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ABSTRACT 

 

The 20th century is renowned for the development of computer-based automatic control systems 

utilized in industrial plants and manufacturing processes. In the 21st century, the contemporary control 

systems necessitate the capacity to adapt, enhance, and acquire knowledge swiftly. Consequently, 

mobile robots have emerged as a focal point of considerable scholarly interest in recent years. The 

wheeled mobile robot (WMR) possesses an extensive variety of practical applications. However, despite 

their potential and prospects, mobile robots have not yet achieved the best performance due to the 

intrinsic challenges they encounter. Several critical problems have appeared in this domain, including 

navigation and path planning, localization, and obstacle avoidance. Tracking of trajectories and the 

problem of point stabilization are the two main control problems concerning this kind of robot. 

The field of machine learning control (MLC) is well-suited to address these emerging difficulties. 

The objective of machine learning control entails the identification of an unknown control function. 

Through symbolic regression, control functions are automatically synthesized as closed-form 

mathematical formulations. These formulations provide a structured and efficient framework for guiding 

robotic motion toward target locations while circumventing environmental obstacles. Symbolic 

regression methods are the exclusive means by which one can explore the very structure and parameters 

associated with mathematical expressions.  

This work is motivated by the construction of a control system for a pair of nonholonomic mobile 

robots. The successful execution of the proposed control necessitates the establishment of a dual 

feedback loop (two steps). In the internal loop (the first step), the robot is rendered stable concerning a 

specific point within the state space. In order to address this objective, the general synthesis problem can 

be solved by utilizing the numerical technique of symbolic regression, which is a machine learning 

technique, to find feedback control functions. In the external loop (the second step), the problem of 

achieving effective control over the robots is addressed by the utilization of an evolutionary algorithm 

to influentially change the location of the stable points of equilibrium. The problem of control synthesis 

is initially addressed using the suggested novel technique (variational synthesized genetic programming 

technique). The control object achieves stability when it reaches an equilibrium point inside the state 

space. These stabilization points can be changed, giving a chance to look up the coordinates of various 

stabilization points in order to get the mobile robot to go from its starting point to its destination with 

the improved quality criterion value and trajectory using the particle swarm optimization algorithm. The 

state space's required trajectory must exhibit an attractive property for suitable solutions within a certain 

vicinity. 
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The aforementioned methodology is referred to as the synthesized optimal control problem. This 

novel methodology not only presents a fresh perspective on addressing a widely recognized challenge 

in the field of optimal control but also introduces a novel problem statement that facilitates its numerical 

solution. 

The proposed methodology has been applied to a pair of mobile robots. The mobile robots are 

tasked with modifying their planar coordinates to satisfy static phase conditions to achieve obstacle-free 

navigation, with an additional imperative: to maintain collision-free trajectories relative to one another 

throughout the mission. As demonstrated by the experimental outcomes, the two mobile robots 

successfully navigated to their target configurations under full compliance with phase constraints and 

without any occurrence of mutual collision, underscoring the efficacy of the control system. As seen 

from the findings, the effective control exerts an attractive influence on the relevant state-space 

component, without requiring kinematic matching with that component. It is widely recognized that the 

speed of state evolution is reduced in the immediate neighborhood of an equilibrium point compared to 

distant regions. Thus, for enhanced mobility, the control object should be maintained in the vicinity of 

that point without settling into it, allowing for continuous and faster motion. 
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    INTRODUCTION 

 

   Relevance and level of development of the research topic 

Contemporary developments in industrial automation have been driven by the integration of 

intelligent robotic systems that exhibit self-learning behaviors and a high degree of operational 

autonomy. These advanced robots are designed to function across a broad spectrum of tasks without 

requiring constant supervision. Specifically, mobile robots with non-holonomic constraints and wheel-

driven locomotion are widely utilized in industrial automation, supporting activities such as assembly 

line processes, warehouse navigation, and facility maintenance. 

This dissertation investigates a mobile nonholonomic robot characterized as a complex, nonlinear 

system designed for autonomous locomotion. The primary focus lies in the formulation and analysis of 

control algorithms for a pair of such robots, ensuring robust performance in heterogeneous operational 

settings and enabling task execution without human intervention. The relevance of this research is 

underscored by the increasing necessity for adaptive, intelligent robotic systems that can respond 

effectively to unpredictable environmental changes while maintaining autonomous functionality. 

Numerous studies in the scientific domain focus on the synthesis of control architectures and the 

optimization of dynamic trajectories. Particular emphasis has been placed on analytical and 

computational methods for resolving control challenges—areas that have been profoundly shaped by the 

seminal contributions of renowned scholars, including S. Wolfram, W.R. Ashby, W. McCulloch, W. 

Pitts, P.K. Anokhin, L.S. Pontryagin, A.I. Diveev, N. Wiener, and A.N. Kolmogorov. 

The implementation of optimal control strategies faces a key challenge: the inability to directly 

apply time-parameterized control functions to actual physical systems. This limitation arises from the 

open-loop configuration, which offers no correction mechanism in the presence of disturbances, 

potentially leading to substantial trajectory deviations and failure to meet performance criteria. In mobile 

robotics, effective control necessitates robust stabilization and high-fidelity trajectory tracking. The 

stability of the closed-loop system is commonly ensured by stabilizing the state trajectory near an 

equilibrium point within the state space, which serves as a foundation for robust autonomous operation. 

The Purpose of the Dissertation Work 

This work seeks to contribute to the field of intelligent control by developing and improving 

machine learning-based strategies for multi-agent systems, exemplified by a pair of non-holonomic 

wheeled mobile robots. The pursuit of this goal necessitates addressing the following specific tasks: 
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1. An investigation into genetic programming methods, evolutionary optimization 

techniques, and symbolic regression algorithms to advance automated model discovery 

and control system design. 

2. Development of a numerical control approach that guarantees collision avoidance 

between two mobile robotic agents, as well as between each agent and the obstacles in 

the workspace. 

3. Development of a symbolic regression-based control synthesis method that exploits the 

small variations principle to ensure stabilization of a robot towards a specified 

equilibrium point inside the state space. 

4. Application of an evolutionary algorithm to dynamically reposition stable equilibrium 

points within a closed-loop control system that incorporates external feedback. 

5. The outcome of the stabilization stage must be mathematically represented through a 

system of differential equations. 

Object of Research 

The focus of this study is on the maneuvering behavior of a two-robot system consisting of 

nonholonomic mobile platforms with differential drive actuation. 

Subject of Research 

The mathematical models and algorithmic support of the symbolic regression method, 

particularly as applied to identifying interpretable control function expressions and their numerical 

parameter values. 

Methodology and Research Methods 

The control object is endowed with a stabilization system that defines its essential dynamic 

property: a stable point of equilibrium within the state space. Robot control is accomplished by 

intelligently manipulating this point position, employing a methodological framework of an evolutionary 

algorithm, symbolic regression, and mathematical modeling through systems of differential equations. 

The inner-loop control system, designed to stabilize the system around an operating point of 

equilibrium, is synthesized at an early stage and forms the cornerstone for the outer-loop control strategy 

that governs equilibrium point positioning. Such points can be set statically or modified online to 

accommodate environmental changes. 

Through symbolic regression, control functions for mobile robots are automatically synthesized 

in the form of human-readable mathematical expressions. These formalized algorithms govern system 

behavior to meet mission objectives and maintain collision-free trajectories. Symbolic regression 
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facilitates the discovery of interpretable control functions by evolving both their functional form and 

tunable parameters. It follows from the universality of symbolic representations that, in the general case, 

symbolic regression can generate expressions that approximate the functional form of any neural 

network to a desired degree of accuracy [192]. 

Scientific Novelty of the Work 

In the dissertation study, the following scientific novelty results are obtained: 

1. An enhanced control problem formulation has been developed for nonholonomic mobile 

robotic systems, which includes additional design requirements to ensure the 

development of the stabilization system. 

2. A novel machine learning approach—symbolic regression—has been introduced to 

facilitate the synthesis of control systems capable of achieving state-space stabilization. 

3. The new approach synthesizes a dynamical system described by differential equations, 

leveraging the principle of small variations in the evolutionary processes of a genetic 

algorithm. 

4. A new computational solution is contributed to the trajectory optimization problem for 

paired nonholonomic robots, explicitly accounting for geometric and kinematic 

constraints imposed by surrounding obstacles. 

5. The fundamental problem of synthesizing control systems for nonlinear mobile robotic 

systems with identification of dynamic equations has been solved. 

Theoretical Significance of the Work 

An optimal control problem is established under extended constraint conditions, including the 

stipulation that the generated state-space trajectory must be attractive—that is, it must draw the system 

state into a given neighborhood. The proposed solution tackles the synthesis of a stabilizing feedback 

system for nonholonomic wheeled robots by engineering a stable point of equilibrium within the 

system’s state space. And then, the control design is thereby reduced to the optimization of this point’s 

location. The entire suite of computational tools employed is implemented as self-contained, automated 

numerical procedures. 

Practical Significance of the Work 

This study presents a synthesized optimal control methodology designed to solve trajectory and 

stability problems by explicitly controlling the location of the robot’s stable point of equilibrium. The 

resulting methodology introduces a novel control paradigm based on equilibrium-point modulation.  
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The proposed methodology is specifically designed to address practical engineering challenges 

by reducing the gap between the theoretical mathematical model of the controlled system and its physical 

realization. This objective is accomplished through the integration of an inner-loop stabilization within 

the control architecture. Additionally, symbolic regression techniques exhibit broad applicability in the 

synthesis of control laws across diverse dynamical systems. 

Main provisions to be defend 

1. The developed control optimization method consists of two steps, where step one 

exemplifies stabilization step so that one nonholonomic mobile robot moved from 14 

initial points to one terminal point; while step two exemplifies optimization step, where 

two nonholonomic mobile robots move from one initial point (different points) to a 

terminal one (also different points). 

2. The variational synthesized genetic programming technique (VSGP) matrix consisting of 

6 rows and 20 columns is used to define the control function of a nonholonomic mobile 

robot. The genetic algorithm parameters are: population size of 256, number of 

generations of 1024, number of crossovers in each generation of 128, variation depth of 

10, and mutation probability of 0.75. A total of 30 functions are used, which make up the 

code space in the first stabilization stage. Two of these functions are binary operations, 

and 28 are unary. 

3. To change the position of the robot's equilibrium point, a particle swarm optimization 

algorithm is used with control parameters : 𝛼 = 0.5, 𝛽 = 0.8, 𝛾 = 1.5, and 𝜎 = 1, 

population size is 3500, number of generations is 150. 

The Degree of Reliability of the Results 

The proposed method’s effectiveness is supported by empirical results, including comparative 

assessments against Cartesian genetic programming [206] and parse-matrix evolution [208]. This study 

includes the development of a tailored mathematical model for simulating the dynamics of the Khepera 

II nonholonomic robot. Computational experiments were conducted to verify the accuracy and 

consistency of the dissertation’s outcomes. 

Approbation of Research Results 

The fundamental principles and results were deliberated upon and showcased at many 

international and Russian scientific conferences: 

1. Using Symbolic Regression Methods for Machine Learning to Control Robot Motion: 

Advantages and Disadvantages. The XIV International Scientific and Practical 
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Conference “Modern strategies and digital transformations of sustainable development 

of society, education and science”. – Moscow: December 12, 2023. 

2. Comparison of recurrent neural networks and symbolic regression methods. The XXII 

International Scientific and Practical Conference “Challenges of our time and 

development strategies of society in the conditions of the new reality”. – Moscow: 

December 15, 2023. 

3. Problem of the Interpretability vs. Accuracy Trade-off in Symbolic Regression in robot 

motion: causes and solution. The II International Scientific and Practical Conference 

“Modern research: theory, practice, results”. – Moscow: December 29, 2023. 

4. The 3rd International Conference on Engineering and Science, 3-4 May 2023 / Al-

SAMAWA / IRAQ. 

Furthermore, The principal findings, theoretical contributions, and practical recommendations 

derived from this dissertation have been disseminated through six peer-reviewed publications: four 

indexed in Scopus and two published in journals recognized by the Higher Attestation Commission 

(VAK). 

Dissertation Structure 

This dissertation is organized into several essential sections. Chapter 1 offers a thorough 

literature review of contemporary research regarding the wheeled mobile robots. Chapter 2 delineates 

the research methodology employed in this study, detailing the method of symbolic regression and the 

small variations principle. Chapter 3 presents the study's findings, which include a computational 

experiment of the synthesized optimal control strategy and its primary results. The thesis concludes with 

a summary of the research outcomes, along with conclusions and recommendations for future research 

directions. 
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CHAPTER 1. LITERATURE REVIEW  

 

1.1 General Overview of Mobile Robots 

 

The term "robot" can be traced back to its etymological origins in Slavic languages. The term 

"robota" in the Polish language signifies the concept of work or labor. However, it should be noted that 

in Czech or Slovenian, this word carries a more antiquated connotation and refers to statute labor or 

corvée. The term "robot" was originally introduced by the renowned Czech author Karel Capek in his 

science fiction drama titled R.U.R., an acronym for Rossum's Universal Robots. The robotic entities 

depicted in the theatrical production can be classified as a form of artificially created human-like beings. 

In contemporary parlance, the terms "cyborgs" or "androids" would be more suitable descriptors for 

these entities. The play experienced significant popularity, leading to the widespread adoption of the 

term "robot" in numerous global languages. Although the term "robot" has only been in existence for 

around a century, the concept of mechanical beings has a long and rich historical background. The term 

"mobile" originates from the Latin word "mobilis," which carries the same semantic connotation [1]. 

Mobile robots, as their designation suggests, possess the capacity for locomotion. These entities 

have the ability to traverse various mediums, including terrestrial surfaces, bodies of water, submerged 

environments, and aerial spaces. This stands in opposition to the prevalent use of fixed-base robotic 

manipulators in manufacturing operations, such as automobile assembly, electronic parts assembly, 

spray painting, and other related activities [2]. The significance of mobile robots is growing in various 

fields, including manufacturing and automated warehouses [3–5], domestic and medical aid [6–8], 

military uses [9-11], agricultural purposes [12-14], and rescue missions [15-16], and so on. 

The emergence of mobile robots throughout the late 1960s and early 1970s marked the inception 

of a novel field of study known as autonomous navigation. It is noteworthy to mention that the initial 

navigation systems were presented during the inaugural International Joint Conference on Artificial 

Intelligence (IJCAI 1969). The methods mentioned earlier were founded upon critical concepts that have 

proven highly advantageous in the advancement of algorithms for robot motion planning. As an 

illustration, during the year 1969, the mobile robot Shakey employed a grid-based methodology to 

simulate and investigate the surrounding environment [17]. Similarly, in 1977, Jason utilized a visibility 

graph constructed from the corners of obstacles [18]. Furthermore, in 1979, Hilare employed a technique 

of decomposing the environment into convex cells that are free from collisions [19]. 

The concept of nonholonomic systems, derived from mechanics, was introduced in the literature 

[20] concerning robot motion planning, specifically in the context of car parking, around ten years later. 
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The problem at hand remained unresolved despite the ground-breaking research conducted in the field 

of mobile robot navigation. The scientific field of nonholonomic motion planning has gained significant 

attention [21]. 

 

1.2. Some Types of Mobile Robots 

 

In order for a mobile robot to achieve unrestricted movement within its surroundings, it requires 

locomotion mechanisms. However, choosing a robot's strategy for locomotion is a crucial component of 

mobile robot development due to the wide range of alternative movement methods available. Within the 

laboratory setting, a diverse array of research robots has been developed with the capability to engage 

in various locomotion behaviors such as walking, jumping, running [22], sliding, skating, swimming 

[23], flying [24], and, naturally, rolling [25]. The majority of such locomotion mechanisms were 

originally derived from their biological equivalents. 

With one notable exception, however: the actively propelled wheel, a human creation that 

achieves remarkable efficiency on level terrain. Biological systems already make use of something like 

this process. As can be seen in Figure 1.1, our walking bipedal system can be represented by a rolling 

polygon with sides of length b equal to the span of the step. The polygon evolves into a circular shape 

or wheel as the step size decreases. However, the technology required for wheeled locomotion—a 

completely spinning, dynamically propelled joint—was not developed by nature. 

 

 

 

 

 

 

Figure 1.1. A walking bipedal system can be modelled using a rolling polygon [42] 
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Mobile robots often employ either wheeled systems, which are a widely recognized human 

invention for automobiles, or a limited number of articulating legs, representing the simplest basic form 

of biological locomotion. 

In comparison to wheeled locomotion, legged locomotion often necessitates a higher number of 

mechanical degrees of freedom. Wheels are not only easy to use but also work very well on level 

surfaces. Rolling friction is reduced to a minimum on the railway's hard, flat steel surface, making it 

perfect for wheeled transportation. Wheeled locomotion, however, becomes increasingly inefficient 

when the surface softens as a result of rolling friction. At the same time, legged locomotion suffers 

significantly less as it consists entirely of contacts of points with the ground. 

The effectiveness of wheeled locomotion is significantly influenced by environmental factors, 

specifically the levelness and firmness of the terrain. On the other hand, the effectiveness of legged 

locomotion is contingent upon the mass of the legs and the overall body mass, in both cases of which 

the robot should support them throughout different points of a legged gait. 

It is comprehensible, hence, that nature exhibits a preference for locomotion, including legs, as 

natural locomotion systems must function on uneven and disorganized surfaces. Similarly, the human 

environment often has deliberately designed, polished surfaces found in both inside and exterior spaces. 

Hence, it is comprehensible that nearly all industrial implementations of mobile robotics employ a 

variant of wheeled mobility. In recent times, there has been notable advancement in the development of 

hybrid and legged industrial robots, particularly in the context of creating more organic outdoor settings. 

One prominent example of this improvement is the forestry robot. 

 

1.2.1. Legged Mobile Robots 

 

Legged mobile robots consist of many rigid bodies that are coupled through prismatic or, more 

commonly, revolute joints. Certain entities in the context possess anatomical structures that constitute 

the lower appendages, commonly referred to as feet, which intermittently make touch with the surface 

of the earth in order to facilitate the process of movement. This category encompasses a diverse array of 

mechanical structures, which frequently draw inspiration from the study of real organisms, known as 

biomimetic robotics. These structures span from biped human beings to hexapod robots, with the 

objective of emulating the biomechanical efficiency observed in insects. 

The robot's legs make a variety of point contacts with the ground as it walks where two major 

benefits comprehend adaptability and maneuverability in challenging terrain. As long as the robot has 
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sufficient ground clearance, it doesn't matter how uneven the ground is between the set of point contacts. 

As a bonus, a walking robot can cross a gap as long as its reach is greater than the gap's breadth. The 

ability to deftly move objects in the surroundings is the icing on the cake of the benefits of legged 

locomotion. The dung beetle is a particularly impressive bug because of its ability to roll a ball with its 

deft front legs while moving. 

