neurons [48]. The NN technique is well-suited for processes

and systems that lack concise and precise mathematical models, such as mobile robot planning,

identification, and control. The three main characteristics of neural networks are as follows: (i) the ability

to utilize extensive sensory information effectively, (ii) the collective processing aptitude, and (iii) the

capacity to learn and adapt [44], [119]. In [120-121], the authors' primary focus was the investigation of

neural networks' role in controlling the trajectory tracking and posture stabilization of wheeled mobile

robots. However, the adaptive control method for achieving point stabilization, as described in [122], is

based on the utilization of backpropagation neural networks. The concept of identifying the two-wheeled

robot was introduced. The study [123] introduced a novel control method based on adaptive neural

networks. This control scheme was designed to address an omnidirectional mobile robot's trajectory

tracking control problem, specifically in the face of uncertainty and external disturbance. In [124], a

suggested neural network controller was presented for the trajectory-tracking of a mecanum-wheel

mobile robot (MWMR). The controller featured a simple design and was based on a reference controller.

59

1.11.1.2. Fuzzy Logic (FL)

Fuzzy logic is a soft computing methodology that primarily addresses the challenge of

uncertainty. It aims to capture and describe forms of knowledge that are unable to be adequately

expressed using traditional Boolean algebra. The fuzzy logic concept was initially introduced by Lotfi

A. Zadeh in the early 1990s [125-126]. The significance of fuzzy controllers is underscored by their

ability to offer simplicity in control, inexpensiveness, and the potential for design even in the absence of

precise mathematical models of the process. Due to such scenarios, fuzzy logic has emerged as a

prominent and captivating topic within the field of robotics and computer science, finding extensive

utilization across multiple applications, particularly in the realm of navigation control for autonomous

mobile robots. The authors of [127] developed and executed a kinematic model for a tricycle robot,

employing a trajectory tracking control system based on a fuzzy logic algorithm. The study [128]

presented a novel methodology for tracking and position control in omnidirectional mobile robots

(OMRs). This strategy incorporates type-2 fuzzy systems in order to efficiently control the responses

and actions of these robots during intelligent navigation.

1.11.1.3. Reinforcement Learning (RL)

Reinforcement Learning (RL) pertains to a subfield within the domain of Machine Learning

(ML), wherein an agent engages in interactions with its surroundings in order to obtain rewards in

response to its actions. Based on this interaction, the agent is required to acquire the ability to effectively

do a particular task by striking a harmonious equilibrium between the novel information acquired from

the surroundings and its existing knowledge base [129]. In the context of addressing the motion control

issue on non-holonomic restricted mobile robots, the study [130] presented a proposed kinematic control

law of point stabilization for mobile robots. This control law is grounded in the principles of deep

reinforcement learning. The articles [131], [118] have provided a comprehensive account of the process

involved in designing, developing, and implementing an algorithm for controlling the position of a

wheeled mobile robot. This algorithm utilizes Reinforcement Learning techniques and operates within

a sophisticated 3D simulation environment. In the study [132], the application of reinforcement learning

(RL) algorithms for the purpose of position control of a simulated Kephera IV mobile robot within a

virtual environment was suggested. The study [133] presented a novel approach utilizing deep

reinforcement learning to address the control challenges associated with non-holonomic-restricted

mobile robots. The novel approach was accomplished by a proximal policy optimization learning

algorithm to achieve end-to-end control, precisely posture control, of the mobile robot. The topic of

60

achieving robust trajectory tracking control for a three-mecanum wheeled mobile robot (MWMR) in the

presence of external disturbance was investigated in [134] through the utilization of a model-based

reinforcement learning (RL) algorithm. In [135], the authors have introduced a deep reinforcement

learning algorithm known as the Deep Deterministic Policy Gradient algorithm for the purpose of

controlling the posture of a DDWMR.

1.11.1.4. Symbolic Regression (SR)

Symbolic regression, a machine learning technique, enables the exploration of the effective

structure and parameters of the desired function [136]. Symbolic regression techniques have shown

significant advancements in the last ten years. Moreover, the broader scientific community has recently

acknowledged the significance of interpretable machine learning. Symbolic regression approaches are

predominantly employed in the context of supervised machine learning, specifically for the purpose of

approximating given data [137–140]. In addition, symbolic regression methods can be employed as a

form of unsupervised learning in situations where the machine learning issue for control lacks a training

set. In such cases, finding a control function is guided by the objective of minimizing the quality criterion

[141]. A novel numerical technique has been developed to address the optimal control issue while

incorporating phase constraints in the realm of controlling wheeled mobile robots. This approach,

referred to as synthesized optimal control, involves a two-step numerical technique. The problem

combines two prominent tasks: the development of stabilizing control systems through symbolic

regression (first step) and the optimization of control trajectories using optimal control theory, precisely

the optimization step (second step), which utilizes evolutionary algorithms to tackle its objective [142].

A demonstration of the optimal control problem, specifically on the control of the equilibrium point's

position, has been showcased in [143], focusing on a mobile robot equipped with mecanum wheels

where the network operator method was used at the first step. The papers [144-146] have proposed a

computational machine learning methodology for addressing the extended issue related to optimal

control. This approach involves the utilization of a computationally synthesized optimal control

technique, specifically targeting the controlling of the equilibrium point's position, in the context of

DDWMR. Notably, the methodology accounts for perturbations in both models and initial conditions.

The network operator method was used in [144-145], while the complete binary genetic programming

method was used in [146] at the first step. The study [147] has examined the optimal control problem

involving phase constraints for a collective of mobile robots. The problem is addressed by employing

the synthesized optimal control approach, specifically in the context of control of the equilibrium point's

position, where variational Cartesian genetic programming was used at the first step. The research

61

conducted in [148-150] has explored the application of machine learning via symbolic regression

techniques to address the problem of trajectory tracking in optimal control. The proposed approach aims

to enhance movement stability along the optimal trajectory, using the network operator method for all

mentioned research.

1.11.2. Traditional Techniques

1.11.2.1. Proportional Integral Derivative (PID Controller)

The PID controller is generally recognized as a commonly used controller for a variety of control

system purposes. The simplicity of the controller design and implementation is attributed to the ease of

adjusting the gain parameters. Nevertheless, the model encounters significant obstacles pertaining to its

non-linear nature, imprecise parameters, and erroneous parameter values. Hence, the utilization of a PID

controller imposes constraints on the system's implementation design and affects its overall performance

[151]. In the study [152], the implementation of PID control was explored as a means to enhance the

response of a DDWMR during posture control, specifically when it is required to reach a predetermined

position. The odometry approach was utilized in this context. A proposed controller in [153], with a

simple PID-like structure, has been introduced for the purpose of posture control in a nonholonomic

DDWMR. This controller exhibits smoothness and time-variant characteristics.

In the study [154], a PID controller was offered as a viable and efficient method to address the

trajectory tracking issue of a DDWMR. In [155], a technique is shown for the development of a variable

parameter PID controller for a DDWMR that is capable of tracking a NURBS trajectory with an intended

velocity that varies over time. The design methodology for a PID controller containing time-varying

parameters to obtain trajectory tracking control for a mecanum-wheeled robot has been provided in

[156], wherein a little inaccuracy is observed.

1.11.2.2. Backstepping Controller

The utilization of backstepping control is a highly significant approach in the realm of stabilizing

nonholonomic systems. The concept of backstepping involves employing a recursive approach to

decompose a design problem pertaining to an overall system into a series of design problems pertaining

to subsystems of lower order. The backstepping control law originates from the stability proof through

the application of Lyapunov-like analysis, which ensures the asymptotic convergence of the posture

error [157]. In the study [158], a generalized nontriangular normal form was introduced to aid in the

62

development of a recursive integral backstepping control strategy for a specific category of

underactuated nonholonomic systems. Specifically, this control strategy was designed for wheeled

mobile robots (WMRs) tasked with posture stabilization and tracking desired trajectories in obstacle-

free environments. The authors of [159] have introduced a novel approach for posture stabilization of a

WMR employing backstepping control with the inclusion of output feedback. The authors of [160-162]

introduced a trajectory-tracking controller for a wheeled mobile robot that utilizes the backstepping

approach. In the study [163], a time-varying feedback trajectory-tracking control method was introduced

for stabilizing the trajectory of a WMR using the backstepping strategy.

1.11.2.3. Sliding Mode Controller (SMC)

The sliding mode control (SMC) is a nonlinear control strategy that has been primarily devised

for the purpose of controlling variable-structure systems. The proposed approach involves the utilization

of a time-varying state-feedback discontinuous control law that rapidly switches between different

continuous structures based on the current position of the state variables in the state space. The primary

goal is to ensure that the dynamics of the controlled system precisely follow what is needed and

predefined [164]. The study [165] focuses on the finite-time posture stabilization of a unicycle mobile

robot, specifically when merely position information is accessible. This is achieved through the

development of a discrete-time sliding mode controller (DSMC). The authors of [166] have presented a

trajectory-tracking robust algorithm solution for the perturbed kinematic model of a unicycle mobile

robot. This algorithm employs the first-order sliding mode control approach. The authors of [167] have

presented a robust adaptive trajectory tracking controller, specifically a sliding mode controller, intended

to control an electric wheeled mobile robot operating in a scenario of dynamic disturbances. The problem

pertaining to trajectory tracking control for nonholonomic mobile robots in the presence of unknown

disturbances has been investigated in the study [168] using the approach of sliding mode control.

1.11.2.4. Model Predictive Control (MPC)

Model Predictive Control (MPC) has emerged as a technique utilized for the design and

implementation of feedback control systems, which has demonstrated superior performance compared

to other approaches in numerous scenarios. Furthermore, Model Predictive Control (MPC) offers a

robust and versatile approach for the development of control systems applicable to a wide range of

multiple-input, multiple-output (MIMO) systems [169]. In the study [170], the authors implemented two

stabilizing nonlinear model predictive control (NMPC) designs, known as the final-state equality

63

constraint stabilizing design and the final-state inequality constraint stabilizing design, in order to

accomplish control objectives for a two-wheeled mobile robot. These objectives included point

stabilization and trajectory tracking. In the study [171], a novel approach to model predictive control

was introduced for achieving point stabilization of wheeled mobile robots (WMRs) under nonholonomic

constraints. The proposed method involved formulating a linearized error model by converting the

position of the robot into a polar frame. The researchers in [172] conducted a study on Model Predictive

Control strategies that do not incorporate stabilizing restrictions or costs to achieve set-point stabilization

for holonomic mobile robots. The utilization of a nonlinear model predictive control technique was

documented in [173]. This approach was applied to a DDWMR in order to address point-stabilization

challenges while incorporating avoidance strategies for both static and dynamic impediments. In order

to ensure system safety and achieve optimal performance within a limited prediction horizon, researchers

in [174] have investigated the application of a control barrier function in a nonlinear model predictive

control (NMPC) framework. This approach effectively decreases the computational burden associated

with real-time NMPC implementation. In [175], a proposal was made for a model predictive control

approach that is linear and time-varying. This technique is intended for the trajectory-tracking of a

single-wheeled mobile robot, taking into account nonholonomic restrictions and control constraints.

1.11.2.5. Lyapunov-Based Controller

The utilization of a Lyapunov-based controller constitutes a prevalent approach within control

theory for the purpose of designing nonlinear controllers specifically tailored for mechanical systems

[176]. In the study [177], researchers introduced two kinematic control techniques that are not smooth

in nature. These strategies were developed specifically for the purpose of posture stabilization of a

wheeled mobile robot using a differential drive system. The approach that was formulated relied on the

principles of kinematic coordinate transformation and the Lyapunov-like stability technique. The

research conducted by [178] has introduced a robust switching control approach based on passivity for

stabilizing the posture of wheeled mobile robots (WMRs) in the presence of model uncertainty. This

control law was derived using the Lyapunov approach and energetic passivity.

Numerous traditional techniques exist, although the most significant and prevalent ones have

been briefly discussed.

64

1.11.3. Hybrid Techniques

These techniques encompass a combination of exclusively artificial intelligence techniques as a

first type, as documented in [179], utilized neural networks and fuzzy logic to achieve trajectory tracking

for an omnidirectional mobile robot. Similarly, the study [180] presented the application of

reinforcement learning and fuzzy logic for trajectory tracking control of an autonomous mobile robot.

As a second type of these techniques is solely traditional techniques, as in [181], the authors have

proposed the utilization of backstepping and nonlinear PID controller to achieve trajectory tracking

control for a two-wheeled mobile robot. The study [182] also introduced the application of backstepping

and second-order sliding mode for trajectory tracking of a car-like robot. Furthermore, as a third type,

there are approaches that integrate both artificial intelligence techniques and traditional techniques, as

exemplified in [183], where fuzzy logic and PID controller were suggested to address the precise

trajectory-tracking issue of two nonholonomic WMRs with a variety of disruptions and noises.

Additionally, [184] proposed the use of a deep neural network and model predictive controller

for trajectory-tracking of a car-like robot. In [185], a new intelligent controller (an adaptive neural

network implemented within a nonlinear control framework based on Lyapunov) was proposed to

enhance the accuracy of trajectory tracking in omnidirectional robots, particularly in the presence of

unstructured uncertainty. The primary objective of the research study [186] was to ascertain the PID-

controller coefficients through the implementation of reinforcement learning method in order to regulate

the angular velocity of the turning motion of the two wheels of DDWMR for the purpose of trajectory

tracking. The study by [187] introduced the application of a deep reinforcement learning method to

adjust the PID controller gain parameters combined with fuzzy control. This approach aimed to improve

the trajectory tracking performance of a wheeled mobile robot (WMR). In the study [188], researchers

devised an advanced control methodology for trajectory-tracking tasks of an omnidirectional mobile

robot. This methodology involved the use of an intelligent Proportional Integral Derivative (PID) neural

network, and the weights of the controller were tuned using the Particle Swarm Optimization (PSO)

algorithm. The research [189] introduced a novel approach for achieving path-tracking control of an

omnidirectional robot using model predictive control (MPC) integrated with an adaptive neural-fuzzy

inference system. The study [190] introduced a fuzzy adaptive sliding mode controller designed for an

electrically driven WMR. The controller's purpose was to achieve trajectory tracking in an environment

of uncertainties and disruptions. In the study conducted by [191], a novel fuzzy adaptive PID control

approach was introduced. This method was specifically designed for the purpose of achieving trajectory

tracking control in an eight-mecanum-wheeled omnidirectional mobile robot.

65

CHAPTER 2. METHODOLOGY

2.1. The Problems of Machine Learning

Machine learning systems, in nearly all practical implementations, are designed for estimation of

functional relationships between input features and desired outputs. Neural networks, for instance, serve

as powerful tools for modeling such relationships, enabling the discovery of mappings between feature

spaces, However, these relationships are always represented as computational black box. The resultant

functional relationship can be utilized for purposes such as classification, modeling, prediction, and so

forth. However, a precise mathematical formulation of this function cannot be inferred.

An unknown function refers to a collection of computational approaches that convert a vector 𝒙

in some input space 𝐗 into a vector 𝒚 in some output space 𝐘. It is characterized by the absence of a

mathematical statement 𝒚 = 𝑓(𝒙) to describe the relationship between the two vectors. The unknown

function that relates the input vector 𝒙 to the output vector 𝒚 is denoted as

 𝒚 = 𝜓(𝒙). (2.1)

Machine learning refers to the computational execution of a procedure aimed at finding an

unknown function using computer systems. In order to effectively utilize machine learning techniques

to address a variety of problems, these problems must be conceptualized as tasks aimed at inferring an

unknown function

 𝒚 = 𝜂(𝐱, 𝐪), (2.2)

where 𝐪 signifies the vector comprising the system's requisite parameters, 𝐪 ∈ ℝ𝑚𝑞 , and 𝜂 is a function

that equals or approximated to 𝜓 based on a specific criterion.

There exist two distinct methodologies for searching an unknown function: parametric and

structural-parametric techniques.

The parametric approach involves the investigator defining the functional template of the

unknown function, including its structural assumptions, while designating certain parameters, for

example, 𝜂 in Eq. (2.2) is specified. The machine learning task accordingly becomes one of parameter

estimation—seeking the parameter vector 𝐪 that satisfies the chosen criterion. In the context of unknown

function approximation, neural networks belong to the class of parametric approaches. Their

computational transformations are governed by a predefined functional structure, with performance

dictated by the optimization of numerous internal parameters.

The structural-parametric methodology extends beyond conventional parametric modeling by

treating not only the parameters but also the functional form itself of the unknown function. It seeks to

determine the most suitable functional structure (𝜂) and concurrently identify the desired values of its

66

internal parameters (𝐪). Currently, the structural-parametric approach is being effectively employed

through the utilization of symbolic regression techniques. These methodologies establish a foundational

repertoire of elementary functions and associated structural encoding rules. Subsequently, employing a

genetic algorithm, the system searches for the desired symbolic structure of the target function while

concurrently tuning its numerical parameters within the predefined code space. Symbolic regression

techniques exhibit variations in coding rules as well as the crossover and mutation processes employed

by the genetic algorithm on the codes.

Machine learning's end goal is to seek out an unknown function, and this search must be guided

by some sort of evaluative criterion. Machine learning problems are often broadly classified as either

unsupervised or supervised, contingent upon the nature of the evaluative criterion being used. It's

essential to keep in mind that the many different kinds of machine learning that exist today can be placed

in one of these classes depending on the evaluation criteria used to classify them. An evaluation criterion

is given in some problems as follows:

 𝜚(𝜂(𝐱, 𝐪)): 𝐗 × ℝ𝑚𝑞 → ℝ1. (2.3)

2.1.1. Unsupervised machine learning

Unsupervised machine learning involves the find of a function (3.2) that satisfies a specified

estimate (2.3), resulting in the fulfilment of the subsequent inequation

‖𝑓∗ − 𝜁(𝜂(𝐱, 𝐪))‖ ≤ 𝛿, (2.4)

where 𝑓∗ represents a value that meets the estimate requirements, and 𝛿 represents a positive value of

tiny magnitude.

2.1.2. Supervised machine learning

A second method for assessing the target function involves concocting a training set. A training

set refers to a set of potential examples that are utilized in the process of learning to pinpoint an unknown

function.

Two sets of dimensions that are compatible with each other

 (𝐗̃, 𝐘̃) (2.5)

67

are known as a training set in a case

 𝐗̃ = {𝒙1, … , 𝒙𝑁} ⊆ 𝐗, (2.6)

 𝐘̃ = {𝒚1 = 𝜓(𝒙1),… , 𝒚𝑁 = 𝜓(𝒙𝑁)} ⊆ 𝐘, (2.7)

and it can be postulated that there exists a mapping of one-to-one between the elements of set 𝐗 and set

𝐘.

Supervised machine learning includes the creation of a training set (2.5) and the identification of

a function (2.2) where if the overall error for said training set is smaller than the specified value 𝜺

 ∑ ‖𝒚𝑖 − 𝜂(𝒙𝑖, 𝐪)‖ ≤ 𝜺,𝑁
𝑖=1 (2.8)

then for every value of 𝒙∗ that is not contained in said training set 𝒙∗ ∉ 𝐗̃, the next inequation is satisfied

 ‖𝒚∗ − 𝜂(𝒙∗, 𝐪)‖ ≤ 𝛿, (2.9)

where 𝒚∗ = 𝜓(𝒙∗).

Machine learning control constitutes a paradigm wherein machine learning methods are

employed to autonomously discover an unknown control function. The discipline of control

encompasses several challenging problems, such as the optimization of control in different formulations,

such as Pontryagin or Bellman formulations. Another significant problem is the control general

synthesis, which involves designing a feedback function based on the object's state [192].

2.2. The Problem of Optimal Control

The optimal control issue holds a prominent position within the domain of control theory. The

aforementioned issue has historically garnered the attention of mathematicians, leading to the integration

of control theory as a distinct area within the study of mathematics.

The problem of optimal control involves the characterization of the control object through an

ordinary differential equations system, wherein the right part of these equations contains an unknown

control vector. The provided information includes the initial and terminal conditions, as well as the

integral quality functional. The finding of the control as a time function is an imperative task in this

problem. By substituting the given function into the right part of the differential equations, a non-

stationary differential equations system is obtained, where the right part is a known function of time.

The non-stationary differential equations system yields a specific solution that satisfies the initial

68

conditions and eventually arrives at terminal conditions. In this scenario, the value of the quality

functional is satisfied.

Several reasons represent the rationale for presenting the problem of optimal control in this

context here. Initially, in the context of the problem of optimal control, it is imperative to identify a

function for one variable at least. Consequently, the utilization of machine learning techniques becomes

viable in the pursuit of such a function. Furthermore, once the optimal control problem has been solved

and the control as a function of time has been determined for the hands-on execution of the identified

optimal solution, an effective stabilization system must be designed to constrain the motion of the

controlled agent to the desired optimal trajectory. This gives rise to the challenge of identifying an

additional control function, thereby necessitating a renewed focus on the machine learning problem.

Ultimately, the problem of achieving optimal control is able to be handled subsequent to the solution of

the stabilization problem of the object concerning the point of equilibrium inside the state space.

Give the following mathematical problem statement for the problem of optimal control. The

control object is represented by a mathematical model in the form of an ordinary differential equations

system

 𝒙̇ = 𝒇(𝒙, 𝒖), (2.10)

with 𝒙 being a vector representing the state space, 𝒙 ∈ ℝ𝑛, 𝒖 denotes a vector representing the control,

𝒖 ∈ 𝑼 ∈ ℝ𝑚, and 𝑼 representing a compact set, 𝑚 ≤ 𝑛.

The initial conditions for the system model (2.10) are provided

 𝒙(0) = 𝒙0. (2.11)

Terminal conditions are determined by

 𝒙(𝑡𝑓) = 𝒙𝑓, (2.12)

where 𝑡𝑓 represents a terminal time for this system, which is an unspecified value that is assigned by the

fulfillment of the terminal conditions.

The quality criterion can be expressed through the utilization of an integral and/or terminal

functional

 𝐽 = 𝐹 (𝒙(𝑡𝑓)) + ∫ 𝒇0(𝒙(𝑡), 𝒖(𝑡))𝑑𝑡 →
𝑡𝑓
0

 min. (2.13)

It is essential to ascertain the obtained control should be as a time function

 𝒖 = 𝒉(𝑡), (2.14)

69

where 𝒉(𝑡) ∈ 𝑼 for 𝑡 ∈ [0: 𝑡𝑓].

The control function 𝒉(𝑡) that is obtained is commonly referred to as a program control. When

the control function (2.14) is replaced into the right-hand side of the system (2.10), the resulting

differential equations system appears as follows

 𝒙̇ = 𝒇(𝒙, 𝒉(𝑡)). (2.15)

The system (2.10) possesses a partial solution 𝒙(𝑡, 𝒙0) that satisfies the initial conditions (2.11)

and leads to the attainment of the terminal conditions (2.12), while the quality criterion value (2.13) is

satisfied.

Therefore, under the provided mathematical formulation of the problem of optimal control, the

task entails finding the optimal function of control (2.14). This implies that the aforementioned problem

can be classified as a problem of machine learning control and is capable of being solved through the

utilization of machine learning techniques.

2.3. The Problem of Control Synthesis

The problem of control synthesis holds significant prominence within the field of control theory.

Unlike the earlier optimal control problem, this formulation possesses a more application-oriented

nature, as the control is synthesized as a state-dependent function. This results in a feedback control

structure that dynamically responds to sensor-derived state information. This unit assures that the object

attains the control objective, while the value of the quality criterion of this control for any object's current

state is satisfactory. The problem of control synthesis is characterized by this particular feature. The

solution of one problem of control synthesis can be considered tantamount to the solution of an infinite

collection of problems of optimal control. Once the control synthesis problem has been solved, the

derived control architecture inherently enables the solution of the optimal control problem across all

feasible states of the system.

In the nascent phase of modern control theory, particularly during the 1960s, R. Bellman engaged

in a rigorous mathematical examination of optimal control problems, which culminated in the formal

articulation of the control synthesis problem and the derivation of the Bellman equation—a defining

achievement in dynamic systems theory [193]. The stated equation represents a partial differential

equation. The equation's solution is represented by the Bellman function, which takes the control vector

as one of its arguments. The finding of this control that optimizes the Bellman function represents a

70

𝐽1 = ∫…∫(𝐹 (𝒙(𝑡𝑓 , 𝒙
0)) + ∫ 𝒇0(𝒙(𝑡, 𝒙0), 𝒖(𝑡))𝑑𝑡

𝑡𝑓

0

)𝑑𝑥1
0 …𝑑𝑥𝑛

0 → min
𝒖∈𝑼

,

viable solution to the problem of control synthesis. It is essential to acknowledge the following: Partial

differential equations exhibit a much higher level of complexity compared to ordinary differential

equations, and in the majority of cases, they do not possess a universal solution at all. Bellman suggested

a numerical approach to finding a solution using dynamic programming [194-195]. Using this approach

on a vast array of numerical values representing state vectors generates a significant quantity of control

vectors.