The primary drawbacks associated with legged locomotion encompass problems pertaining to 

power consumption and mechanical intricacy. The leg, which may possess multiple degrees of freedom, 

should have the ability to support a portion of the robot's overall weight. Additionally, numerous robots 

must possess the capability to elevate and descend the robot. Moreover, the attainment of high 

maneuverability is contingent upon the presence of an adequate quantity of degrees of freedom in the 

legs, enabling the application of forces in various directions. 

The legs must be lifted off the ground and set back down in order to move forward. Gait is the 

coordinated motion of the whole body, including the feet, as they are placed and lifted (in timing as well 

as place) to propel the walker forward. 

In the context of legged mobile robots, it is often necessary to have at least two degrees of 

freedom in order to facilitate the forward movement of a leg. This involves the act of raising the leg and 

subsequently swinging it forward. The inclusion of an additional degree of freedom is an increasingly 

prevalent practice in order to facilitate more intricate motions. The recent advancements in the 

development of bipedal walking robots have resulted in the incorporation of an additional degree of 

freedom at the ankle joint. The ankle joint allows the robot to manipulate the resultant force vector 

generated by contact with the ground by controlling the position of the foot's sole through actuation. 

In a broad sense, the incorporation of more degrees of freedom in a robotic leg enhances the 

maneuverability offered by the robot. This augmentation encompasses an expanded capacity to traverse 

diverse terrains and enables the robot to adopt various gaits during locomotion. The principal drawbacks 

associated with the incorporation of supplementary joints and actuators have been primarily related to 

energy consumption, control mechanisms, and overall bulk. The inclusion of supplementary actuators 

necessitates both energy and control while also contributing to the overall mass of the leg, hence 

amplifying the power and load demands placed on pre-existing actuators. 

The coordination of legs for movement, often known as gait control, poses a significant challenge 

in the context of a mobile robot with several legs. The quantity of potential gaits is contingent upon the 

quantity of legs [26]. The main objective of early studies regarding multilegged walking robots 

concentrated on the design of robot locomotion for traversing smooth or somewhat rough terrain, 

navigating basic obstacles, moving on soft ground, and performing body maneuvers, among other related 
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aspects. These needs can be achieved by the implementation of periodic gaits and the utilization of binary 

(yes/no) information regarding contact with the ground. Recent research has focused on the development 

of quadrupedal robots capable of traversing challenging environments, including inaccessible roads and 

highly intricate terrains such as mountainous regions, ditches, pits, and locations affected by seismic 

activity. In such instances, it is important to possess further functionalities, together with comprehensive 

assistance in determining reactions and forecasting the stability of robots [27-30]. 

 

1.2.2. Tracked Mobile Robots 

 

Tracked robots exhibit enhanced flexibility and possess the ability to navigate over challenging 

terrains. Nevertheless, their navigational capabilities are comparatively less precise when compared to 

those of a wheeled robot. Tracked robots necessitate the utilization of dual motors, with each motor 

assigned to a specific track located on either the left or right side. The locomotion of these robots is 

facilitated by a pair of tracks, which are set in motion through the rotation of wheels that are positioned 

within the sprockets of the robot [31]. 

Track mechanisms [32] are designed to provide precise linear motion and are well-suited for 

navigating uneven terrains, a common challenge encountered in off-road conditions. In contrast, these 

mechanisms exhibit a substantial size [33] and are distinguished by their somewhat lower energy 

efficiency for rotational motion in comparison to alternative driving mechanisms. The utilization of skid 

steering is prevalent in the operation of these vehicles. However, it is important for the reader to 

acknowledge that these maneuvers entail a complex interplay between the ground track and slippage 

events, which remains an area of an ongoing investigation within the discipline of ground mechanics. In 

order to effectively model and operate robots of this nature, it is important to conduct extensive 

experimentation prior to the formulation of the control scheme [34]. 

The skid steering principle, seen in Figure 1.2, operates by manipulating the relative velocities 

of the two tracks, similar to the manner in which differential drive vehicles with wheels function. 

Nevertheless, the task of controlling tracked locomotion presents a more intricate challenge due to the 

variance in the relative velocity of both tracks, which leads to slippage, soil shearing, and compaction 

as necessary mechanisms for achieving steering. 

Tracked mobile robots have demonstrated their utility in various domains, including but not 

limited to the agricultural sector, rescue and search, military operations, forestry management, mining 

activities, and exploring other planets [35]. 
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Figure 1.2.  Principle of skid steering [35] 

 

1.2.3. Wheeled Mobile Robots 

 

The development of wheeled locomotion stands as a significant invention in human history. The 

invention of the wheel is estimated to have occurred about in 3000 BCE, whereas the development of 

the two-wheeled cart is believed to have taken place around 2000 BCE. Currently, the presence of four-

wheeled cars is pervasive, with the global automobile population exceeding one billion. The efficacy 

and widespread usage of automobiles render them a logical selection as robotic platforms for terrestrial 

locomotion [36]. 

Wheeled mobile robots (WMR), commonly known as "ground mobile robots" in the field of 

robotics, typically have a stiff body, referred to as the base or chassis, and a wheel system that facilitates 

movement on the ground [37]. Additional rigid bodies, such as trailers, which are likewise equipped 

with wheels, can be linked to the base via revolute joints [38]. 

Wheeled robots are commonly used for the purpose of achieving mobility because of their 

numerous advantages, such as an uncomplicated structure, high energy efficiency, rapid speed, and 

inexpensive manufacturing cost, among others. 

The wheel has emerged as the predominant mode of movement in the field of mobile robots and 

across many man-made vehicles. The system is capable of attaining high levels of efficiency while 

employing a rather straightforward mechanical design. Furthermore, the issue of balance is typically not 

a subject of research in the realm of wheeled robot designs. This is mostly due to the fact that wheeled 

robots are typically engineered in such a way that ensures continuous contact between all wheels and 

the ground throughout their operation. According to previous research [39-41], it has been established 



20 

 

that the use of three wheels is adequate to ensure stable balance. However, it should be noted that stability 

can also be achieved with two-wheeled robots. 

In the context of robots intended for all-terrain conditions and those equipped with over three 

wheels, it is typically necessary to integrate a suspension system in order to ensure continuous contact 

between the wheels and the ground surface. One of the most straightforward methods for implementing 

suspension is incorporating a degree of elasticity directly into the wheel structure. In the context of 

certain indoor robots equipped with four wheels and castor wheels, the makers have implemented a 

rudimentary suspension system by incorporating a deformable tyre made of soft rubber onto the wheel. 

Naturally, this constrained method is unable to rival a developed suspension system in scenarios when 

the robot necessitates greater dynamic suspension to navigate considerably uneven terrain [42]. 

Each one of the wheels in a wheeled mobile robot (WMR) possesses the ability to rotate 

independently around an axis of its own. Consequently, there is a shared point that can be identified as 

the point of intersection of all the wheels' axes. The term used to refer to this concept is the instantaneous 

centre of rotation (ICR) or instantaneous centre of curvature. It designates a given point around which 

all of the wheels exhibit uniform angular velocity during their circular motion, as stated by ICR [43]. 

Rather than prioritizing balance, the field of wheeled robot research prefers to concentrate on 

addressing problems related to traction and stabilization, maneuverability, and control, which are 

contingent upon the types of wheels and configurations (drives) employed. 

 

1.3. Wheel Types 

 

WMRs, or Wheeled Mobile Robots, commonly employ two primary categories of wheels: 

conventional wheels as well as special wheels [38],[44]. There is significant variation in the kinematics 

of mobile robots, leading to a substantial impact on overall kinematics based on the chosen wheel type. 

 

1.3.1. Conventional Wheels 

 

There are three distinct categories of conventional wheels, as illustrated in Figures 1.3 and 1.4, 

accompanied by the corresponding icons that will be employed for their representation: 

• The fixed wheels or powered fixed wheels: The propulsion of these wheels is facilitated 

by motors that are affixed to stationary locations on the vehicle. The wheel has the ability 
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to undergo rotation around an axis that passes through its centre and is perpendicular to 

the plane of the wheel. The wheel is affixed firmly to the chassis, resulting in a consistent 

orientation of the chassis with regard to the wheel. 

• The caster wheels: These wheels lack power but possess a pair of axes of rotation. 

However, the vertical axis cannot cross the wheel's center, instead being consistently 

displaced by a fixed offset. This configuration induces the wheel to rotate spontaneously, 

swiftly matching it with the chassis' direction of motion. The introduction of this 

particular form of wheel serves the purpose of offering a backing point for static 

equilibrium while maintaining the maneuverability of the base. Caster wheels, for 

example, find widespread application in shopping carts and wheeled chairs. 

• The steerable wheels or powered steering wheels: Each wheel operates under 

independent motorized drive and is capable of steering through rotation about an axis 

orthogonal to its rotational axis, enhancing navigational flexibility. The wheels in 

question have the potential to exist either equipped with offset or without offset, resulting 

in a scenario where the rotational and steering axes do not cross. There are a pair of axes 

of rotation present. The initial wheel is identical to a fixed wheel, whereas the subsequent 

wheel is oriented vertically and passes across the wheel's central axis. This mechanism 

enables the wheel to alter its orientation relative to the chassis. 

 

 

 

 

 

 

 

 

Figure 1.3. The three common types of conventional wheels and their corresponding icons [38] 
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Figure 1.4. Conventional wheels (A) fixed wheel, (B) caster wheel, (C) powered steering wheel 

without any offset, and (D) powered steering wheel with longitudinal offset [44] 

In comparison to special wheel structures, conventional wheels have superior load capabilities 

and greater resilience towards terrain disturbances. However, owing to their nonholonomic restrictions, 

these wheels do not possess true omnidirectionality. 

 

1.3.2. Special Wheels 

 

The design of these wheels enables them to exhibit active traction in a particular direction and 

passive movement in another one, hence enhancing maneuverability in crowded conditions. There exist 

three primary categories of special wheels: 

• Universal wheel 

• Mecanum wheel or Swedish wheel 

• Ball wheel or spherical wheel 

Figure 1.5 illustrates the universal wheel, which offers a blend of restricted and unrestricted 

motion when turning. The wheel is equipped with little rollers positioned orthogonally to the axis of 

rotation around its external diameter. Additionally, to perform the normal rotation of the wheel, this 

mechanism enables the wheel to roll parallel to its axis. 

 

 

 

 

Figure 1.5. Three configurations of universal wheel [44] 
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The mecanum wheel [45-49], also known as the Swedish wheel, as depicted in Figure 1.6, is a 

type of wheel that is analogous to the universal wheel with the exception that its rollers are positioned 

at an angle ψ, typically around ±45° and other than 90°. 

 

 

 

 

Figure 1.6. (A) Mecanum wheel with ψ = 45° (left wheel), (B) Mecanum wheel with ψ = -45° (right 

wheel), and (C) an actual functioning mecanum wheel [44] 

 

The omnidirectional wheel is depicted in Figure 1.6 A and B, showcasing its appearance when 

observed from the bottom through a glass floor. The force Fr generated by the rotational motion of the 

wheel is transmitted to the ground through the roller that is in contact with the ground. It is assumed that 

the ground is sufficiently level and free from any abnormalities. At this particular roller, the applied 

force can be separated into two components: a parallel force, denoted as Fr1, which parallels the axis of 

the roller, and a perpendicular force, denoted as Fr2, which is oriented at a right angle to the axis of the 

roller. The force acting perpendicular to the axis of the roller induces a small rotational motion in the 

roller at a velocity denoted as 𝑣𝑣. Conversely, the force acting parallel to the axis of the roller applies a 

force on the wheel, consequently on the auto leading to hub velocity, 𝑣ℎ. The resultant velocity (𝑣𝑡) of 

the auto is the sum of the horizontal velocity (𝑣ℎ) and the vertical velocity (𝑣𝑣). The actual functioning 

mecanum wheel is depicted in Figure 1.6 C. 

The Swedish wheel operates similarly to a normal wheel, but it also offers reduced resistance in 

an additional direction, sometimes orthogonal to the traditional direction. The passive nature of the small 

rollers positioned along the periphery of the wheel is complemented by the active power exerted solely 

through the wheel's major axis joint. One notable benefit of this particular design is its ability to provide 

movement along various trajectories with minimal friction, despite the fact that the rotation of the wheel 

is solely propelled along the major axis (by the axle). This design enables the wheel to traverse not only 

forward and backward paths but also numerous other potential trajectories. 
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Figure 1.7. A practical application of a ball wheel [44] 

 

The ball or spherical wheel does not impose direct limitations on motion, as it possesses 

omnidirectional capabilities similar to castor or special mecanum and universal wheels. Put otherwise, 

the wheel’s rotational axis is capable of assuming any arbitrary orientation. One potential method for 

accomplishing this objective involves employing an active ring that is powered by a motor as well as a 

gearbox. This active ring serves to convey power to the ball through the utilization of rollers and friction. 

Notably, the ball possesses the ability to rotate freely in any direction without delay. Due to its intricate 

design, the ball wheel remains seldom employed in practical applications. Figure 1.7 illustrates a 

particular variant of a ball wheel. One approach to executing this spherical design involves emulating 

the functionality of a computer mouse, wherein powered rollers are employed to make contact with the 

upper surface of the sphere and generate rotating force. 

Wheeled mobile robots (WMR) are extensively employed in various applications to accomplish 

robot locomotion. In a broad sense, wheeled robots tend to exhibit lower energy consumption and higher 

velocity compared to alternative locomotion systems such as legged robots or tracked vehicles. From a 

control perspective, the simplicity of their mechanisms and the lessened occurrence of stability issues 

result in a decreased need for control effort. Despite the inherent challenges posed by rugged terrain and 

uneven conditions of the ground, wheeled mobile robots have proven to be well-suited for a wide range 

of target situations in various practical applications [50]. 

The selection of wheel kinds for a mobile robot has become inextricably connected to the 

selection of wheel arrangement, often known as wheel geometry. When building the locomotion system 

of a wheeled robot, the mobile robot engineer must take into account two concurrent difficulties. What 

is the significance of wheel kind and wheel geometry? The decisions made in designing a robot have a 

direct impact on three essential attributes: controllability, maneuverability, and stability [51-52]. 
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A plethora of design alternatives exist regarding wheeled mobile robots. The design problems 

associated with a single-body mobile robot encompass the choice of wheel types, the optimal positioning 

of wheels, and the precise determination of kinematic parameters. The specification of design targets 

should be contingent upon the specific target circumstances and tasks, in addition to considering the 

initial costs and operational expenses associated with the operation of a robot. 

In contrast to automobiles, which are primarily engineered to operate inside a standardized 

environment such as the road network, mobile robots are specifically intended to cater to a diverse range 

of applications and scenarios. Automobiles exhibit commonality in their wheel configurations due to the 

existence of a specific region within the design space that optimizes their controllability, 

maneuverability, and stability within the typical environment they operate in, namely, the paved 

roadway. As a result, a notable drawback associated with wheeled robots is their reliance on a paved 

road or a level terrain for effective locomotion. Nevertheless, it is important to note that there is no 

singular wheel configuration that optimizes these characteristics for the diverse range of environments 

encountered by various mobile robots. 

 

1.4.  Drive Types 

 

Wheeled robots, as demonstrated in Figure 1.8, represent a minimalistic yet effective design 

paradigm in mobile robotics, which commonly incorporates one or more powered wheels to facilitate 

motion, as seen by the solid rectangles in the illustration. Additionally, they may feature passive caster 

wheels, represented by hollow rectangles, which serve to enhance stability. Likewise, it is possible for 

these vehicles to possess steered wheels, often represented by wheels depicted within a circular shape to 

indicate their axis of rotation. Typically, the driving and steering mechanisms for a mobile robot 

necessitate the utilization of a pair of motors in the overall design [53-57]. 

 

 

 

Figure 1.8. Various drive types used for the design of wheeled mobile robots [56] 

 

The drives of Wheeled Mobile Robots (WMRs) can be categorized into the following: 
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1.4.1. Differential Drive 

 

A differential drive system is characterized by two motors mounted in a fixed orientation on 

the robot's lateral sides, each providing independent propulsion to a single wheel. As this configuration 

provides only two points of ground contact, supplemental passive elements—such as caster wheels or 

sliders—are integrated to fulfill the minimum requirement of three ground-contact points for static 

stability. Furthermore, it is acknowledged that the interaction between the wheels of a robot and the 

ground is characterized by a state of non-slipping and pure rolling [58]. The differential drive system is 

considered to be mechanically more straightforward compared to the single-wheel drive system, as it 

eliminates the need for the rotating motion of a driving motor. Nevertheless, Compared to single-wheel 

drive systems, differential drive robots exhibit increased control complexity in directional navigation, 

attributable to the need for precise synchronization between the two driven wheels. 

The presence of only one passive wheel in a differential drive system restricts the ability to 

position the driven wheels centrally, as such a configuration would compromise stability. Consequently, 

the robot rotates about a pivot point located between the two driven wheels, which is offset from the 

center. With two passive wheels (front and rear), however, the robot can achieve rotation about its center, 

enhancing directional control and operational efficiency. Nevertheless, this particular design may give 

rise to surface contact problems due to its utilization of four contact points rather than the more 

conventional three. 

A differential drive robot's driving operations are depicted in Figure 1.9. When both motors 

operate at equal speeds, the robot moves in a linear path, either forward or backward. However, if one 

motor operates at a higher speed compared with the other, the robot follows a curved trajectory along 

the curve of an instantaneous circle. Moreover, To achieve a point turn, the control system commands 

the left and right motors to run at equal speeds in reverse directions, causing the platform to rotate about 

the center of its driving wheel axis. 

• Driving linear forward or backward: 𝑣𝑙  =  𝑣𝑟 ,   𝑣𝑙 >  0 

• Driving in a rightward curve: 𝑣𝑙  >  𝑣𝑟   

• Rotation in a clockwise direction on the spot: 𝑣𝑙  = – 𝑣𝑟 ,     𝑣𝑙  >  0  
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Figure 1.9. Driving operations of differential drive. (A) Straight path, (B) Curved path, (C) Circular 

path, and (D) Obstacle-free navigation to move from an initial to a final state [44] 

 

1.4.2. Tricycle or Single Wheel Drive 

 

The present mechanism is equipped with a solitary wheel that fulfills the dual functions of driving 

and steering. In order to ensure stability, a configuration involving two unpowered fixed wheels 

positioned at the rear is employed, hence maintaining the necessary three-point contact at all times. The 

system necessitates the utilization of two motors, with one motor dedicated to driving the vehicle's wheel 

and the other motor dedicated to turning. One notable benefit of this design is the complete decoupling 

of the driving and turning motions through the utilization of two distinct motors. Consequently, the 

control software designed for maintaining straight trajectories or executing curved paths will exhibit a 

high degree of simplicity. When driving in a straight line, the wheel is placed in the central position and 

operated at the desired velocity, see Figure 1.10A. Once the front wheel becomes inclined, the vehicle 

has a trajectory that is curved, see Figure 1.10B. When the front wheel is set at a 90° angle, the robot 

will undergo rotational motion along a circular trajectory. This circular path is centered at the midpoint 

of the rear wheels rather than the geometric center of the robot, as depicted in Figure 1.10C. This implies 

that the WMR lacks the ability to rotate in place. The minimal turning radius refers to the measurement 

of the distance separating the frontal wheel and the midway of the two rear wheels. Nonholonomic 

wheeled mobile robots (WMRs), such as tricycle or differential drive robots, are unable to execute 

parallel parking procedures directly. However, they can achieve parallel parking through a series of 
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maneuvers involving both forward and backward movements, as seen in Figure 1.10D. The utilization 

of tricycle drive is prevalent in the field of mobile robotics due to the inherent stability provided by the 

three wheels, enabling the robot to maintain an upright position autonomously. 