Many control synthesis problems had been effectively solved during that specific period via the

Pontryagin maximum principle [196]. The result was favorable, as the analysis primarily focused on

simple second-order models of the control objects. The problem of time-optimal has been successfully

solved, resulting in the derivation of comprehensive solutions for the differential equations governing

the control object as well as conjugate variables. Subsequently, the switching points of the control have

been determined based on the derived solutions obtained from various initial conditions. It is evident

that this approach is not universally applicable. However, when employing this approach, Boltyanskii

[197] performed the formulation of the control general synthesis problem, which remains a pressing

mathematical problem to this day since its mathematical formulation lacks comprehensive analytical and

numerical techniques for solution at present.

Let us contemplate a traditional formulation of the problem of control synthesis. The differential

equations system is characterized by a control object having a particular form (2.10). The

initial conditions domain within the state space can be given by

 𝐗0 ⊆ ℝ𝑛. (2.16)

The presence of the domain for the initial condition constitutes a fundamental characteristic of

the general synthesis of the control problem. Boltyanskii first established the initial conditions domain

as the entire space of states 𝐗0 ⊆ ℝ𝑛, as he searched for tackling this topic by analytical means. In this

particular scenario, we adopt a numerical approach to address the problem at hand. Hence, the domain

𝐗0 can be considered a constrained subset within the state space.

The terminal conditions (2.12) are provided.

The quality criterion is provided

 𝐗0

(2.17)

71

where 𝒙0 = [𝑥1
0 …𝑥𝑛

0]𝑇 ∈ 𝐗0, the value of 𝑡𝑓 is not explicitly provided, but rather is calculated by

fulfilling the terminal conditions (2.12). It is vital to note that the value of 𝑡𝑓 can change depending on

the change of initial conditions.

It is crucial for pinpointing of a control function in terms of the vector of state space

 𝒖 = 𝒈(𝒙) ∈ 𝑼, 𝒈(𝒙) ∶ ℝ𝑛 → ℝ𝑚. (2.18)

If the control function that has been acquired is included into the right-hand side of the

mathematical equation (3.10), then the resulting system of stationary differential equations

 𝒙̇ = 𝒇(𝒙,𝒈(𝒙)), (2.19)

will possess a partial solution for any initial condition within the initial domain (2.16).

 𝒙(0) = 𝒙0 ∈ 𝐗0, (2.20)

which fulfills the terminal condition (2.12) and the quality criterion value (2.17) is satisfied. Therefore,

the task of addressing the synthesis problem can be seen as the search for the control function (2.18),

which coincides with the principles of machine learning control.

In order to computationally solve the problem of control synthesis (2.10), (2.16), (2.12), (2.17),

the domain of initial condition (2.16) is substituted with a limited set of initial conditions

 𝑿0 = {𝒙0,1, … , 𝒙0,𝐋}. (2.21)

and the quality criterion multiple integral (2.17) is substituted with the corresponding summation for all

of the initial conditions

(2.22)

where 𝑡𝑓,𝑖 represents the time at which the terminal condition is reached, starting from the initial

one 𝒙0,𝑖, 𝑖 = 1, … , 𝐋.

The equation provided determines the time at which the terminal condition gets achieved during

the search procedure is

 𝑡𝑓,𝑖 = {
𝑡, if 𝑡 < 𝑡+ and ‖𝒙𝑓 − 𝒙‖ ≤ 𝜀

 𝑡+ , otherwise
 (2.23)

𝐽2 = ∑(𝐹 (𝒙(𝑡𝑓,𝑖, 𝒙
0,𝑖)) + ∫ 𝒇0 (𝒙(𝑡, 𝒙0,𝑖), 𝒖(𝑡)) 𝑑𝑡

𝑡𝑓,𝑖

0

)

𝐋

𝑖=1

,

72

where 𝜀 represents the degree of accuracy required to achieve the terminal condition, while 𝑡+ denotes

the maximum time allowed for obtaining this condition. It is crucial to note that both 𝜀 and 𝑡+ are positive

numerical values.

There is a method for solving the synthesis problem, based on the Bellman equation

(2.24)

In case of the Bellman function 𝜇(𝒙) exists, the control function can be obtained by solving the

Bellman equation (2.24)

 (2.25)

In order to address the synthesis problem utilizing the Bellman equation through machine

learning, it needs to employ an approximation technique for the Bellman function. In order to implement

the symbolic regression technique for the Bellman function, it is necessary to modify the functional to

incorporate the various initial as well as terminal conditions

(2.26)

where 𝑝1 represents a weight coefficient, and 𝒙(𝑡, 𝒙0,𝐋) denotes the system partial solution with control

(2.25) beginning with the initial condition 𝒙0,𝑗.

2.4. The Problem of Synthesized Optimal Control (The Problem Statement of This Study)

In an effective scenario, our ongoing objective remains the pursuit of developing systems that

exhibit influential performance concerning the specified criterion. In this particular scenario, the

problem of optimal control is addressed as a preliminary step. However, it should be noted that the

solution to this problem cannot be implemented directly on a control object's board processor. This is

because the optimal control function obtained is dependent on time, and its implementation would result

in an open-loop control system. Consequently, Any temporal misalignment between the motion of the

−
𝑑𝜇(𝒙)

𝑑𝑡
= min

𝒖∈𝑼
{(

𝜕𝜇(𝒙)

𝜕𝒙
)

𝑇

𝒇(𝒙, 𝒖) +
𝜕𝐹(𝒙)

𝜕𝒙
𝒇(𝒙, 𝒖) + 𝑓0(𝒙, 𝒖)}.

𝒖 = 𝑎𝑟𝑔𝑚𝑖𝑛 {(
𝜕𝜇(𝒙)

𝜕𝒙
)

𝑇

𝒇(𝒙, 𝒖) +
𝜕𝐹(𝒙)

𝜕𝒙
𝒇(𝒙, 𝒖) + 𝑓0(𝒙, 𝒖)}.

𝐽𝑠 = ∑(∫ 𝑓0 (𝒙(𝑡, 𝒙0,𝑗), 𝒖(𝑡)) 𝑑𝑡 + 𝑝1√∑(𝑥𝑖
𝑓
− 𝑥𝑖(𝑡𝑓,𝑖, 𝒙0,𝑗))2

𝑛

𝑖=1

𝑡𝑓,𝑗

0

)

𝐋

𝑗=1

→ min
𝜇(𝒙)

,

73

controlled object and the application of control actions may result in the failure to achieve the desired

control objective, leading to a deviation between the actual performance and the theoretically computed

value of the quality criterion. To counteract deviations arising between the real-time trajectory of the

system and its computed optimal counterpart, practical control architectures incorporate feedback

stabilization mechanisms designed to maintain adherence to the optimal reference trajectory.

However, as a result of the implementation of the system of stabilization, we once again

encounter a loss of optimality. Several pieces of evidence suggest this assertion:

1. The inclusion of a stabilization system leads to the transformation of the system’s

behavior and its mathematical representation, which may result in a control strategy that

no longer satisfies optimality conditions for the updated dynamics.

2. The deviation of the system state from the trajectory may be characterized by temporal

misalignment or spatial displacement; both forms yielding motion patterns that no longer

satisfy the criteria for optimality.

3. The capacity of the stabilization system to restore the system state to the reference

trajectory necessitates the reservation of sufficient control resources. Optimal control

strategies should therefore incorporate this allocation, yet such accounting is routinely

absent from standard computational frameworks.

4. Lastly, it should be noted that the object's motion in close proximity to the programmed

trajectory can show notable deviations from the desired trajectory concerning the

functional value.

Based on the suggested approach, it is necessary to first establish the stability of the control object

within the state space before addressing the problem of optimal control. Hence, this approach is referred

to as synthesized optimal control. The foundational premise is the derivation of a feedback control

function that ensures the presence of a stable equilibrium point for the closed-loop system of differential

equations. Moreover, the equilibrium’s position is rendered controllable through a set of design

parameters internal to the controller.

Contemplate About the Statement of the Problem of Synthesized Optimal Control:

Assuming the control object mathematical model, expressed as differential equations system

 𝒙̇ = 𝒇(𝒙, 𝒖), (2.27)

with 𝒙 being a vector representing the state space, 𝒙 ∈ ℝ𝑛, 𝒖 denotes a vector representing the control,

𝒖 ∈ 𝑼 ∈ ℝ𝑚, and 𝑼 representing a compact set, 𝑚 ≤ 𝑛.

Provided the initial condition

74

 𝒙(0) = 𝒙0. (2.28)

Terminal conditions is determined by

 𝒙(𝑡𝑓) = 𝒙𝑓, (2.29)

where 𝑡𝑓 represents the time at which the terminal condition is reached, 𝑡𝑓 is not explicitly provided but

is bounded

 𝑡𝑓 ≤ 𝑡+, (2.30)

and 𝑡+ is provided.

Given the quality criterion

 (2.31)

It is crucial to pinpoint a control that matches to the subsequent form:

 𝒖 = 𝒈(𝒙∗(𝑡) − 𝒙) ∈ 𝑼, (2.32)

where 𝒙∗(𝑡) is a time function.

The function

 𝒈(𝒙∗(𝑡) − 𝒙):ℝ𝑛 → ℝ𝑚, (2.33)

is sought in a manner that exhibits a property of feasibility [198], i.e. at each given time 𝑡 = 𝑡𝑘 ≤ 𝑡𝑓, the

system

 𝒙̇ = 𝒇(𝒙,𝒈(𝒙∗(𝑡𝑘) − 𝒙)), (2.34)

possesses a stable point of equilibrium

 𝒙̃(𝒙∗(𝑡𝑘)) ∈ ℝ𝑛, (2.35)

 𝒇(𝒙̃, 𝒈(𝒙∗(𝑡𝑘) − 𝒙̃)) = 0, (2.36)

where

𝐽𝑠𝑜1 = ∫ 𝑓0(𝒙, 𝒖)𝑑𝑡 → min
𝒖∈𝑼

𝑡𝑓

0

.

det(𝐀 − 𝜆𝐄) = 𝜆𝑛 + 𝑎𝑛−1𝜆
𝑛−1 + ⋯+ 𝑎1𝜆 + 𝑎0 = ∏(𝜆 − 𝜆𝑗)

𝑛

𝑗=1

= 0, (2.37)

75

 𝜆𝑗 = 𝛼𝑗 + 𝑖𝛽𝑗, 𝛼𝑗 < 0, 𝑗 = 1,… , 𝑛, (2.38)

𝑖 = √−1,

 (2.39)

The function (2.32) serves as a stabilization system for the object (2.27). Consequently, the

object achieves stability in relation to a certain point inside the state space 𝒙̃ (2.36). The positioning of

this point of stabilization is contingent upon the parameters 𝒙∗. The parameters 𝒙∗ are able to serve as

the direct coordinates of the stabilization point inside the state space. Alternatively, in the general

situation, 𝒙∗ can influence the positioning of a point of stabilization 𝒙̃ (𝒙∗) within the state space.

The solution to the problem of synthesized optimal control and the finding of the control function

(2.32) is considered to be performed algorithmically in two steps, which are treated as sequential

activities.

2.4.1. First Step: Synthesis of Stabilization System

In the first step of stabilization, the problem of control synthesis is addressed in order to establish

the presence of a stable point of equilibrium inside the state space. The problem statement can be

addressed using numerical solutions utilizing machine learning approaches.

The control object mathematical model (2.27) is given.

The initial conditions set is provided by

 𝑿0 = {𝒙0,1, … , 𝒙0,𝐋}. (2.40)

The terminal position is provided. Any point in the state space has the potential to serve as the

terminal position, enabling the system to achieve stabilization at such a point. In the problem of optimal

control, the position of the terminal condition (2.29) cannot be the exact position of the mentioned

terminal position.

 𝒙(𝑡∗) = 𝒙∗ ∈ ℝ𝑛, (2.41)

where the value of 𝑡∗ is not provided, but bounded

 𝑡∗ = {
𝑡, if 𝑡 < 𝑡+ and ‖𝒙∗ − 𝒙(𝑡, 𝒙0)‖ ≤ 𝜀

 𝑡+, otherwise
 (2.42)

𝐀 =
𝜕𝒇(𝒙̃, 𝒈(𝒙∗(𝑡𝑘) − 𝒙̃))

𝜕𝒙
.

76

where 𝒙(𝑡, 𝒙0) is the system partial solution (2.27), and 𝜀 and 𝑡+ are provided positive numerical values.

It is crucial to pinpoint a control that matches to the subsequent form:

 𝒖 = 𝒈(𝒙∗ − 𝒙), (2.43)

that generally partial solution of the differential equations system

 𝒙̇ = 𝒇(𝒙,𝒈(𝒙∗ − 𝒙)), (2.44)

from whatever initial condition inside the specified area (2.40)

 𝒙0,𝑖 ∈ 𝐗0, 𝑖 = 1, … , 𝐋. (2.45)

will fulfil the terminal condition (2.41) by optimizing the value of the subsequent criterion:

(2.46)

where

 𝑡𝑖
∗ = {

𝑡, if 𝑡 < 𝑡1
+ and ‖𝒙∗ − 𝒙(𝑡, 𝒙0,𝑖)‖ ≤ 𝜀1

 𝑡1
+, otherwise

 (2.47)

 (2.48)

where 𝑝1 represents a weight coefficient, and 𝜀1 and 𝑡1
+ are provided positive numerical values.

2.4.2. Second Step: Solution of the Problem of Optimal Control

As a second step in synthesized optimal control, following the solution of the problem of control

synthesis (2.27), (2.40)–(2.48), the problem of optimal control (2.27)–(2.31) is addressed for the

mathematical formula (2.44). This entails the finding of a control function using the subsequent form:

 𝒙∗(𝑡) = 𝒉(𝑡), (2.49)

to minimize the specified criterion (2.31).

𝐽𝑠1 = ∑(𝑡𝑖
∗ + 𝑝1‖𝒙∗ − 𝒙(𝑡𝑖

∗, 𝒙0,𝑖)‖)

𝐋

𝑖=1

,

‖𝒙∗ − 𝒙(𝑡, 𝒙0,𝑖)‖ = √∑(𝒙∗ − 𝒙(𝑡, 𝒙0,𝑖))2

𝑛

𝑖=1

 ,

77

In the second step, it is essential to observe that the dimension of the sought function (2.49) is

equivalent to that of the state space. In the context of this specific scenario, it is possible to search the

function as a piecewise constant function

 𝒉(𝑡) = 𝒙∗,𝑖, 𝑖𝑓 (𝑖 − 1)∆ ≤ 𝑡 ≤ 𝑖∆, (2.50)

where 𝒙∗,𝑖 are obtained influential coordinates values of the point of equilibrium, 𝑖 = 1,… , 𝐾, and Δ is

a provided time interval,

 (2.51)

Therefore, per this methodology, the primary objective of synthesized optimal control is first to

guarantee the object's stability, which involves the emergence of an equilibrium point inside the phase

space. In the vicinity of the point of equilibrium, the phase trajectories exhibit a contraction property,

which plays a crucial role in determining the system's feasibility. The principal property of this

framework, relative to conventional optimal control paradigms, lies in its intrinsic capacity to synthesize

feedback-based control laws — thereby yielding closed-loop systems — as opposed to the open-loop

nature of most optimal control solutions derived under idealized assumptions.

To realize the target behavior, the control strategy must be computed numerically as part of the

stabilization synthesis process; once derived, these control expressions replace the original input terms

in the system’s differential equations. In a usual scenario, the control object functions within a dynamic

environment, necessitating the essential ability to compute the desired trajectory on board. The

utilization of synthesized optimal control methodology enables the achievement of this objective. The

stabilization synthesis problem is addressed during the design phase initially, yielding a parametric

control structure wherein the location of the equilibrium point — acting as a design variable — may be

precomputed or updated recursively in real time via onboard computation to ensure continued

performance optimality.

2.5. The General Methodology of Symbolic Regression

Symbolic regression techniques refer to a set of approaches utilized in machine learning tasks to

encode mathematical expressions. These techniques involve a range of algorithms that aim to identify

the most influential mathematical expressions within the space that contains these encoded codes (see

Figure 2.1).

𝐾 = ⌊
𝑡+

∆
⌋.

78

Figure 2.1. The overarching framework of symbolic regression approaches [192]

2.5.1. The Encoding Approach

The application of symbolic regression methodologies for encoding equations demands the prior

initialization with a symbolic primitive alphabet — a finite set encompassing elementary mathematical

functions and the independent variables of the target expression. The foundational methodology for the

bidirectional transformation between symbolic expressions and their encoded representations entails the

decomposition of the elementary function set into subsets based on the number of arguments they

require.

The number of input arguments accepted by a function dictates how elementary function sets

may be compositionally combined. The basic sets are as follows:

- The arguments set, or functions set without arguments

 𝑭𝟎 = {𝑓0,1 , … , 𝑓0,𝑟+𝑚𝑞+𝑣 } = {𝑥1, … , 𝑥𝑟 , q1, … , q𝑚𝑞
, 𝑒1, … , 𝑒𝑣 }, (2.52)

where 𝑥1, . . . , 𝑥𝑟 stand for the variables, q1, . . . , q𝑚𝑞
 stand for the parameters, 𝑒1, . . . , 𝑒𝑣 stand for the unit

elements for two-argument functions;

• The functions set that is characterized by one argument

 𝑭𝟏 = {𝑓1,1(𝑧) = 𝑧, 𝑓1,2(𝑧),… , 𝑓1,𝑤(𝑧)}, (2.53)

where 𝑓1,1(𝑧) stands for a common identity function, which is typically required for coding;

• The functions set that is characterized by two arguments

79

 𝑭𝟐 = {𝑓2,1(𝑧1, 𝑧2), … , 𝑓2,𝑛(𝑧1, 𝑧2)}. (2.54)

All two-argument functions must have the following features:

▪ commutative

 𝑓2,𝑖(𝑧1, 𝑧2) = 𝑓2,𝑖 (𝑧2, 𝑧1), 𝑖 = 1,… , 𝑛. (2.55)

▪ associative

 𝑓2,𝑖 (𝑧1 , 𝑓2,𝑖(𝑧2, 𝑧3)) = 𝑓2,𝑖(𝑓2,𝑖(𝑧1, 𝑧2), 𝑧3), (2.56)

▪ possess a unit element

 𝑓2,𝑖(𝑧, 𝑒𝑖) = 𝑓2,𝑖(𝑧𝑖, 𝑧) = 𝑧, (2.57)

where 𝑒𝑖 is a function's unit element, 𝑖 = 1, . . . , 𝑣.

In order for solving the problems of machine learning control and while finding unknown

functions, it becomes crucial to establish the principles governing the construction of mathematical

expressions using primary functions. One widely applicable method for composing mathematical

expressions using primary functions involves representing a series of primary functions in the form of a

composition of such functions nested within one another. To illustrate,

 𝑓𝑐1,𝑑1
𝑓𝑐2,𝑑2

𝑓𝑐3,𝑑3
= 𝑓𝑐1,𝑑1

∘ 𝑓𝑐2,𝑑2
∘ 𝑓𝑐3,𝑑3

= 𝑓𝑐1,𝑑1
(𝑓𝑐2,𝑑2

(𝑓𝑐3,𝑑3
(…))). (2.58)

It is essential to acknowledge that the representation utilized in symbolic regression techniques

corresponds entirely with the principles outlined in the Kolmogorov-Arnold theory regarding the

function's representation. According to this theory, if a function 𝑓 is multidimensional and continuous,

it can be expressed in the form of a finite composition consisting of continuous functions that involve a

single variable and an addition binary operation [192].

2.5.2. The Search Algorithm

The methodology of symbolic regression within machine learning involves the identification of

diverse functional architectures and optimization of their associated parameters concurrently for an

unknown function. This dual-objective search is predominantly executed via genetic algorithms, which

operate over a hybrid search space comprising symbolic structures and real-valued parameter vectors.

80

The genetic algorithm (Figure 2.2) has demonstrated its usefulness over a significant period of

time [199–201]. One notable characteristic of the genetic algorithm includes its capacity to function

inside a space of codes. The process of searching within the code space presents a challenge due to the

discrepancy between the metric employed in the code space and the metric used in the calculation of the

objective functional within the vector numeric space.

The genetic algorithm, due to its distinct structure, has the ability to conduct searches in non-

numerical spaces. The foundational distinction of genetic algorithms resides in their operator set —

comprising selection, crossover, and mutation — which operates independently of arithmetic or

analytical operations. This enables their applicability to non-numerical optimization domains, including

symbolic regression in machine learning and control systems.

Figure 2.2. The genetic algorithm mechanism [192]

2.6. The Small Variations Principle within the Basic Solution

The complexity of finding an effective solution within the space of encoded codes is attributed

to the classification of this work as a non-numerical optimization issue. The utilization of evolutionary

algorithms involving arithmetic operations is not possible for search spaces of this nature. The

predominant class of evolutionary algorithms employs arithmetic operators to manipulate candidate

solutions numerically. In contrast, genetic algorithms constitute a principal search paradigm over

symbolic or discrete-coded solution spaces, wherein all evolutionary operations are defined

independently of arithmetic computation, relying instead on stochastic, structure-preserving genetic

operators. Simultaneously, When symbolic regression employs sophisticated coding structures, the

81

derivation of appropriate crossover and mutation operators becomes a critical research problem. This

has led to the formalization of the small variations principle, which constrains evolutionary variations to

minimal changes from an established basic solution [202-203].

Contemplate a universal methodology for developing genetic algorithms to address non-

numerical optimization issues. The methodology is centered upon the small variations’ principle within

the basic solution.

The fundamental tenets underlying this technique can be summarized as follows. An initial

candidate solution, termed the basic solution, is often encoded to serve as a starting point for

optimization. In complex scenarios, it is adequate to select this candidate solution that approximates the

optimal outcome, as judged by the researcher, to reduce the time required for searching. Subsequently,

The set of small variations is constructed so that every one applied to the basic solution code generates

a structurally correct new solution. Furthermore, all such variations are represented in coded form for

algorithmic execution. In the context of symbolic search, a small variation functions as a transformation

operator applied to the code space of the basic solution, generating neighboring solutions through

minimal structural modifications. Consequently, in all instances, a small variation code represents an

integer vector that encompasses the essential information required to execute operations on the code in

accordance with the operator of the small variation. The proposed approach benefits significantly from

the existence of domain experts capable of constructing effective control systems through intuitive

reasoning or extensive experience; these designed effective systems can be purposed as a basic solution.

In order to elucidate the concept of variation, it is necessary to introduce a vector denoting the

extent of variation

 𝒲 = [𝓌1 …𝓌𝑑𝑒𝑝]𝑇 , (2.59)

where 𝑑𝑒𝑝 represents the dimension of the variation vector, specified by the information necessary to

execute a small variation. This dimension is contingent upon the symbolic regression technique

employed. As an illustration, let 𝓌1 represents an index denoting a small variation. Similarly, 𝓌2 and

𝓌𝑑𝑒𝑝−1 can be understood as indices indicating the element position in the code that define the variable

element. Finally, 𝓌𝑑𝑒𝑝 represents the updated value of the defined element.

For instance, a small variation to the Cartesian genetic programming (CGP) code involves

altering an element within the matrix. In order to implement a small variation, a three-element integer

vector will do the trick

 𝒲 = [𝓌1 𝓌2 𝓌3]
𝑇 , (2.60)

82

where the variables 𝓌1, 𝓌2, and 𝓌3 correspond to the column identifier, the row position within that

column, and the replacement value for the specified matrix element, respectively.

2.7. Variational Genetic Algorithm

The effective solution is sought using a genetic algorithm known as the variational genetic

algorithm (VarGA), which operates in the ordered sets space of vectors with small variations to find the

proper solution.

The genetic algorithm, in accordance with the small variations principle within the basic solution

(VarGA), consists of the following sequential steps:

1. Define the basic solution such that this solution is deemed, based on the researcher's

perspective, to be the most proximate to the potential effective solution.

 𝒃0 = [𝑏1
0 …𝑏𝑛

0]𝑇. (2.61)

2. Generate ordered multisets form consisting of variation vectors as the initial population

𝑾𝑖 = (𝒲𝑖,1, … ,𝒲𝑖,𝐷), 𝑖 = 1,… , 𝑙, (2.62)

where in this given context, 𝑙 represents the sequence of possible solutions within the

initial population, whereas 𝐷 is the total count of variation vectors present in a single set.