 

 

 

 

 

 

Figure 1.10. Tricycle WMR driving modes (A―D), (E) A tricycle example [44] 

 

1.4.3. Synchro Drive 

 

The drive in question consists of a minimum of three wheels that are interconnected in a manner 

that ensures simultaneous rotation in an identical direction and at an identical speed. Additionally, these 

wheels pivot collectively around their respective steering axes when executing a turn. A conventional 

synchro drive system is characterized by the presence of three wheels that are symmetrically positioned 

in an equilateral triangle configuration around the center of the vehicle. In this system, all wheels are 

guided in synchrony, resulting in their rotation axes consistently maintaining parallel alignment. 

Furthermore, the Instantaneous Center of Rotation (ICR) point is positioned at an infinite distance. There 

are different methods available for achieving mechanical steering synchronization, such as utilizing a 

belt, a chain, or a gear drive. The synchro drive system can be understood as an expansion of a single 

steered and driven wheel, hence maintaining a limited number of degrees of freedom, specifically two. 

Characterized by its near-holonomic kinematics, the synchro drive WMR exhibits omnidirectional 

mobility, allowing for movement along any path in the plane, typically requiring a cylindrical chassis to 

support omnidirectional movement. 

Nevertheless, it is incapable of simultaneously driving and rotating. In order to transition from 

forward to lateral movement, the WMR (Wheeled Mobile Robot) must come to a halt and readjust the 
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alignment of its wheels. Figure 1.11A visually illustrates the movement and rotation of a three-wheel 

WMR (Wheeled Mobile Robot) equipped with a synchro drive. 

 

 

 

 

 

 

 

Figure 1.11. (A) An example of WMR motion with a synchro drive, (B) The two separate belts 

subsystems, and (C) A synchro drive example [44] 

 

The utilization of a belt- or chain-based synchro drive results in diminished steering precision 

and alignment. The occurrence of this problem can be avoided by implementing a gear drive mechanism. 

In order to ensure proper functionality, it is necessary to employ two distinct motor-drive subsystems 

that operate using belt, chain, and gear mechanisms. These subsystems serve two distinct purposes: one 

of them for steering and another to control the driving shaft, as depicted in Figure 1.11B. The initial 

motor is responsible for regulating the rotational movement of the wheels along the horizontal axis, 

thereby supplying the force that drives (traction) the robot. The second motor governs the rotational 

movement of the wheels along the vertical axis, thus influencing their orientation. 

It should be noted that the direction of the chassis remains constant throughout the action. 

Frequently, the inclusion of one more motor is observed in the design of such robots, with the purpose 

of enabling autonomous rotation of the upper section of the chassis, commonly referred to as a turret, in 

relation to the bottom section. This method could potentially be advantageous for the purpose of 

orienting a directional sensor, such as a camera, without any specific constraints or, alternatively, for 

correcting any errors in orientation [38]. 

One illustrative assignment that showcases the benefits of a synchro-drive system is the 

achievement of "complete area coverage" by a robot within a designated location. The practical use of 

this work can be observed in the context of cleaning or vacuuming floors. 
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1.4.4. Ackermann Steering 

 

In a rear-wheel-drive vehicle, power is delivered to the rear wheels via a differential-connected 

motor, while the front wheels are passive and responsible for steering via synchronized actuation. The 

phenomenon referred to is commonly recognized as Ackermann steering, and offers comparative 

benefits and limitations when contrasted with the differential drive paradigm. A notable benefit is the 

ease of maintaining linear motion, as the rear wheels are driven through a single mechanical axis. 

However, this design limits maneuverability, as the vehicle cannot rotate in place and instead requires a 

minimum turning radius. 

In Ackermann steering configurations, a distinct control interface is necessary because linear and 

angular velocities are produced by independent actuators, leading to full decoupling. This structural 

separation simplifies control, notably improving the accuracy and stability of straight-line travel. The 

driving library features dual independent control units: one responsible for the velocity and positional 

regulation of the rear wheels, and the other for the steering control of the front wheels. The inclusion of 

a position controller is necessary for the steering system since it is responsible for accurately setting the 

front wheels to a specific steering angle. 

In contrast, the velocity controller is utilized to ensure a consistent speed is maintained by the 

back wheels. Slippage is observed in the rear driving wheels during the execution of turns. In order to 

accurately steer the front wheels, it is necessary to have supplementary sensors that can detect the zero 

position, as well as potentially the maximum right and left positions. 

The Ackerman steering mechanism is specifically engineered to achieve a common cross point, 

known as the instantaneous center of rotation (ICR), for all-wheel axes during turns. This design feature 

aims to prevent wheel slippage resulting from geometric factors. It is able to find the equations from 

Figure 1.12 as follows: 

𝑐𝑜𝑡𝛽𝑠 =
𝑎+𝐸

𝑉
,    𝑐𝑜𝑡𝛽𝑜 =

2𝑎+𝐸

𝑉
,   𝑐𝑜𝑡𝛽𝑖 =

𝐸

𝑉
,                                  (1.1) 

By eliminating E, it can get 

𝑐𝑜𝑡𝛽𝑠 =
𝑎

𝑉
+ 𝑐𝑜𝑡𝛽𝑖 ,   𝑜𝑟  𝑐𝑜𝑡𝛽𝑠 = 𝑐𝑜𝑡𝛽𝑜 −

𝑎

𝑉
 ,                                (1.2) 

where 𝛽𝑠 represents the automobile’s true steering angle and 𝛽𝑜 , 𝛽𝑖 represent the outer and inner wheel’s 

steering angles, respectively.  
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Figure 1.12. The intersection point (ICR) of the rotating axes across all wheels [44] 

 

The limitation in the movement of an Ackerman-steered automobile is depicted in Figure 1.13. 

The automobile is currently situated in a location where there are two inaccessible circular areas, one on 

the left side and one on the right side. The reason for this limitation is that the robot is unable to execute 

turns (either to the right or left) when following a trajectory with a radius lower than a predetermined 

minimum value. Hence, the act of parallel parking necessitates a substantial degree of maneuvering. 

It is noteworthy to mention that in order to prevent slippage, it is necessary for both of the front 

wheels to possess distinct orientations as the vehicle traverses a curve. Specifically, the internal wheel 

should be somewhat more steered in comparison to the external wheel. 

 

 

 

 

 

Figure 1.13. The inaccessible shaded areas by the Ackerman-steered robot [44] 

 

1.4.5. Omni-Directional Robots (ODR) 

 

As can be seen in Figure 1.14, a total of three, four, or even more omnidirectional wheels can 

be used to achieve this type of driving. As can be seen in Figure 1.14A, the universal wheels used on 
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three-wheeled WMRs all have a roller angle of 90 degrees (Figure 1.5). Mecanum wheels, as in Figure 

1.6, are arranged like in Figure 1.14B on four-wheeled omnidirectional WMRs. 

 

 

 

 

 

Figure 1.14. Omnidirectional WMRs. (A) Three-wheel example, (B) four-wheel example with roller 

angle various than 90° (typically ψ = ±45°) [44] 

 

 

 

 

 

 

 

 

Figure 1.15. A conventional omnidirectional WMR uses a four-mecanum-wheel configuration [44] 

 

Figure 1.15, it can observe four wheels total; two are designated as the left-side (L) wheels, while 

the other two are designated as the right-hand (R) wheels. Roller angle ψ = 45° on the left-side wheels 

and ψ = -45° on the right-hand wheels. As a result, the usual design of a four-wheel omnidirectional 

WMR is depicted in Figure 1.15. 

Figure 1.16 illustrates the six fundamental movements performed by a four-wheel ODR, 

specifically denoted as (A) forward movement, (B) left shifting, (C) clockwise rotating (in place), (D) 

backward movement, (E) right shifting, and (F) anticlockwise rotating. The arrows located on both the 
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left and right sides of the vehicle serve to indicate the intended direction of motion for the respective 

wheels. 

The arrows depicted on the automobile platform indicate the corresponding directions of motion 

for the WMR. Specifically, when the automobile is moving ahead, all wheels are required to travel in 

the forward direction, as shown in Figure 1.16A. In the case of left shifting, wheels 1 and 3 move forward 

while wheels 2 and 4 move backward, and so forth. The depicted locomotions in Figure 1.16 happen 

when all wheels are in motion at an identical velocity. The ability to achieve movement in any orientation 

on a two-dimensional plane using a WMR can be accomplished by adjusting the amount of the wheel 

speeds. Several instances are depicted in Figure 1.17. 

 

 

 

 

 

 

 

Figure 1.16. Six fundamental movements performed by a four mecanum wheels ODR [44] 

 

The various movements observed in Figures 1.16 and 1.17 are easily elucidated by referring to 

the velocity or force diagrams depicted in Figure 1.6 A and B, respectively. For instance, due to the 

symmetrical configuration of the wheels on both sides (see Figure 1.15), when all wheels move in the 

forward direction, there exist four forward-pointing vectors that are combined, along with four sideways-

pointing vectors—two towards the right and two towards the left—that mutually nullify each other. 

Therefore, altogether, the WMR demonstrates progress. The left (L) and right (R) wheels have the 

potential to be exchanged, meaning that the front wheels can be placed between each other as well as 

the back wheels. Furthermore, it should be noted that by incorporating the appropriate motion of the 

wheels, it is possible to achieve several kinds of omnidirectional mobility with this particular 

configuration. 
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Figure 1.17. Six more movements: (A) forward-right, (B) forward-left, (C) curved right, (D) 

backward-right, (E) backward-left, and (F) lateral arc [44] 

 

1.5.  WMR Maneuverability 

 

The maneuverability of WMRs, denoted as 𝑀𝑤, can be mathematically expressed as 

𝑀𝑤 = 𝐺𝑚 + 𝐺𝑠                                                             (1.3) 

where 𝐺𝑚 represents the mobility degree, and 𝐺𝑠 represents the steerability degree. 

The mobility degree: The mobility degree the value of 𝐺𝑚 is contingent upon the number of 

separate (independent) constraints that are imposed on the robot's motion capability by the kinds of 

wheels and configuration they have. The motion of the system is solely constrained by the presence of 

conventional wheels, whether they are fixed or steered. The utilization of omnidirectional wheels does 

not put any constraints on the mobility of the robot. A comprehensive understanding of the separate 

(independent) kinematic constraints concerning a wheeled mobile robot (WMR) can be achieved by 

examining the geometric characteristics of the robot, specifically focusing on the Instantaneous Center 

of Curvature (ICC) or Instantaneous Center of Rotation (ICR). As an illustration, it is worth noting that 

one conventional wheel lacks the capability to execute lateral movement, specifically along the line 

defined by its rotational axis. The line mentioned above is commonly referred to as the zero-motion line 

of the wheel. This implies that the wheel is limited to traversing an instantaneous circular path of radius 

Rai, where the center of this circle is positioned on the zero-motion line. A bicycle is composed of two 

wheels: the front wheel, which is steered, and the rear wheel, which remains fixed (see Figure 1.18). 
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Every wheel produces its own distinct zero motion line, which operates independently. The 

intersection of the two lines occurs at the Instantaneous Center of Rotation (ICR). In the scenario of a 

differential drive-wheeled mobile robot (DDWMR), as depicted in Figure 1.19, it can be observed that 

the zero motion lines of the two wheels, which share a common axis, synchronize with each other. 

 

 

 

 

Figure 1.18. A bicycle's two wheels represent two independent constraints [44] 

 

 

 

  

 

 

 

 

Figure 1.19. Determination of the WMR rotation's instantaneous radius Rai [44] 

 

Consequently, the motion of these wheels is not independent. This implies that there exists a 

single independent kinematic constraint. Any point located along the common zero motion line has the 

potential to serve as an Instantaneous Center of Rotation (ICR). The Ackerman steering mechanism is 

characterized by the presence of four conventional wheels on a wheeled mobile robot (WMR), with two 

separate (independent) kinematic constraints, as depicted in Figure 1.12. The presence of two rear wheels 

in a vehicle, such as in a differential drive system, introduces a singular constraint. 

Additionally, the two front-steered wheels present a second singular kinematic constraint. This 

is due to the fact that these wheels intersect at an Instantaneous Center of Rotation (ICR), which lies on 

the zero-motion line specified by the common axis of the rear wheels. The highest mobility degree 𝐺𝑚 

is equal to 3 in cases if nonkinematic constraints are present. This scenario occurs when every one of 
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the wheels of the wheeled mobile robot (WMR) possesses omnidirectional capabilities. In a broad sense, 

the mobility degree can be considered as being equivalent to: 

𝐺𝑚 = 3 − 𝑁𝑐                                                         (1.4) 

where 𝑁𝑐 represents the number of separate (independent) constraints. 

The steerability degree, 𝐺𝑠, is determined by the number of steering parameters that can be 

controlled separately (independently). The range of 𝐺𝑠 is bounded by the period  0 ≤ 𝐺𝑠 ≤ 2. In the 

absence of any wheels capable of being steered, the value of 𝐺𝑠 is equal to zero. The condition 𝐺𝑠 = 2 

is satisfied just in instances where the robot does not possess any fixed standard wheels. In this scenario, 

it is possible to implement a platform using two distinct steerable conventional wheels, such as those 

found in a two-steer bicycle or a three-wheeled two-steer wheeled mobile robot (WMR). According to 

the above information, a value of  𝐺𝑠 = 2 indicates that the WMR (Wheeled Mobile Robot) possesses 

the capability to position its Instantaneous Center of Rotation (ICR) at any location inside the plane. The 

prevailing scenario occurs when 𝐺𝑠 equals 1, a condition that arises when the robot's configuration 

incorporates at least one steerable conventional wheel. The utilization of a conventional wheel that is 

guided has the potential to reduce the overall mobility of the robot while simultaneously increasing its 

steerability. Indeed, while the immediate orientation of the steering wheel enforces a kinematic 

constraint, its capacity to modify the orientation may enable the exploration of supplementary 

trajectories. Table 1.1 displays the maneuverability (𝑀𝑤), mobility degree (𝐺𝑚), and steerability degree 

(𝐺𝑠) for various common configurations of WMRs. 

Two further distinguishing parameters of WMRs are the "differential degrees of freedom" 

(𝐷𝐷𝑂𝐹) and the "degrees of freedom" (𝐷𝑂𝐹), which are related by the following relation: 

                                                       𝐷𝐷𝑂𝐹 ≤ 𝑀𝑤 ≤ 𝐷𝑂𝐹                                                       (1.5) 

A bicycle possesses the capability to attain any given position (x, y, φ) within a plane through a 

series of maneuvers, so indicating that it possesses three degrees of freedom, 𝐷𝑂𝐹 = 3. However, its 

differential degrees of freedom, 𝐷𝐷𝑂𝐹 = 𝐺𝑚 = 1. The omnirobot under consideration possesses three 

omnidirectional wheels, resulting in 𝐺𝑚 = 3, indicating a 𝐷𝐷𝑂𝐹 = 3. Additionally, the omnirobot 

manifests a 𝐷𝑂𝐹 = 3. In a similar vein, it can be observed that a tricycle possesses a differential degree 

of freedom 𝐷𝐷𝑂𝐹 = 𝐺𝑚 = 1, and a degree of freedom 𝐷𝑂𝐹 = 3. This is due to its capability to attain 

any desired position (x, y, φ) with suitable maneuvering [44]. 
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Table 1.1. Mobility Degree and Steerability Degree (𝐺𝑚, 𝐺𝑠) of popular WMRs [44] 

Configuration 𝑮𝒎 𝑮𝒔 𝑴𝒘 Notation 

Bicycle 1 1 2 (1,1) 

Differential drive 2 0 2 (2,0) 

Synchro drive 1 1 2 (1,1) 

Tricycle 1 1 2 (1,1) 

Ackerman steer 1 1 2 (1,1) 

Two-steer 1 2 3 (1,2) 

Omni-steer 2 1 3 (2,1) 

Omnidirectional 3 0 3 (3,0) 

 

1.6. WMR Stability 

 

Interestingly, it has been found that a minimum of two wheels is sufficient to achieve static 

stability. A differential-drive robot with two wheels can attain static stability when the center of mass is 

positioned below the axle of the wheels [59]. Nevertheless, in typical scenarios, the implementation of 

such a resolution necessitates wheel widths that are excessively big and, therefore, not feasible. The 

presence of dynamics in a two-wheeled robot can result in the robot making contact with the floor at a 

third point, such as when there are strong motor torques applied from a stationary position. In accordance 

with conventional wisdom, static stability necessitates the presence of at least three wheels. It is 

important to note that the gravity center is required to be situated within the triangular region produced 

by the points of contact between the wheels and the ground. Enhancing stability can be achieved by 

increasing the number of wheels. However, it should be noted that when the number of connecting points 

surpasses three, the geometric configuration becomes hyperstatic, necessitating the implementation of a 

flexible suspension system to accommodate uneven terrain [42]. 
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1.7. WMR Controllability 

 

In general, there exists a negative link between controllability and maneuverability. An instance 

of this can be seen in omnidirectional designs, such as the configuration with four castor wheels, which 

necessitates substantial processing in order to turn the required rotational and linear velocities into 

specific orders for each wheel. Moreover, it is worth noting that omnidirectional designs frequently 

exhibit a higher number of degrees of freedom in the wheel mechanism. As an illustration, the Swedish 

wheel is equipped with a collection of unrestricted rollers positioned along the circumference of the 

wheel. The presence of the degrees mentioned above of freedom leads to the occurrence of slippage, 

which has a detrimental effect on the accuracy of dead-reckoning and also contributes to an increase in 

the complexity of the design. 