The initial population is formed by subjecting the basic solution to a set of small

variations, each yielding a candidate solution

 𝒃𝑖 = 𝑾𝑖 ∘ 𝒃0 = 𝒲𝑖,𝐷 ∘ 𝒲𝑖,𝐷−1 ∘∙∙∙∘ 𝒲𝑖,1 ∘ 𝒃0, (2.63)

where each potential solution inside the population is an element of the 𝐷-neighborhood

of the basic solution

 𝒃𝑖 ∈ 𝐷(𝒃0), 𝑖 = 1,… , 𝑙. (2.64)

3. Determine the objective function value for every possible solution within the population

𝐹𝑖 = 𝐽(𝛹(𝒃𝑖)), 𝑖 = 1, … , 𝑙, (2.65)

where 𝛹(𝒃) serves as a decoding function that translates a structured, non-numeric

representation into a computable real-valued function.

4. The evolution cycle is executed unless the condition of stop is met:

I. Choose two sets of variations vectors at random

𝑾𝜸 = (𝒲𝛾,1, … ,𝒲𝛾,𝐷), 𝑾𝝋 = (𝒲𝜑,1, … ,𝒲𝜑,𝐷). (2.66)

II. The crossover's activation probability is computed based on the objective

functional values of selected solution vectors

83

If the generator of random number yields a value that is smaller than 𝑃𝑟𝑐, then the

crossover process is executed.

Define the crossover point at random

𝑘𝑐 ∈ {1,… , 𝐷}. (2.68)

Following the crossover point, swap the variations' vectors in the chosen sets to

create two novel sets of variation vectors that signify two novel solutions from

the basic solution's 𝐷-neighborhood

 𝑾𝜸+𝟏 = (𝒲𝛾,1, … ,𝒲𝛾,𝑘 ,𝒲𝜑,𝑘+1 , … ,𝒲𝜑,𝐷),

 𝑾𝝋+𝟏 = (𝒲𝜑,1, … ,𝒲𝜑,𝑘,𝒲𝛾,𝑘+1 , … ,𝒲𝛾,𝐷). (2.69)

III. Execute the mutation process with a specified probability for the newly

discovered possible solutions as sets of variations' vectors (2.69). Pick a mutation

point at random, then create a new variations vector at that position.

IV. Each newly generated candidate solution undergoes evaluation using the

objective functional. Its fate — inclusion (via replacement of the worst population

member) or rejection — is determined by comparing its score against the current

population’s minimum performance threshold.

While built upon the small variations principle, this genetic algorithm preserves all canonical

operations of traditional genetic algorithms, including crossover executed via tail-segment swap

following a designated cut point. This algorithm can incorporate an additional loop to alter the basic

solution. After executing a certain number of iterations to generate novel possible solutions, it is essential

to substitute the basic solution with a possible solution chosen for the novel basis, which is determined

to be the best option in terms of functionality.

The dual representation of this strategy —comprising both a basic solution and a vector of

variations—may seem redundant but enables two critical improvements: (1) the basic solution enables

rapid convergence in complex, multimodal optimization landscapes; (2) operating on variation vectors

ensures that every evolved solution remains syntactically valid, thereby eliminating the risk of invalid

outputs and reducing computational overhead associated with validation.

The principle of small variations constitutes a refinement strategy that may be systematically

incorporated into any symbolic regression methodology to address the computational and structural

complexities inherent in control synthesis problems.

𝑃𝑟𝑐 = 𝑚𝑎𝑥 {
𝐹𝑗−

𝐹𝛾
,
𝐹𝑗−

𝐹𝜑
} (2.67)

84

2.8. Symbolic Regression Techniques

Multiple symbolic regression techniques are commonplace at the moment. So, here are a few

examples: Genetic Programming (GP) [204], analytic programming [205], Cartesian GP [206], network

operator method [207], parse-matrix evolution [208], and complete binary GP [209]. Unlike other

symbolic regression techniques, the small-variations principle constitutes a novel contribution

introduced exclusively within the network operator method, making it the sole representative of this

class of evolutionary search. The extension of the small-variation principle to pre-existing symbolic

regression paradigms gives rise to a class of augmented algorithms, each denoted by the prefix

“variational,” e.g., Variational Genetic Programming (VGP), Variational Cartesian GP. [203].

2.9. Synthesized Genetic Programming Technique (SGP)

The technique used in this study was created by the researcher. This technique is brand new,

being the first instance in which this technique has been applied to solve the problem of control synthesis.

Synthesized genetic programming (SGP) eschews the utilization of graphical representations for

expressing codes of expressions.

2.9.1. Encoding Approach Using Synthesized Genetic Programming

The next mathematical expression is an example of how to encode it manually by synthesized

genetic programming (SGP)

 𝑦 = exp(𝑞3𝑥2
2 + 𝑞1𝑥3

2) sin(𝑞2𝑥1) + cos(−𝑞3𝑥3 + 𝑥1). (2.70)

where q1, q2 and q3 exemplify the parameters, x1, x2 and x3 exemplify variables, and both exemplify

arguments of the mathematical expression.

The symbolic encoding of any mathematical expressions is rendered feasible through the

utilization of the following predefined sets:

• The arguments set

 𝑭𝟎 = {𝑓0,1 = 𝑥1, 𝑓0,2 = 𝑥2, 𝑓0,3 = 𝑥3, 𝑓0,4 = q1, 𝑓0,5 = q2, 𝑓0,6 = q3}. (2.71)

• The functions set that is characterized by one argument

85

 𝑭𝟏 = {𝑓1,1(𝑧) = 𝑧, 𝑓1,2(𝑧) = −𝑧, 𝑓1,3(𝑧) = 𝑧2, 𝑓1,4(𝑧) = sin(𝑧),

 𝑓1,5(𝑧) = cos(𝑧) , 𝑓1,6(𝑧) = exp(𝑧)}. (2.72)

• The functions set that is characterized by two arguments

 𝑭𝟐 = {𝑓2,1(𝑧1, 𝑧2) = 𝑧1 + 𝑧2, 𝑓2,2(𝑧1, 𝑧2) = 𝑧1𝑧2}. (2.73)

In general, the mathematical expression's SGP code is a six-row integer matrix. The first row of

the matrix denotes the indexes of functions belonging to the functions set that is characterized by two

arguments (2.73). The indexes of functions from the functions set that is characterized by one argument

(2.72) are represented by the second and fourth rows. The third and fifth rows represent the indexes of

arguments from the arguments set (2.71). The sixth row represents the priority, which will thereafter be

elucidated to elucidate its role. Within each column of the matrix, the second element (the one-argument

function) and the third element (the argument) represent the first argument for the first element of the

column (the two-argument function). Additionally, the fourth and fifth elements represent the second

argument for the first element of the column. The term of the pivot for each column means either the

first argument (the second and third elements) or the second argument (the fourth and fifth elements) of

this column. The pivot can be determined by assigning the priority (the sixth element in the column) of

1 or 2 to opt for the desired pivot of the column. Even Nevertheless, in most contexts, its number is 1. It

is important to acknowledge that the number of rows in the SGP matrix is contingent upon the number

of arguments employed in the available functions. Specifically, when utilizing a three-argument function

such as the if function, the number of rows is going to be 8. This is due to each argument being allocated

two elements in the column, combined with the first element representing the three-argument function

and the final element denoting the priority. After completing the calculation for each column, the result

of this column should be appended to the set of arguments (2.71), progressively increasing the total

number of arguments with each calculation.

In order to implement example (2.70) by this technique, let us get started by coding the expression

𝑞3𝑥2
2 as the first column of the SGP matrix. For the first element in this column, determine the index of

multiplication function in the functions set that is characterized by two arguments (2.73); it is the number

of 2, 𝑓2,2(𝑧1, 𝑧2) = 𝑧1𝑧2. For the second element, the function of the parameter 𝑞3 is the identity function,

𝑓1,1(𝑧) = 𝑧, from the functions set that is characterized by one argument (2.72); the index of this function

is 1. For the third element, the location of the parameter 𝑞3 in the arguments set (2.71) is 6. For the fourth

element, the variable 𝑥2 function is the square 𝑓1,3(𝑧) = 𝑧2, and its index is 3 in the set (2.72). For the

fifth element, the location of the variable 𝑥2 in the arguments set (2.71) is 2. The sixth element is the

priority, and its number is 1. As a result, the code of the expression 𝑞3𝑥2
2 that represents the first column

86

in the matrix is [2 1 6 3 2 1]T. After calculating this column, it will have been appended to the

arguments set (2.71) as the seventh element, denoted as (|𝑭𝟎| + 1 = 6 + 1 = 7). The following

expression 𝑞1𝑥3
2 will be the second column, which is the same idea as the first column, and its code is

[2 1 4 3 3 1]T. Consequently, it will be appended as the eighth element to the arguments set (2.71).

The third column will demonstrate the amalgamation of the preceding two columns, specifically

represented as 𝑞3𝑥2
2 + 𝑞1𝑥3

2. For the first element of the third column, the index of the addition function

in the set (2.73) is 1. The identity function will be the primary function in this case for the first column

(𝑞3𝑥2
2) and the second column (𝑞1𝑥3

2); therefore, the second and fourth elements will get number 1 as

the identity function in the set (2.72). The indexes of the first column (𝑞3𝑥2
2) and the second column

(𝑞1𝑥3
2) in the arguments set (2.71) are 7 and 8, respectively. So, the code of the third column is [1 1 7

1 8 1]T and will have been appended to the arguments set (2.71) as the ninth element.

The final code of the SGP matrix, for example (2.70), can be expressed as:

 𝑹𝑆𝐺𝑃 =

[

2
1
6

2
 1
4

1
1
7

2
1
5

2
2
6

1
1
11

2
6
9

 1
 5

 12
3
2
1

3
3
1

1
8
1

1
1
1

1
3
1

1
1
1

4
10
1

1

 13
 1]

. (2.74)

2.9.2. Search Algorithm for Synthesized Genetic Programming

Let us analyze the sequential procedures of the algorithm for SGP.

Initially, a set of codes is generated in a random manner, representing possible solutions

 𝑆 = {𝑹1, … , 𝑹𝑀}, (2.75)

where 𝑹 is the code matrix, 𝑹𝑖 = (𝒓𝑖,1, … , 𝒓𝑖,𝐻), 𝑖 = 1,… ,𝑀, 𝒓 is a placeholder for any column in the

matrix — each is a vector. So 𝒓1 is the first column-vector, 𝒓2 the second, and so on, 𝐻 tells you how

many such vectors (columns) there are.

For every possible structure associated with the mathematical expression, there is a random

generation of a parameters vector

 q𝑖
𝑗
= 𝝃(q𝑖

+ − q𝑖
−) + q𝑖

−, 𝑖 = 1,… ,𝑚𝑞 , 𝑗 = 1,… ,𝑀. (2.76)

87

where 𝝃 represents a random value drawn from the interval [0:1]; while q𝑖
+ and q𝑖

− denote the higher and

lower bounds of the parameters, respectively. Additionally, 𝑚𝑞 represents the dimensionality of the

parameters vector.

The evaluation of every possible solution is conducted through the utilization of an objective

function or a function of fitness

 𝑮 = {𝒈1 = 𝐽(𝑹1, 𝐪
1),… , 𝒈𝑀 = 𝐽(𝑹𝑀, 𝐪𝑀)}, (2.77)

where 𝐽(𝑹𝑖, 𝐪
𝑖) represents an objective function, and 𝐪𝑖 represents a parameters vector, 𝑖 = 1,… ,𝑀.

In the context of the problem of synthesis, the objective function is represented by the functional

(2.46). In order to determine the objective function value, the formulated code of the control function,

in addition to the parameter vector, must be entered into the control object model (2.27). Subsequently,

the system (2.44) is subjected to integration, followed by the calculation of the functional value (2.46).

The best solution 𝑅𝑖− is specified

 𝒈𝑖− = 𝑚𝑖𝑛{𝒈1, … , 𝒈𝑀}. (2.78)

For the operation of crossover, random two possible solutions (𝑹𝛾, 𝐪
𝛾) and (𝑹𝜑 , 𝐪𝜑) are chosen,

𝛾, 𝜑 ∈ {1,… ,𝑀}.

A probability of executing the operation of crossover is determined

 (2.79)

A random value 𝝃 is produced, generally distributed between 0 and 1. If this value is below 𝑃𝑐,

the operation of crossover is executed.

Two crossover operation points are selected at random

 𝑘1 ∈ {1, … , 𝐻}, 𝑘2 ∈ {1,… ,𝑚𝑞}, (2.80)

the first point pertains to the structural portion, while the other one pertains to the parametric portion.

The application of a crossover operation yields a total of four novel possible solutions

𝐪𝑀+1 = [q1
𝛾
, … , q𝑘2

𝛾
, q𝑘2+1

𝜑
, … , q𝑚𝑞

𝜑
]𝑇,

𝑹𝑀+1 = (𝒓𝛾,1, … , 𝒓𝛾,𝑘1 , 𝒓𝜑,𝑘2+1 , … , 𝒓𝜑,𝐻),

𝐪𝑀+2 = [q1
𝜑
, … , q𝑘2

𝜑
, q𝑘2+1

𝛾
, … , q𝑚𝑞

𝛾
]𝑇,

𝑹𝑀+2 = (𝒓𝜑,1, … , 𝒓𝜑,𝑘1 , 𝒓𝛾,𝑘2+1 , … , 𝒓𝛾,𝐻),

𝑃𝑐 = max {
𝒈𝑖 −

𝒈𝛾
,
𝒈𝑖 −

𝒈𝜑
}.

88

𝐪𝑀+3 = [q1
𝛾
, … , q𝑘2

𝛾
, q𝑘2+1

𝜑
, … , q𝑚𝑞

𝜑
]𝑇,

𝑹𝑀+3 = 𝑹𝛾,

𝐪𝑀+4 = [q1
𝜑
, … , q𝑘2

𝜑
, q𝑘2+1

𝛾
, … , q𝑚𝑞

𝛾
]𝑇,

 𝑹𝑀+4 = 𝑹𝜑. (2.81)

Four offspring are generated: two resulting from the simultaneous recombination of structural

and parametric elements, and two from the recombination of parametric elements only, with structural

components held constant.

Following the crossover, a subsequent mutation operation is executed with a certain

probability 𝑃𝜇. A random value 𝝃 is produced, generally distributed between 0 and 1. If this value is

fewer than 𝑃𝜇, the mutation operation is implemented.

The selection of mutation points is conducted with regard to both structural and parametric

portions

 𝜇1 ∈ {1,… ,𝐻}, 𝜇2 ∈ {1,… ,𝑚𝑞}, (2.82)

New values at 𝜇1 and 𝜇2 points are being generated

 𝑟𝑒1
𝑀+1,𝜇1 ∈ |𝑭𝟐|,

 𝑟𝑒2
𝑀+1,𝜇1 and 𝑟𝑒4

𝑀+1,𝜇1 ∈ |𝑭𝟏|,

 𝑟𝑒3
𝑀+1,𝜇1 and 𝑟𝑒5

𝑀+1,𝜇1 ∈ |𝑭𝟎 + 𝜇1 − 1|,

 q𝜇2
𝑀+1 = 𝝃(q𝜇2

+ − q𝜇2
−) + q𝜇2

− . (2.83)

where 𝑟𝑒 represents any element in the column of the code matrix, for instance, 𝑟𝑒1 is the first element

in the column, 𝑭𝟎 represents the arguments set, 𝑭𝟏 represents the functions set that is characterized by

one argument, 𝑭𝟐 represents the functions set that is characterized by two arguments.

Afterwards, the first novel possible solution gets estimated based on the presented criterion

 𝑓𝑀+1 = 𝐽(𝑹𝑀+1, 𝐪
𝑀+1). (2.84)

Following that, the worst solution within the population is identified

 𝑓𝑗+ = max {𝑓1, … , 𝑓𝑀}. (2.85)

89

If the first novel solution exhibits better results compared to the worst solution within the

population

 𝑓𝑀+1 < 𝑓𝑗+ , (2.86)

then, the first novel solution is substituted with the worst solution within the population

 𝐪𝑗+
← 𝐪𝑀+1,

 𝑹𝑗+ ← 𝑹𝑀+1. (2.87)

The previously mentioned actions (5.84)–(5.87), are iteratively performed for other

novel possible solutions (𝑹𝑀+2, 𝐪
𝑀+2), (𝑹𝑀+3, 𝐪

𝑀+3) and (𝑹𝑀+4, 𝐪
𝑀+4).

2.10. Variational Synthesized Genetic Programming (VSGP)

Mirroring the encoding scheme of Cartesian GP, this technique employs a minimalistic a triplet

of integers vector to typically identify each applied small variation

 𝒲 = [𝓌1 𝓌2 𝓌3]
𝑇 , (2.88)

where the variables 𝓌1, 𝓌2, and 𝓌3 correspond to the column identifier, the row position within that

column, and the replacement value for the specified matrix element, respectively. If 𝓌2 equals 1, the

subsequent number (𝓌3) must either be zero or modified based on the functions set that is characterized

by two arguments (2.73). If 𝓌2 is equal to either 2 or 4, then 𝓌3 will be modified to either zero or

selected from the functions set that is characterized by one argument (2.72). If 𝓌2 is equal to either 3 or

5, then 𝓌3 can either be set to zero or can only be determined by the combination of the number of

arguments (2.71) and the number of columns minus one. Certain conditions dictate the implementation

of small variations to the SGP matrix based on the pivot and priority. These requirements can be

elucidated by implementing the following variations to the matrix (2.74):

𝒲1 = [3 6 2]𝑇 ,
𝒲2 = [5 2 0]𝑇 ,
𝒲3 = [4 1 1]𝑇 ,

 𝒲4 = [6 5 0]𝑇 , (2.89)

𝒲5 = [3 1 0]𝑇 ,
𝒲6 = [8 2 3]𝑇 ,
𝒲7 = [6 6 2]𝑇 ,

The updated matrix of the SGP will look like

90

 𝒲1 ∘ 𝒲2 ∘ 𝒲3 ∘ 𝒲4 ∘ 𝒲5 ∘ 𝒲6 ∘ 𝒲7 ∘ 𝑅𝑆𝐺𝑃 =

[

2
1
6

2
 1
4

𝟎
1
7

𝟏
1
5

2
2
6

1
1
11

2
6
9

 1
 𝟑

 12
3
2
1

3
3
1

1
8
𝟐

1
1
1

1
3
1

1
𝟎
1

4
10
1

1

 13
 1]

. (2.90)

The first variation 𝒲1 has changed the third column's priority (the 6th element) from 1 to 2.

Consequently, it has changed the pivot from the first argument (the 2nd and 3rd elements) to the second

argument (the 4th and 5th elements) of this column. It is worth noting that the second variation 𝒲2 did

not affect the 5th column since it is not possible to alter any element of the pivot to zero in each column

of the matrix, where the pivot of the 5th column is the first argument (the 2nd and 3rd elements) because

of the number of the priority is 1 in this column. In contrast, the fourth variation 𝒲4 can be accomplished

since the 5th element of the 6th column is not an element of the pivot in this column, where the

expression of this column was −𝑞3𝑥3 + 𝑥1, the variable 𝑥1 has been neglected. In this case, the unit

element of the function is used as the second argument where the unit element of the addition function

is 0 and for the multiplication function is 1, so the expression has become (−𝑞3𝑥3 + 0). Interestingly,

the fifth variation 𝒲5 has fulfilled a primary change, where the expression of this column was 𝑞3𝑥2
2 +

𝑞1𝑥3
2. This variation cancelled the addition function (changed the first element to 0). The number of

priority turned out to be 2 as a result of the first variation, so the new expression of this column has got

the expression of the pivot (the 2nd argument), whose code is [1 8]T that represents 𝑞1𝑥3
2 (the identity

function and the expression of the second column). The seventh variation 𝒲7 was not accomplished

since the fourth variation has changed the 5th element in the 6th column to 0, and changing the priority

means changing the pivot of the column, and the pivot element is not allowed to be zero. Eventually, the

third and sixth variations 𝒲3 and 𝒲6 can be performed directly.

This new matrix can be expressed mathematically as

 𝑦 = exp(𝑞1𝑥3
2) sin(𝑞2 + 𝑥1) + (−𝑞3𝑥3)

2. (2.91)

As mentioned above, the analysis highlights the crucial importance of the priority, which may be

summed up as follows: the main task of the priority is to pick the pivot for each column. Moreover, it

effectively avoids zero values in the pivot elements due to small variations. Additionally, it has the

likelihood to decrease the length of mathematical expressions.

The application of steps of variational genetic algorithm to synthesized genetic programming

technique is as mentioned in section 2.7.

91

2.11. The synthesized genetic programming as a distinct and modern technique

The Synthesized Genetic Programming technique (SGP) is regarded as a distinct technology

separate from Genetic Programming (GP) and Cartesian Genetic Programming (CGP). This

differentiation arises from divergences in encoding and decoding processes, code type, and the approach

to implementing the principle of small variations within the basic solution. The significant distinctions

among these three techniques can be exemplified as follows:

The next mathematical expression is an example of how to encode it manually by three methods

of symbolic regression

 𝑧 = sin (cos(exp(𝑞1𝑥1 + 𝑞2𝑥2
2))). (2.92)

To encode this mathematical equation, the following fundamental sets need to be used:

• The arguments set

 𝑭𝟎 = {𝑓0,1 = 𝑥1, 𝑓0,2 = 𝑥2, 𝑓0,3 = q1, 𝑓0,4 = q2, 𝑓0,5 = 0, 𝑓0,6 = 1}; (2.93)

• The functions set that is characterized by one argument

 𝑭𝟏 = {𝑓1,1(𝑦) = 𝑦, 𝑓1,2(𝑦) = 𝑦2, 𝑓1,3(𝑦) = sin(𝑦),

 𝑓1,4(𝑦) = cos(𝑦) , 𝑓1,5(𝑦) = exp(𝑦)}; (2.94)

• The functions set that is characterized by two arguments

 𝑭𝟐 = {𝑓2,1(𝑦1, 𝑦2) = 𝑦1 + 𝑦2, 𝑓2,2(𝑦1, 𝑦2) = 𝑦1𝑦2}. (2.95)

2.11.1. Genetic Programming Technique (GP)

In this technique, the mathematical expression's structure is represented as a computational tree.

In this structure, functions are represented by nodes, while the arguments of mathematical expressions

are represented by leaves. The fundamental sets (2.93)-(2.95) are required for depicting the

computational tree corresponding to the mathematical expression (2.92), as illustrated in Figure 2.3.

Furthermore, the mathematical expression (2.92) can be reformulated utilizing the fundamental

sets (2.93)-(2.95) as the record:

92

 𝑧 = 𝑓1,3 (𝑓1,4 (𝑓1,5 (𝑓2,1 (𝑓2,2(𝑓0,3, 𝑓0,1), 𝑓2,2 (𝑓0,4, 𝑓1,2(𝑓0,2)))))). (2.96)

Figure 2.3. The computational tree of example (2.92) by GP

In the context of a mathematical expression, if an argument is present multiple times, it

necessitates an equivalent number of occurrences on the leaves within the computational tree structure.

The computational tree is preserved within the memory of the computer as arranged sets of

integer vectors, each comprising two elements. The initial element designates the count of arguments,

while the subsequent element delineates the sequence of functions. The GP code corresponding to

example (2.92) is as follows:

 𝑹𝐺𝑃 = ([
1
3
] , [

1
4
] , [

1
5
] , [

2
1
] , [

2
2
] , [

0
3
] , [

0
1
] , [

2
2
] , [

0
4
] , [

1
2
] , [

0
2
]). (2.97)

The indices of elements across all branches of the computational tree, extending from the top

node to the leaves, serve as the genetic programming code.

2.11.2. Cartesian Genetic Programming Technique (CGP)

Cartesian genetic programming (CGP) employs a non-graphical representation for expressing

codes of expressions. This technique involves the integration of the two sets of fundamental functions

into a unified set.

 𝑭 = 𝑭𝟏 ∪ 𝑭𝟐. (2.98)

93

As a result, the sets (2.94) and (2.95) will be as one set and as shown:

 𝑭 = {𝑓1(𝑦) = 𝑦, 𝑓2(𝑦) = 𝑦2, 𝑓3(𝑦) = sin(𝑦) , 𝑓4(𝑦) = cos(𝑦),

 𝑓5(𝑦) = exp(𝑦) , 𝑓6(𝑦1, 𝑦2) = 𝑦1 + 𝑦2,

 𝑓7(𝑦1, 𝑦2) = 𝑦1𝑦2}. (2.99)

CGP codes for mathematical expressions typically take the form of a three- or four-row integer

matrix. The initial row of the matrix denotes the indexes of functions obtained from the set of

fundamental functions (2.99). The fundamentals functions’ set (2.99) consists of functions that have a

maximum of two arguments. Consequently, encoding the matrix requires only three rows. It should be

noted that the number of rows in the matrix varies depending on the number of arguments used for the

available functions, where in the case of using the one-argument function, the third element in the

column does not have any practical application. The remaining rows stand for the argument indices

(2.93). When a column's calculation is complete, its result should be appended to the arguments (2.93).