The task of directing an omnidirectional robot towards a specific direction of motion is inherently 

more challenging and frequently exhibits lower levels of accuracy in comparison to less maneuverable 

robot designs. As an illustration, a vehicle equipped with an Ackerman steering mechanism is capable 

of maintaining a straight trajectory by immobilizing the steerable wheels while powering the drive 

wheels. In the context of a differential-drive vehicle, it is imperative to ensure that the two motors 

connected to the two wheels are driving at an identical velocity profile. However, achieving this 

synchronization can pose difficulties due to inherent variations among the wheels, motors, and the 

outside environment. The challenge becomes more complex when utilizing a four-wheel omni-drive 

system, exemplified by the Uranus robot equipped with four Swedish wheels. In this configuration, 

maintaining a precise straight trajectory necessitates the synchronization of all four wheels to operate at 

identical speeds [42]. 

In conclusion, it can be stated that no universally optimal drive design may effectively optimize 

stability, maneuverability, and controllability all at once. Every mobile robot application imposes 

specific constraints on the design challenge, and the designer's objective is to select the best suitable 

drive configuration among the range of trade-offs available. 

 

1.8. Motion Modeling for Differential Drive Wheeled Mobile Robots 

 

Motion models are utilized to describe the kinematics of robots. There has been a notable focus 

on the mathematical aspects of robot motion, disregarding the underlying causes like forces or torques. 

The kinematic model elucidates the inherent geometric relationships within the system. This statement 
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elucidates the correlation between the inputs (control parameters) and the behavior of a system as 

delineated by its state-space representation. The kinematic model pertains to the velocities of a system 

and is represented by a collection of differential equations of the first degree. 

Dynamic models are utilized to depict the motion of a system in response to the application of 

forces. These models incorporate the principles of physics pertaining to motion, encompassing the 

utilization of forces, energy, mass of a system, velocity, and inertia parameters. The dynamic models’ 

description can be expressed by second-order differential equations. 

In the field of wheeled mobile robotics, it is well-accepted that kinematic models are typically 

adequate for the purpose of designing locomotion strategies. However, in the case of other systems 

involving robots operating in air, space, water, or walking robots, the inclusion of dynamic modeling 

becomes necessary [60]. 

As previously said, the Differential Drive Wheeled Mobile Robot (DDWMR) is considered to 

be a straightforward and efficient structure among the various types of mobile robots [61]. The 

DDWMRs possess the capability to navigate inside a predetermined operational environment in order 

to accomplish a specified path or trajectory [62]. The capacity for mobility renders them highly 

advantageous for a wide range of applications in both structured and non-structural environments. The 

differential drive system consists of a pair of wheels positioned at opposite ends of a mobile platform. 

These wheels can be operated independently in terms of both position and velocity [63]. In certain 

instances, the implementation of an additional wheel known as the Castor wheel can be used to maintain 

equilibrium in the event of any potential instability [64]. Various scenarios occur during the DDWMR 

rotation. When the two wheels of the DDWMR rotate in the same direction at equal speeds, the robot 

travels in a straight trajectory [65]. Additionally, when one wheel is in motion while the other remains 

stationary, the DDWMR exhibits circular motion, with the center of the circle being the pivotal point of 

the stationary wheel. Similarly, if the roles are reversed, the DDWMR follows a circular trajectory, with 

the center being the pivotal point of the rotating wheel [66]. 

The classification of Differential Drive Wheeled Mobile Robots (DDWMRs) encompasses four 

distinct models: 

• The posture kinematic model 

• The configuration kinematic model 

• The posture dynamic model 

• The configuration dynamic model 
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The kinematic models of the DDWMR characterize its behavior through a mathematical function 

that relates the velocity and orientation of its wheels. On the other hand, the dynamic models of the 

DDWMR describe its behavior by a mathematical function that relates the generalized forces exerted by 

the actuators. The posture models exclusively focus on the robot's position and orientation as state 

variables, in contrast to configuration models that incorporate other internal variables, such as the 

wheels' angular displacement [67-69]. 

 

1.8.1.  Kinematics of Differential Drive Wheeled Mobile Robots 

 

The field of robot kinematics encompasses the study of the configuration (arrangement) of robots 

within their operational environment, Robot kinematics encompasses the analysis of the geometric 

configuration of robotic systems, the functional dependencies between their structural parameters, and 

the kinematic constraints imposed on their trajectories—all of which are fundamentally determined by 

the robot’s physical architecture. The choice of wheel type, the number of wheels, and the manner in 

which they are connected to the chassis of the robot have a substantial impact on the kinematics of 

mobile robots [70]. 

A comprehensive understanding of kinematics is an essential foundation for studying the 

principles of dynamics, the analysis of stability characteristics, and the implementation of control 

mechanisms in the field of robotics. Ongoing research is being conducted on the development of novel 

and special robotic kinematic structures, with the aim of creating robots capable of executing advanced 

and intricate tasks in various industrial and societal domains [71-76]. 

The nonholonomic mechanical system, known as the DDWMR, as depicted in Figure 1.20, 

serves as a representative illustration. The system under consideration comprises a rigid body, referred 

to as the base, which incorporates a pair of conventional fixed wheels that are driven by separate 

actuators, such as direct current motors. These wheels enable the system to achieve both movement and 

orientation. Additionally, a third wheel is present, and occasionally a fourth wheel, which are passive 

and solely serve the purpose of providing support to the DDWMR. The influence of these passive wheels 

on the dynamics of the DDWMR is considered to be trivial [77]. 

The posture vector, denoted as 𝜁 = [𝑥 𝑦 𝜃]𝑇, represents the characteristics of the system. Here, 

𝑥 and 𝑦 denote the coordinates of point C, which serves as both the mass center as well as the guidance 

point. These coordinates are defined within the inertial coordinate system OXOYO. Additionally, 𝜃 

represents the angle of orientation of the mass center coordinate system of the DDWMR CXCYC relative 
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to the inertial coordinate system OXOYO. The OXOYO frame, referred to as the inertial reference frame, 

also represents the fixed frame of reference in the robot's surroundings within which it operates. On the 

other hand, the DDWMR CXCYC frame, known as the robot frame, denotes a local coordinate system 

that is affixed to the robot itself [78]. 

 

 

 

 

 

 

 

 

 

Figure 1.20. DDWMR and systems of coordinates [77] 

 

The local coordinates of mechanical systems are capable of being represented using the 

generalized coordinate vector Q, where Q = [Q1, Q2, . . . ,Qn]
T ∈ ℜn. In numerous scenarios, the motion 

of mechanical systems is governed by a range of constraints that are consistently upheld throughout the 

movement. These constraints manifest as algebraic relationships between the velocities and positions of 

the system's points [79]. 

The parameter nomenclature employed in the DDWMR study, as depicted in Figure 1.20 and 

enumerated in Table 1.2. 

The DDWMR depicted in Figure 1.20 exhibits three kinematic restrictions, as documented in 

references [80-82]. The initial constraint pertains to the inability of the DDWMR to undergo lateral 

sliding, thereby adhering to a non-slipping constraint. Consequently, the DDWMR is only capable of 

movement along the perpendicular direction to the actuated wheels' symmetry axis. The constraint 

mentioned above can be expressed as 

𝑦̇ cos(𝜃) − 𝑥̇ sin(𝜃) = 0,      for C = P,                                     (1.6) 

𝑦̇ cos(𝜃) − 𝑥̇ sin(𝜃) − 𝑑𝜃̇ = 0,       for C ≠ P.                               (1.7) 
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The next two constraints pertain to the wheel's rotation, namely the pure rolling constraints. 

Table 1.2. DDWMR Parameters [77] 

Parameter Description 

P Intersection of the axis of the symmetry with the wheels’ axis. 

C Center of mass or point of guidance. 

d The distance between point P and point C. 

rA Radius of left or right wheel. 

2a The distance between the actuated wheels and the axis of symmetry. 

𝜑̇𝑙, 𝜑̇𝑟 The angular velocities of the left and right wheels. 

𝜔, 𝜐 The angular and linear velocities of DDWMR. 

Q The generalized coordinate vector. 

 

These constraints ensure that the actuated wheels do not experience any incorrect rotation. They 

can be expressed as follows: 

                     𝑥̇ cos(𝜃) + 𝑦̇ sin(𝜃) + 𝑎𝜃̇  − 𝑟𝜑̇𝑟 = 0,    for C = P and C ≠ P,                         (1.8) 

                     𝑥̇ cos(𝜃) + 𝑦̇ sin(𝜃) − 𝑎𝜃̇  − 𝑟𝜑̇𝑙 = 0,    for C = P and C ≠ P.                         (1.9) 

where 𝜑𝑙 and 𝜑𝑟 represent angular displacements of the left and right wheels, respectively. 

Equations (1.8) and (1.9) can be expressed as follows: 

                                        𝜐 + 𝑎𝜔 =  𝑟𝜑̇𝑟,    for C = P and C ≠ P,                                          (1.10) 

                                        𝜐 − 𝑎𝜔 =  𝑟𝜑̇𝑙,    for C = P and C ≠ P,                                          (1.11) 

since  

                                                   𝜐 =  𝑥̇ cos(𝜃) + 𝑦̇ sin(𝜃),                                                   (1.12) 

                                                                 𝜔 = 𝜃̇.                                                                  (1.13) 
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By utilizing Equations (1.10) and (1.11), it is possible to establish a correlation between the 

angular velocities of the right and left wheels (𝜑𝑟 , 𝜑𝑙) of the DDWMR, and the angular and linear 

velocities of the mass center of the DDWMR (𝜔, 𝜐). This correlation yields the following relationship: 

                                                [
𝜑̇𝑟

𝜑̇𝑙
] = 𝛀 [

𝜐
𝜔

] = [

1

𝑟

𝑎

𝑟
1

𝑟

−𝑎

𝑟

] [
𝜐
𝜔

],                                                (1.14) 

and vice versa: 

                                              [
𝜐
𝜔

] = 𝛀−1 [
𝜑̇𝑟

𝜑̇𝑙
] = [

2

𝑟

𝑎2

𝑟

𝑏 −𝑏
] [

𝜑̇𝑟

𝜑̇𝑙
],                                           (1.15) 

where 𝑏 =
𝑟

2𝑎
 . 

Kinematic constraints are prevalent in a wide range of applications. Equations (1.6)–(1.9) 

represent linear relationships involving the generalized coordinate vector. These relationships can be 

described in matrix format as: 

                                                                𝑨(𝑸)𝑸̇ = 0.                                                            (1.16) 

The state vector is denoted by a set of five generalized coordinates, 

                                               𝑸 = [𝜻𝑇𝝋𝑇]𝑇 = [𝑥 𝑦 𝜃 𝜑𝑟 𝜑𝑙]
𝑇,                                              (1.17) 

the three constraints are able to be expressed in the format of Equation (1.16), i.e., 

                         𝑨(𝑸)𝑸̇ = [

−sin (𝜃)   cos (𝜃)   0 0 0
−cos (𝜃) −sin (𝜃) −𝑎 𝑟 0
−cos (𝜃) −sin (𝜃)    𝑎 0 𝑟

]

[
 
 
 
 
𝑥
𝑦̇

𝜃̇
𝜑̇𝑟

𝜑̇𝑙

̇

]
 
 
 
 

,      for C = P,             (1.18) 

                         𝑨(𝑸)𝑸̇ = [

−sin (𝜃)   cos (𝜃)   −𝑑 0 0
−cos (𝜃) −sin (𝜃)   −𝑎 𝑟 0
−cos (𝜃) −sin (𝜃)      𝑎 0 𝑟

]

[
 
 
 
 
𝑥
𝑦̇

𝜃̇
𝜑̇𝑟

𝜑̇𝑙

̇

]
 
 
 
 

,     for C ≠ P,                (1.19) 

The referential of DDWMR velocity is determined by the angular velocity of the left and right 

wheels (𝜑̇𝑙 and 𝜑̇𝑟), respectively, 

                                                                 𝒗 = [
𝜑̇𝑙

𝜑̇𝑟
].                                                               (1.20) 
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By assuming neglect of the inertia and mass of the motors and wheels, it may be postulated that 

the DDWMR adheres to the principles of pure rolling and non-slipping conditions [83]. Therefore, the 

matrix 𝑨(𝑸) that encompasses the nonholonomic constraints is simplified to: 

                                          𝑨(𝑸) = [− sin(𝜃) cos(𝜃)  0],      for C = P,                                (1.21) 

                                       𝑨(𝑸) = [− sin(𝜃) cos(𝜃) − 𝑑],      for C ≠ P,                               (1.22) 

in such a way that the displacements are limited to the direction of the axis of symmetry of the actuated 

wheels and 

                                                            𝑸 = 𝜻 = [𝑥 𝑦 𝜃]𝑇.                                                      (1.23) 

Furthermore, it should be noted how the referential velocity of the DDWMR is determined by its 

linear velocity (𝜐) and angular velocity (𝜔), i.e., 

                                                                𝒗 = [
𝜐
𝜔

].                                                                 (1.24) 

It is crucial to highlight that the system's configuration space, denoted as n, consists of the 

generalized coordinate vector 𝑸 and the number of constraints represented by p. Consequently, the 

dimension of the velocity vector is m = n - p, where in this particular case, m = 2, indicating the system's 

degrees of freedom. 

The objective is to eliminate the limitations imposed by the constraints [79] on the Jacobian 

matrix 𝑺(𝑸). This matrix, consisting of a collection of linearly independent and smooth vector fields, is 

of complete rank (n - p) and is dispersed inside the null space of 𝑨(𝑸), i.e., 

                                                              𝑨(𝑸)𝑺(𝑸) = 0.                                                        (1.25) 

Based on Equations (1.16) and (1.25), it is feasible to determine an auxiliary velocity vector, 

denoted as 𝒗 ∈ ℜ𝑝×1, which is dependent on time. This vector satisfies the condition for all values of t: 

                                                                   𝑸̇ = 𝑺(𝑸)𝒗 .                                                        (1.26) 

The configuration kinematic model, denoted as matrix 𝑺(𝑸), is provided as follows: 

▪ From Equations (1.18) and (1.19): 

                                          𝑺(𝑸) =

[
 
 
 
 
𝑏 𝑎 cos(𝜃)
𝑏 𝑎 sin(𝜃)

𝑏
1
0

𝑏 𝑎 cos(𝜃)
𝑏 𝑎 sin(𝜃)

−𝑏
0
1 ]

 
 
 
 

,         for C = P,                          (1.27) 
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                  𝑺(𝑸) =

[
 
 
 
 
𝑏(𝑎 cos(𝜃) − 𝑑 sin(𝜃)

𝑏(𝑎 sin(𝜃) + 𝑑 cos(𝜃)
𝑏
1
0

𝑏(𝑎 cos(𝜃) + 𝑑 sin(𝜃)

𝑏(𝑎 sin(𝜃) − 𝑑 cos(𝜃)
−𝑏
0
1 ]

 
 
 
 

 ,      for C ≠ P,         (1.28) 

where 𝑏 =
𝑟

2𝑎
 . 

In a similar vein, the posture kinematic model, represented by the matrix 𝑺(𝑸), leads to: 

▪ From equations. (1.21) and (1.22): 

                                          𝑺(𝑸) = [
cos(𝜃) 0

sin(𝜃) 0
0 1

],                    for C = P,                                         (1.29) 

                                   𝑺(𝑸) = [
cos(𝜃) −𝑑 sin(𝜃)
sin(𝜃) d cos(𝜃)

0 1

],          for C ≠ P,                                  (1.30) 

An alternative approach to expressing the posture kinematic model Equations (1.29) and (1.30) 

involves leveraging the velocity of the DDWMR in terms of 𝑥̇, 𝑦̇, and 𝜃̇ as depicted in Figure (1.19), 

i.e., 

                                                    {

𝑥̇ = 𝜐 cos(𝜃)
𝑦̇ = 𝜐 sin(𝜃)

𝜃̇ = 𝜔

 ,                             for C = P,                                       (1.31) 

                                        {

𝑥̇ = 𝜐 cos(𝜃) − 𝜔𝑑 sin(𝜃)

𝑦̇ = 𝜐 sin(𝜃) + 𝜔𝑑 cos(𝜃)

𝜃̇ = 𝜔

 ,            for C ≠ P.                            (1.32) 

It is imperative to underscore the necessity of conducting an investigation into the correlation 

between the wheels and the DDWMR in order to ascertain the matrices 𝑨(𝑸) and 𝑺(𝑸). The method for 

deducing these matrices has been analyzed in [67-69]. 
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Figure 1.21. The depiction of the DDWMR velocities of Figure 1.20. [77] 

 

1.9. Motion Constraints 

 

All robotic systems are bound by different constraints on their motion, but not each of these is 

capable of being articulated as constraints on their configuration. An illustrative instance of this kind of 

system involves an automobile. At lower velocities, both automobile rear wheels exhibit unrestricted 

rotational movement in the direction they are oriented while impeding any lateral sliding motion in the 

direction perpendicular to them. This constraint indicates that the automobile is unable to move laterally. 

It has been empirically observed that the velocity constraint lacks any constraints on the configurations 

of the automobile. In other words, the automobile has the ability to attain any location or orientation 

inside the plane that does not contain obstacles. Indeed, the hindered lateral displacement can be 

estimated through the execution of parallel parking maneuvers. 

The no-slip constraint can be classified as a nonholonomic constraint, which specifically pertains 

to the velocity of the system. Besides the condition of rolling without slipping, the principle of 

conservation of angular momentum is frequently encountered as a prevalent origin of nonholonomic 

constraints with mechanical systems. 

Suppose we shift our perspective from perceiving the automobile as a system that adheres to a 

motion constraint. Instead, we acknowledge that merely two control inputs (the speed and steering angle) 

are available to govern the automobile's three degrees of freedom. In that case, it is plausible to 

categorize the system as underactuated. Underactuated systems are characterized by a fewer number of 

controls than the present degrees of freedom [84]. 
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Kinematic constraints are able to be classified into two categories: holonomic constraints and 

nonholonomic constraints. The mobility of a robot is restricted in some directions due to nonholonomic 

constraints [85]. The concept of holonomic constraints is closely linked to the dimensionality associated 

with the system's state description, specifically in generalized coordinates. 

Nonholonomic constraints manifest in two principal fashions [15]: 

1. In the context of rolling motion without slipping constraints. An instance that illustrates 

the interdependence of translation and rotation occurs when a wheel undergoes rolling 

motion without sliding. Some examples that can be provided are a WMR, a unicycle, a 

vehicle, and a tractor-trailer. 

2. In systems characterized by the conservation of angular momentum. Some examples of 

robotic applications include the utilization of satellites and space robots, as well as the 

development of robots for gymnastics, diving, and running. 

The expression of holonomic constraints is achieved by the utilization of equations that 

incorporate generalized coordinates. The equations mentioned above can be employed to exclude a 

subset of generalized coordinates, reducing the number of necessary generalized coordinates for 

describing a given system. Nonholonomic constraints have no effect on the reduction of the 

dimensionality of the generalized coordinates; instead, they only affect the dimensionality of the 

generalized velocity space. The inclusion of nonholonomic constraints has a significant impact on the 

problem of path planning [60], [86]. 