So, after each computation, there will be more arguments. As a result, the total number of arguments

will grow with each new calculation.

In order to encode the example (2.92) by this technique, firstly, it is needed to encode the

expression 𝑞1𝑥1 as the first column. The function is multiplication, as its sequence is 7 in set (2.99),

𝑓7(𝑦1, 𝑦2) = 𝑦1𝑦2. Then, from the set of arguments (2.93), the sequence of parameter 𝑞1 is 3, and the

sequence of variable 𝑥1 is 1. As a result, the code of the first column for the matrix is [7 3 1]𝑇. The result

of each elementary function determination is added to the list of arguments (2.93) every time, increasing

the total number of arguments with each calculation. Subsequently, the sequence of the first column will

be (|𝑭𝟎| + 1 = 6 + 1 = 7) in the set of arguments. Then, the code of expression 𝑥2
2 is calculated as the

second column, from the set (2.99), the sequence of 𝑓2(𝑦) = 𝑦2 is 2. And the variable 𝑥2 has the series

of 2 in the set of arguments (2.93). The third element of this column is not utilized since the argument

of this function is only one. So, it can be 2. The code of the second column for the matrix is [2 2 2]𝑇,

and it will be added to the arguments set (2.93), and the sequence of this column will be (|𝑭𝟎| + 2 =

6 + 2 = 8) in the arguments set (2.93).

Typically, the solution of CGP's mathematical equation (2.92) is coded as

 𝑹𝐶𝐺𝑃 = [
7
3
1

2
2
2

7
4
8

6
7
9

5
10
6

3
12
1

6
13
5

]. (2.100)

94

2.11.3. Synthesized Genetic Programming Technique (SGP)

All pertinent details concerning this technique are elaborated upon in Section 2.9 of the current

chapter. In order to implement example (2.92) by this technique, let us get started by coding the

expression 𝑞1𝑥1 as the first column of the SGP matrix. For the first element in this column, determine

the index of multiplication function in the functions set that is characterized by two arguments (2.95); it

is the number of 2, 𝑓2,2(𝑦1, 𝑦2) = 𝑦1𝑦2. For the second element, the function of the parameter 𝑞1 is the

identity function, 𝑓1,1(𝑦) = 𝑦, from the functions set that is characterized by one argument (2.94); the

index of this function is 1. For the third element, the location of the parameter 𝑞1 in the arguments set

(2.93) is 3. For the fourth element, the variable 𝑥1 function is the identity function, 𝑓1,1(𝑦) = 𝑦, and its

index is 1 in the set (2.94). For the fifth element, the location of the variable 𝑥1 in the arguments set

(2.93) is 1. The sixth element is the priority, and its number is 1. As a result, the code of the expression

𝑞1𝑥1 that represents the first column in the matrix is [2 1 3 1 1 1]T. After calculating this column, it

will have been appended to the arguments set (2.93) as the seventh element, denoted as (|𝑭𝟎| + 1 = 6 +

1 = 7).

The final code of the SGP matrix, for example (2.92), can be expressed as:

𝑹𝑆𝐺𝑃 =

[

2
1
3
1
1
1

2
1
4
2
2
1

1
1
7
1
8
1

1
5
9
1
5
1

1
4
10
1
5
1

1
3
11
1
5
1]

. (2.101)

The procedural application of the small variations’ principle within the basic solution of genetic

programming and Cartesian genetic programming techniques was delineated in reference [203].

Furthermore, the application of this principle to the synthesized genetic programming technique was

expounded upon in Section 2.10 of the current chapter. Consequently, a discernible contrast emerges in

the application of this principle across each of these three techniques.

Table 2.1 presents a comparative analysis of the key features pertaining to symbolic regression

across the three techniques under consideration.

95

Table 2.1. The main features of three symbolic regression techniques (GP, CGP & SGP)

No. The feature The technique of symbolic regression

GP CGP SGP

1 Appearance 1992 2000 2024

2 The structure of mathematical

expression

computational tree no graph no graph

3 The stored code in the memory

of the computer

as arranged sets of

integer vectors, each

comprising two

elements

a three- or four-

row integer

matrix.

a six-row

integer matrix

4 The length of code for any

mathematical expression and

after each crossover operation

various

(Needs more time for

calculation)

constant constant

5 Terminology employed within

the code

No terms No terms innovative

coding terms

such as the

pivot and the

priority

It is noteworthy that the efficiency and rapid solution discovery capabilities of the synthesized

genetic programming technique (SGP) in addressing the problems of control general synthesis have been

demonstrated in comparison to Cartesian genetic programming and parse-matrix evolution techniques

[210-211].

2.12. The Search for the Effective Position of Points

Following the solution of the problem of synthesis, it becomes essential to identify the effective

position of points (2.50) inside the states' space. Evolutionary algorithms are employed in order to

address this objective, as the quality criterion (2.31) exhibits non-convexity and non-unimodality in the

coordinates space of points (2.50). The utilization of the particle swarm optimization (PSO) algorithm

[212-213] serves as the basis for this study. The mentioned algorithm is currently well-recognized as a

prominent evolutionary algorithm.

96

The PSO algorithm comprises the subsequent steps. Initially, the generation of a possible

solution's initial set is done

 q𝑖
𝑗
= 𝝃(q𝑖

+ − q𝑖
−) + q𝑖

−, 𝑖 = 1,… ,𝑚𝑞 , 𝑗 = 1,… ,𝑀. (2.102)

where 𝝃 represents a random value drawn from the interval [0:1]; while q𝑖
+ and q𝑖

− denote the higher and

lower bounds of the parameter evolution for vector values, respectively. Additionally, 𝑚𝑞 represents the

dimensionality of the parametric vector and 𝑀 represents the total number of vectors inside the initial

population.

For every possible solution, a history vector is generated, initialized with a value of zero

 𝜐𝑖
𝑗
= 0, 𝑖 = 1,… ,𝑚𝑞 , 𝑗 = 1,… ,𝑀. (2.103)

Subsequently, the objective function values are estimated for every possible solution

 𝑓𝑗 = 𝐹(𝐪𝑗), 𝑗 = 1,… ,𝑀. (2.104)

where 𝐹(𝐪) represents the objective function of this problem of optimization.

In addition, an evaluation is determined for every possible solution

 q̃𝑖
𝑗
= {

q𝑖
+, if q𝑖

𝑗
+ 𝜎𝜐𝑖

𝑗
> q𝑖

+

q𝑖
−, if q𝑖

𝑗
+ 𝜎𝜐𝑖

𝑗
< q𝑖

+

q𝑖
𝑗
+ 𝜎𝜐𝑖

𝑗
, otherwise

, (2.105)

where 𝜎 represents an algorithm constant parameter,

 𝜐𝑖
𝑗
← 𝛼𝜐𝑖

𝑗
+ 𝛾𝝃(q𝑖

𝑗−
− q𝑖

𝑗
) + 𝛽𝝃(q𝑖

𝑗(𝑟)
− q𝑖

𝑗
), (2.106)

𝛼, 𝛾, 𝛽 represent algorithm constant parameters, q − represents the most efficient possible solution for

now

 𝑓𝑗− = min {𝑓1, … , 𝑓𝑀}. (2.107)

q𝑗(𝑐) represents the most efficient possible solution, out of 𝑐 randomly chosen possible solutions

 𝑓𝑗(𝑐) = min{𝑓𝑗1, … , 𝑓𝑗𝑐} , 𝑖 = 1,… ,𝑚𝑞 , 𝑗 = 1,… ,𝑀. (2.108)

The optimization problem's solution is the desired one that can be found after the provided

evolution loops.

97

CHAPTER 3. RESULTS

3.1. Introduction

This chapter verifies the feasibility of the suggested synthesized optimal control technique

described in chapter two using a mathematical model of a nonholonomic wheeled mobile robot (Khepera

II).

The technique of variational synthesized genetic programming (VSGP) involves achieving

stability of the control object concerning a specific point in the space of states and controlling the objects

by altering the positions of the points of equilibrium.

3.2. Computational Experiment

The optimal control problem is defined for a system comprising a pair of non-holonomic mobile

robots, whose positions must be dynamically adjusted within the plane to circumvent environmental

obstacles such that their environment encompasses several static phase constraints. However, the

complexity of the task is heightened by the existence of the dynamic phase constraints, as it necessitates

ensuring the avoidance of collisions between the two robots.

The following is the form of the nonholonomic mobile robot mathematical model [214]:

𝑥̇1 = 0.5(𝑢1 + 𝑢2) cos(𝑥3),
 𝑥̇2 = 0.5(𝑢1 + 𝑢2) sin(𝑥3), (3.1)

 𝑥̇3 = 0.5(𝑢1 − 𝑢2),

In the first step, the task of synthesizing a stabilization system is addressed in order to establish

a stable state for the object.

For numerically solving the synthesis problem, it is necessary to establish a predetermined set of

initial states:

 𝑿0 = {𝒙0,1, … , 𝒙0,𝐋}. (3.2)

One terminal state is established:

 𝐱∗ = [𝑥1
∗ 𝑥2

∗ 𝑥3
∗]𝑇. (3.3)

The subsequent quality criterion is

98

 (3.4)

where 𝑡𝑓,𝑖 is a period characterized by the attainment of the terminal state (3.10) starting from the initial

states (3.9), 𝑖 = 1,… , 𝐋, 𝐋 represents the total number of initial states, 𝑝1 represents a weight coefficient,

and

𝑡𝑓,𝑖 = {
𝑡, if 𝑡 ≤ 𝑡+ and ‖𝑥𝑓 − 𝑥(𝑡)‖ ≤ 𝜀

 𝑡+, otherwise
, (3.5)

and

 (3.6)

The first step represents the stabilization system synthesis that involves the search for and

creation of a single control function:

 𝐮 = 𝐠(𝐱∗ − 𝐱), (3.7)

which guarantees the attainment of the minimum functional value (3.4) for all provided initial states

(3.2).

One robot can solve the problem of control synthesis (3.1)–(3.7) because the pair of robots are

identical to one another. This problem is solved using the variational synthesized genetic programming

(VSGP) symbolic regression technique.

Case one: Eight initial states are provided:

𝛸0 = {𝒙0,0 = [−3 3.5
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3 3.5
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3 3.5 −
5𝜋

16
]
𝑇

}. (3.8)

The terminal states are established as one point

 𝐱∗ = [𝑥1
∗ 𝑥2

∗ 𝑥3
∗]𝑇 = [0 0 0]𝑇. (3.9)

𝐽𝑠𝑦𝑛 = ∑(𝑡𝑓,𝑖

𝐋

𝑖=1

+ 𝑝1‖𝐱∗ − 𝐱(𝑡𝑓,𝑖, 𝐱
0,𝑖)‖) → min,

‖𝑥𝑓 − 𝑥(𝑡)‖ = √∑(𝑥𝑖
𝑓

− 𝑥𝑖(𝑡))2

3

𝑖=1

.

99

Consequently, the ensuing mathematical expression for the control function is constructed

 𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

−

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

 , 𝑖 = 1,2, (3.10)

where

𝑢̃1 = (𝑥2
𝑓

− 𝑥2)
1
3(𝑥1

𝑓
− 𝑥1)𝑞1(𝑥2

𝑓
− 𝑥2) + 𝑞2(𝑥3

𝑓
− 𝑥3)

 +sin ((𝑥2
𝑓

− 𝑥2)
1

3(𝑥1
𝑓

− 𝑥1)𝑞1(𝑥2
𝑓

− 𝑥2) + 𝑞2(𝑥3
𝑓

− 𝑥3)), (3.11)

 𝑢̃2 = 𝜌 (𝑞3
2(𝑥1

𝑓
− 𝑥1)) + 0.5 ∗ 𝑞3

2(𝑥1
𝑓

− 𝑥1), (3.12)

 𝜌(𝜇) = {
0, if |𝜇| < 𝛿

 𝑠𝑔𝑛(𝜇), otherwise
 (3.13)

𝑞1 = 2.07946 , 𝑞2 = 2.63935 , 𝑞3 = 2.96333, 𝛿 = 10−8. The quality criterion (3.4) for the

variational SGP solution is 𝐽𝑠𝑦𝑛 = 2.26092, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 8, and , 𝑝1 = 1.

Figure 3.1 shows the trajectories taken by one robot as it moved from eight initial states (3.2) to

the terminal state (3.3).

 𝑥2 (m)

 𝑥1 (m)

 Figure 3.1. Robot trajectories with VSGP control function

100

The control functions (3.10) that have been acquired to guarantee the stability of the object are

inserted into the model equations (3.1). The solution to the problem of control synthesis yields the

emergence of a stable point of equilibrium in the space of state. The equilibrium point position is

contingent upon the terminal vector (3.3).

Figures 3.2 through 3.9 depict the simulation results of a nonholonomic mobile robot,

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.

Figure 3.2. The robot displacements in direction 𝑥1from all initial conditions by VSGP method

Figure 3.3. The robot displacements in direction 𝑥2 from all initial conditions by VSGP method

101

Figure 3.4. The robot displacements in direction 𝑥3 from all initial conditions by VSGP method

Figure 3.5. The robot velocities in direction 𝑥1 from all initial conditions by VSGP method

102

Figure 3.6. The robot velocities in direction 𝑥2 from all initial conditions by VSGP method

Figure 3.7. The robot velocities in direction 𝑥3 from all initial conditions by VSGP method

103

Figure 3.8. The robot control 𝑢1 from all initial conditions by VSGP method

Figure 3.9. The robot control 𝑢2 from all initial conditions by VSGP method

104

Case two: Eight initial states are provided:

𝛸0 = {𝒙0,0 = [−3 3.5
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3 3.5
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3 3.5 −
5𝜋

16
]
𝑇

}. (3.14)

The terminal states are established as one point

 𝐱∗ = [𝑥1
∗ 𝑥2

∗ 𝑥3
∗]𝑇 = [0 0 0]𝑇. (3.15)

Consequently, the ensuing mathematical expression for the control function is constructed

 𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

−

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

 , 𝑖 = 1,2, (3.16)

where

𝑢̃1 = 𝐴 ∗ (1 − exp(−𝐴2)) ∗ (1 − exp (−(𝐴 ∗ (1 − exp(−𝐴2)))
2
)), (3.17)

𝑢̃2 = (((2(𝑥1
𝑓
− 𝑥1) ∗ (1 − exp (−(𝑥1

𝑓
− 𝑥1)

2
)) ∗ 𝜌 (𝑞2 + exp ((𝑥1

𝑓
− 𝑥1) + (𝑥1

𝑓
− 𝑥1)

2
) +

tanh(0.5 ∗ 𝑞3) ∗ (𝑥2
𝑓

− 𝑥2)))3)3)/2, (3.18)

𝐴 = 𝑞1(𝑥1
𝑓

− 𝑥1) + (𝑥3
𝑓

− 𝑥3)(𝑥2
𝑓

− 𝑥2) + 𝑞2(𝑥3
𝑓

− 𝑥3), (3.19)

 𝜌(𝜇) = {
1, if 𝜇 ≥ 0
 0, otherwise

 (3.20)

𝑞1 = 7.18441, 𝑞2 = 7.12227, 𝑞3 = 7.87202. The quality criterion (3.4) for the variational

SGP solution is 𝐽𝑠𝑦𝑛 = 2.35184, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 8, and , 𝑝1 = 1.

Figure 3.10 shows the trajectories taken by one robot as it moved from eight initial states (3.14)

to the terminal state (3.15).

105

 𝑥2 (m)

 𝑥1 (m)

 Figure 3.10. Robot trajectories with VSGP control function

Figures 3.11 through 3.16 depict the simulation results of a nonholonomic mobile robot,

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.

Figure 3.11. The robot displacements in direction 𝑥1from all initial conditions by VSGP method

106

Figure 3.12. The robot displacements in direction 𝑥2 from all initial conditions by VSGP method

Figure 3.13. The robot velocities in direction 𝑥1 from all initial conditions by VSGP method

107

Figure 3.14. The robot velocities in direction 𝑥2 from all initial conditions by VSGP method

Figure 3.15. The robot control 𝑢1 from all initial conditions by VSGP method

108

Figure 3.16. The robot control 𝑢2 from all initial conditions by VSGP method

Case Three: Twelve initial states are provided:

𝛸0 = {𝒙0,0 = [−3 3.5
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3 3.5
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,8 = [−3 3.5 0]𝑇 , 𝒙0,9 = [−3 − 3.5 0]𝑇 , 𝒙0,10 = [3 − 3.5 0]𝑇 , 𝒙0,11 =

[3 3.5 0]𝑇}. (3.21)

The terminal states are established as one point

 𝐱∗ = [𝑥1
∗ 𝑥2

∗ 𝑥3
∗]𝑇 = [0 0 0]𝑇. (3.22)

Consequently, the ensuing mathematical expression for the control function is constructed

 𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

−

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

 , 𝑖 = 1,2, (3.23)

109

where

𝑢̃1 = 2 ∗ (𝑞1(𝑥1
𝑓

− 𝑥1) + (𝑥3
𝑓

− 𝑥3)(𝑥2
𝑓

− 𝑥2) + (𝑞3(𝑥3
𝑓

− 𝑥3))
3
) , (3.24)

𝑢̃2 = 𝑞2(𝑥1
𝑓

− 𝑥1) ∗ ln (|2𝑞4(𝑥2
𝑓

− 𝑥2)|), (3.25)

𝑞1 = 5.94890, 𝑞2 = 8.05063, 𝑞3 = 0.86430 and 𝑞4 = 1.64740. The quality criterion (3.4) for the

variational SGP solution is 𝐽𝑠𝑦𝑛 = 1.88384, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 12, and , 𝑝1 = 1.

Figure 3.17 shows the trajectories taken by one robot as it moved from twelve initial states (3.21)

to the terminal state (3.22).

 𝑥2 (m)

 𝑥1 (m)

 Figure 3.17. Robot trajectories with VSGP control function

Figures 3.18 through 3.29 depict the simulation results of a nonholonomic mobile robot,

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.

110

Figure 3.18. The robot displacements in direction 𝑥1from first six initial conditions by VSGP

Figure 3.19. The robot displacements in direction 𝑥2 from first six initial conditions by VSGP

111

Figure 3.20. The robot velocities in direction 𝑥1 from first six initial conditions by VSGP

Figure 3.21. The robot velocities in direction 𝑥2 from first six initial conditions by VSGP

112

Figure 3.22. The robot control 𝑢1 from first six initial conditions by VSGP

Figure 3.23. The robot control 𝑢2 from first six initial conditions by VSGP

113

Figure 3.24. The robot displacements in direction 𝑥1from second six initial conditions by VSGP

Figure 3.25. The robot displacements in direction 𝑥2 from second six initial conditions by VSGP

114

Figure 3.26. The robot velocities in direction 𝑥1 from second six initial conditions by VSGP

Figure 3.27. The robot velocities in direction 𝑥2 from second six initial conditions by VSGP

115

Figure 3.28. The robot control 𝑢1 from second six initial conditions by VSGP

Figure 3.29. The robot control 𝑢2 from second six initial conditions by VSGP

116

Case Four: Twelve initial states are provided:

𝛸0 = {𝒙0,0 = [−3 3.5
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3 3.5
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,8 = [−3 3.5 0]𝑇 , 𝒙0,9 = [−3 − 3.5 0]𝑇 , 𝒙0,10 = [3 − 3.5 0]𝑇 , 𝒙0,11 =

[3 3.5 0]𝑇}. (3.26)

The terminal states are established as one point

 𝐱∗ = [𝑥1
∗ 𝑥2

∗ 𝑥3
∗]𝑇 = [0 0 0]𝑇. (3.27)

Consequently, the ensuing mathematical expression for the control function is constructed

 𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

−

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

 , 𝑖 = 1,2, (3.28)

where

𝑢̃1 = 𝐵 ∗ (1 − exp(−𝐵2)) + (𝑥3
𝑓

− 𝑥3), (3.29)

𝑢̃2 = (((𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1))
3

+ 𝜌 ((𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1)))

3

, (3.30)

𝐵 = 𝑠𝑔𝑛(𝑞1) ∗ ln(|𝑞1| + 1) (𝑥1
𝑓

− 𝑥1) + 𝑠𝑔𝑛(𝑞1) ∗ ln(|𝑞1| + 1) (𝑥1
𝑓

− 𝑥1)(𝑥2
𝑓

− 𝑥2) +

𝑞2(𝑥3
𝑓

− 𝑥3), (3.31)

 𝜌(𝜇) = {
0, if |𝜇| < 𝛿

 𝑠𝑔𝑛(𝜇), otherwise
 (3.32)

𝑞1 = 7.60454, 𝑞2 = 5.86686 and 𝛿 = 10−8. The quality criterion (3.4) for the variational SGP solution

is 𝐽𝑠𝑦𝑛 = 2.37900, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 12, and , 𝑝1 = 1.

Figure 3.30 shows the trajectories taken by one robot as it moved from twelve initial states (3.26)

to the terminal state (3.27).

117

 𝑥2 (m)

 𝑥1 (m)

 Figure 3.30. Robot trajectories with VSGP control function

Figures 3.31 through 3.42 depict the simulation results of a nonholonomic mobile robot,

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.

Figure 3.31. The robot displacements in direction 𝑥1from first six initial conditions by VSGP

118

Figure 3.32. The robot displacements in direction 𝑥2 from first six initial conditions by VSGP

Figure 3.33. The robot velocities in direction 𝑥1 from first six initial conditions by VSGP

119

Figure 3.34. The robot velocities in direction 𝑥2 from first six initial conditions by VSGP

Figure 3.35. The robot control 𝑢1 from first six initial conditions by VSGP

120

Figure 3.36. The robot control 𝑢2 from first six initial conditions by VSGP

Figure 3.37. The robot displacements in direction 𝑥1from second six initial conditions by VSGP

121

 Figure 3.38. The robot displacements in direction 𝑥2 from second six initial conditions by VSGP

Figure 3.39. The robot velocities in direction 𝑥1 from second six initial conditions by VSGP

122

Figure 3.40. The robot velocities in direction 𝑥2 from second six initial conditions by VSGP

Figure 3.41. The robot control 𝑢1 from second six initial conditions by VSGP

123

Figure 3.42. The robot control 𝑢2 from second six initial conditions by VSGP

Case Five: Twelve initial states are provided:

𝛸0 = {𝒙0,0 = [−3 3.5
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3 3.5
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,8 = [−3 3.5 0]𝑇 , 𝒙0,9 = [−3 − 3.5 0]𝑇 , 𝒙0,10 = [3 − 3.5 0]𝑇 , 𝒙0,11 =

[3 3.5 0]𝑇}. (3.33)

The terminal states are established as one point

 𝐱∗ = [𝑥1
∗ 𝑥2

∗ 𝑥3
∗]𝑇 = [0 0 0]𝑇. (3.34)

Consequently, the ensuing mathematical expression for the control function is constructed

 𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

−

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

 , 𝑖 = 1,2, (3.35)

where

124

 𝑢̃1 = 𝐶 ∗ (1 − exp(−𝐶2)) + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑞2(𝑥3
𝑓

− 𝑥3)), (3.36)

𝑢̃2 = 𝑠𝑔𝑛 (𝑞1(𝑥1
𝑓

− 𝑥1)) ∗ (exp(|𝑞1(𝑥1
𝑓
− 𝑥1)|) − 1) + 𝑠𝑔𝑛 (𝑞3 ((𝑥3

𝑓
− 𝑥3) ∗

(1 − exp(−((𝑥3
𝑓

− 𝑥3)
2
))))) ∗ (|𝑞3((𝑥3

𝑓
− 𝑥3) ∗ (1 − exp (−((𝑥3

𝑓
− 𝑥3)

2
))))|)0.5, (3.37)

 𝐶 = (𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1) + (𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1)(𝑥2
𝑓

− 𝑥2) + 𝑞2(𝑥3
𝑓

− 𝑥3), (3.38)

𝑞1 = 7.62259, 𝑞2 = 6.27694 and 𝑞3 = 7.40398. The quality criterion (3.4) for the variational

SGP solution is 𝐽𝑠𝑦𝑛 = 2.38341, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 12, and , 𝑝1 = 1.

Figure 3.43 shows the trajectories taken by one robot as it moved from twelve initial states (3.33)

to the terminal state (3.34).

 𝑥2 (m)

 𝑥1 (m)

 Figure 3.43. Robot trajectories with VSGP control function

125

Figures 3.44 through 3.55 depict the simulation results of a nonholonomic mobile robot,

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.