The problem of motion planning for a nonholonomic system can be formulated as follows: given 

a representation of the environment containing obstacles in the workspace, a robot that is constrained by 

nonholonomic constraints, the initial position, and the final position, the objective is to determine a 

feasible path that is free from collisions between the initial and final positions. The resolution of this 

issue necessitates the consideration of both the constraints imposed by obstacles inside the configuration 

space as well as the nonholonomic constraints. The methods that have been created to tackle this issue 

effectively integrate techniques from both motion planning as well as control theory. Constraints arising 

from obstacles are explicitly represented in the configuration space, which is a manifold. However, 

nonholonomic constraints are described within the tangent space [87-91]. 

 

1.9.1. Holonomic Constraints 

 

The holonomic constraints are contingent upon the utilization of generalized coordinates. In a 

system characterized by n generalized coordinates 𝑸 = [𝑄1, … , 𝑄𝑛]𝑇, a holonomic constraint can be 

mathematically represented as follows: 
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                                                 𝑓(𝑸) = 𝑓(𝑄1, … , 𝑄𝑛) = 0,                                                   (1.33) 

where 𝑓 and its associated derivatives are assumed to be continuous functions, this constraint establishes 

a subspace within the set of all the possible configurations in the generalized coordinates, wherein 

Equation (1.33) holds valid. Constraint (1.33) is capable of being employed to eliminate specific 

generalized coordinates, as it can be represented in terms of n − 1 other coordinates. 

Typically, there exists a possibility of having m holonomic constraints, where (m < n). If the 

mentioned constraints are linearly independent, they establish a subspace of dimension (n − m), which 

corresponds to the genuine configuration space of the system with (n − m) degrees of freedom. 

 

1.9.2. Nonholonomic Constraints 

 

Nonholonomic constraints impose limitations on the possible system velocities or the possible 

motion directions. The formulation of the nonholonomic constraint is capable of being expressed by 

                                             𝑓(𝑸, 𝑸̇) = 𝑓(𝑄1, … , 𝑄𝑛,  𝑄̇1, … , 𝑄̇𝑛) = 0,                                (1.34) 

where 𝑓 represents a smooth function possessing continuous derivatives, whereas 𝑸̇ is the vector 

containing the velocities of the system within the generalized coordinates. If the system lacks constraints 

(1.34), it is unconstrained in its range of motion directions. 

A kinematic constraint (1.34) becomes holonomic in the academic context if it satisfies the 

condition of integrability. Integrability implies that the velocities  𝑄̇1, … , 𝑄̇𝑛 are able to be omitted from 

Equation (1.34), resulting in the constraint being represented in the format of Equation (1.33). If the 

constraint denoted by equation (1.34) lacks integrability, it can be classified as nonholonomic. 

If there are m nonholonomic constraints in the form of Equation (1.34) that are linearly 

independent, then the dimension of the velocity space becomes (n − m). The system's velocities are 

constrained by nonholonomic constraints. An instance of a differential drive vehicle, such as a 

wheelchair, has the capability to travel in the direction determined by the current orientation of its 

wheels, but lacks the ability to move laterally. 

Considering linear constraints in the equation 𝑸̇ = [𝑄̇1, … , 𝑄̇𝑛]𝑇, equation (1.34) is able to be 

expressed as 

                                  𝑓(𝑸, 𝑸̇) = 𝒂𝑇(𝑸)𝑸̇ = [𝑎1(𝑸) …  𝑎𝑛(𝑸)] [
𝑄̇1

⋮
𝑄̇𝑛

] = 0,                         (1.35) 
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where 𝒂𝑇(𝑸) represents the parameter vector of the constraint. To obtain a constraint matrix for a system 

with m nonholonomic constraints, the following matrix is employed: 

                                                         𝑨(𝑸) = [
𝒂1

𝑇(𝑸)
⋮

𝒂𝑚
𝑇 (𝑸)

],                                                           (1.36) 

and all of nonholonomic constraints are presented in matrix representation 

                                                               𝑨(𝑸)𝑸̇ = 𝟎.                                                              (1.37) 

At every given time interval, the matrix denoting the set of attainable motion directions is 

represented as 𝑺(𝑸) = [𝒔1(𝑸),… , 𝒔𝑛−𝑚(𝑸)]. The number of constraints determines the number of 

attainable directions, which is equal to (n-m). The kinematic model is defined by this matrix in the 

following manner: 

                                                          𝑸̇(𝑡) = 𝑺(𝑸)𝒗(𝑡),                                                        (1.38)        

where 𝒗(𝑡) represents the control vector. The resultant matrix obtained by multiplying the constraint 

matrix 𝑨 and the kinematic matrix 𝑺 is a matrix consisting entirely of zeros 

                                                                   𝑨𝑺 = 𝟎 .                                                               (1.39) 

The idea of holonomic motion is defined by the relative values of a robot's degree of freedom 

(𝐷𝑂𝐹) and the mobility degree (𝐺𝑚). A robot exhibits holonomic motion when the mobility degree is 

equal to degrees of freedom (𝐺𝑚 = 𝐷𝑂𝐹). Conversely, a robot demonstrates nonholonomic motion 

when the mobility degree is less than the degrees of freedom (𝐺𝑚 < 𝐷𝑂𝐹). A holonomic robot, such as 

the omni robot, possesses the capability to exert direct control over all of its degrees of freedom (𝐷𝑂𝐹) 

without necessitating complex maneuvers. Figure 1.23 illustrates the relative ease with which the 

omnidirectional robot equipped with three Swedish wheels, as depicted in Figure 1.22, is able to execute 

parallel parking. 

 

 

 

 

 

Figure 1.22. An omni-directional robot equipped with three Swedish wheels [92] 
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An automobile and a robot equipped with differential drive belong to non-holonomic systems 

due to their limited mobility degree (𝐺𝑚). The automobile has a mobility degree of 1, while the robot 

has a mobility degree of 2. This is lower than their degrees of freedom (𝐷𝑂𝐹), which is 3 for both 

systems. Due to this restricted mobility degree, these vehicles necessitate intricate steering maneuvers, 

such as those employed during parallel parking. A notable disparity exists between both of these 

vehicles. 

 

 

 

 

 

 

Figure 1.23. Parallel parking maneuvers by an omni-directional robot [92] 

 

The DDWMR requires three distinct movements, which are characterized by simplicity: left 

rotation, backward motion, and right rotation, as depicted in Figure 1.24a. The automobile also 

necessitates three distinct motions, albeit executing them accurately proves exceedingly challenging (see 

Figure 1.24b). One must determine the optimal initiation point of the maneuver, the degree of curvature 

for each turn, and the distance to be covered between successive turns. The greater mobility degree (𝐺𝑚) 

of the DDWMR provides a notable benefit in the given scenario [92]. 

 

 

 

              

 

Figure 1.24. (a) Non-holonomic DDWMR parallel parking. (b) Non-holonomic automobile parallel 

parking [92] 
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1.10. Navigation of WMR 

 

The process of robot navigation involves deliberate design strategies aimed at reaching a 

specified destination while simultaneously circumventing any encountered obstacles. The principal 

objective in the field of navigation involves either attaining a pre-established objective or following a 

predefined path while avoiding any instances of collision. A mobile robot possesses the capability to 

move intelligently throughout a wide range of environments, including static, dynamic, uncluttered, and 

unpredictable settings, among others [93]. Navigation is a fundamental methodology employed to 

facilitate the movement of a robotic entity across diverse environments, enabling it to traverse from an 

initial position to a desired destination [94]. The dependability of maps in navigational approaches is 

often called into question as a result of the dynamic and unexpected nature of applications in the real 

world [95]. The process depicted in Figure 1.25 [96-100] comprises four fundamental components: (i) 

perception, the system of perception refers to the ability of a robot to identify objects in its surrounding 

environment in real-time. This information is then transmitted to the decision-making system, which 

enables the robot to effectively reason concerning future actions necessary to accomplish the intended 

task [101]; (ii) localization, on the other hand, pertains to the robot's capability to accurately determine 

its precise position within a given map in the real world [102]; (iii) cognition and path planning, involve 

the process of determining a path that avoids collisions and optimizes specific objectives, such as 

minimizing the distance navigated or energy consumption, from an initial location to a desired goal 

location [103-104]; (iv) motion control, refers to the robot's ability to adjust its motor output in order to 

reach the intended route [105]. Furthermore, the successful navigation of a mobile robot necessitates the 

acquisition of supplementary skills, encompassing control aptitude, planning of trajectory, obstacle 

avoidance, and the establishment of secure distances to the intended destination. These competencies 

are imperative for mobile robots to execute optimal navigation performance. In order to ensure the 

successful completion of all tasks, it is essential for every navigation system to take into account those 

mentioned above basic design [106-107]. The navigation problem, as a whole, has been constructed 

based on the suitable answer to three fundamental questions. In which location am I currently situated? 

To what destination am I headed? Furthermore, what is the most efficient approach for reaching that 

destination? The fundamental philosophy of all research within this discipline is to provide answers to 

these three fundamental questions [108-109]. 
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Figure 1.25. Mobile robot systems reference navigation scheme [42] 

 

Since the primary focus of this study pertains to motion control, encompassing its various 

problem kinds and the most significant previous research in the field, all of these will be addressed 

sequentially. 

 

1.10.1. Motion Control 

 

In kinematic-based formulations of the motion control problem, it is assumed that the control 

inputs directly determine the generalized velocities of the wheeled mobile robot. There are two primary 

reasons for adopting this simplified assumption. Initially, given appropriate assumptions, it is feasible 

to nullify the dynamic influences by employing state feedback, so effectively shifting the control 

problem to the second-order kinematic model and then to the first-order kinematic model. Furthermore, 

in most cases of mobile robots, direct command over wheel torques is not feasible due to the presence 

of low-level loops of control that are embedded within either the hardware or the software construction. 

The loops in question are designed to receive a reference value through the angular speed of the wheel 

as input. This reference value is then replicated as precisely as possible via the use of typical regulation 

actions, such as PID controllers. In this scenario, the accessible inputs for high-level controls consist 

exclusively of the reference velocities [38]. Furthermore, it is worth noting that in most mobile robot 
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platforms, the internal torque controller is pre-installed, allowing users to focus on commanding the 

appropriate velocities of the system by considering its kinematics [60]. 

There exists a variety of tools that can be utilized for controlling nonholonomic systems. 

Nevertheless, up until now, there has been no definitive identification of a control method or collection 

of tools that exhibits superior performance compared to others. This can be attributed mostly to the 

following concrete proofs. A well-designed control law should possess two fundamental characteristics. 

Firstly, the system should be guided from its starting state to the destination state in a simple manner. 

Secondly, it should exhibit robustness against discrepancies between the model and the actual system, 

as well as measurements of noise and approximate knowledge regarding initial conditions. Open loop 

techniques have the capability to provide the initial item. However, their robustness remains uncertain, 

though they can be effectively utilized in the development of robust iterative designs. 

Conversely, closed-loop techniques possess the likelihood for enhanced robustness, yet the 

inherent dynamics of the closed-loop system may lack naturalness. The closed-loop system may exhibit 

oscillatory behavior, which is not essential or demanded for reaching the required final point. It is worth 

noting that closed-loop techniques have the potential to be more robust compared to open-loop ones 

[110]. 

The motion of a mobile robot can be classified into one of the following scenarios: 

 

1.10.1.1. Posture Control (Posture Stabilization) 

 

The first potential approach is posture control, which refers to the ability to control both the 

position as well as the orientation of the robot in order to achieve the intended position and orientation. 

The term "posture" encompasses both the position as well as the orientation of the robot. In the context 

of the DDWMR, it is possible to divide the task into two distinct subtasks. The first subtask involves 

guiding the robot towards a destination position (𝑥𝑑 , 𝑦𝑑) within the navigation plane, beginning with an 

initial position (𝑥𝑖 , 𝑦𝑖) within the same plane. The second subtask entails rotating the robot around its 

vertical axis (𝜃𝑑)  in order to correct its orientation subsequent to reaching the destination position. 

It should be noted that this capability is only applicable to the particular robot under 

consideration, as it possesses the ability to rotate without altering its position. Another significant 

characteristic in this scenario is that the trajectory used by the robot to reach the destination position is 

inconsequential. The problem merely specifies the desired destination point as well as the intended 

orientation at this point for the robot without specifying any particular trajectory that should be taken 
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[111]. It is not possible for the nonholonomic mobile robot to get a point stabilization using a feedback 

law that is time-invariant and continuous in the variables of state. There are feedback laws that are time-

varying and discontinuous, which have been shown to achieve the desired task [112-113]. Due to the 

provision of solely the initial and final postures, with the trajectory between these locations being 

arbitrary, novel opportunities arise, including the ability to select an "optimal" trajectory. It is imperative 

to emphasize the selection of a feasible trajectory that incorporates considerations of environmental, 

dynamic, and kinematic constraints. Typically, this results in an extensive array of possible trajectories, 

from which a specific trajectory is selected based on further criteria such as distance, curvature, time 

frame, energy consumption, and similar factors. The trajectory can be explicitly set and adjusted during 

movement, or it can be implicitly determined through the implementation of a control algorithm to get 

the desired position [60]. Figure 1.26 illustrates the specific task under consideration, wherein the 

DDWMR effectively tracks possible trajectories. To clarify, stabilizing a system can be understood as 

the process of attaining a particular point of equilibrium for the system's state [77]. 

 

 

 

 

 

Figure 1.26. Example of posture control task [77] 

 

1.10.1.2. Trajectory-Tracking Control 

 

The second potential approach is trajectory-tracking control, wherein the robot is tasked with 

precisely tracking a specific trajectory. A trajectory refers to a vanishing point, which is a point located 

in the plane for ground robots or in 3D space for aerial robots. This point's position changes throughout 

time. This implies that the intended location is presently represented by the coordinates (𝑥𝑑(𝑡), 𝑦𝑑(𝑡)) 

or (𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 𝜃𝑑(𝑡)), which undergo motion at velocities (𝑥̇𝑑(𝑡), 𝑦̇
𝑑
(𝑡)) or (𝑥̇𝑑(𝑡), 𝑦̇𝑑(𝑡), 𝜃̇𝑑(𝑡)). In 

this scenario, the robot should increase its velocities beyond the ones of the trajectory in order to surpass 

them. Subsequently, the robot should decrease its velocity, so it matches the trajectory's velocity, thereby 

maintaining its position above it. Figure 1.27 depicts a trajectory tracking challenge in which a 

DDWMR, denoted as R, endeavors to reach a target position, denoted as M while adhering to specific 

timing constraints relative to a reference curve. In robotics, trajectory tracking is a commonly employed 
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technique to provide collision avoidance within a controlled environment. In such scenarios, DDWMRs 

are required to adhere to specific postures at certain time instances [77]. 

 

 

 

 

 

 

Figure 1.27. An illustration of a trajectory tracking control task [77] 

 

It is worth noting that there are two variations of the tracking of trajectory problem that can be 

taken into consideration. The primary aim in the first scenario is to control the position of the robot 

solely; however, in the second scenario, the target extends to encompass simultaneously the orientation 

and position of the robot [114-115]. It should be noted that achieving flawless tracking is only possible 

when the trajectory used as a reference is feasible for a real robot [112], [116]. Additionally, it is essential 

to recognize that a trajectory that is feasible for a DDWMR may not necessarily be feasible for either a 

car-like robot. In the context of nonholonomic robots such as the DDWMR, the feasibility of a reference 

trajectory is contingent upon its generation by a reference robot that shares identical kinematic 

constraints with the real robot. For example, the majority of trajectories generated using an 

omnidirectional robot cannot be feasible for any nonholonomic mobile robot. Nevertheless, it should be 

noted that the lack of feasibility does not always mean that the reference trajectory is unable to be tracked 

to some extent, albeit with minor tracking errors that are not zero [116]. 

 

1.10.1.3. Path-Following Control 

  

The third possible approach involves following a specified path, akin to the actions of an 

individual operating a car on a designated road. In order to remain on the road, it is imperative for the 

driver to maintain a target velocity that is consistently tangent relative to the path. Alternatively, if the 

velocity vector is not tangent to the vehicle's path, it will deviate from the road. To begin, the act of 

following a path entails initially identifying the point along the supplied path that is in closest proximity 

to the robot and subsequently directing the robot to attain the point in question. Secondly, the subsequent 
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procedure entails ensuring that the robot evolves a velocity consistently tangent to that path, irrespective 

of its magnitude. This implies that the value of the velocity is freely determined along the path. This 

implies that individuals have the freedom to choose any velocity, even zero, resulting in the vehicle 

coming to a temporary halt along its path, similar to when a car pauses at a red traffic light [111]. Hence, 

the primary goal is to control the robot's lateral displacement concerning the designated path by 

manipulating the robot's orientation or steering mechanism [114]. The path-following task is depicted in 

Figure 1.28. The objective of the task is for the DDWMR, denoted as R, to follow the reference curve 

and reach the point M, closest to the robot's current position on that curve, without any specific time 

constraints [77]. 

 

 

 

 

 

 

Figure 1.28. An illustration of a path-following control task [77] 

 

1.10.1.4. Fault-Tolerant [77] 

 

Fault tolerance can be conceptualized as the capacity of a system to successfully do a designated 

task, notwithstanding the existence of either software or hardware imperfections where the control 

system is reconfigured following the specific defect that has been isolated. 

The primary distinction observed in the initial three instances is that posture control solely entails 

the definition of a desired destination without any specification of path or velocity. In contrast, trajectory 

tracking involves the determination of the vehicle's velocity, considering both its magnitude and 

direction, based on the trajectory currently being tracked. On the other hand, in path-following, the 

vehicle's velocity is determined by the designer and is constrained to be tangent to the followed path 

continuously [111]. 

From a control perspective, the unique characteristics of nonholonomic kinematics result in path 

following and trajectory tracking being comparatively simpler to control than posture stabilization. This 

is due to the availability of continuous time-invariant feedback laws that can stabilize the intended 

motions. Indeed, it is widely acknowledged that the attainment of feedback stabilization at a specific 
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posture is unattainable through the implementation of smooth time-invariant control strategies. This 

statement suggests that the issue at hand is genuinely nonlinear in nature, rendering linear control 

methods ineffectual, even locally. As a result, novel design approaches are required [111-112]. In 

addition, when considering various types of robot control methods, such as trajectory-tracking and path-

following, posture stabilization is generally not regarded as a favorable solution for real-world 

environments. This is primarily due to the lack of predictability regarding the robot's movement 

trajectory and the potential occurrence of unforeseen collisions. It is evident that compelling the robot 

to navigate along or in proximity to a predetermined trajectory significantly diminishes the likelihood of 

collisions [38], [77]. 

These three cases are capable of being shown using commonplace everyday scenarios. When an 

individual boards a bus that reaches their workplace and subsequently falls asleep throughout the 

journey, they are left unaware of both the duration of the commute and the specific route taken by the 

bus. It is worth noting that the intended goal, namely the arrival at the workplace, has been successfully 

achieved, and this represents posture control. In the context of trajectory tracking, a pertinent illustration 

may be found in the role of a bus driver who possesses precise knowledge of the specific moments at 

which the bus is expected to reach each designated stop. This implies that the driver must possess 

knowledge of the timetable in order to effectively execute the responsibility of arriving at every bus stop 

punctually. To illustrate the concept of path-following, let us create a scenario where an individual 

operates a car on a roadway. Occasionally, individuals have the ability to increase their speed in order 

to travel at a faster speed. Still, at other times, it is necessary for them to decelerate in order to comply 

with prescribed speed limits on the road or to come to a complete halt when encountering a red traffic 

signal. The individual follows the designated path, specifically the roadway, during a variable timeframe, 

which is of negligible significance as temporal constraints are absent in this particular scenario. 

 

1.11. Control Techniques for Wheeled Mobile Robots 

 

In recent years, the rapid progress in mobile robotics and advancements in information 

processing and automation technologies have necessitated the development of control systems to 

enhance the autonomy of mobile robots across various work environments. The controlling of 

trajectories (trajectory-tracking) and the control of position and orientation (posture stabilization) have 

been prominent topics in the advancements within this field [117]. These topics have been approached 

through various traditional control methodologies, including nonlinear model predictive control, 

continuous time-varying adaptive controllers, back-stepping control with asymptotic stability, PID 

controllers, and others. In traditional control methodologies, the design of a controller often involves 
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utilizing the system's model and acquiring its parameters. Various current strategies can be employed to 

modify these parameters. The result of this process is an algorithm, commonly referred to as a control 

law, which obtains the inputs and computes the optimal action for effectively executing the control [118]. 

In contrast, Machine Learning (ML) techniques typically derive a law of control from data, 

wherein an agent autonomously adjusts its internal parameters to handle a given problem effectively. In 

recent times, there has been a shift towards the adoption of these novel paradigms in place of 

conventional ones. This topic can be approached using machine learning techniques, which offer 

alternative solutions and yield intriguing results. For instance, symbolic regression methods, neural 

networks, and fuzzy logic are among the several approaches that can be applied [118]. 

In this study, the strategies for posture and trajectory-tracking control have been classified into 

three categories based on previous research: artificial intelligence (machine learning) techniques, 

traditional techniques, and hybrid techniques. 

 

1.11.1. Artificial Intelligence (Machine Learning) Techniques 

 

1.11.1.1. Neural Network (NN) 

 

A neural network comprises several individual units known as neurons, which form connections 

with one another. Every unique neuron possesses several inputs, a node of processing, and a solitary 

output. Every connection between two neurons is accompanied by a weight. The processing within a 

neural network occurs concurrently for all neurons [48]. The NN technique is well-suited for processes 

and systems that lack concise and precise mathematical models, such as mobile robot planning, 

identification, and control. The three main characteristics of neural networks are as follows: (i) the ability 

to utilize extensive sensory information effectively, (ii) the collective processing aptitude, and (iii) the 

capacity to learn and adapt [44], [119]. In [120-121], the authors' primary focus was the investigation of 

neural networks' role in controlling the trajectory tracking and posture stabilization of wheeled mobile 

robots. However, the adaptive control method for achieving point stabilization, as described in [122], is 

based on the utilization of backpropagation neural networks. The concept of identifying the two-wheeled 

robot was introduced. The study [123] introduced a novel control method based on adaptive neural 

networks. This control scheme was designed to address an omnidirectional mobile robot's trajectory 

tracking control problem, specifically in the face of uncertainty and external disturbance. In [124], a 

suggested neural network controller was presented for the trajectory-tracking of a mecanum-wheel 

mobile robot (MWMR). The controller featured a simple design and was based on a reference controller. 
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1.11.1.2. Fuzzy Logic (FL) 

 

Fuzzy logic is a soft computing methodology that primarily addresses the challenge of 

uncertainty. It aims to capture and describe forms of knowledge that are unable to be adequately 

expressed using traditional Boolean algebra. The fuzzy logic concept was initially introduced by Lotfi 

A. Zadeh in the early 1990s [125-126]. The significance of fuzzy controllers is underscored by their 

ability to offer simplicity in control, inexpensiveness, and the potential for design even in the absence of 

precise mathematical models of the process. Due to such scenarios, fuzzy logic has emerged as a 

prominent and captivating topic within the field of robotics and computer science, finding extensive 

utilization across multiple applications, particularly in the realm of navigation control for autonomous 

mobile robots. The authors of [127] developed and executed a kinematic model for a tricycle robot, 

employing a trajectory tracking control system based on a fuzzy logic algorithm. The study [128] 

presented a novel methodology for tracking and position control in omnidirectional mobile robots 

(OMRs). This strategy incorporates type-2 fuzzy systems in order to efficiently control the responses 

and actions of these robots during intelligent navigation. 

 

1.11.1.3. Reinforcement Learning (RL) 

 

Reinforcement Learning (RL) pertains to a subfield within the domain of Machine Learning 

(ML), wherein an agent engages in interactions with its surroundings in order to obtain rewards in 

response to its actions. Based on this interaction, the agent is required to acquire the ability to effectively 

do a particular task by striking a harmonious equilibrium between the novel information acquired from 

the surroundings and its existing knowledge base [129]. In the context of addressing the motion control 

issue on non-holonomic restricted mobile robots, the study [130] presented a proposed kinematic control 

law of point stabilization for mobile robots. This control law is grounded in the principles of deep 

reinforcement learning. The articles [131], [118] have provided a comprehensive account of the process 

involved in designing, developing, and implementing an algorithm for controlling the position of a 

wheeled mobile robot. This algorithm utilizes Reinforcement Learning techniques and operates within 

a sophisticated 3D simulation environment. In the study [132], the application of reinforcement learning 

(RL) algorithms for the purpose of position control of a simulated Kephera IV mobile robot within a 

virtual environment was suggested. The study [133] presented a novel approach utilizing deep 

reinforcement learning to address the control challenges associated with non-holonomic-restricted 

mobile robots. The novel approach was accomplished by a proximal policy optimization learning 

algorithm to achieve end-to-end control, precisely posture control, of the mobile robot. The topic of 
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achieving robust trajectory tracking control for a three-mecanum wheeled mobile robot (MWMR) in the 

presence of external disturbance was investigated in [134] through the utilization of a model-based 

reinforcement learning (RL) algorithm. In [135], the authors have introduced a deep reinforcement 

learning algorithm known as the Deep Deterministic Policy Gradient algorithm for the purpose of 

controlling the posture of a DDWMR. 

 

1.11.1.4. Symbolic Regression (SR) 

 

Symbolic regression, a machine learning technique, enables the exploration of the effective 

structure and parameters of the desired function [136]. Symbolic regression techniques have shown 

significant advancements in the last ten years. Moreover, the broader scientific community has recently 

acknowledged the significance of interpretable machine learning. Symbolic regression approaches are 

predominantly employed in the context of supervised machine learning, specifically for the purpose of 

approximating given data [137–140]. In addition, symbolic regression methods can be employed as a 

form of unsupervised learning in situations where the machine learning issue for control lacks a training 

set. In such cases, finding a control function is guided by the objective of minimizing the quality criterion 

[141]. A novel numerical technique has been developed to address the optimal control issue while 

incorporating phase constraints in the realm of controlling wheeled mobile robots. This approach, 

referred to as synthesized optimal control, involves a two-step numerical technique. The problem 

combines two prominent tasks: the development of stabilizing control systems through symbolic 

regression (first step) and the optimization of control trajectories using optimal control theory, precisely 

the optimization step (second step), which utilizes evolutionary algorithms to tackle its objective [142]. 

A demonstration of the optimal control problem, specifically on the control of the equilibrium point's 

position, has been showcased in [143], focusing on a mobile robot equipped with mecanum wheels 

where the network operator method was used at the first step. The papers [144-146] have proposed a 

computational machine learning methodology for addressing the extended issue related to optimal 

control. This approach involves the utilization of a computationally synthesized optimal control 

technique, specifically targeting the controlling of the equilibrium point's position, in the context of 

DDWMR. Notably, the methodology accounts for perturbations in both models and initial conditions. 

The network operator method was used in [144-145], while the complete binary genetic programming 

method was used in [146] at the first step. The study [147] has examined the optimal control problem 

involving phase constraints for a collective of mobile robots. The problem is addressed by employing 

the synthesized optimal control approach, specifically in the context of control of the equilibrium point's 

position, where variational Cartesian genetic programming was used at the first step. The research 
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conducted in [148-150] has explored the application of machine learning via symbolic regression 

techniques to address the problem of trajectory tracking in optimal control. The proposed approach aims 

to enhance movement stability along the optimal trajectory, using the network operator method for all 

mentioned research. 

 

1.11.2. Traditional Techniques 

 

1.11.2.1. Proportional Integral Derivative (PID Controller) 

 

The PID controller is generally recognized as a commonly used controller for a variety of control 

system purposes. The simplicity of the controller design and implementation is attributed to the ease of 

adjusting the gain parameters. Nevertheless, the model encounters significant obstacles pertaining to its 

non-linear nature, imprecise parameters, and erroneous parameter values. Hence, the utilization of a PID 

controller imposes constraints on the system's implementation design and affects its overall performance 

[151]. In the study [152], the implementation of PID control was explored as a means to enhance the 

response of a DDWMR during posture control, specifically when it is required to reach a predetermined 

position. The odometry approach was utilized in this context. A proposed controller in [153], with a 

simple PID-like structure, has been introduced for the purpose of posture control in a nonholonomic 

DDWMR. This controller exhibits smoothness and time-variant characteristics. 

In the study [154], a PID controller was offered as a viable and efficient method to address the 

trajectory tracking issue of a DDWMR. In [155], a technique is shown for the development of a variable 

parameter PID controller for a DDWMR that is capable of tracking a NURBS trajectory with an intended 

velocity that varies over time. The design methodology for a PID controller containing time-varying 

parameters to obtain trajectory tracking control for a mecanum-wheeled robot has been provided in 

[156], wherein a little inaccuracy is observed. 

 

1.11.2.2. Backstepping Controller 

 

The utilization of backstepping control is a highly significant approach in the realm of stabilizing 

nonholonomic systems. The concept of backstepping involves employing a recursive approach to 

decompose a design problem pertaining to an overall system into a series of design problems pertaining 

to subsystems of lower order. The backstepping control law originates from the stability proof through 

the application of Lyapunov-like analysis, which ensures the asymptotic convergence of the posture 

error [157]. In the study [158], a generalized nontriangular normal form was introduced to aid in the 
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development of a recursive integral backstepping control strategy for a specific category of 

underactuated nonholonomic systems. Specifically, this control strategy was designed for wheeled 

mobile robots (WMRs) tasked with posture stabilization and tracking desired trajectories in obstacle-

free environments. The authors of [159] have introduced a novel approach for posture stabilization of a 

WMR employing backstepping control with the inclusion of output feedback. The authors of [160-162] 

introduced a trajectory-tracking controller for a wheeled mobile robot that utilizes the backstepping 

approach. In the study [163], a time-varying feedback trajectory-tracking control method was introduced 

for stabilizing the trajectory of a WMR using the backstepping strategy. 

 

1.11.2.3. Sliding Mode Controller (SMC) 

 

The sliding mode control (SMC) is a nonlinear control strategy that has been primarily devised 

for the purpose of controlling variable-structure systems. The proposed approach involves the utilization 

of a time-varying state-feedback discontinuous control law that rapidly switches between different 

continuous structures based on the current position of the state variables in the state space. The primary 

goal is to ensure that the dynamics of the controlled system precisely follow what is needed and 

predefined [164]. The study [165] focuses on the finite-time posture stabilization of a unicycle mobile 

robot, specifically when merely position information is accessible. This is achieved through the 

development of a discrete-time sliding mode controller (DSMC). The authors of [166] have presented a 

trajectory-tracking robust algorithm solution for the perturbed kinematic model of a unicycle mobile 

robot. This algorithm employs the first-order sliding mode control approach. The authors of [167] have 

presented a robust adaptive trajectory tracking controller, specifically a sliding mode controller, intended 

to control an electric wheeled mobile robot operating in a scenario of dynamic disturbances. The problem 

pertaining to trajectory tracking control for nonholonomic mobile robots in the presence of unknown 

disturbances has been investigated in the study [168] using the approach of sliding mode control. 

 

1.11.2.4.  Model Predictive Control (MPC) 

 

Model Predictive Control (MPC) has emerged as a technique utilized for the design and 

implementation of feedback control systems, which has demonstrated superior performance compared 

to other approaches in numerous scenarios. Furthermore, Model Predictive Control (MPC) offers a 

robust and versatile approach for the development of control systems applicable to a wide range of 

multiple-input, multiple-output (MIMO) systems [169]. In the study [170], the authors implemented two 

stabilizing nonlinear model predictive control (NMPC) designs, known as the final-state equality 
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constraint stabilizing design and the final-state inequality constraint stabilizing design, in order to 

accomplish control objectives for a two-wheeled mobile robot. These objectives included point 

stabilization and trajectory tracking. In the study [171], a novel approach to model predictive control 

was introduced for achieving point stabilization of wheeled mobile robots (WMRs) under nonholonomic 

constraints. The proposed method involved formulating a linearized error model by converting the 

position of the robot into a polar frame. The researchers in [172] conducted a study on Model Predictive 

Control strategies that do not incorporate stabilizing restrictions or costs to achieve set-point stabilization 

for holonomic mobile robots. The utilization of a nonlinear model predictive control technique was 

documented in [173]. This approach was applied to a DDWMR in order to address point-stabilization 

challenges while incorporating avoidance strategies for both static and dynamic impediments. In order 

to ensure system safety and achieve optimal performance within a limited prediction horizon, researchers 

in [174] have investigated the application of a control barrier function in a nonlinear model predictive 

control (NMPC) framework. This approach effectively decreases the computational burden associated 

with real-time NMPC implementation. In [175], a proposal was made for a model predictive control 

approach that is linear and time-varying. This technique is intended for the trajectory-tracking of a 

single-wheeled mobile robot, taking into account nonholonomic restrictions and control constraints. 

 

1.11.2.5.  Lyapunov-Based Controller 

 

The utilization of a Lyapunov-based controller constitutes a prevalent approach within control 

theory for the purpose of designing nonlinear controllers specifically tailored for mechanical systems 

[176]. In the study [177], researchers introduced two kinematic control techniques that are not smooth 

in nature. These strategies were developed specifically for the purpose of posture stabilization of a 

wheeled mobile robot using a differential drive system. The approach that was formulated relied on the 

principles of kinematic coordinate transformation and the Lyapunov-like stability technique. The 

research conducted by [178] has introduced a robust switching control approach based on passivity for 

stabilizing the posture of wheeled mobile robots (WMRs) in the presence of model uncertainty. This 

control law was derived using the Lyapunov approach and energetic passivity. 

Numerous traditional techniques exist, although the most significant and prevalent ones have 

been briefly discussed. 
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1.11.3. Hybrid Techniques 

 

These techniques encompass a combination of exclusively artificial intelligence techniques as a 

first type, as documented in [179], utilized neural networks and fuzzy logic to achieve trajectory tracking 

for an omnidirectional mobile robot. Similarly, the study [180] presented the application of 

reinforcement learning and fuzzy logic for trajectory tracking control of an autonomous mobile robot. 

As a second type of these techniques is solely traditional techniques, as in [181], the authors have 

proposed the utilization of backstepping and nonlinear PID controller to achieve trajectory tracking 

control for a two-wheeled mobile robot. The study [182] also introduced the application of backstepping 

and second-order sliding mode for trajectory tracking of a car-like robot. Furthermore, as a third type, 

there are approaches that integrate both artificial intelligence techniques and traditional techniques, as 

exemplified in [183], where fuzzy logic and PID controller were suggested to address the precise 

trajectory-tracking issue of two nonholonomic WMRs with a variety of disruptions and noises. 

Additionally, [184] proposed the use of a deep neural network and model predictive controller 

for trajectory-tracking of a car-like robot. In [185], a new intelligent controller (an adaptive neural 

network implemented within a nonlinear control framework based on Lyapunov) was proposed to 

enhance the accuracy of trajectory tracking in omnidirectional robots, particularly in the presence of 

unstructured uncertainty. The primary objective of the research study [186] was to ascertain the PID-

controller coefficients through the implementation of reinforcement learning method in order to regulate 

the angular velocity of the turning motion of the two wheels of DDWMR for the purpose of trajectory 

tracking. The study by [187] introduced the application of a deep reinforcement learning method to 

adjust the PID controller gain parameters combined with fuzzy control. This approach aimed to improve 

the trajectory tracking performance of a wheeled mobile robot (WMR). In the study [188], researchers 

devised an advanced control methodology for trajectory-tracking tasks of an omnidirectional mobile 

robot. This methodology involved the use of an intelligent Proportional Integral Derivative (PID) neural 

network, and the weights of the controller were tuned using the Particle Swarm Optimization (PSO) 

algorithm. The research [189] introduced a novel approach for achieving path-tracking control of an 

omnidirectional robot using model predictive control (MPC) integrated with an adaptive neural-fuzzy 

inference system. The study [190] introduced a fuzzy adaptive sliding mode controller designed for an 

electrically driven WMR. The controller's purpose was to achieve trajectory tracking in an environment 

of uncertainties and disruptions. In the study conducted by [191], a novel fuzzy adaptive PID control 

approach was introduced. This method was specifically designed for the purpose of achieving trajectory 

tracking control in an eight-mecanum-wheeled omnidirectional mobile robot. 
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CHAPTER 2. METHODOLOGY 

 

2.1. The Problems of Machine Learning 

 

Machine learning systems, in nearly all practical implementations, are designed for estimation of 

functional relationships between input features and desired outputs. Neural networks, for instance, serve 

as powerful tools for modeling such relationships, enabling the discovery of mappings between feature 

spaces, However, these relationships are always represented as computational black box. The resultant 

functional relationship can be utilized for purposes such as classification, modeling, prediction, and so 

forth. However, a precise mathematical formulation of this function cannot be inferred. 

An unknown function refers to a collection of computational approaches that convert a vector 𝒙 

in some input space 𝐗 into a vector 𝒚 in some output space 𝐘. It is characterized by the absence of a 

mathematical statement 𝒚 = 𝑓(𝒙)  to describe the relationship between the two vectors. The unknown 

function that relates the input vector 𝒙 to the output vector 𝒚 is denoted as 

                                                             𝒚 =  𝜓(𝒙).                                                                    (2.1) 

Machine learning refers to the computational execution of a procedure aimed at finding an 

unknown function using computer systems. In order to effectively utilize machine learning techniques 

to address a variety of problems, these problems must be conceptualized as tasks aimed at inferring an 

unknown function  

                                                            𝒚 = 𝜂(𝐱, 𝐪),                                                                  (2.2) 

where 𝐪 signifies the vector comprising the system's requisite parameters, 𝐪 ∈ ℝ𝑚𝑞 , and 𝜂 is a function 

that equals or approximated to 𝜓 based on a specific criterion. 