Figure 3.44. The robot displacements in direction 𝑥1from first six initial conditions by VSGP

Figure 3.45. The robot displacements in direction 𝑥2 from first six initial conditions by VSGP

126

Figure 3.46. The robot velocities in direction 𝑥1 from first six initial conditions by VSGP

Figure 3.47. The robot velocities in direction 𝑥2 from first six initial conditions by VSGP

127

Figure 3.48. The robot control 𝑢1 from first six initial conditions by VSGP

Figure 3.49. The robot control 𝑢2 from first six initial conditions by VSGP

128

Figure 3.50. The robot displacements in direction 𝑥1from second six initial conditions by VSGP

 Figure 3.51. The robot displacements in direction 𝑥2 from second six initial conditions by VSGP

129

Figure 3.52. The robot velocities in direction 𝑥1 from second six initial conditions by VSGP

Figure 3.53. The robot velocities in direction 𝑥2 from second six initial conditions by VSGP

130

Figure 3.54. The robot control 𝑢1 from second six initial conditions by VSGP

Figure 3.55. The robot control 𝑢2 from second six initial conditions by VSGP

131

Case Six: Fourteen initial states are provided:

𝛸0 = {𝒙0,0 = [−3 3.5
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3 3.5
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,8 = [−3 3.5 0]𝑇 , 𝒙0,9 = [−3 − 3.5 0]𝑇 , 𝒙0,10 = [3 − 3.5 0]𝑇 , 𝒙0,11 =

[3 3.5 0]𝑇 , 𝒙0,12 = [0 0
5𝜋

16
]
𝑇

, 𝒙0,13 = [0 0 −
5𝜋

16
]
𝑇

 }. (3.39)

The terminal states are established as one point

 𝐱∗ = [𝑥1
∗ 𝑥2

∗ 𝑥3
∗]𝑇 = [0 0 0]𝑇. (3.40)

Consequently, the ensuing mathematical expression for the control function is constructed

 𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

−

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

 , 𝑖 = 1,2, (3.41)

where

𝑢̃1 = ((𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1) (𝑞1 + (𝑥2
𝑓

− 𝑥2)) + 𝑞2(𝑥3
𝑓

− 𝑥3) + 𝑠𝑔𝑛 ((𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

−

𝑥1) (𝑞1 + (𝑥2
𝑓

− 𝑥2)) + 𝑞2(𝑥3
𝑓

− 𝑥3)) ln (|(𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1) (𝑞1 + (𝑥2
𝑓

− 𝑥2)) + 𝑞2(𝑥3
𝑓

− 𝑥3)| +

1) + 𝜌 (𝑞2(𝑥3
𝑓

− 𝑥3))) /2, (3.42)

 𝑢̃2 = (4 ∗ 𝑠𝑖𝑛(𝑞3) ∗ (𝑥1
𝑓

− 𝑥1))
3, (3.43)

 𝜌(𝜇) = {
0, if |𝜇| < 𝛿

 𝑠𝑔𝑛(𝜇), otherwise
 (3.44)

𝑞1 = 0.23307, 𝑞2 = 6.87832, 𝑞3 = 8.36356, 𝛿 = 10−8. The quality criterion (3.4) for the variational

SGP solution is 𝐽𝑠𝑦𝑛 = 1.75102, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 14, and , 𝑝1 = 1.

Figure 3.56 shows the trajectories taken by one robot as it moved from fourteen initial states

(3.39) to the terminal state (3.40).

132

 𝑥2 (m)

 𝑥1 (m)

 Figure 3.56. Robot trajectories with VSGP control function

The control functions (3.41) that have been acquired to guarantee the stability of the object are

inserted into the model equations (3.1). The solution to the problem of control synthesis yields the

emergence of a stable point of equilibrium in the space of state. The equilibrium point position is

contingent upon the terminal vector (3.40).

In the second step, the particle swarm optimization (PSO) algorithm is employed to find the

stabilization points, resulting in the discovery of these points for every single mobile robot.

Mathematical models of two mobile robots [214] are presented

𝑥̇1
𝑗
= 0.5(𝑢1

𝑗
+ 𝑢2

𝑗
) cos(𝑥3

𝑗
),

 𝑥̇2
𝑗
= 0.5(𝑢1

𝑗
+ 𝑢2

𝑗
) sin(𝑥3

𝑗
), (3.45)

 𝑥̇3
𝑗
= 0.5(𝑢1

𝑗
− 𝑢2

𝑗
),

where 𝐱𝑗 = [𝑥1
𝑗
 𝑥2

𝑗
 𝑥3

𝑗
]𝑇 represents a state vector of robot 𝑗, 𝐮𝑗 = [𝑢1

𝑗
 𝑢2

𝑗
]𝑇 represents a control vector

of robot 𝑗, 𝑗 = 1,2.

The control vectors elements are subject to specific constraints

 𝑢𝑖
− = −10 ≤ 𝑢𝑖

𝑗
≤ 10 = 𝑢𝑖

+, 𝑗 = 1,2, 𝑖 = 1,2. (3.46)

The initial states are established

133

𝐱1(0) = 𝐱0,1 = [0 0 0]𝑇 ,
 𝐱2(0) = 𝐱0,2 = [10 10 0]𝑇. (3.47)

The terminal states are established

 𝐱1(𝑡𝑓) = 𝐱𝑓,1 = [10 10 0]𝑇 ,

 𝐱2(𝑡𝑓) = 𝐱𝑓,2 = [0 0 0]𝑇 , (3.48)

where

 𝑡𝑓 = {
𝑡, if 𝑡 ≤ 𝑡+ and ‖𝑥𝑓 − 𝑥(𝑡)‖ ≤ 𝜀

 𝑡+, otherwise
 (3.49)

and

 (3.50)

The constraints of static phase are presented

 𝑟𝑠𝑡 − √(𝑥1
𝑗
− 𝑥1,𝑠𝑡)

2
+ (𝑥2

𝑗
− 𝑥2,𝑠𝑡)

2
≤ 0, 𝑗 = 1,2. (3.51)

where 𝑟𝑠𝑡, 𝑥1,𝑠𝑡, 𝑥2,𝑠𝑡 are provided parameters (radius and coordinates of center) of the constraints of

static phase, 𝑠𝑡 = 1, … , 𝑃𝑡, 𝑃𝑡 represents the total number of phase constraints.

The constraints of dynamic phase are provided

 𝑟𝑑 − √(𝑥1
1 − 𝑥1

2)2 + (𝑥2
1 − 𝑥2

2)2 ≤ 0, (3.52)

where 𝑟𝑑 the minimal acceptable secure distance between robots, 𝑟𝑑 = 2.

The next quality functional is defined for the solution of optimal control:

 (3.53)

‖𝑥𝑓 − 𝑥(𝑡)‖ = √∑(𝑥𝑖
𝑓

− 𝑥𝑖(𝑡))2

3

𝑖=1

.

𝐽𝑜𝑝𝑡 = 𝑡𝑓 + 𝑐1 ∑ ∑∫ 𝜗(𝑟𝑠𝑡 − √(𝑥1
𝑗
− 𝑥1,𝑠𝑡)

2
+ (𝑥2

𝑗
− 𝑥2,𝑠𝑡)

2
)

𝑡𝑓

0

2

𝑗=1

5

𝑠𝑡=1

+ 𝑐2 ∫ 𝜗 (𝑟𝑑 − √(𝑥1
1 − 𝑥1

2)2 + (𝑥2
1 − 𝑥2

2)2)

𝑡𝑓

0

+ 𝑐3 ∑√∑(𝑥𝑖
𝑓,𝑗

− 𝑥𝑖
𝑗
)2

3

𝑖=1

2

𝑗=1

134

where 𝜗(𝐴) represents the Heaviside step function

 𝜗(𝐴) = {
1, if 𝐴 > 0
 0, otherwise

 , (3.54)

The problem (3.45)–(3.54) can be solved by the utilization of the technique of synthesized

optimal control and for all next cases, the control functions (3.42)-(3.44) are used.

Case 1: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding

the stabilization points and it is possible to search the control function (the equilibrium points) as a

piecewise constant function. The constraints pertaining to the elements of points are as follows:

−2 ≤ 𝑥1
𝑗,∗,𝑖

≤ 12,

 −2 ≤ 𝑥2
𝑗,∗,𝑖

≤ 12, (3.55)

−
𝜋

2
≤ 𝑥3

𝑗,∗,𝑖
≤

𝜋

2
.

where 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2.5, 𝑃𝑡 = 4, 𝑟1 = 1.5, 𝑟2 = 2, 𝑟3 = 2, 𝑟4 = 1.5, 𝑥1,1 = 1.5, 𝑥1,2 = 2, 𝑥1,3 =

8, 𝑥1,4 = 8.5, 𝑥2,1 = 2.5, 𝑥2,2 = 7.5, 𝑥2,3 = 2.5, 𝑥2,4 = 7.5, 𝜀 = 0.01 and 𝑡+ = 2.7 sec.

The three points for each mobile robot have the subsequent coordinates in the state space

{𝑥1, 𝑥2, 𝑥3}:

 𝐱1,∗,1 = [4.462 − 1.8995 1.5701]𝑇 ,

 𝐱1,∗,2 = [10.7687 11.8605 − 0.6636]𝑇 ,

 𝐱1,∗,3 = [9.7937 11.4512 0.2058]𝑇 ,

 𝐱2,∗,1 = [−0.6247 9.2577 − 0.382]𝑇 ,

 𝐱2,∗,2 = [2.248 10.6802 − 0.2329]𝑇 ,

 𝐱2,∗,3 = [0.1365 5.131 − 0.477]𝑇. (3.56)

where the first three points are for the first robot and the other points for the second one.

In Figures (3.57)-(3.63) the findings of the simulation are laid out. Figure 3.57 displays

suitable trajectories generated by the pair of mobile robots in the {𝑥1, 𝑥2} plane. In the graphical

representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple

circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium

configurations for the first and second robots are denoted by small green and black squares, respectively.

These markers correspond bijectively to the three equilibrium points per agent that were identified

135

through the solution of the underlying optimal control problem (3.56). As evident from the observation,

the two robots have successfully attained their terminal states without violating phase constraints. The

functional value in Equation (3.53) was 𝐽𝑜𝑝𝑡 = 2.7000.

Figure 3.57. Synthesized optimal control trajectories for two robots in the {𝑥1, 𝑥2} plane

Figure 3.58. The variable 𝑥1
1 in black and effective control 𝑥1

∗,1
 in blue

136

Figure 3.59. The variable 𝑥2
1 in black and effective control 𝑥2

∗,1
 in blue

Figure 3.60. The variable 𝑥3
1 in black and effective control 𝑥3

∗,1
 in blue

137

Figure 3.61. The variable 𝑥1
2 in black and effective control 𝑥1

∗,2
 in blue

Figure 3.62. The variable 𝑥2
2 in black and effective control 𝑥2

∗,2
 in blue

138

Figure 3.63. The variable 𝑥3
2 in black and effective control 𝑥3

∗,2
 in blue

Case 2: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding

the stabilization points and it is possible to search the control function (the equilibrium points) as a

piecewise constant function. The constraints pertaining to the elements of points are as follows:

−2 ≤ 𝑥1
𝑗,∗,𝑖

≤ 12,

 −2 ≤ 𝑥2
𝑗,∗,𝑖

≤ 12, (3.57)

−
𝜋

2
≤ 𝑥3

𝑗,∗,𝑖
≤

𝜋

2
.

where 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2.5, 𝑃𝑡 = 5, 𝑟1 = 1.5, 𝑟2 = 1.5, 𝑟3 = 1.5, 𝑟4 = 1.5, 𝑟5 = 1.5, 𝑥1,1 =

1.5, 𝑥1,2 = 1.5, 𝑥1,3 = 8.5, 𝑥1,4 = 8.5, 𝑥1,5 = 5, 𝑥2,1 = 2.5, 𝑥2,2 = 7.5, 𝑥2,3 = 2.5, 𝑥2,4 = 7.5, 𝑥2,5 =

5, 𝜀 = 0.01 and 𝑡+ = 2.7 sec.

The three points for each mobile robot have the subsequent coordinates in the state space

{𝑥1, 𝑥2, 𝑥3}:

 𝐱1,∗,1 = [2.6034 − 2 1.5708]𝑇 ,

 𝐱1,∗,2 = [12 8.3517 0.0366]𝑇 ,

139

 𝐱1,∗,3 = [9.9742 10.1032 1.5708]𝑇 ,

 𝐱2,∗,1 = [12 5.5246 1.5708]𝑇 ,

 𝐱2,∗,2 = [7.648 − 2 0.2991]𝑇 ,

 𝐱2,∗,3 = [0.1696 11.9731 − 0.8627]𝑇. (3.58)

where the first three points are for the first robot and the other points for the second one.

In Figures (3.64)-(3.70) the findings of the simulation are laid out. Figure 3.64 displays

suitable trajectories generated by the pair of mobile robots in the {𝑥1, 𝑥2} plane. In the graphical

representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple

circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium

configurations for the first and second robots are denoted by small green and black squares, respectively.

These markers correspond bijectively to the three equilibrium points per agent that were identified

through the solution of the underlying optimal control problem (3.58). As evident from the observation,

the two robots have successfully attained their terminal states without violating phase constraints. The

functional value in Equation (3.53) was 𝐽𝑜𝑝𝑡 = 2.7335.

Figure 3.64. Synthesized optimal control trajectories for two robots in the {𝑥1, 𝑥2} plane

140

Figure 3.65. The variable 𝑥1
1 in black and effective control 𝑥1

∗,1
 in blue

Figure 3.66. The variable 𝑥2
1 in black and effective control 𝑥2

∗,1
 in blue

141

Figure 3.67. The variable 𝑥3
1 in black and effective control 𝑥3

∗,1
 in blue

Figure 3.68. The variable 𝑥1
2 in black and effective control 𝑥1

∗,2
 in blue

142

Figure 3.69. The variable 𝑥2
2 in black and effective control 𝑥2

∗,2
 in blue

Figure 3.70. The variable 𝑥3
2 in black and effective control 𝑥3

∗,2
 in blue

143

Case 3: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding

the stabilization points and it is possible to search the control function (the equilibrium points) as a

piecewise constant function. The constraints pertaining to the elements of points are as follows:

−2 ≤ 𝑥1
𝑗,∗,𝑖

≤ 12,

 −2 ≤ 𝑥2
𝑗,∗,𝑖

≤ 12, (3.59)

−
𝜋

2
≤ 𝑥3

𝑗,∗,𝑖
≤

𝜋

2
.

where 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2.5, 𝑃𝑡 = 5, 𝑟1 = 2, 𝑟2 = 1.5, 𝑟3 = 2, 𝑟4 = 2, 𝑟5 = 2, 𝑥1,1 = 0, 𝑥1,2 =

5, 𝑥1,3 = 10, 𝑥1,4 = 5, 𝑥1,5 = 5, 𝑥2,1 = 5, 𝑥2,2 = 5, 𝑥2,3 = 5, 𝑥2,4 = 0, 𝑥2,5 = 10, 𝜀 = 0.01 and 𝑡+ =

2.8 sec.

The four points for each mobile robot have the subsequent coordinates in the state space

{𝑥1, 𝑥2, 𝑥3}:

 𝐱1,∗,1 = [−2 4.313 1.5681]𝑇 ,

 𝐱1,∗,2 = [0.8889 − 0.4234 1.5649]𝑇 ,

 𝐱1,∗,3 = [5.5287 7.4658 1.5708]𝑇 ,

 𝐱1,∗,4 = [12 9.9375 1.5708]𝑇 ,

 𝐱2,∗,1 = [12 6.0535 1.3051]𝑇 ,

 𝐱2,∗,2 = [−2 − 0.3394 1.5708]𝑇 ,

 𝐱2,∗,3 = [4.181 0.1354 0.1268]𝑇

 𝐱2,∗,4 = [0.1342 8.9329 − 1.5708]𝑇. (3.60)

where the first four points are for the first robot and the other points for the second one.

In Figures (3.71)-(3.77) the findings of the simulation are laid out. Figure 3.71 displays

suitable trajectories generated by the pair of mobile robots in the {𝑥1, 𝑥2} plane. In the graphical

representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple

circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium

configurations for the first and second robots are denoted by small green and black squares, respectively.

These markers correspond bijectively to the four equilibrium points per agent that were identified

through the solution of the underlying optimal control problem (3.60). As evident from the observation,

144

the two robots have successfully attained their terminal states without violating phase constraints. The

functional value in Equation (3.53) was 𝐽𝑜𝑝𝑡 = 2.8000.

Figure 3.71. Synthesized optimal control trajectories for two robots in the {𝑥1, 𝑥2} plane

Figure 3.72. The variable 𝑥1
1 in black and effective control 𝑥1

∗,1
 in blue

145

Figure 3.73. The variable 𝑥2
1 in black and effective control 𝑥2

∗,1
 in blue

Figure 3.74. The variable 𝑥3
1 in black and effective control 𝑥3

∗,1
 in blue

146

Figure 3.75. The variable 𝑥1
2 in black and effective control 𝑥1

∗,2
 in blue

Figure 3.76. The variable 𝑥2
2 in black and effective control 𝑥2

∗,2
 in blue

147

Figure 3.77. The variable 𝑥3
2 in black and effective control 𝑥3

∗,2
 in blue

Case 4: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding

the stabilization points and it is possible to search the control function (the equilibrium points) as a

piecewise constant function. The constraints pertaining to the elements of points are as follows:

−2 ≤ 𝑥1
𝑗,∗,𝑖

≤ 12,

 −2 ≤ 𝑥2
𝑗,∗,𝑖

≤ 12, (3.61)

−
𝜋

2
≤ 𝑥3

𝑗,∗,𝑖
≤

𝜋

2
.

where 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2.5, 𝑃𝑡 = 5, 𝑟1 = 2, 𝑟2 = 2, 𝑟3 = 2, 𝑟4 = 2, 𝑟5 = 2, 𝑥1,1 = 0, 𝑥1,2 = 5, 𝑥1,3 =

10, 𝑥1,4 = 5, 𝑥1,5 = 5, 𝑥2,1 = 5, 𝑥2,2 = 5, 𝑥2,3 = 5, 𝑥2,4 = 0, 𝑥2,5 = 10, 𝜀 = 0.01 and 𝑡+ = 2.7 sec.

The three points for each mobile robot have the subsequent coordinates in the state space

{𝑥1, 𝑥2, 𝑥3}:

 𝐱1,∗,1 = [−0.0372 3.2964 1.4551]𝑇 ,

𝐱1,∗,2 = [5.304 8.5296 0.6911]𝑇 ,

148

 𝐱1,∗,3 = [10.2478 5.3404 − 0.7197]𝑇 ,

 𝐱2,∗,1 = [7.4218 10.7499 0.5217]𝑇 ,

 𝐱2,∗,2 = [4.3332 11.0171 1.3788]𝑇 ,

 𝐱2,∗,3 = [0.1775 4.6068 − 0.518]𝑇. (3.62)

where the first three points are for the first robot and the other points for the second one.

In Figures (3.78)-(3.84) the findings of the simulation are laid out. Figure 3.78 displays

suitable trajectories generated by the pair of mobile robots in the {𝑥1, 𝑥2} plane. In the graphical

representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple

circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium

configurations for the first and second robots are denoted by small green and black squares, respectively.

These markers correspond bijectively to the three equilibrium points per agent that were identified

through the solution of the underlying optimal control problem (3.62). As evident from the observation,

the two robots have successfully attained their terminal states without violating phase constraints. The

functional value in Equation (3.53) was 𝐽𝑜𝑝𝑡 = 2.7032.

Figure 3.78. Synthesized optimal control trajectories for two robots in the {𝑥1, 𝑥2} plane

149

Figure 3.79. The variable 𝑥1
1 in black and effective control 𝑥1

∗,1
 in blue

Figure 3.80. The variable 𝑥2
1 in black and effective control 𝑥2

∗,1
 in blue

150

Figure 3.81. The variable 𝑥3
1 in black and effective control 𝑥3

∗,1
 in blue

Figure 3.82. The variable 𝑥1
2 in black and effective control 𝑥1

∗,2
 in blue

151

Figure 3.83. The variable 𝑥2
2 in black and effective control 𝑥2

∗,2
 in blue

Figure 3.84. The variable 𝑥3
2 in black and effective control 𝑥3

∗,2
 in blue

152

The coordinates of a stable point of equilibrium are determined by the effective control

𝑥𝑖
∗,𝑗(𝑡), 𝑗 = 1, 2, 𝑖 = 1, 2, 3, in every second of time, based on the construction of a control system for

objects. As seen from the findings, the effective control exerts an attractive influence on the relevant

state-space component, without requiring kinematic matching with that component. It is widely

recognized that the speed of state evolution is reduced in the immediate neighborhood of an equilibrium

point compared to distant regions. Thus, for enhanced mobility, the control object should be maintained

in the vicinity of that point without settling into it, allowing for continuous and faster motion.

3.3. Summary

It can be summarized this chapter as follows:

1. It has provided an introduction to the problem of optimal control concerning two

nonholonomic mobile robots.

2. The environment in question encompassed several static phase constraints, as well as

dynamic phase constraints arising from the collision between these two robots.

3. The topic of synthesis of a stabilization system, which could have effectively been

addressed using a single robot, was tackled using the variational synthesized genetic

programming (VSGP) technique.

4. The solution to the problem of control synthesis yielded the emergence of a stable point

of equilibrium in the space of states.

5. The particle swarm optimization (PSO) algorithm was employed to find the previously

mentioned points, resulting in the discovery of three points for every single mobile robot.

153

CONCLUSION

Conclusion and Discussion

This dissertation proposed a synthesized optimal control technique for a pair of nonholonomic

wheeled mobile robots operating in a complicated environment, which includes both static and dynamic

phase constraints. The study employed a synthesized optimal control approach, which included a further

step of synthesis of a stabilization feedback control system. This control system aimed to achieve a

steady state for the robot with respect to a specific point in the space of states. The proposed approach

incorporates tunable stabilization points as decision variables in the optimization process. Their effective

coordinates are determined such that the resulting closed-loop trajectory satisfies initial and terminal

boundary conditions, adheres to obstacle-avoidance constraints, and minimizes a researcher-defined

quality criterion. The proposed methodology presented a novel strategy to address a widely known

problem in optimal control. However, it additionally introduced a novel problem statement in the field

of optimal control, subsequently facilitating its numerical solution. The results have shown that

employing this methodology enabled the computer to generate innovative and remarkable solutions,

surpassing the expectations of engineers in certain instances.

The problem of synthesized optimal control has been solved by a two-step process, namely the

stabilization step and optimization step. The stabilization step represented the first step. The primary

challenge encountered in addressing the mentioned synthesized optimal control problem was mostly

associated with the first step. Solving the problem of control synthesis has consistently posed a more

intricate challenge compared to the problem of optimal control. The synthesis problem has been solved

via the utilization of controllers in feedback, wherein control is sought as a function involving the robot's

state. However, this approach necessitated an accurate model of the controlled robot. It is essential to

acknowledge that solving the problem of control synthesis in the first step has brought about substantial

modifications to the control robot mathematical model. A more generalized technique has relied on the

utilization of symbolic regression, a computer technique known as variational synthesized genetic

programming (VSGP), to address the synthesis problem. The control synthesis problem has been solved

with the objective of guaranteeing the control robot's stability with respect to a specific point inside the

state space. The present step of the stabilization system synthesis has facilitated the incorporation of

control within the robot, ensuring that the differential equations system possesses the essential attribute

of feasibility. The implementation of this form of control in actual systems was well accepted due to its

ability to minimize model errors through the utilization of feedback control. This methodology belongs

to the broader family of machine learning algorithms; however, it transcends the limitations of neural

networks by enabling the search over both the space of possible functional architectures and their

154

parameter values of the control function—thereby supporting interpretable, equation-based modeling.

The VSGP implements an evolutionary framework that evolves the structural-parametric search of

candidate control functions, evaluating their performance solely through the quality functional’s output.

The VSGP technique has been utilized to obtain a solution without relying on explicit model equations.

The first step yielded the acquisition of the control function's structure and parameters. Consequently,

the researcher has automatically obtained the efficient controller function structure and its proper

parameters. The first step of synthesis of the stabilization system was a crucial concept within this

methodology, leading to improved results in tasks involving intricate environments. At present, the

problem of general synthesis can only be effectively solved by employing symbolic regression-based

machine learning techniques that offer approximate solutions.

The optimization step was the second step in this proposed approach. Following the previous

step, which guaranteed a steady system movement to a stabilization point, a series of stabilization points

were meticulously sought to transition among them at specified times sequentially. This strategic

approach enabled the robots to ultimately attain the terminal state, besides the quality criterion improved

estimation. During this step, the optimal control problem was addressed by utilizing the robot's stability

points' coordinates as control. In order to ensure the existence of adjacent areas with attractive properties

for the effective solution, it was necessary to carefully select the stability points' position within the state

space. This positioning was done in such a way that specific solutions originating from a specific area

of initial states, which are attracted to such stability points, would exhibit nearness to each other as they

progress towards the terminal state. The equilibrium point exhibited attractor features in an algorithmic

manner, as it was seen that all solutions converged in close vicinity to this point, so satisfying the

principle of feasibility. This methodology implemented a control mechanism for the robot by

transitioning among stable equilibrium points. However, it is essential to note that these equilibrium

points were not coincident with the reference trajectory. The positions of such points were determined

by the utilization of an evolutionary algorithm known as Particle Swarm Optimization (PSO), which was

applied based on the criterion of the problem of optimal control. It is essential to observe that at the

stable point of equilibrium within the state space, the velocity of the robot was equal to zero.