There exist two distinct methodologies for searching an unknown function: parametric and 

structural-parametric techniques. 

The parametric approach involves the investigator defining the functional template of the 

unknown function, including its structural assumptions, while designating certain parameters, for 

example, 𝜂 in Eq. (2.2) is specified. The machine learning task accordingly becomes one of parameter 

estimation—seeking the parameter vector 𝐪  that satisfies the chosen criterion. In the context of unknown 

function approximation, neural networks belong to the class of parametric approaches. Their 

computational transformations are governed by a predefined functional structure, with performance 

dictated by the optimization of numerous internal parameters. 

The structural-parametric methodology extends beyond conventional parametric modeling by 

treating not only the parameters but also the functional form itself of the unknown function. It seeks to 

determine the most suitable functional structure (𝜂) and concurrently identify the desired values of its 
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internal parameters (𝐪). Currently, the structural-parametric approach is being effectively employed 

through the utilization of symbolic regression techniques. These methodologies establish a foundational 

repertoire of elementary functions and associated structural encoding rules. Subsequently, employing a 

genetic algorithm, the system searches for the desired symbolic structure of the target function while 

concurrently tuning its numerical parameters within the predefined code space. Symbolic regression 

techniques exhibit variations in coding rules as well as the crossover and mutation processes employed 

by the genetic algorithm on the codes. 

Machine learning's end goal is to seek out an unknown function, and this search must be guided 

by some sort of evaluative criterion. Machine learning problems are often broadly classified as either 

unsupervised or supervised, contingent upon the nature of the evaluative criterion being used. It's 

essential to keep in mind that the many different kinds of machine learning that exist today can be placed 

in one of these classes depending on the evaluation criteria used to classify them. An evaluation criterion 

is given in some problems as follows: 

 

                                                   𝜚(𝜂(𝐱, 𝐪)): 𝐗 × ℝ𝑚𝑞 → ℝ1.                                                  (2.3) 

 

2.1.1. Unsupervised machine learning 

 

Unsupervised machine learning involves the find of a function (3.2) that satisfies a specified 

estimate (2.3), resulting in the fulfilment of the subsequent inequation  

‖𝑓∗ − 𝜁(𝜂(𝐱, 𝐪))‖ ≤ 𝛿,                                                       (2.4)  

where 𝑓∗ represents a value that meets the estimate requirements, and 𝛿 represents a positive value of 

tiny magnitude. 

 

2.1.2. Supervised machine learning 

 

A second method for assessing the target function involves concocting a training set. A training 

set refers to a set of potential examples that are utilized in the process of learning to pinpoint an unknown 

function. 

Two sets of dimensions that are compatible with each other 

                                                                    (𝐗̃, 𝐘̃)                                                                    (2.5) 
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are known as a training set in a case 

                                                       𝐗̃ = {𝒙1, … , 𝒙𝑁} ⊆ 𝐗,                                                        (2.6) 

                                       𝐘̃ = {𝒚1 = 𝜓(𝒙1),… , 𝒚𝑁 = 𝜓(𝒙𝑁)} ⊆ 𝐘,                                        (2.7) 

and it can be postulated that there exists a mapping of one-to-one between the elements of set 𝐗 and set 

𝐘. 

Supervised machine learning includes the creation of a training set (2.5) and the identification of 

a function (2.2) where if the overall error for said training set is smaller than the specified value 𝜺 

                                                      ∑ ‖𝒚𝑖 − 𝜂(𝒙𝑖, 𝐪)‖ ≤ 𝜺,𝑁
𝑖=1                                                     (2.8) 

then for every value of 𝒙∗ that is not contained in said training set 𝒙∗ ∉ 𝐗̃, the next inequation is satisfied 

                                                           ‖𝒚∗ − 𝜂(𝒙∗, 𝐪)‖ ≤ 𝛿,                                                     (2.9) 

where 𝒚∗ = 𝜓(𝒙∗). 

Machine learning control constitutes a paradigm wherein machine learning methods are 

employed to autonomously discover an unknown control function. The discipline of control 

encompasses several challenging problems, such as the optimization of control in different formulations, 

such as Pontryagin or Bellman formulations. Another significant problem is the control general 

synthesis, which involves designing a feedback function based on the object's state [192]. 

 

2.2. The Problem of Optimal Control 

 

The optimal control issue holds a prominent position within the domain of control theory. The 

aforementioned issue has historically garnered the attention of mathematicians, leading to the integration 

of control theory as a distinct area within the study of mathematics. 

The problem of optimal control involves the characterization of the control object through an 

ordinary differential equations system, wherein the right part of these equations contains an unknown 

control vector. The provided information includes the initial and terminal conditions, as well as the 

integral quality functional. The finding of the control as a time function is an imperative task in this 

problem. By substituting the given function into the right part of the differential equations, a non-

stationary differential equations system is obtained, where the right part is a known function of time. 

The non-stationary differential equations system yields a specific solution that satisfies the initial 
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conditions and eventually arrives at terminal conditions. In this scenario, the value of the quality 

functional is satisfied. 

Several reasons represent the rationale for presenting the problem of optimal control in this 

context here. Initially, in the context of the problem of optimal control, it is imperative to identify a 

function for one variable at least. Consequently, the utilization of machine learning techniques becomes 

viable in the pursuit of such a function. Furthermore, once the optimal control problem has been solved 

and the control as a function of time has been determined for the hands-on execution of the identified 

optimal solution, an effective stabilization system must be designed to constrain the motion of the 

controlled agent to the desired optimal trajectory. This gives rise to the challenge of identifying an 

additional control function, thereby necessitating a renewed focus on the machine learning problem. 

Ultimately, the problem of achieving optimal control is able to be handled subsequent to the solution of 

the stabilization problem of the object concerning the point of equilibrium inside the state space. 

Give the following mathematical problem statement for the problem of optimal control. The 

control object is represented by a mathematical model in the form of an ordinary differential equations 

system 

                                                             𝒙̇ = 𝒇(𝒙, 𝒖),                                                                 (2.10) 

with 𝒙 being a vector representing the state space, 𝒙 ∈ ℝ𝑛, 𝒖 denotes a vector representing the control, 

𝒖 ∈ 𝑼 ∈ ℝ𝑚, and 𝑼 representing a compact set, 𝑚 ≤ 𝑛. 

The initial conditions for the system model (2.10) are provided 

                                                               𝒙(0) = 𝒙0.                                                                  (2.11) 

Terminal conditions are determined by 

                                                              𝒙(𝑡𝑓) = 𝒙𝑓,                                                                 (2.12) 

where 𝑡𝑓 represents a terminal time for this system, which is an unspecified value that is assigned by the 

fulfillment of the terminal conditions. 

The quality criterion can be expressed through the utilization of an integral and/or terminal 

functional 

                                       𝐽 = 𝐹 (𝒙(𝑡𝑓)) + ∫ 𝒇0(𝒙(𝑡), 𝒖(𝑡))𝑑𝑡 →
𝑡𝑓
0

 min.                                (2.13) 

It is essential to ascertain the obtained control should be as a time function 

                                                                 𝒖 = 𝒉(𝑡),                                                               (2.14) 
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where 𝒉(𝑡) ∈ 𝑼 for 𝑡 ∈ [0: 𝑡𝑓]. 

The control function 𝒉(𝑡) that is obtained is commonly referred to as a program control. When 

the control function (2.14) is replaced into the right-hand side of the system (2.10), the resulting 

differential equations system appears as follows 

                                                             𝒙̇ = 𝒇(𝒙, 𝒉(𝑡)).                                                         (2.15) 

The system (2.10) possesses a partial solution 𝒙(𝑡, 𝒙0) that satisfies the initial conditions (2.11) 

and leads to the attainment of the terminal conditions (2.12), while the quality criterion value (2.13) is 

satisfied. 

Therefore, under the provided mathematical formulation of the problem of optimal control, the 

task entails finding the optimal function of control (2.14). This implies that the aforementioned problem 

can be classified as a problem of machine learning control and is capable of being solved through the 

utilization of machine learning techniques. 

 

2.3. The Problem of Control Synthesis 

 

The problem of control synthesis holds significant prominence within the field of control theory. 

Unlike the earlier optimal control problem, this formulation possesses a more application-oriented 

nature, as the control is synthesized as a state-dependent function. This results in a feedback control 

structure that dynamically responds to sensor-derived state information. This unit assures that the object 

attains the control objective, while the value of the quality criterion of this control for any object's current 

state is satisfactory. The problem of control synthesis is characterized by this particular feature. The 

solution of one problem of control synthesis can be considered tantamount to the solution of an infinite 

collection of problems of optimal control. Once the control synthesis problem has been solved, the 

derived control architecture inherently enables the solution of the optimal control problem across all 

feasible states of the system. 

In the nascent phase of modern control theory, particularly during the 1960s, R. Bellman engaged 

in a rigorous mathematical examination of optimal control problems, which culminated in the formal 

articulation of the control synthesis problem and the derivation of the Bellman equation—a defining 

achievement in dynamic systems theory [193]. The stated equation represents a partial differential 

equation. The equation's solution is represented by the Bellman function, which takes the control vector 

as one of its arguments. The finding of this control that optimizes the Bellman function represents a 
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𝐽1 = ∫…∫(𝐹 (𝒙(𝑡𝑓 , 𝒙
0)) + ∫ 𝒇0(𝒙(𝑡, 𝒙0), 𝒖(𝑡))𝑑𝑡

𝑡𝑓

0

)𝑑𝑥1
0 …𝑑𝑥𝑛

0 → min
𝒖∈𝑼

, 

viable solution to the problem of control synthesis. It is essential to acknowledge the following: Partial 

differential equations exhibit a much higher level of complexity compared to ordinary differential 

equations, and in the majority of cases, they do not possess a universal solution at all. Bellman suggested 

a numerical approach to finding a solution using dynamic programming [194-195]. Using this approach 

on a vast array of numerical values representing state vectors generates a significant quantity of control 

vectors.  

Many control synthesis problems had been effectively solved during that specific period via the 

Pontryagin maximum principle [196]. The result was favorable, as the analysis primarily focused on 

simple second-order models of the control objects. The problem of time-optimal has been successfully 

solved, resulting in the derivation of comprehensive solutions for the differential equations governing 

the control object as well as conjugate variables. Subsequently, the switching points of the control have 

been determined based on the derived solutions obtained from various initial conditions. It is evident 

that this approach is not universally applicable. However, when employing this approach, Boltyanskii 

[197] performed the formulation of the control general synthesis problem, which remains a pressing 

mathematical problem to this day since its mathematical formulation lacks comprehensive analytical and 

numerical techniques for solution at present. 

Let us contemplate a traditional formulation of the problem of control synthesis. The differential 

equations system is characterized by a control object having a particular form (2.10). The 

initial conditions domain within the state space can be given by 

                                                                 𝐗0 ⊆ ℝ𝑛.                                                                 (2.16) 

The presence of the domain for the initial condition constitutes a fundamental characteristic of 

the general synthesis of the control problem. Boltyanskii first established the initial conditions domain 

as the entire space of states 𝐗0 ⊆ ℝ𝑛, as he searched for tackling this topic by analytical means. In this 

particular scenario, we adopt a numerical approach to address the problem at hand. Hence, the domain 

𝐗0 can be considered a constrained subset within the state space. 

The terminal conditions (2.12) are provided. 

The quality criterion is provided 

                                                                                                                                                            

 𝐗0 

(2.17) 
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where 𝒙0 = [𝑥1
0 …𝑥𝑛

0]𝑇 ∈ 𝐗0, the value of 𝑡𝑓 is not explicitly provided, but rather is calculated by 

fulfilling the terminal conditions (2.12). It is vital to note that the value of 𝑡𝑓 can change depending on 

the change of initial conditions. 

It is crucial for pinpointing of a control function in terms of the vector of state space 

                                          𝒖 = 𝒈(𝒙) ∈ 𝑼,      𝒈(𝒙) ∶  ℝ𝑛 → ℝ𝑚.                                          (2.18) 

If the control function that has been acquired is included into the right-hand side of the 

mathematical equation (3.10), then the resulting system of stationary differential equations 

                                                        𝒙̇ = 𝒇(𝒙,𝒈(𝒙)),                                                               (2.19) 

will possess a partial solution for any initial condition within the initial domain (2.16). 

                                                        𝒙(0) = 𝒙0 ∈ 𝐗0,                                                             (2.20) 

which fulfills the terminal condition (2.12) and the quality criterion value (2.17) is satisfied. Therefore, 

the task of addressing the synthesis problem can be seen as the search for the control function (2.18), 

which coincides with the principles of machine learning control. 

In order to computationally solve the problem of control synthesis (2.10), (2.16), (2.12), (2.17), 

the domain of initial condition (2.16) is substituted with a limited set of initial conditions 

                                                         𝑿0 = {𝒙0,1, … , 𝒙0,𝐋}.                                                      (2.21) 

and the quality criterion multiple integral (2.17) is substituted with the corresponding summation for all 

of the initial conditions 

 

(2.22)                                                   

 

where 𝑡𝑓,𝑖 represents the time at which the terminal condition is reached, starting from the initial 

one 𝒙0,𝑖, 𝑖 = 1, … , 𝐋. 

The equation provided determines the time at which the terminal condition gets achieved during 

the search procedure is 

                                        𝑡𝑓,𝑖 = {
𝑡,    if   𝑡 < 𝑡+ and ‖𝒙𝑓 − 𝒙‖ ≤ 𝜀                 

 𝑡+         ,    otherwise                                        
                      (2.23) 

𝐽2 = ∑(𝐹 (𝒙(𝑡𝑓,𝑖, 𝒙
0,𝑖)) + ∫ 𝒇0 (𝒙(𝑡, 𝒙0,𝑖), 𝒖(𝑡)) 𝑑𝑡

𝑡𝑓,𝑖

0

)

𝐋

𝑖=1

, 
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where 𝜀 represents the degree of accuracy required to achieve the terminal condition, while 𝑡+ denotes 

the maximum time allowed for obtaining this condition. It is crucial to note that both 𝜀 and 𝑡+ are positive 

numerical values. 

There is a method for solving the synthesis problem, based on the Bellman equation 

 

(2.24) 

 

In case of the Bellman function 𝜇(𝒙) exists, the control function can be obtained by solving the 

Bellman equation (2.24) 

 

 (2.25) 

In order to address the synthesis problem utilizing the Bellman equation through machine 

learning, it needs to employ an approximation technique for the Bellman function. In order to implement 

the symbolic regression technique for the Bellman function, it is necessary to modify the functional to 

incorporate the various initial as well as terminal conditions 

 

(2.26) 

                                                       

where 𝑝1 represents a weight coefficient, and 𝒙(𝑡, 𝒙0,𝐋) denotes the system partial solution with control 

(2.25) beginning with the initial condition 𝒙0,𝑗. 

 

2.4. The Problem of Synthesized Optimal Control (The Problem Statement of This Study) 

 

In an effective scenario, our ongoing objective remains the pursuit of developing systems that 

exhibit influential performance concerning the specified criterion. In this particular scenario, the 

problem of optimal control is addressed as a preliminary step. However, it should be noted that the 

solution to this problem cannot be implemented directly on a control object's board processor. This is 

because the optimal control function obtained is dependent on time, and its implementation would result 

in an open-loop control system. Consequently, Any temporal misalignment between the motion of the 

−
𝑑𝜇(𝒙)

𝑑𝑡
= min

𝒖∈𝑼
{(

𝜕𝜇(𝒙)

𝜕𝒙
)

𝑇

𝒇(𝒙, 𝒖) +
𝜕𝐹(𝒙)

𝜕𝒙
𝒇(𝒙, 𝒖) + 𝑓0(𝒙, 𝒖)}. 

𝒖 = 𝑎𝑟𝑔𝑚𝑖𝑛 {(
𝜕𝜇(𝒙)

𝜕𝒙
)

𝑇

𝒇(𝒙, 𝒖) +
𝜕𝐹(𝒙)

𝜕𝒙
𝒇(𝒙, 𝒖) + 𝑓0(𝒙, 𝒖)}. 

𝐽𝑠 = ∑(∫ 𝑓0 (𝒙(𝑡, 𝒙0,𝑗), 𝒖(𝑡)) 𝑑𝑡 + 𝑝1√∑(𝑥𝑖
𝑓
− 𝑥𝑖(𝑡𝑓,𝑖, 𝒙0,𝑗))2

𝑛

𝑖=1

𝑡𝑓,𝑗

0

)

𝐋

𝑗=1

→ min
𝜇(𝒙)

, 
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controlled object and the application of control actions may result in the failure to achieve the desired 

control objective, leading to a deviation between the actual performance and the theoretically computed 

value of the quality criterion. To counteract deviations arising between the real-time trajectory of the 

system and its computed optimal counterpart, practical control architectures incorporate feedback 

stabilization mechanisms designed to maintain adherence to the optimal reference trajectory.  

However, as a result of the implementation of the system of stabilization, we once again 

encounter a loss of optimality. Several pieces of evidence suggest this assertion: 

1. The inclusion of a stabilization system leads to the transformation of the system’s 

behavior and its mathematical representation, which may result in a control strategy that 

no longer satisfies optimality conditions for the updated dynamics.  

2. The deviation of the system state from the trajectory may be characterized by temporal 

misalignment or spatial displacement;  both forms yielding motion patterns that no longer 

satisfy the criteria for optimality.  

3. The capacity of the stabilization system to restore  the system state to the reference 

trajectory necessitates the reservation of sufficient control resources. Optimal control 

strategies should therefore incorporate this allocation, yet such accounting is routinely 

absent from standard computational frameworks.  

4. Lastly, it should be noted that the object's motion in close proximity to the programmed 

trajectory can show notable deviations from the desired trajectory concerning the 

functional value. 

Based on the suggested approach, it is necessary to first establish the stability of the control object 

within the state space before addressing the problem of optimal control. Hence, this approach is referred 

to as synthesized optimal control. The foundational premise is the derivation of a feedback control 

function that ensures the presence of a stable equilibrium point for the closed-loop system of differential 

equations. Moreover, the equilibrium’s position is rendered controllable through a set of design 

parameters internal to the controller.  