Consequently, the placement of stable points over the reference trajectory resulted in ineffective mobility

characterized by stops at such points. The points have the potential to be located at any position inside

the state space. By strategically switching these points, the robot could accomplish an efficient

movement on the reference trajectory without any stops. The computer memory was set up with the

found stabilization points' coordinates and a designated time interval for transitioning among these

points, thus establishing the suitable trajectory. The proposed methodology introduced a novel control

strategy that involved altering the position of a stable point of equilibrium. This approach compelled the

155

robot's stabilization system to drive it towards the equilibrium point. By altering the position of the

equilibrium point over time, it became possible to guide the robot to its intended terminal state while

improving the quality criterion. In the second step of the applied technique for synthesized optimal

control, we conducted a search for the positions of the points of equilibrium using a piece-wise constant

function.

This technique possesses numerous advantages. One great thing about this technique was that it

did not depend on a specific model of the control object. This meant that the symbolic regression

technique could be used to search the feedback function of control automatically. The primary advantage

of this technique consisted of its versatility and capacity to be applied to diverse, dynamic models of

control objects. One additional benefit resulted from the establishment of systems of optimal control that

possess the property of feasibility. This characteristic emerges as a result of the control object

stabilization during the first step. This system of stabilization has facilitated the establishment of an

equilibrium point for the robot inside the space of states. This implies that the system was designed for

its attraction to a specific equilibrium point. Another benefit of this technique was the implementation

of control through the alteration of equilibrium points. The ability to achieve optimal control over an

object has been made possible such that the control parameters' effective values could be rapidly

computed employing numerical optimization techniques; moreover, it has been possible to update these

parameters in real-time, even on board. Interestingly, it could be noted that all techniques employed for

the purpose of calculation were automated numerical techniques, obviating the need for manual

calculations. This pivotal aspect facilitated the automation and universalization of the control system

development process. One of several primary characteristics of the synthesized technique was the hands-

on feasibility of obtaining numerical solutions for the problem of optimal control in intricate systems.

One objective of the process reformulation for the known problem represented that its solution was able

to be directly applied to a real object. The problem of refined optimal control incorporated one extra

requirement for the suitable trajectory, namely that this trajectory possessed an attractive close vicinity.

In order to achieve this objective, it is necessary for a control function to be dependent not just on time

but also on the vector of state space.

In summary, the methodology of synthesized optimal control presented in this study was a novel

approach to solving optimal control problems by focusing on controlling a stable robot's equilibrium

point. The methodology consisted of two different steps. In the initial design phase, a stabilization system

was embedded within the control architecture of the robotic system, thereby inducing a structurally

stable equilibrium point in its phase space. This was motivated by the established principle that such an

equilibrium is a necessary condition for ensuring desirable control properties in the robot's mathematical

model. Secondly, Although the equilibrium point could be reconfigured over time, the system remained

156

stable at all times because of the underlying stabilization system, which allowed for control through

manipulating the position of the equilibrium point. This technique possesses the ability to be universal,

enabling a numerical solution of the synthesis problem within a broad context, devoid of the necessity

to construct a training set. Instead, it relies just on the evaluation of the quality criterion, so exemplifying

the utilization of unsupervised machine learning.

Suggested Future Works

The subsequent recommendations are proposed for future works:

1. A two-stage methodology is proposed for solving the optimal control problem: (i)

numerical solution of the optimal control problem over a set of initial conditions to

generate a collection of optimal trajectories; (ii) application of symbolic regression to

approximate the resulting trajectories with an interpretable expression. In this context,

supervised machine learning is employed rather than unsupervised machine learning.

2. One possible way to execute the proposed synthesized optimal control technique is to

employ a holonomic mobile robot rather than a nonholonomic one.

3. The suggested technique can potentially be applied in various forms of motion control

for mobile robots, such as trajectory tracking, as an alternative to the current approach of

altering the stable point of equilibrium.

4. The proposed technique can be employed to address the optimal control problem and

evaluate its efficacy in the existence of uncertainties, which may arise due to

considerations such as model inaccuracies, noise, initial conditions uncertainty, and other

similar sources.

5. It is essential to persist in the exploration of other evolutionary algorithms, such as the

Grey Wolf Optimization Algorithm (GWO) or hybrid algorithms, such as (GA and PSO

or GA and GWO), to solve the problem of optimal control rather than relying solely on

the Particle Swarm Optimization Algorithm (PSO), as mentioned in this dissertation.

157

LIST OF ABBREVIATIONS

Abbreviation Definition

R.U.R Rossum's Universal Robots

MLC Machine learning control

WMR Wheeled mobile robot

SGP Synthesized genetic programming

VSGP Variational synthesized genetic programming

PSO Particle Swarm Optimization Algorithm

WMRs Wheeled mobile robots

ICR Instantaneous center of rotation

ICC Instantaneous Center of Curvature

DDWMR Differential drive wheeled mobile robot

DOF Degrees of freedom

DDOF Differential degrees of freedom

DDWMRs Differential drive wheeled mobile robots

PID Proportional Integral Derivative

ML Machine learning

NN Neural Network

MWMR Mecanum-wheel mobile robot

FL Fuzzy Logic

OMRs Omnidirectional mobile robots

RL Reinforcement Learning

SR Symbolic Regression

SMC Sliding Mode Control

MPC Model Predictive Control

MIMO Multiple-Input Multiple-Output System

NMPC Nonlinear Model Predictive Control

GA Genetic Algorithm

GAs Genetic Algorithms

VarGA Variational Genetic Algorithm

GP Genetic Programming

CGP Cartesian Genetic Programming

GWO Grey Wolf Optimization Algorithm

158

LIST OF SYMBOLS

Symbol Definition

𝛼, 𝛾, 𝛽, 𝜎 The PSO algorithm constant parameters.

𝛽𝑖 The inner wheel’s steering angle in the Ackerman steering mechanism.

𝛽𝑜 The outer wheel’s steering angle in the Ackerman steering mechanism.

𝛽𝑠 The automobile’s true steering angle in the Ackerman steering mechanism.

𝛿 A positive value of tiny magnitude.

Δ A provided time interval.

𝜀 and 𝑡+ positive numerical values.

𝜀1 and 𝑡1
+ Provided positive numerical values.

𝜁 The posture vector of differential drive wheeled mobile robot (DDWMR).

𝜂 A function that equals or approximated to 𝜓 based on a specific criterion.

𝜃 the angle of orientation of the mass center coordinate system of the DDWMR

 CXCYC relative to the inertial coordinate system OXOYO.

𝜃𝑑 The destination orientation of the robot within the navigation plane.

𝜗(𝐴) The Heaviside step function.

𝜇1 , 𝜇2 The random mutation points for SGP technique.

𝜇(𝒙) The Bellman function.

𝝃 A random value drawn from the interval [0:1].

𝜚 An evaluation criterion.

𝜑̇𝑙 , 𝜑̇𝑟 The angular velocities of the left and right wheels.

ψ The angle of the roller in the Swedish wheel.

𝜓 The unknown function.

𝛹(𝒃) The function that transforms a non-numerical structure's code into an actual function.

𝜔, 𝜐 The angular and linear velocities of differential drive wheeled mobile robot.

𝛀 A correlation between the angular velocities of the right and left wheels (𝜑𝑟 , 𝜑𝑙) of

the DDWMR, and the angular and linear velocities of the mass center of

the DDWMR (𝜔, 𝜐).

𝑨(𝑸) The matrix that encompasses nonholonomic constraints.

𝑎 The distance from the center of wheel to the center of automobile in the Ackerman

steering mechanism.

2a The distance between the actuated wheels and the axis of symmetry.

159

𝒂𝑇(𝑸) The parameter vector of the constraint.

b The length of rolling polygon side.

𝒃0 The basic solution.

𝒃𝑖 The new basic solution.

C Center of mass or point of guidance.

CXCYC The mass center coordinate system of differential drive wheeled mobile robot.

𝑐1, 𝑐2, 𝑐3 The weight coefficients for the quality criterion of the synthesized optimal control

for mobile robot example.

𝑐 Randomly chosen possible solutions.

𝐷 The total count of variation vectors that presents in a single set.

d The distance between point P and point C.

𝑑𝑒𝑝 The dimension of the variation vector.

𝐸 The distance from the instantaneous center of rotation (ICR) to the nearest wheel

in the Ackerman steering mechanism.

𝑒1, … , 𝑒𝑣 The unit elements for two-argument functions.

𝑭 A unified set of the two sets of fundamental functions

𝑭𝟎 The arguments set.

𝑭𝟏 The functions set that is characterized by one argument.

𝑭𝟐 The functions set that is characterized by two arguments.

𝐹(𝐪) The objective function of the optimization problem in PSO algorithm.

𝐹𝑖 The objective function value for genetic algorithm.

𝐹𝑗− The best objective function value for genetic algorithm.

Fr The generated force by the rotational motion of the omnidirectional wheel.

Fr1 A parallel force of Fr, which parallels the axis of the roller.

Fr2 A perpendicular force of Fr, which is oriented at a right angle to the axis of

the roller.

𝐹𝛾 The objective function value for the set of variations vector 𝑾𝜸.

𝐹𝜑 The objective function value for the set of variations vector 𝑾𝜑.

𝑓(𝑸) The holonomic constraint.

𝑓(𝑸, 𝑸̇) The nonholonomic constraint.

𝑓∗ A value that meets the estimate requirements.

𝑮 The evaluation of an objective function or a function of fitness for SGP technique.

𝐺𝑚 The mobility degree of wheeled mobile robots (WMRs).

160

𝐺𝑠 The steerability degree of wheeled mobile robots (WMRs).

𝒈(𝒙) The control function in terms of the vector of state space.

𝒈(𝒙∗ − 𝒙) The control function that obtained from the stabilization step.

𝒈𝜸 , 𝒈𝝋 The objective functions values of random two possible solutions of SGP technique.

𝐻 The number of columns (vectors) in the code matrix.

𝒉(𝑡) The control function that is obtained is commonly referred to as a program control.

𝑖 General serial counter.

𝐽 The general quality criterion of the optimal control.

𝐽1 The general quality criterion of the control synthesis system with a domain of initial

condition.

𝐽2 The general quality criterion of the control synthesis system with a limited set of

initial conditions.

𝐽(𝑹𝑖, 𝐪
𝑖) The objective function for SGP technique.

𝐽𝑜𝑝𝑡 The quality criterion of the synthesized optimal control for mobile robot example.

𝐽𝑠 The general quality criterion of the control synthesis system with a limited set of

initial conditions for symbolic regression techniques.

𝐽𝑠1 The general quality criterion of system with a limited set of initial conditions in the

stabilization step.

𝐽𝑠𝑜1 The general quality criterion of the synthesized optimal control.

𝐽𝑠𝑦𝑛 The general quality criterion of system with a limited set of initial conditions in the

stabilization step for mobile robot example.

𝑗 General serial counter.

𝐾 Number of intervals or number of points of equilibrium.

𝑘1 , 𝑘2 The random crossover points for SGP technique.

𝑘𝑐 The random crossover point for genetic algorithm.

𝐋 The number of initial conditions.

𝑙 The sequence of possible solutions within the initial population.

𝑀 The total number of the set of codes that representing the possible solutions.

𝑀𝑤 The maneuverability of wheeled mobile robots (WMRs).

𝑚𝑞 The dimensionality of the parameters vector.

m The dimension of the velocity (control) vector.

𝑁𝑐 The number of separate (independent) constraints for wheeled mobile robot.

n The dimension of the state space.

161

OXOYO The inertial coordinate system of differential drive wheeled mobile robot.

P Intersection of the axis of the symmetry with the wheels’ axis.

𝑃𝑐 The crossover probability for SGP technique.

𝑃𝑟𝑐 The crossover probability.

𝑃𝑡 The total number of phase constraints.

𝑃𝜇 The mutation probability for SGP technique.

p The number of nonholonomic constraints.

𝑝1 A weight coefficient for the quality criterion of the control synthesis system.

Q The generalized coordinate vector.

𝑸̇ The vector containing the velocities of the system within the generalized coordinates.

𝐪 The parameters vector.

q1, . . . , q𝑚𝑞
 The parameters of the mathematical expression.

q𝑖
+ and q𝑖

− The higher and lower bounds of the parameters.

q𝑗(𝑐) The most efficient possible solution in PSO algorithm.

𝑹 The code matrix.

𝑹𝑖− or 𝒈𝒊− The best solution for the code of SGP technique.

𝑹𝐶𝐺𝑃 The code matrix of Cartesian genetic programming technique.

𝑹𝐺𝑃 The code matrix of genetic programming technique.

𝑹𝑆𝐺𝑃 The code matrix of synthesized genetic programming technique (SGP).

𝑹𝛾, 𝐪
𝛾,

𝑹𝜑, 𝐪𝜑

Random two possible solutions of SGP technique for the crossover operation.

Rai The radius of an instantaneous circular path for wheeled mobile robot.

ℝ𝑛 The state space.

ℝ𝑚 The control space.

𝒓 The column in the code matrix such that it can be considered the column as a vector.

rA Radius of left or right wheel.

𝑟𝑑 The minimal acceptable secure distance between robots.

𝑟𝑒 An element in the column of the code matrix.

𝑟𝑠𝑡, 𝑥1,𝑠𝑡,

𝑥2,𝑠𝑡

Radius and coordinates of center of the constraints of static phase.

𝑺(𝑸) The Jacobian matrix.

𝑆 A set of codes that representing the possible solutions.

162

𝑡𝑓 The time at which the terminal condition is reached, starting from the initial one in

the optimal control.

𝑡𝑘 A given time.

𝑡∗ The general time at which the terminal condition is reached, starting from the initial

 one in the stabilization step.

𝑡𝑖
∗ The time at which the terminal condition is reached, starting from the initial

 one in the stabilization step and used in the general quality criterion 𝐽𝑠1.

𝑼 A compact set.

𝒖 The vector representing the control, 𝒖 ∈ 𝑼.

𝑢̃1, 𝑢̃2 The effective control functions.

𝑉 The distance from the center of front wheel to the center of rear wheel in the

Ackerman steering mechanism.

𝒗 The auxiliary velocity vector.

𝑣ℎ A hub velocity in the roller of the omnidirectional wheel.

𝑣𝑙 The velocity of the left wheel in a differential drive robot.

𝑣𝑟 The velocity of the right wheel in a differential drive robot.

𝑣𝑡 The sum of the horizontal velocity (𝑣ℎ) and the vertical velocity (𝑣𝑣).

𝑣𝑣 A small rotational velocity in the roller of the omnidirectional wheel.

𝜐𝑖
𝑗
 A history vector in PSO algorithm.

𝑾𝑖 The ordered multiset consisting of variation vectors as the initial population.

𝑾𝜸 , 𝑾𝝋 Two sets of variations vectors.

𝑾𝜸+𝟏 ,

𝑾𝝋+𝟏

The new sets of variations’ vectors generated from the crossover.

𝒲 The vector of small variations.

𝓌1 An index denoting a small variation.

 𝓌2 , 𝓌𝑑𝑒𝑝−1 Indices indicating the element position in the code that define the variable element.

𝓌𝑑𝑒𝑝 The updated value of the defined element.

𝐗 The input space.

𝐗0 The initial conditions domain within the state space.

𝐗̃, 𝐘̃ The training sets.

𝒙 The input vector (state space vector).

𝒙0 The initial conditions of the control object model.

𝒙̇ The mathematical model of the control object in the form of an ordinary differential equations

163

system.

𝒙𝑓 The terminal conditions of the control object model.

𝒙(𝑡, 𝒙0) A partial solution of the control object system.

𝒙(𝑡∗) The terminal position, enabling the system to achieve stabilization at such a point.

𝒙̃(𝒙∗(𝑡𝑘)) A stable point of equilibrium.

𝒙∗(𝑡) A time control function.

𝑥 , 𝑦 The coordinates of point C.

𝑥1, . . . , 𝑥𝑟 The variables of the mathematical expression.

𝑥𝑖, 𝑦𝑖 The initial position of the robot within the navigation plane.

𝑥𝑑, 𝑦𝑑 The destination position of the robot within the navigation plane.

𝑥𝑑(𝑡), 𝑦𝑑(𝑡),

𝜃𝑑(𝑡)

The destination position of the robot within the navigation plane throughout time.

𝑥̇𝑑(𝑡), 𝑦̇𝑑(𝑡),

𝜃̇𝑑(𝑡)

The destination velocity of the robot within the navigation plane throughout time.

𝑥𝑖
∗,𝑗(𝑡) The coordinates of a stable point of equilibrium.

𝐘 The output space.

𝒚 The output vector.

164

REFERENCES

[1] G. Klancar, A. Zdesar, S. Blazic and I. Skrjanc, Wheeled Mobile Robotics. Butterworth-

Heinemann, 2017.

[2] G. Cook and F. Zhang, Mobile Robots. John Wiley & Sons, 2020, doi:10.1002/9781119534839.

[3] M. Javaid, A. Haleem, R. P. Singh and R. Suman, “Substantial capabilities of robotics in

enhancing industry 4.0 implementation,” Cognitive Robotics, vol. 1, pp. 58–75, 2021, doi:

10.1016/j.cogr.2021.06.001.

[4] G. Fragapane, D. Ivanov, M. Peron, F. Sgarbossa and J. O. Strandhagen, “Increasing flexibility

and productivity in Industry 4.0 production networks with autonomous mobile robots and smart

intralogistics,” Annals of Operations Research, vol. 308, no. 1–2, pp. 125–143, Feb. 2020, doi:

10.1007/s10479-020-03526-7.

[5] F. D’Souza, J. Costa and J. N. Pires, “Development of a solution for adding a collaborative robot

to an industrial AGV,” Industrial Robot: the international journal of robotics research and

application, vol. 47, no. 5, pp. 723–735, May 2020, doi: 10.1108/ir-01-2020-0004.

[6] J. Holland et al., “Service Robots in the Healthcare Sector,” Robotics, vol. 10, no. 1, p. 47, Mar.

2021, doi: 10.3390/robotics10010047.

[7] M. Stasevych and V. Zvarych, “Innovative Robotic Technologies and Artificial Intelligence in

Pharmacy and Medicine: Paving the Way for the Future of Health Care—A Review,” Big Data

and Cognitive Computing, vol. 7, no. 3, p. 147, Aug. 2023, doi: 10.3390/bdcc7030147.

[8] H. Najim, I. Kareem and W. Abdul-Lateef, “Design and implementation of an omnidirectional

mobile robot for medicine delivery in hospitals during the covid-19 epidemic,” AIP Conference

Proceedings, vol. 2380, no. 1, 2023, doi:10.1063/5.0156862

[9] S. Jameel Al-Kamil and R. Szabolcsi, “Optimizing path planning in mobile robot systems using

motion capture technology,” Results in Engineering, p. 102043, Mar. 2024, doi:

10.1016/j.rineng.2024.102043.

[10] N. Sharma, J. K. Pandey and S. Mondal, “A Review of Mobile Robots: Applications and Future

Prospect,” International Journal of Precision Engineering and Manufacturing, vol. 24, no. 9, pp.

1695–1706, Aug. 2023, doi: 10.1007/s12541-023-00876-7.

[11] M. Z. U. Rahman, U. Raza, M. A. Akbar, M. T. Riaz, A. H. Gumaei and N. Ahmad, “Radio-

Controlled Intelligent UGV as a Spy Robot with Laser Targeting for Military Purposes,” Axioms,

vol. 12, no. 2, p. 176, Feb. 2023, doi: 10.3390/axioms12020176.

[12] K. Bazargani and T. Deemyad, “Automation’s Impact on Agriculture: Opportunities, Challenges,

and Economic Effects,” Robotics, vol. 13, no. 2, p. 33, 2024, doi: 10.3390/robotics13020033.

165

[13] C. Cheng, J. Fu, H. Su and L. Ren, “Recent Advancements in Agriculture Robots: Benefits and

Challenges,” Machines, vol. 11, no. 1, p. 48, 2023, doi: 10.3390/machines11010048.

[14] D. Xie, L. Chen, L. Liu, L. Chen and H. Wang, “Actuators and Sensors for Application in

Agricultural Robots: A Review,” Machines, vol. 10, no. 10, p. 913, Oct. 2022, doi:

10.3390/machines10100913.

[15] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control. John Wiley &

Sons, 2020.

[16] M. Mihelj et al., “Mobile Robots,” Robotics, pp. 189–208, Jul. 2018, doi: 10.1007/978-3-319-

72911-4_13.

[17] N. J. Nilsson and A. M. Automaton, “An Application of Artificial Intelligence Techniques,”

In Proc. of IJCAI, vol. 509. 1969, doi: 10.21236/ADA459660.

[18] A. M. Thompson, The navigation system of the JPL robot. No. NASA-CR-154123. 1977.

[19] G. Giralt, R. Sobek and R. Chatila, “A multi-level planning and navigation system for a mobile

robot: a first approach to Hilare,” In Proceedings of the 6th international joint conference on

Artificial intelligence, vol. 1, pp. 335-337. 1979.

[20] L. Jean-Paul, “Feasible trajectories for mobile robots with kinematic and environment

constraints,” Proceeding International Conference Intelligent Autonomous Systems, pp. 346-

354, 1986.

[21] Z. Li and J. F. Canny, Nonholonomic Motion Planning. Springer Science & Business Media,

2012.

[22] M. Yue, C. An and Z. Li, “Constrained Adaptive Robust Trajectory Tracking for WIP Vehicles

Using Model Predictive Control and Extended State Observer,” in IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 48, no. 5, pp. 733-742, May 2018, doi:

10.1109/TSMC.2016.2621181.

[23] C. Shen, Y. Shi and B. Buckham, “Nonlinear model predictive control for trajectory tracking of

an AUV: A distributed implementation,” 2016 IEEE 55th Conference on Decision and Control

(CDC), Dec. 2016, doi: 10.1109/cdc.2016.7799190.

[24] Y. -C. Huang and H. -Y. Li, “Receding Horizon Optimal controller for reference trajectory

tracking in Mars entry guidance,” 2016 IEEE Chinese Guidance, Navigation and Control

Conference (CGNCC), pp. 2442-2449, 2016, doi: 10.1109/CGNCC.2016.7829176.

[25] M. Neunert et al., “Fast nonlinear Model Predictive Control for unified trajectory optimization

and tracking,” 2016 IEEE International Conference on Robotics and Automation (ICRA), pp.

1398-1404, 2016, doi: 10.1109/ICRA.2016.7487274.

[26] D. J. Todd, Walking Machines. Springer Science & Business Media, 2013.

166

[27] P. Cizek, M. Zoula and J. Faigl, “Design, Construction, and Rough-Terrain Locomotion Control

of Novel Hexapod Walking Robot with Four Degrees of Freedom Per Leg,” IEEE Access, vol.

9, pp. 17866–17881, 2021, doi: 10.1109/access.2021.3053492.

[28] A. Mahapatra, S. S. Roy and D. K. Pratihar, “Multi-legged robots—A review,” Multi-body

Dynamic Modeling of Multi-legged Robots, pp. 11-32, 2020, doi: 10.1007/978-981-15-2953-5_2.

[29] B. Chong et al., “Geometry of contact: contact planning for multi-legged robots via spin models

duality,” arXiv preprint arXiv:2302.03019, 2023, doi: 10.48550/arXiv.2302.03019.

[30] N. Mahkam, T. B. Yılmaz and O. Özcan, “Smooth and Inclined Surface Locomotion and

Obstacle Scaling of a C-Legged Miniature Modular Robot, ” 2021 IEEE 4th International

Conference on Soft Robotics (RoboSoft), pp. 9-14, Apr. 2021, doi:

10.1109/RoboSoft51838.2021.9479218.

[31] G. Rigatos, “A Nonlinear Optimal Control Approach for Tracked Mobile Robots,” Journal of

Systems Science and Complexity, vol. 34, no. 4, pp. 1279–1300, Feb. 2021, doi: 10.1007/s11424-

021-0036-1.

[32] L. Bruzzone, S. E. Nodehi and P. Fanghella, “Tracked Locomotion Systems for Ground Mobile

Robots: A Review,” Machines, vol. 10, no. 8, p. 648, Aug. 2022, doi:

10.3390/machines10080648.

[33] M. Ahmad, V. Polotski and R. Hurteau, “Path tracking control of tracked vehicles,” Proceedings

2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and

Automation. Symposia Proceedings (Cat. No.00CH37065), vol.3, pp. 2938-2943, 2000, doi:

10.1109/ROBOT.2000.846474.

[34] T. Bräunl, Embedded robotics: from mobile robots to autonomous vehicles with Raspberry Pi

and Arduino. Springer Nature, 2022, doi: 10.1007/978-981-16-0804-9.

[35] J. L. Martínez, A. Mandow, J. Morales, S. Pedraza, and A. García-Cerezo, “Approximating

Kinematics for Tracked Mobile Robots,” The International Journal of Robotics Research, vol.

24, no. 10, pp. 867–878, Oct. 2005, doi: 10.1177/0278364905058239.

[36] P. Corke, Robotics and control: fundamental algorithms in MATLAB®. vol. 141. springer

Nature, 2021, doi: 10.1007/978-3-030-79179-7.

[37] P. Morin, “Control of Mobile Robots,” in Encyclopedia of Robotics, M. H. Ang, O. Khatib, and

B. Siciliano, Eds. Berlin, Heidelberg: Springer, 2023, doi: 10.1007/978-3-642-41610-1_60-1.

[38] B. Siciliano et al., “Mobile robots,” in Robotics: Modelling, Planning and Control, pp. 469-521,

2010, doi: 10.1007/978-1-84628-642-1_11.

[39] D. R. Jones and K. A. Stol, “Modelling and stability control of two-wheeled robots in low-

traction environments,” in Australasian Conference on Robotics and Automation, Brisbane,

Australia, 2010.

167

[40] R. Beniak and T. Pyka, “Stability analysis of a tri-wheel mobile robot,” 2016 21st International

Conference on Methods and Models in Automation and Robotics (MMAR), pp. 1094-1097, 2016,

doi: 10.1109/MMAR.2016.7575290.

[41] D. Cui, X. Gao, W. Guo and H. Dong, “Design and Stability Analysis of a Wheel-Track

Robot,” 2016 3rd International Conference on Information Science and Control Engineering

(ICISCE), pp. 918-922, 2016, doi: 10.1109/ICISCE.2016.200.

[42] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza, Introduction to Autonomous Mobile Robots.

MIT Press, 2011.

[43] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics. Cambridge University

Press, 2010, doi: 10.1017/CBO9780511780929.

[44] S. G. Tzafestas, Introduction to Mobile Robot Control. Elsevier, 2014, doi: 10.1016/B978-0-12-

417049-0.00005-5.

[45] S. Jonsson, “New AGV with Revolutionart Movement,” In 3rd International Conference on

Automated Guided Vehicles, pp. 135-144. 1985.

[46] B. Carlisle, “An omni-directional mobile robot,” Development in robotics, 1983.

[47] J. Agulló, S. Cardona and J. Vivancos, “Kinematics of vehicles with directional sliding wheels,”

Mechanism and Machine Theory, vol. 22, no. 4, pp. 295-301, 1987, doi: 10.1016/0094-

114X(87)90018-8.

[48] S. L. Dickerson and B. D. Lapin, “Control of an omni-directional robotic vehicle with Mecanum

wheels,” In NTC'91-National Telesystems Conference Proceedings, pp. 323-328, 1991, doi:

10.1109/NTC.1991.148039.

[49] L. Ferriere, B. Raucent and G. Campion, “Design of omnimobile robot wheels,” Proceedings of

IEEE International Conference on Robotics and Automation, vol. 4, pp. 3664-3670, 1996, doi:

10.1109/ROBOT.1996.509271.

[50] W. Chung and K. Iagnemma, “Wheeled robots,” Springer Handbook of Robotics, pp. 575-594,

2016, doi: 10.1007/978-3-319-32552-1_24.

[51] N. Shiroma, Y. -h. Chiu, Z. Min, I. Kawabuchi and F. Matsuno, “Development and Control of a

High Maneuverability Wheeled Robot with Variable-Structure Functionality,” 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 4000-4005, 2006, doi:

10.1109/IROS.2006.281839.

[52] S. D. Lee and S. Jung, “A recursive least square approach to a disturbance observer design for

balancing control of a single-wheel robot system,” 2016 IEEE International Conference on

Information and Automation (ICIA), pp. 1878-1881, 2016, doi: 10.1109/ICInfA.2016.7832125.

[53] H. Cho and J. J. Lee, Proceedings of the 2002 FIRA World Congress, 2002.

168

[54] J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots: Systems and Techniques.

Wellesley, MA: AK Peters, Ltd., 1998.

[55] R. C. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press, 1998.

[56] J. L. Jones, B. A. Seiger and A. M. Flynn, Mobile Robots: Inspiration to Implementation.

Wellesley, MA: AK Peters/CRC Press, 1998, doi: 10.1201/9781439863985.

[57] P. Mckerrow, Introduction to Robotics. Boston, MA: Addison-Wesley Longman Publishing Co.,

Inc., 1991.

[58] R. P. M. Chan, K. A. Stol, and C. R. Halkyard, “Review of modelling and control of two-wheeled

robots,” Annual Reviews in Control, vol. 37, no. 1, pp. 89-103, 2013,

https://doi.org/10.1016/j.arcontrol.2013.03.004.

[59] G. Klančar and I. Škrjanc, “Tracking-error model-based predictive control for mobile robots in

real time,” Robotics and Autonomous Systems, vol. 55, no. 6, pp. 460-469, 2007, doi:

10.1016/j.robot.2007.01.002.

[60] G. Klancar, A. Zdesar, S. Blazic, and I. Skrjanc, Wheeled Mobile Robotics: From Fundamentals

Towards Autonomous Systems. Oxford: Butterworth-Heinemann, 2017.

[61] P. Mckerrow, Introduction to Robotics. Boston, MA: Addison-Wesley Longman Publishing Co.,

Inc., 1991.

[62] P. Glotfelter and M. Egerstedt, “A Parametric MPC Approach to Balancing the Cost of

Abstraction for Differential-Drive Mobile Robots,” 2018 IEEE International Conference on

Robotics and Automation (ICRA), pp. 732-737, 2018, doi: 10.1109/ICRA.2018.8461234.

[63] A. A. Rodriguez et al., “Modeling, design and control of low-cost differential-drive robotic

ground vehicles: Part II — Multiple vehicle study,” 2017 IEEE Conference on Control

Technology and Applications (CCTA), pp. 161-166, 2017, doi: 10.1109/CCTA.2017.8062457.

[64] L. -Y. Hsu and T. -L. Chen, “An Optimal Wheel Torque Distribution Controller for Automated

Vehicle Trajectory Following,” in IEEE Transactions on Vehicular Technology, vol. 62, no. 6,

pp. 2430-2440, July 2013, doi: 10.1109/TVT.2013.2246593.

[65] C. Myint and N. N. Win, “Position and velocity control for two-wheel differential drive mobile

robot,” International Journal of Science, Engineering and Technology Research (IJSETR), vol.

5, no. 9, pp. 2849-2855, 2016.

[66] A. A. Mahfouz, A. A. Aly and F. A. Salem, “Mechatronics design of a mobile robot system,”

International Journal of Intelligent Systems and Applications, vol. 5, no. 3, pp. 23-36, 2013, doi:

10.5815/ijisa.2013.03.03.

[67] G. Campion, G. Bastin and B. D'Andrea-Novel, “Structural properties and classification of

kinematic and dynamic models of wheeled mobile robots,” [1993] Proceedings IEEE

169

International Conference on Robotics and Automation, vol. 1, pp. 462-469, 1993, doi:

10.1109/ROBOT.1993.292023.

[68] G. Campion and W. Chung, “Wheeled robots,” in Springer Handbook of Robotics, pp. 391-410,

Springer, Berlin, Heidelberg, 2008, doi: 10.1007/978-3-540-30301-5_18.

[69] R. Dhaouadi and A. Abu Hatab, “Dynamic modelling of differential-drive mobile robots using

Lagrange and Newton-Euler methodologies: A unified framework,” Advances in Robotics &

Automation, vol. 2, no. 2, pp. 1-7, 2013, doi: 10.4172/2168-9695.1000107.

[70] M. Mihelj et al., “Mobile robots,” in Robotics, pp. 189-208, 2019, doi: 10.1007/978-3-319-

72911-4_13.

[71] J. A. Angelo, Robotics: A Reference Guide to the New Technology. Westport: Greenwood Press,

2007.

[72] P. F. Muir and C. P. Neuman, “Kinematic modeling of wheeled mobile robots,” Journal of

Robotic Systems, vol. 4, no. 2, pp. 281-340, 1987, doi: 10.1002/rob.4620040209

[73] J. C. Alexander and J. H. Maddocks, “On the kinematics of wheeled mobile robots,” The

International Journal of Robotics Research, vol. 8, no. 5, pp. 15-27, 1989, doi:

10.1177/027836498900800502.

[74] D.-S. Kim, W.-H. Kwon and H.-S. Park, “Geometric kinematics and applications of a mobile

robot,” International Journal of Control, Automation, and Systems, vol. 1, no. 3, pp. 376-384,

2003.

[75] R. Rajagopalan, “A generic kinematic formulation for wheeled mobile robots,” Journal of

Robotic Systems, vol. 14, no. 2, pp. 77-91, 1997, doi: 10.1002/(SICI)1097-

4563(199702)14:2%3C77::AID-ROB3%3E3.0.CO;2-Q.

[76] T. Phairoh and K. Williamson, “Autonomous mobile robots using real time kinematic signal

correction and global positioning system control,” in Proceedings of IAJC‐IJME International

Conference on Industrial Technology, Nov. 17-19, 2008.

[77] N. A. Martins and D. W. Bertol, Wheeled Mobile Robot Control: Theory, Simulation, and

Experimentation, vol. 380, Springer Nature, 2022, doi: 10.1007/978-3-030-77912-2.

[78] M. Crenganis and O. Bologa, “Implementing PID Controller for a Mobile Platform,” Buletinul

AGIR, suppl. 1, pp. 143-148, 2015.

[79] G. Campion, B. d'Andrea-Novel and G. Bastin, “Modelling and state feedback control of

nonholonomic mechanical systems,” [1991] Proceedings of the 30th IEEE Conference on

Decision and Control, vol. 2, pp. 1184-1189, 1991, doi: 10.1109/CDC.1991.261553.

[80] P. Coelho and U. Nunes, “Path-following control of mobile robots in presence of uncertainties,”

in IEEE Transactions on Robotics, vol. 21, no. 2, pp. 252-261, April 2005, doi:

10.1109/TRO.2004.837240.

170

[81] Y. Yamamoto and Xiaoping Yun, “Coordinating locomotion and manipulation of a mobile

manipulator,” in IEEE Transactions on Automatic Control, vol. 39, no. 6, pp. 1326-1332, June

1994, doi: 10.1109/9.293207.

[82] S. Khatoon, M. Istiyaque, S. A. Wani and M. Shahid, “Design kinematics and control for a

differential drive mobile robot,” in Renewable Power for Sustainable Growth: Proceedings of

International Conference on Renewable Power (ICRP 2020), pp. 189-196, Springer Singapore,

2021, doi: 10.1007/978-981-33-4080-0_18.

[83] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks,”

in IEEE Transactions on Neural Networks, vol. 9, no. 4, pp. 589-600, July 1998, doi:

10.1109/72.701173.

[84] H. Choset et al., Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT

Press, 2005.

[85] I. Kolmanovsky and N. H. McClamroch, “Developments in nonholonomic control problems,”

in IEEE Control Systems Magazine, vol. 15, no. 6, pp. 20-36, Dec. 1995, doi:

10.1109/37.476384.

[86] A. M. Bloch, “Nonholonomic Mechanics,” in Nonholonomic Mechanics and Control, P.

Krishnaprasad and R. Murray, Eds., Interdisciplinary Applied Mathematics, vol. 24, Springer,

New York, NY, 2015, doi: 10.1007/978-1-4939-3017-3_5.

[87] J. Minguez, F. Lamiraux and J. P. Laumond, “Motion Planning and Obstacle Avoidance,” in

Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds., Springer Handbooks, Springer,

Cham, 2016, doi: 10.1007/978-3-319-32552-1_47.

[88] Z. Li and J. Canny, Eds., Nonholonomic Motion Planning. Springer Science & Business Media,

1993, doi: 10.1007/978-1-4615-3176-0.

[89] N. Correll, B. Hayes, C. Heckman and A. Roncone, Introduction to Autonomous Robots:

Mechanisms, Sensors, Actuators, and Algorithms. MIT Press, 2022.

[90] J. J. Craig, Introduction to robotics. Pearson Educacion, 2006.

[91] W. Abbasi, “Stabilization of Nonholonomic Systems,” Doctoral dissertation, Capital University

of Science and Technology, Islamabad, 2018.

[92] M. Ben-Ari and F. Mondada, Elements of Robotics. Springer Nature, 2017, doi: 10.1007/978-3-

319-62533-1.

[93] M. Gnanaprakash, “Study on Mobile Robot Path Planning–A Review,” International Journal of

Applied Engineering Research, vol. 10, no. 57, p. 2015, 2015.

[94] A. N. A. Rafai, N. Adzhar and N. I. Jaini, “A review on path planning and obstacle avoidance

algorithms for autonomous mobile robots,” Journal of Robotics, 2022, doi:

10.1155/2022/2538220.

171

[95] A. Atyabi, S. Phon-Amnuaisuk and C. K. Ho, “Navigating a robotic swarm in an uncharted 2D

landscape,” Applied Soft Computing, vol. 10, no. 1, pp. 149-169, 2010, doi:

10.1016/j.asoc.2009.06.017.

[96] P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots: A review,” International

Journal of Physical Sciences, vol. 7, no. 9, pp. 1314-1320, 2012, doi: 10.5897/IJPS11.1745.

[97] N. A. K. Zghair and A. S. Al-Araji, “A one decade survey of autonomous mobile robot systems,”

International Journal of Electrical and Computer Engineering, vol. 11, no. 6, p. 4891, 2021, doi:

10.11591/ijece.v11i6.pp4891-4906.

[98] M. A. H. Ali and I. H. Shanono, “Path planning methods for mobile robots: A systematic and

bibliometric review,” ELEKTRIKA-Journal of Electrical Engineering, vol. 19, no. 3, pp. 14-34,

2020, doi: 10.11113/elektrika.v19n3.225.

[99] H. S. Hewawasam, M. Y. Ibrahim and G. K. Appuhamillage, “Past, Present and Future of Path-

Planning Algorithms for Mobile Robot Navigation in Dynamic Environments,” in IEEE Open

Journal of the Industrial Electronics Society, vol. 3, pp. 353-365, 2022, doi:

10.1109/OJIES.2022.3179617.

[100] T. T. Hoang, V. C. Thanh, N. N. A. Quan and T. L. T. Dong, “Stabilization Controller Design

for Differential Mobile Robot Using Lyapunov Function and Extended Kalman Filter,” in

Industrial Networks and Intelligent Systems: 8th EAI International Conference, INISCOM 2022,

Proceedings, pp. 201-213, Cham: Springer International Publishing, 2022, doi: 10.1007/978-3-

031-08878-0_14.

[101] A. Jokić, M. Petrović and Z. Miljković, “Real-Time Mobile Robot Perception Based on Deep

Learning Detection Model,” in International Conference “New Technologies, Development and

Applications”, pp. 670-677, Cham: Springer International Publishing, 2022, doi: 10.1007/978-

3-031-05230-9_80.

[102] M. N. Ab Wahab, S. Nefti-Meziani and A. Atyabi, “A comparative review on mobile robot path

planning: Classical or meta-heuristic methods?,” Annual Reviews in Control, vol. 50, pp. 233-

252, 2020, doi: 10.1016/j.arcontrol.2020.10.001.

[103] P. K. Mohanty, A. K. Singh, A. Kumar, M. K. Mahto and S. Kundu, “Path Planning Techniques

for Mobile Robots: A Review,” in International Conference on Soft Computing and Pattern

Recognition, pp. 657-667, Cham: Springer International Publishing, 2021, doi: 10.1007/978-3-

030-96302-6_62.

[104] P. T. Kyaw et al., “Energy-Efficient Path Planning of Reconfigurable Robots in Complex

Environments,” in IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2481-2494, Aug. 2022,

doi: 10.1109/TRO.2022.3147408.

172

[105] M. S. Abed, O. F. Lutfy and Q. F. Al-Doori, “A review on path planning algorithms for mobile

robots,” Engineering and Technology Journal, vol. 39, no. 5A, pp. 804-820, 2021, doi:

10.30684/etj.v39i5A.1941.

[106] S. Nurmaini and B. Tutuko, “Intelligent robotics navigation system: Problems, methods, and

algorithm,” International Journal of Electrical and Computer Engineering, vol. 7, no. 6, p. 3711,

2017, doi: 10.11591/ijece.v7i6.pp3711-3726.

[107] S.-H. Joo et al., “Autonomous navigation framework for intelligent robots based on a semantic

environment modeling,” Applied Sciences, vol. 10, no. 9, p. 3219, 2020, doi:

10.3390/app10093219.

[108] S. Khan and M. K. Ahmmed, “Where am I? Autonomous navigation system of a mobile robot in

an unknown environment,” 2016 5th International Conference on Informatics, Electronics and

Vision (ICIEV), pp. 56-61, 2016, doi: 10.1109/ICIEV.2016.7760188.

[109] M. Dirik, O. Castillo and F. Kocamaz, Vision-Based Mobile Robot Control and Path Planning

Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic, vol. 407. Springer Nature,

2021, doi: 10.1007/978-3-030-69247-6.

[110] F. L. Lewis and S. S. Ge, Eds., Autonomous Mobile Robots: Sensing, Control, Decision Making

and Applications. CRC Press, 2018.

[111] M. Sarcinelli-Filho and R. Carelli, Control of Ground and Aerial Robots, vol. 103, Springer

Nature, 2023, doi: 10.1007/978-3-031-23088-2.

[112] K. M. Lynch and F. C. Park, Modern Robotics. Cambridge, UK: Cambridge University Press,

2017.

[113] A. De Luca, G. Oriolo and M. Vendittelli, “Control of wheeled mobile robots: An experimental

overview,” in RAMSETE: Articulated and Mobile Robotics for Services and Technologies, pp.

181-226, 2002, doi: 10.1007/3-540-45000-9_8.

[114] P. Morin, “Control of Mobile Robots,” Encyclopedia of Robotics, pp. 1-9, 2023, doi:

10.1007/978-3-642-41610-1_60-1.

[115] P. Morin and C. Samson, “Motion control of wheeled mobile robots,” in Springer Handbook of

Robotics, vol. 1, pp. 799-826, 2008, doi: 10.1007/978-3-540-30301-5_35.

[116] C. Samson, P. Morin and R. Lenain, “Modeling and control of wheeled mobile robots,” in

Springer Handbook of Robotics, pp. 1235-1266, 2016, doi: 10.1007/978-3-319-32552-1_49.

[117] C. Caceres, J. M. Rosario and D. Amaya, “Approach of Kinematic Control for a Nonholonomic

Wheeled Robot using Artificial Neural Networks and Genetic Algorithms,” 2017 International

Conference and Workshop on Bioinspired Intelligence (IWOBI), pp. 1-6, 2017, doi:

10.1109/IWOBI.2017.7985533.

173

[118] G. Farias et al., “Position control of a mobile robot using reinforcement learning,” IFAC-

PapersOnLine, vol. 53, no. 2, pp. 17393-17398, 2020, doi: 10.1016/j.ifacol.2020.12.2093.

[119] S. G. Tzafestas, “Mobile robot control and navigation: A global overview,” Journal of Intelligent

& Robotic Systems, vol. 91, pp. 35-58, 2018, doi: 10.1007/s10846-018-0805-9.

[120] A. Noormohammadi-Asl, M. Saffari and M. Teshnehlab, “Neural Control of Mobile Robot

Motion Based on Feedback Error Learning and Mimetic Structure,” Electrical Engineering

(ICEE), Iranian Conference on, pp. 778-783, 2018, doi: 10.1109/ICEE.2018.8472657.

[121] H. Huang, J. Zhou, Q. Di, J. Zhou and J. Li, “Robust neural network–based tracking control and

stabilization of a wheeled mobile robot with input saturation,” International Journal of Robust

and Nonlinear Control, vol. 29, no. 2, pp. 375-392, 2019, doi: 10.1002/rnc.4396.

[122] H. Niu, N. Wang and N. Li, “The adaptive control based on BP neural network identification for

two-wheeled robot,” 2016 12th World Congress on Intelligent Control and Automation

(WCICA), pp. 2437-2442, 2016, doi: 10.1109/WCICA.2016.7578658.

[123] X. Feng and C. Wang, “Adaptive neural network tracking control of an omnidirectional mobile

robot,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and

Control Engineering, vol. 237, no. 3, pp. 375-387, 2023, doi: 10.1177/095965182211359.

[124] T. T. K. Ly, N. T. Thanh, H. Thien and T. Nguyen, “A Neural Network Controller Design for

the Mecanum Wheel Mobile Robot,” Engineering, Technology & Applied Science Research, vol.

13, no. 2, pp. 10541-10547, 2023, doi: 10.48084/etasr.5761.

[125] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,” in Fuzzy Sets, Fuzzy Logic,

and Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp. 775-782, 1996, doi:

10.1142/9789814261302_0040.

[126] L. A. Zadeh, “Soft computing and fuzzy logic,” in IEEE Software, vol. 11, no. 6, pp. 48-56, Nov.

1994, doi: 10.1109/52.329401.

[127] A. El Farnane et al., “Trajectory tracking of autonomous driving tricycle robot with fuzzy

control,” International Review of Automatic Control, vol. 15, no. 2, pp. 80-86, 2022, doi:

10.15866/ireaco.v15i2.21719.

[128] F. Cuevas, O. Castillo and P. Cortés-Antonio, “Design of a Control Strategy Based on Type-2

Fuzzy Logic for Omnidirectional Mobile Robots,” Journal of Multiple-Valued Logic & Soft

Computing, vol. 37, 2021.

[129] L. Busoniu, R. Babuska, B. De Schutter and D. Ernst, Reinforcement Learning and Dynamic

Programming Using Function Approximators. CRC Press, 2017, doi: 10.1201/9781439821091.

[130] R. Gao et al., “Motion Control of Non-Holonomic Constrained Mobile Robot Using Deep

Reinforcement Learning,” 2019 IEEE 4th International Conference on Advanced Robotics and

Mechatronics (ICARM), pp. 348-353, 2019, doi: 10.1109/ICARM.2019.8834284.

174

[131] G. Farias, G. Garcia, G. Montenegro, E. Fabregas, S. Dormido-Canto and S. Dormido,

“Reinforcement Learning for Position Control Problem of a Mobile Robot,” in IEEE Access, vol.

8, pp. 152941-152951, 2020, doi: 10.1109/ACCESS.2020.3018026.

[132] F. Quiroga, G. Hermosilla, G. Farias, E. Fabregas and G. Montenegro, “Position control of a

mobile robot through deep reinforcement learning,” Applied Sciences, vol. 12, no. 14, p. 7194,

2022, doi: 10.3390/app12147194.

[133] J. Xie and Q. Wang, “Intelligent Control for a Non-holonomic Constrained Mobile Robot with

Proximal Policy Optimization,” 2022 34th Chinese Control and Decision Conference (CCDC),

pp. 2913-2918, 2022, doi: 10.1109/CCDC55256.2022.10033883.

[134] D. Zhang, G. Wang and Z. Wu, “Reinforcement Learning-Based Tracking Control for a Three

Mecanum Wheeled Mobile Robot,” in IEEE Transactions on Neural Networks and Learning

Systems, vol. 35, no. 1, pp. 1445-1452, Jan. 2024, doi: 10.1109/TNNLS.2022.3185055.

[135] J. Bernat, P. Czopek and S. Bartosik, “Analysis of Mobile Robot Control by Reinforcement

Learning Algorithm,” Electronics, vol. 11, no. 11, p. 1754, 2022, doi:

10.3390/electronics11111754.

[136] A. Diveev and E. Shmalko, “Machine Learning Feedback Control Approach Based on Symbolic

Regression for Robotic Systems,” Mathematics, vol. 10, no. 21, p. 4100, 2022, doi:

10.3390/math10214100.

[137] S.-M. Udrescu and M. Tegmark, “AI Feynman: A physics-inspired method for symbolic

regression,” Science Advances, vol. 6, no. 16, art. eaay2631, 2020, doi: 10.1126/sciadv.aay2631.

[138] Y. Jin, W. Fu, J. Kang, J. Guo and J. Guo, “Bayesian symbolic regression,” arXiv preprint

arXiv:1910.08892, 2019, doi: 10.48550/arXiv.1910.08892.

[139] W. La Cava and J. H. Moore, “Learning feature spaces for regression with genetic

programming,” Genetic Programming and Evolvable Machines, vol. 21, no. 3, pp. 433-467,

2020, doi: 10.1007/s10710-020-09383-4.

[140] B. K. Petersen, M. Landajuela, T. N. Mundhenk, C. P. Santiago, S. K. Kim and J. T. Kim, “Deep

symbolic regression: Recovering mathematical expressions from data via risk-seeking policy

gradients,” arXiv preprint arXiv:1912.04871, 2019, doi: 10.48550/arXiv.1912.04871.

[141] E. Shmalko and A. Diveev, “Control synthesis as machine learning control by symbolic

regression methods,” Applied Sciences, vol. 11, no. 12, p. 5468, 2021, doi:

10.3390/app11125468.

[142] A. Diveev and E. Shmalko, “Optimal Feedback Control through Numerical Synthesis of

Stabilization System,” 2020 7th International Conference on Control, Decision and Information

Technologies (CoDIT), pp. 112-117, 2020, doi: 10.1109/CoDIT49905.2020.9263787.

175

[143] E. Shmalko, “Computational Approach to Optimal Control in Applied Robotics,” in Frontiers in

Robotics and Electromechanics, pp. 387-401, Singapore: Springer Nature Singapore, 2023, doi:

10.1007/978-981-19-7685-8_25.

[144] E. Shmalko and A. Diveev, “Extended Statement of the Optimal Control Problem and Machine

Learning Approach to Its Solution,” Mathematical Problems in Engineering, 2022, doi:

10.1155/2022/1932520.

[145] E. Shmalko, “Feasibility of synthesized optimal control approach on model of robotic system

with uncertainties,” in Electromechanics and Robotics: Proceedings of 16th International

Conference on Electromechanics and Robotics "Zavalishin's Readings" (ER (ZR) 2021), pp. 131-

143, Springer Singapore, 2022, doi: 10.1007/978-981-16-2814-6_12.

[146] A. Diveev and E. Sofronova, “Automation of synthesized optimal control problem solution for

mobile robot by genetic programming,” in Intelligent Systems and Applications: Proceedings of

the 2019 Intelligent Systems Conference (IntelliSys) Volume 2, pp. 1054-1072, Springer

International Publishing, 2020, doi: 10.1007/978-3-030-29513-4_77.

[147] A. Diveev and G. Balandina, “Optimal Trajectories Synthesis of a Mobile Robots Group Using

Cartesian Genetic Programming,” 2020 7th International Conference on Control, Decision and

Information Technologies (CoDIT), pp. 130-135, 2020, doi:

10.1109/CoDIT49905.2020.9263782.

[148] A. Diveev and E. Shmalko, “Research of Trajectory Optimization Approaches in Synthesized

Optimal Control,” Symmetry, vol. 13, no. 2, p. 336, 2021, doi: 10.3390/sym13020336.

[149] A. Diveev and E. Sofronova, “Synthesized Control for Optimal Control Problem of Motion

Along the Program Trajectory,” 2022 8th International Conference on Control, Decision and

Information Technologies (CoDIT), pp. 475-480, 2022, doi:

10.1109/CoDIT55151.2022.9803924.

[150] A. Diveev, “The Refined Optimal Control Problem and Synthesized Control Method for its

Solution,” 2022 30th Mediterranean Conference on Control and Automation (MED), pp. 176-

181, 2022, doi: 10.1109/MED54222.2022.9837245.

[151] F. Gul, S. S. N. Alhady and W. Rahiman, “A review of controller approach for autonomous

guided vehicle system,” Indonesian Journal of Electrical Engineering and Computer Science,

vol. 20, no. 1, pp. 552-562, 2020, doi: 10.11591/ijeecs.v20.i1.pp552-562.

[152] A. N. Albab, E. Rahmawati, M. Yantidewi, I. Sucahyo and R. R. Firmansyah, “Control position

of mobile robot based on odometry method and PID controller,” in Journal of Physics:

Conference Series, vol. 1491, no. 1, p. 012039, IOP Publishing, 2020, doi: 10.1088/1742-

6596/1491/1/012039.

176

[153] J. G. Romero, E. Nuño, E. Restrepo, R. Cisneros and M. Morales, “A Smooth Time–Varying

PID Controller for Nonholonomic Mobile Robots Subject to Matched Disturbances,” Journal of

Intelligent & Robotic Systems, vol. 105, no. 1, p. 13, 2022, doi: 10.1007/s10846-022-01622-3.

[154] U. Zangina, S. Buyamin, M. S. Zainal Abidin, M. S. Azimi and H. S. Hasan, “Non-linear PID

controller for trajectory tracking of a differential drive mobile robot,” Journal of Mechanical

Engineering Research and Developments, vol. 43, no. 1, pp. 255-270, 2020.

[155] N. H. Thai, T. T. K. Ly, H. Thien and L. Q. Dzung, “Trajectory tracking control for differential-

drive mobile robot by a variable parameter PID controller,” International Journal of Mechanical

Engineering and Robotics Research, vol. 11, no. 8, pp. 614-621, 2022, doi:

10.18178/ijmerr.11.8.614-621.

[156] N. H. Thai and T. T. K. Ly, “Trajectory tracking control for mecanum wheel mobile robot by

time-varying parameter PID controller,” Bulletin of Electrical Engineering and Informatics, vol.

11, no. 4, pp. 1902-1910, 2022, doi: 10.11591/eei.v11i4.3712.

[157] S. Vaidyanathan and A. T. Azar, Eds., Backstepping Control of Nonlinear Dynamical Systems.

Academic Press, 2021.

[158] M. J. Rabbani and A. Y. Memon, “Trajectory tracking and stabilization of nonholonomic

wheeled mobile robot using recursive integral backstepping control,” Electronics, vol. 10, no.

16, p. 1992, 2021, doi: 10.3390/electronics10161992.

[159] M. J. Rabbani and A. Y. Memon, “Output Feedback Stabilization of Nonholonomic Wheeled

Mobile Robot Using Backstepping Control,” 2022 IEEE 12th International Conference on

Control System, Computing and Engineering (ICCSCE), pp. 119-124, 2022, doi:

10.1109/ICCSCE54767.2022.9935650.

[160] W. M. E. Mahgoub and I. M. H. Sanhoury, “Back stepping tracking controller for wheeled

mobile robot,” 2017 International Conference on Communication, Control, Computing and

Electronics Engineering (ICCCCEE), pp. 1-5, 2017, doi: 10.1109/ICCCCEE.2017.7867663.

[161] I. Hassani, I. Maalej and C. Rekik, “Backstepping tracking control for nonholonomic mobile

robot,” 2020 4th International Conference on Advanced Systems and Emergent Technologies

(IC_ASET), pp. 63-68, 2020, doi: 10.1109/IC_ASET49463.2020.9318221.

[162] S. Fadlo, A. Ait Elmahjoub and N. Rabbah, “Optimal trajectory tracking control for a wheeled

mobile robot using backstepping technique,” International Journal of Electrical and Computer

Engineering, vol. 12, no. 6, p. 5979, 2022, doi: 10.11591/ijece.v12i6.pp5979-5987.

[163] W. M. E. Mahgoub and I. M. H. Sanhoury, “Tracking Control of Unicycle-type Wheeled Mobile

Robot Utlizing Backstepping Approach,” 2020 International Conference on Computer, Control,

Electrical, and Electronics Engineering (ICCCEEE), pp. 1-5, 2021, doi:

10.1109/ICCCEEE49695.2021.9429613.

177

[164] S.-C. Tan, Y.-M. Lai and C.-K. Tse, Sliding Mode Control of Switching Power Converters:

Techniques and Implementation. CRC Press, 2018, doi: 10.1201/9781315217796.

[165] M. Thomas, B. Bandyopadhyay and L. Vachhani, “Finite‐time posture stabilization of the

unicycle mobile robot using only position information: A discrete‐time sliding mode approach,”

International Journal of Robust and Nonlinear Control, vol. 29, no. 6, pp. 1990-2006, 2019, doi:

10.1002/rnc.4480.

[166] M. Mera, H. Ríos and E. A. Martínez, “A sliding-mode based controller for trajectory tracking

of perturbed unicycle mobile robots,” Control Engineering Practice, vol. 102, art. 104548, 2020,

doi: 10.1016/j.conengprac.2020.104548.

[167] B. Moudoud, H. Aissaoui and M. Diany, “Robust adaptive trajectory tracking control based on

sliding mode of electrical wheeled mobile robot,” International Journal of Mechanical

Engineering and Robotics Research, vol. 10, no. 9, 2021, doi: 10.18178/ijmerr.10.9.505-509.

[168] H. Yu, N. Sheng and Z. Ai, “Sliding mode control for trajectory tracking of mobile robots,” 2021

40th Chinese Control Conference (CCC), pp. 13-17, 2021, doi:

10.23919/CCC52363.2021.9550404.

[169] S. V. Rakovic and W. S. Levine, Eds., Handbook of Model Predictive Control. 2018, doi:

10.1007/978-3-319-77489-3.

[170] M. W. Mehrez, G. K. I. Mann and R. G. Gosine, “Comparison of stabilizing NMPC designs for

wheeled mobile robots: An experimental study,” 2015 Moratuwa Engineering Research

Conference (MERCon), pp. 130-135, 2015, doi: 10.1109/MERCon.2015.7112333.

[171] Y. Gao and K. T. Chong, “Point Stabilization for Wheeled Mobile Robots Using Model

Predictive Control,” International Journal of Control and Automation, vol. 9, no. 5, pp. 67-78,

2016, doi: 10.14257/ijca.2016.9.5.07.

[172] M. W. Mehrez, K. Worthmann, J. P. V. Cenerini, M. Osman, W. W. Melek and S. Jeon, “Model

predictive control without terminal constraints or costs for holonomic mobile robots,” Robotics

and Autonomous Systems, vol. 127, art. 103468, 2020, doi: 10.1016/j.robot.2020.103468.

[173] M. Sani, B. Robu and A. Hably, “Dynamic Obstacles Avoidance Using Nonlinear Model

Predictive Control,” IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics

Society, pp. 1-6, 2021, doi: 10.1109/IECON48115.2021.9589658.

[174] N. N. Minh, S. McIlvanna, Y. Sun, Y. Jin and M. Van, “Safety-critical model predictive control

with control barrier function for dynamic obstacle avoidance,” arXiv preprint arXiv:2211.11348,

2022, doi: 10.48550/arXiv. 2211.11348.

[175] J. Wei and B. Zhu, “Model predictive control for trajectory-tracking and formation of wheeled

mobile robots,” Neural Computing and Applications, vol. 34, no. 19, pp. 16351-16365, 2022,

doi: 10.1007/s00521-022-07195-4.

178

[176] M. S. de Queiroz, D. M. Dawson, S. P. Nagarkatti and F. Zhang, Lyapunov-Based Control of

Mechanical Systems. Birkhäuser Boston, 2000, doi: 10.1007/978-1-4612-1352-9.

[177] P. Panahandeh, K. Alipour, B. Tarvirdizadeh and A. Hadi, “A kinematic Lyapunov-based

controller to posture stabilization of wheeled mobile robots,” Mechanical Systems and Signal

Processing, vol. 134, art. 106319, 2019, doi: 10.1016/j.ymssp.2019.106319.

[178] D. Jung and S. Bang, “Posture stabilization of wheeled mobile robot based on passivity-based

robust switching control with model uncertainty compensation,” Applied Sciences, vol. 9, no. 23,

p. 5233, 2019, doi: 10.3390/app9235233.

[179] T. Zhao, P. Qin and Y. Zhong, “Trajectory Tracking Control Method for Omnidirectional Mobile

Robot Based on Self-Organizing Fuzzy Neural Network and Preview Strategy,” Entropy, vol.

25, no. 2, p. 248, 2023, doi: 10.3390/e25020248.

[180] M. Q. Zaman and H. -M. Wu, “Fuzzy Reinforcement Learning Based Trajectory-tracking

Control of an Autonomous Mobile Robot,” 2022 22nd International Conference on Control,

Automation and Systems (ICCAS), pp. 840-845, 2022, doi:

10.23919/ICCAS55662.2022.10003839.

[181] F. Fufa, L. Duguma and E. Ayenew, “Trajectory Tracking of a Two-Wheeled Mobile Robot

Using Backstepping and Nonlinear PID Controller,” in International Conference on Advances of

Science and Technology, Cham, Switzerland: Springer Nature Switzerland, pp. 290-304, 2022,

doi: 10.1007/978-3-031-28725-1_18.

[182] C. Mireles-Perez, D. Cruz-Ortiz, I. Salgado and I. Chairez, “Backstepping second order sliding

mode control for a car-like robot,” 2022 8th International Conference on Control, Decision and

Information Technologies (CoDIT), pp. 463-467, 2022, doi:

10.1109/CoDIT55151.2022.9803917.

[183] R. Rouhi Ardeshiri, M. Gheisarnejad, M. R. Tavan, N. Vafamand and M.-H. Khooban, “A robust

intelligent controller-based motion control of a wheeled mobile robot,” Transactions of the

Institute of Measurement and Control, vol. 44, no. 15, pp. 2911-2918, 2022, doi:

10.1177/01423312221088389.

[184] K. Yeom, “Design of deep neural network based model predictive controller for a car-like mobile

robot,” International Journal of Mechanical Engineering and Robotics Research, vol. 11, no. 8,

pp. 606-613, 2022, doi: 10.18178/ijmerr.11.8.606-613.

[185] G. da Silva Lima, V. R. Firmo Moreira and W. M. Bessa, “Accurate trajectory tracking control

with adaptive neural networks for omnidirectional mobile robots subject to unmodeled

dynamics,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45,

no. 1, p. 48, 2023, doi: 10.1007/s40430-022-03969-y.

179

[186] T. Kim and R. Prakapovich, “Automatic Tuning of the Motion Control System of a Mobile Robot

Along a Trajectory Based on the Reinforcement Learning Method,” in International Conference

on Pattern Recognition and Information Processing, Cham, Switzerland: Springer International

Publishing, pp. 234-244, 2021, doi: 10.1007/978-3-030-98883-8_17.

[187] C.-T. Lee and W.-T. Sung, “Controller Design of Tracking WMR system based on deep

reinforcement learning,” Electronics, vol. 11, no. 6, p. 928, 2022, doi:

10.3390/electronics11060928.

[188] A. Al-Jodah et al., “PSO-based optimized neural network PID control approach for a four

wheeled omnidirectional mobile robot,” International Review of Applied Sciences and

Engineering, vol. 14, no. 1, pp. 58-67, 2023, doi: 10.1556/1848.2022.00420.

[189] F. Pang et al., “Path tracking control of an omni-directional service robot based on model

predictive control of adaptive neural-fuzzy inference system,” Applied Sciences, vol. 11, no. 2,

p. 838, 2021, doi: 10.3390/app11020838.

[190] B. Moudoud, H. Aissaoui and M. Diany, “Fuzzy adaptive sliding mode controller for electrically

driven wheeled mobile robot for trajectory tracking task,” Journal of Control and Decision, vol.

9, no. 1, pp. 71-79, 2022, doi: 10.1080/23307706.2021.1912665.

[191] G. Cao, X. Zhao, C. Ye, S. Yu, B. Li and C. Jiang, “Fuzzy adaptive PID control method for

multi-mecanum-wheeled mobile robot,” Journal of Mechanical Science and Technology, vol.

36, no. 4, pp. 2019-2029, 2022, doi: 10.1007/s12206-022-0337-x.

[192] A. Diveev and E. Shmalko, Machine Learning Control by Symbolic Regression.

Berlin/Heidelberg, Germany: Springer International Publishing, 2021, doi: 10.1007/978-3-030-

83213-1.

[193] R. Bellman, I. Glickberg and O. Gross, “Some Aspects of the Mathematical Theory of Control

Processes,” Rand Corporation, Report R-313, Santa Monica, California, 1958.

[194] R. Bellman and R. E. Kalaba, Dynamic Programming and Modern Control Theory, vol. 81. New

York: Academic Press, 1965.

[195] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, vol. 2050. Princeton, NJ:

Princeton University Press, 2015.

[196] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, “The

Mathematical Theory of Optimal Processes,” Interscience, New York, vol. 171, pp. 276-294,

1962.

[197] V. G. Boltyanskii, K. N. Trirogoff, I. Tarnove and G. Leitmann, “Mathematical Methods of

Optimal Control,” 1971, doi: 10.1115/1.3426517.

[198] A. Diveev and E. Shmalko, “Multi-point Stabilization Approach to the Optimal Control Problem

with Uncertainties,” in International Conference on Optimization and Applications, Cham,

180

Switzerland: Springer International Publishing, pp. 129-142, 2020, doi: 10.1007/978-3-030-

65739-0_10.

[199] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press, 1998, doi:

10.7551/mitpress/3927.001.0001.

[200] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-

Wesley, vol. 102, p. 36, 1989.

[201] M. Kumar, M. Husain, N. Upreti and D. Gupta, “Genetic Algorithm: Review and Application,”

SSRN Electronic Journal, 2010, doi: 10.2139/ssrn.3529843.

[202] A. I. Diveev, “Small Variations of Basic Solution Method for Non-numerical Optimization,”

IFAC-PapersOnLine, vol. 48, no. 25, pp. 28–33, 2015, doi: 10.1016/j.ifacol.2015.11.054.

[203] E. Sofronova and A. Diveev, “Universal Approach to Solution of Optimization Problems by

Symbolic Regression,” Applied Sciences, vol. 11, no. 11, p. 5081, May 2021, doi:

10.3390/app11115081.

[204] J. R. Koza, Genetic Programming II, vol. 17. Cambridge, MA: MIT Press, 1994.

[205] I. Zelinka, Z. Oplatkova and L. Nolle, “Analytic programming–Symbolic regression by means

of arbitrary evolutionary algorithms,” International Journal of Simulation: Systems, Science and

Technology, vol. 6, no. 9, pp. 44-56, 2005.

[206] J. F. Miller and S. L. Harding, “Cartesian Genetic Programming,” in Proceedings of the 11th

Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late

Breaking Papers, pp. 3489-3512, 2009, doi: 10.1145/1570256.1570428.

[207] A. I. Diveev and E. A. Sofronova, “Numerical method of network operator for multiobjective

synthesis of optimal control system,” 2009 IEEE International Conference on Control and

Automation, pp. 701-708, 2009, doi: 10.1109/ICCA.2009.5410619.

[208] C. Luo and S.-L. Zhang, “Parse-matrix evolution for symbolic regression,” Engineering

Applications of Artificial Intelligence, vol. 25, no. 6, pp. 1182–1193, Sep. 2012, doi:

10.1016/j.engappai.2012.05.015.

[209] A. Diveev and E. Sofronova, “Automation of synthesized optimal control problem solution for

mobile robot by genetic programming,” in Intelligent Systems and Applications: Proceedings of

the 2019 Intelligent Systems Conference (IntelliSys) Volume 2, Springer International Publishing,

pp. 1054-1072, 2020, doi: 10.1007/978-3-030-29513-4_77.

[210] K. S. Nassrullah, I. V. Stepanyan, H. S. Nasrallah, N. J. Mendez Florez, A. M. Zidoun and S. R.

Mohammed, “Unsupervised Machine Learning Control Techniques for Solving the General

Synthesis of Control System Problem,” International Journal of Intelligent Engineering and

Systems, vol. 17, no. 3, pp. 401-416, 2024, doi: 10.22266/ijies2024.0630.32.

181

[211] K. S. Nassrullah, I. V. Stepanyan, A. A. Ali, H. S. Nasrallah, and NJ. M. Florez, “Problem of

Control Synthesis of Stabilization System for a Nonholonomic Mobile Robot: An Autonomous

Solution via Modified Synthesized Genetic Programming Method,” International Journal of

Intelligent Engineering and Systems, vol. 18, no. 6, pp. 350-365, 2025, doi:

10.22266/ijies2025.0731.22.

[212] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN'95 -

International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995, doi:

10.1109/ICNN.1995.488968.

[213] A. I. Diveev and S. V. Konstantinov, “Study of the Practical Convergence of Evolutionary

Algorithms for the Optimal Program Control of a Wheeled Robot,” Journal of Computer and

Systems Sciences International, vol. 57, no. 4, pp. 561–580, Jul. 2018, doi:

10.1134/s106423071804007x.

[214] P. Šuster and A. Jadlovská, “Tracking Trajectory of the Mobile Robot Khepera II Using

Approaches of Artificial Intelligence,” Acta Electrotechnica et Informatica, vol. 11, no. 1, Jan.

2011, doi: 10.2478/v10198-011-0006-y.

182

APPENDIX I.

The operations of addition and multiplication were used as binary operations, and a set of 28

smooth elementary functions was used as unary operations. The total number of functions was 30, and

they were used as the space for codes in the first step (the stabilization step) and as follows:

𝑓1(𝑧) = 𝑧 𝑓2(𝑧) = 𝑧2

𝑓3(𝑧) = −𝑧 𝑓4(𝑧) = 𝑠𝑔𝑛(𝑧)√|𝑧|

𝑓5(𝑧) = 𝑧−1 𝑓6(𝑧) = 𝑒𝑥𝑝(𝑧)

𝑓7(𝑧) = 𝑙𝑛 (|𝑧|) 𝑓8(𝑧) = 𝑡𝑎𝑛ℎ (0.5𝑧)

𝑓9(𝑧) = {
1, if 𝑧 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓10(𝑧) = 𝑠𝑔𝑛(𝑧)

𝑓11(𝑧) = 𝑐𝑜𝑠 (𝑧) 𝑓12(𝑧) = 𝑠𝑖𝑛 (𝑧)

𝑓13(𝑧) = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑧) 𝑓14(𝑧) = 𝑧3

𝑓15(𝑧) = √𝑧
3

 𝑓16(𝑧) = {
𝑧, if |𝑧| < 1

𝑠𝑔𝑛(𝑧), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓17(𝑧) = 𝑠𝑔𝑛(𝑧) 𝑙𝑛(|𝑧| + 1) 𝑓18(𝑧) = 𝑠𝑔𝑛(𝑧) (𝑒𝑥𝑝(|𝑧|) − 1)

𝑓19(𝑧) = 𝑠𝑔𝑛(𝑧) 𝑒𝑥𝑝(−|𝑧|) 𝑓20(𝑧) = 0.5𝑧

𝑓21(𝑧) = 2𝑧 𝑓22(𝑧) = 1 − 𝑒𝑥𝑝(−|𝑧|)

𝑓23(𝑧) = 𝑧 − 𝑧3
𝑓24(𝑧) =

1

1 + 𝑒𝑥𝑝(−𝑧)

𝑓25(𝑧) = {
1, if 𝑧 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓26(𝑧) = {
0, if |𝑧| < 𝜀

𝑠𝑔𝑛(𝑧), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓27(𝑧) = 𝑠𝑔𝑛(𝑧)(1 − √1 − 𝑧2) 𝑓28(𝑧) = 𝑧(1 − 𝑒𝑥𝑝(−𝑧2))

𝑓29(𝑧1, 𝑧2) = 𝑧1 + 𝑧2 𝑓30(𝑧1, 𝑧2) = 𝑧1𝑧2

183

APPENDIX II.

The final code matrix of the first control function (𝑢̃1) in Eq. (3.16) was as follows:

𝑢̃1 =

[

2
1
2
3
1
1

1
1
5
3
2
1

2
1
6
3
3
1

2
1
10
1
11
1

1
1
13
1
12
2

2
1
14
28
0
1

1
1
15
0
0
1

0
1
16
7
0
1

1
1
17
17
0
1

1
1
18
0
11
1

1
1
19
17
15
1

 1
 1
 20
 0
 19
 1

1
1
12
18
0
1

1
1
22
0
0
1

1
1
23
28
0
1

1
1
21
0
0
1

1
1
25
0
0
1

1
1
26
26
24
1

1
20
27
0
15
1

1
1
28
18
0
1]

The final code matrix of the second control function (𝑢̃2) in Eq. (3.17) was as follows:

𝑢̃2 =

[

2
12
7
3
1
1

2
1
8
3
2
2

0
1
9
17
3
1

0
21
10
1
11
1

1
1
13
16
0
1

2
1
14
0
0
1

1
1
15
0
0
1

1
1
16
0
0
1

2
21
17
0
15
1

1
14
18
7
0
1

1
1
19
25
0
1

 1
 1
 20
 0
 0
 1

1
1
21
2
0
1

1
1
22
0
0
1

1
11
19
22
6
1

1
1
24
9
3
2

1
1
25
0
0
1

1
1
26
0
0
1

2
1
27
0
4
1

1
1
21
0
0
1]

The final matrix of the small variations (𝑆𝑉) was as follows:

𝑆𝑉 =

[

2
2
2
1
2
1
1
1
2
2

2 6 2
15 2 11
16
4
1
15
9
10
15
14

6
3
2
6
4
5
4
6

2
10
12
2
17
11
22
2]