Contemplate About the Statement of the Problem of Synthesized Optimal Control: 

Assuming the control object mathematical model, expressed as differential equations system 

                                                               𝒙̇ = 𝒇(𝒙, 𝒖),                                                                 (2.27) 

with 𝒙 being a vector representing the state space, 𝒙 ∈ ℝ𝑛, 𝒖 denotes a vector representing the control, 

𝒖 ∈ 𝑼 ∈ ℝ𝑚, and 𝑼 representing a compact set, 𝑚 ≤ 𝑛. 

Provided the initial condition  
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                                                                 𝒙(0) = 𝒙0.                                                              (2.28) 

Terminal conditions is determined by 

                                                                𝒙(𝑡𝑓) = 𝒙𝑓,                                                                 (2.29) 

where 𝑡𝑓 represents the time at which the terminal condition is reached, 𝑡𝑓 is not explicitly provided but 

is bounded 

                                                                   𝑡𝑓 ≤ 𝑡+,                                                                    (2.30) 

and 𝑡+ is provided. 

Given the quality criterion 

 

                                                                                                                                               (2.31) 

It is crucial to pinpoint a control that matches to the subsequent form: 

                                                     𝒖 = 𝒈(𝒙∗(𝑡) − 𝒙) ∈ 𝑼,                                                     (2.32) 

where 𝒙∗(𝑡) is a time function. 

The function 

                                                     𝒈(𝒙∗(𝑡) − 𝒙):ℝ𝑛 → ℝ𝑚,                                                     (2.33) 

is sought in a manner that exhibits a property of feasibility [198], i.e. at each given time 𝑡 = 𝑡𝑘 ≤ 𝑡𝑓, the 

system 

                                                    𝒙̇ = 𝒇(𝒙,𝒈(𝒙∗(𝑡𝑘) − 𝒙)),                                                    (2.34) 

possesses a stable point of equilibrium 

                                                            𝒙̃(𝒙∗(𝑡𝑘)) ∈ ℝ𝑛,                                                           (2.35) 

                                                   𝒇(𝒙̃, 𝒈(𝒙∗(𝑡𝑘) − 𝒙̃)) = 0,                                                    (2.36) 

 

 

 

where  

𝐽𝑠𝑜1 = ∫ 𝑓0(𝒙, 𝒖)𝑑𝑡 → min
𝒖∈𝑼

𝑡𝑓

0

. 

det(𝐀 − 𝜆𝐄) = 𝜆𝑛 + 𝑎𝑛−1𝜆
𝑛−1 + ⋯+ 𝑎1𝜆 + 𝑎0 = ∏(𝜆 − 𝜆𝑗)

𝑛

𝑗=1

= 0, (2.37) 
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                                         𝜆𝑗 = 𝛼𝑗 + 𝑖𝛽𝑗,   𝛼𝑗 < 0, 𝑗 = 1,… , 𝑛,                                             (2.38) 

𝑖 = √−1, 

                                                                                                                                               (2.39) 

 

The function (2.32) serves as a stabilization system for the object (2.27). Consequently, the 

object achieves stability in relation to a certain point inside the state space 𝒙̃ (2.36). The positioning of 

this point of stabilization is contingent upon the parameters 𝒙∗. The parameters 𝒙∗ are able to serve as 

the direct coordinates of the stabilization point inside the state space. Alternatively, in the general 

situation, 𝒙∗ can influence the positioning of a point of stabilization 𝒙̃ (𝒙∗) within the state space. 

The solution to the problem of synthesized optimal control and the finding of the control function 

(2.32) is considered to be performed algorithmically in two steps, which are treated as sequential 

activities. 

 

2.4.1. First Step: Synthesis of Stabilization System 

 

In the first step of stabilization, the problem of control synthesis is addressed in order to establish 

the presence of a stable point of equilibrium inside the state space. The problem statement can be 

addressed using numerical solutions utilizing machine learning approaches. 

The control object mathematical model (2.27) is given. 

The initial conditions set is provided by 

                                                        𝑿0 = {𝒙0,1, … , 𝒙0,𝐋}.                                                        (2.40) 

The terminal position is provided. Any point in the state space has the potential to serve as the 

terminal position, enabling the system to achieve stabilization at such a point. In the problem of optimal 

control, the position of the terminal condition (2.29) cannot be the exact position of the mentioned 

terminal position. 

                                                          𝒙(𝑡∗) = 𝒙∗ ∈ ℝ𝑛,                                                          (2.41) 

where the value of 𝑡∗ is not provided, but bounded 

                                  𝑡∗ = {
𝑡,    if   𝑡 < 𝑡+ and ‖𝒙∗ − 𝒙(𝑡, 𝒙0)‖ ≤ 𝜀                 

 𝑡+, otherwise                                                          
                       (2.42)   

𝐀 =
𝜕𝒇(𝒙̃, 𝒈(𝒙∗(𝑡𝑘) − 𝒙̃))

𝜕𝒙
. 
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where 𝒙(𝑡, 𝒙0) is the system partial solution (2.27), and 𝜀 and 𝑡+ are provided positive numerical values. 

It is crucial to pinpoint a control that matches to the subsequent form: 

                                                          𝒖 = 𝒈(𝒙∗ − 𝒙),                                                              (2.43) 

that generally partial solution of the differential equations system 

                                                      𝒙̇ = 𝒇(𝒙,𝒈(𝒙∗ − 𝒙)),                                                        (2.44) 

from whatever initial condition inside the specified area (2.40) 

                                                     𝒙0,𝑖 ∈ 𝐗0, 𝑖 = 1, … , 𝐋.                                                        (2.45) 

will fulfil the terminal condition (2.41) by optimizing the value of the subsequent criterion: 

 

(2.46) 

where  

                                  𝑡𝑖
∗ = {

𝑡,    if   𝑡 < 𝑡1
+ and ‖𝒙∗ − 𝒙(𝑡, 𝒙0,𝑖)‖ ≤ 𝜀1                 

 𝑡1
+, otherwise                                                                  

                  (2.47) 

 

  (2.48) 

 

where 𝑝1 represents a weight coefficient, and 𝜀1 and 𝑡1
+ are provided positive numerical values. 

 

2.4.2. Second Step: Solution of the Problem of Optimal Control 

 

As a second step in synthesized optimal control, following the solution of the problem of control 

synthesis (2.27), (2.40)–(2.48), the problem of optimal control (2.27)–(2.31) is addressed for the 

mathematical formula (2.44). This entails the finding of a control function using the subsequent form: 

                                                           𝒙∗(𝑡) = 𝒉(𝑡),                                                               (2.49) 

to minimize the specified criterion (2.31). 

𝐽𝑠1 = ∑(𝑡𝑖
∗ + 𝑝1‖𝒙∗ − 𝒙(𝑡𝑖

∗, 𝒙0,𝑖)‖)

𝐋

𝑖=1

, 

‖𝒙∗ − 𝒙(𝑡, 𝒙0,𝑖)‖ = √∑(𝒙∗ − 𝒙(𝑡, 𝒙0,𝑖))2

𝑛

𝑖=1

 , 
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In the second step, it is essential to observe that the dimension of the sought function (2.49) is 

equivalent to that of the state space. In the context of this specific scenario, it is possible to search the 

function as a piecewise constant function 

                                          𝒉(𝑡) = 𝒙∗,𝑖,    𝑖𝑓  (𝑖 − 1)∆ ≤ 𝑡 ≤ 𝑖∆,                                           (2.50) 

where 𝒙∗,𝑖 are obtained influential coordinates values of the point of equilibrium, 𝑖 = 1,… , 𝐾, and Δ is 

a provided time interval, 

                                                                                                                                               (2.51) 

 

Therefore, per this methodology, the primary objective of synthesized optimal control is first to 

guarantee the object's stability, which involves the emergence of an equilibrium point inside the phase 

space. In the vicinity of the point of equilibrium, the phase trajectories exhibit a contraction property, 

which plays a crucial role in determining the system's feasibility. The principal property of this 

framework, relative to conventional optimal control paradigms, lies in its intrinsic capacity to synthesize 

feedback-based control laws — thereby yielding closed-loop systems — as opposed to the open-loop 

nature of most optimal control solutions derived under idealized assumptions.  

To realize the target behavior, the control strategy must be computed numerically as part of the 

stabilization synthesis process; once derived, these control expressions replace the original input terms 

in the system’s differential equations. In a usual scenario, the control object functions within a dynamic 

environment, necessitating the essential ability to compute the desired trajectory on board. The 

utilization of synthesized optimal control methodology enables the achievement of this objective. The 

stabilization synthesis problem is addressed during the design phase initially, yielding a parametric 

control structure wherein the location of the equilibrium point — acting as a design variable — may be 

precomputed or updated recursively in real time via onboard computation to ensure continued 

performance optimality. 

 

2.5. The General Methodology of Symbolic Regression 

 

Symbolic regression techniques refer to a set of approaches utilized in machine learning tasks to 

encode mathematical expressions. These techniques involve a range of algorithms that aim to identify 

the most influential mathematical expressions within the space that contains these encoded codes (see 

Figure 2.1). 

𝐾 = ⌊
𝑡+

∆
⌋. 
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Figure 2.1. The overarching framework of symbolic regression approaches [192] 

 

2.5.1. The Encoding Approach 

 

The application of symbolic regression methodologies for encoding equations demands the prior 

initialization with a symbolic primitive alphabet — a finite set encompassing elementary mathematical 

functions and the independent variables of the target expression. The foundational methodology for the 

bidirectional transformation between symbolic expressions and their encoded representations entails the 

decomposition of the elementary function set into subsets based on the number of arguments they 

require.  

The number of input arguments accepted by a function dictates how elementary function sets 

may be compositionally combined. The basic sets are as follows: 

- The arguments set, or functions set without arguments 

                            𝑭𝟎 = {𝑓0,1 , … , 𝑓0,𝑟+𝑚𝑞+𝑣 } = {𝑥1, … , 𝑥𝑟 , q1, … , q𝑚𝑞
, 𝑒1, … , 𝑒𝑣 },            (2.52) 

where 𝑥1, . . . , 𝑥𝑟 stand for the variables, q1, . . . , q𝑚𝑞
 stand for the parameters, 𝑒1, . . . , 𝑒𝑣 stand for the unit 

elements for two-argument functions;   

• The functions set that is characterized by one argument 

                                            𝑭𝟏 = {𝑓1,1(𝑧) = 𝑧, 𝑓1,2(𝑧),… , 𝑓1,𝑤(𝑧)},                                        (2.53) 

where 𝑓1,1(𝑧) stands for a common identity function, which is typically required for coding; 

• The functions set that is characterized by two arguments 
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                                              𝑭𝟐 = {𝑓2,1(𝑧1, 𝑧2), … , 𝑓2,𝑛(𝑧1, 𝑧2)}.                                             (2.54) 

All two-argument functions must have the following features: 

▪ commutative 

                                         𝑓2,𝑖(𝑧1, 𝑧2) =  𝑓2,𝑖 (𝑧2, 𝑧1), 𝑖 = 1,… , 𝑛.                                          (2.55)    

▪ associative  

                                     𝑓2,𝑖 (𝑧1 , 𝑓2,𝑖(𝑧2, 𝑧3)) = 𝑓2,𝑖(𝑓2,𝑖(𝑧1, 𝑧2), 𝑧3),                                      (2.56) 

▪ possess a unit element 

                                                   𝑓2,𝑖(𝑧, 𝑒𝑖) = 𝑓2,𝑖(𝑧𝑖, 𝑧) = 𝑧,                                                  (2.57) 

where 𝑒𝑖 is a function's unit element, 𝑖 = 1, . . . , 𝑣. 

In order for solving the problems of machine learning control and while finding unknown 

functions, it becomes crucial to establish the principles governing the construction of mathematical 

expressions using primary functions. One widely applicable method for composing mathematical 

expressions using primary functions involves representing a series of primary functions in the form of a 

composition of such functions nested within one another. To illustrate, 

                                 𝑓𝑐1,𝑑1
𝑓𝑐2,𝑑2

𝑓𝑐3,𝑑3
= 𝑓𝑐1,𝑑1

∘ 𝑓𝑐2,𝑑2
∘ 𝑓𝑐3,𝑑3

= 𝑓𝑐1,𝑑1
(𝑓𝑐2,𝑑2

(𝑓𝑐3,𝑑3
(… ))).             (2.58) 

It is essential to acknowledge that the representation utilized in symbolic regression techniques 

corresponds entirely with the principles outlined in the Kolmogorov-Arnold theory regarding the 

function's representation. According to this theory, if a function 𝑓 is multidimensional and continuous, 

it can be expressed in the form of a finite composition consisting of continuous functions that involve a 

single variable and an addition binary operation [192]. 

 

2.5.2. The Search Algorithm 

 

The methodology of symbolic regression within machine learning involves the identification of 

diverse functional architectures and optimization of their associated parameters concurrently for an 

unknown function. This dual-objective search is predominantly executed via genetic algorithms, which 

operate over a hybrid search space comprising symbolic structures and real-valued parameter vectors. 
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The genetic algorithm (Figure 2.2) has demonstrated its usefulness over a significant period of 

time [199–201]. One notable characteristic of the genetic algorithm includes its capacity to function 

inside a space of codes. The process of searching within the code space presents a challenge due to the 

discrepancy between the metric employed in the code space and the metric used in the calculation of the 

objective functional within the vector numeric space. 

The genetic algorithm, due to its distinct structure, has the ability to conduct searches in non-

numerical spaces. The foundational distinction of genetic algorithms resides in their operator set — 

comprising selection, crossover, and mutation — which operates independently of arithmetic or 

analytical operations. This enables their applicability to non-numerical optimization domains, including 

symbolic regression in machine learning and control systems. 

 

 

 

 

 

 

 

 

 

Figure 2.2. The genetic algorithm mechanism [192] 

 

2.6. The Small Variations Principle within the Basic Solution 

 

The complexity of finding an effective solution within the space of encoded codes is attributed 

to the classification of this work as a non-numerical optimization issue. The utilization of evolutionary 

algorithms involving arithmetic operations is not possible for search spaces of this nature. The 

predominant class of evolutionary algorithms employs arithmetic operators to manipulate candidate 

solutions numerically. In contrast, genetic algorithms constitute a principal search paradigm over 

symbolic or discrete-coded solution spaces, wherein all evolutionary operations are defined 

independently of arithmetic computation, relying instead on stochastic, structure-preserving genetic 

operators. Simultaneously, When symbolic regression employs sophisticated coding structures, the 
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derivation of appropriate crossover and mutation operators becomes a critical research problem. This 

has led to the formalization of the small variations principle, which constrains evolutionary variations to 

minimal changes from an established basic solution [202-203]. 

Contemplate a universal methodology for developing genetic algorithms to address non-

numerical optimization issues. The methodology is centered upon the small variations’ principle within 

the basic solution. 

The fundamental tenets underlying this technique can be summarized as follows. An initial 

candidate solution, termed the basic solution, is often encoded to serve as a starting point for 

optimization. In complex scenarios, it is adequate to select this candidate solution that approximates the 

optimal outcome, as judged by the researcher, to reduce the time required for searching. Subsequently, 

The set of small variations is constructed so that every one applied to the basic solution code generates 

a structurally correct new solution. Furthermore, all such variations are represented in coded form for 

algorithmic execution. In the context of symbolic search, a small variation functions as a transformation 

operator applied to the code space of the basic solution, generating neighboring solutions through 

minimal structural modifications. Consequently, in all instances, a small variation code represents an 

integer vector that encompasses the essential information required to execute operations on the code in 

accordance with the operator of the small variation. The proposed approach benefits significantly from 

the existence of domain experts capable of constructing effective control systems through intuitive 

reasoning or extensive experience; these designed effective systems can be purposed as a basic solution. 

In order to elucidate the concept of variation, it is necessary to introduce a vector denoting the 

extent of variation 

                                                       𝒲 = [𝓌1 …𝓌𝑑𝑒𝑝]𝑇 ,                                                          (2.59) 

where 𝑑𝑒𝑝 represents the dimension of the variation vector, specified by the information necessary to 

execute a small variation. This dimension is contingent upon the symbolic regression technique 

employed. As an illustration, let 𝓌1 represents an index denoting a small variation. Similarly, 𝓌2 and 

𝓌𝑑𝑒𝑝−1 can be understood as indices indicating the element position in the code that define the variable 

element. Finally, 𝓌𝑑𝑒𝑝 represents the updated value of the defined element.  

For instance, a small variation to the Cartesian genetic programming (CGP) code involves 

altering an element within the matrix. In order to implement a small variation, a three-element integer 

vector will do the trick 

                                                      𝒲 = [𝓌1  𝓌2  𝓌3]
𝑇 ,                                                           (2.60) 
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where the variables 𝓌1, 𝓌2, and 𝓌3 correspond to the column identifier, the row position within that 

column, and the replacement value for the specified matrix element, respectively. 

 

2.7. Variational Genetic Algorithm 

 

The effective solution is sought using a genetic algorithm known as the variational genetic 

algorithm (VarGA), which operates in the ordered sets space of vectors with small variations to find the 

proper solution. 

The genetic algorithm, in accordance with the small variations principle within the basic solution 

(VarGA), consists of the following sequential steps: 

1. Define the basic solution such that this solution is deemed, based on the researcher's 

perspective, to be the most proximate to the potential effective solution. 

                                               𝒃0 = [𝑏1
0 …𝑏𝑛

0]𝑇.                                                         (2.61) 

2. Generate ordered multisets form consisting of variation vectors as the initial population 

𝑾𝑖 = (𝒲𝑖,1, … ,𝒲𝑖,𝐷), 𝑖 = 1,… , 𝑙,                                           (2.62) 

where in this given context, 𝑙 represents the sequence of possible solutions within the 

initial population, whereas 𝐷 is the total count of variation vectors present in a single set. 

The initial population is formed by subjecting the basic solution to a set of small 

variations, each yielding a candidate solution 

                         𝒃𝑖 = 𝑾𝑖 ∘ 𝒃0 = 𝒲𝑖,𝐷 ∘ 𝒲𝑖,𝐷−1 ∘∙∙∙∘ 𝒲𝑖,1 ∘ 𝒃0,                                (2.63) 

where each potential solution inside the population is an element of the 𝐷-neighborhood 

of the basic solution 

                                         𝒃𝑖 ∈ 𝐷(𝒃0), 𝑖 = 1,… , 𝑙.                                                      (2.64) 

3. Determine the objective function value for every possible solution within the population 

𝐹𝑖 = 𝐽(𝛹(𝒃𝑖)), 𝑖 = 1, … , 𝑙,                                                   (2.65) 

where 𝛹(𝒃) serves as a decoding function that translates a structured, non-numeric 

representation into a computable real-valued function. 

4. The evolution cycle is executed unless the condition of stop is met: 

I. Choose two sets of variations vectors at random 

𝑾𝜸 = (𝒲𝛾,1, … ,𝒲𝛾,𝐷), 𝑾𝝋 = (𝒲𝜑,1, … ,𝒲𝜑,𝐷).                            (2.66) 

II. The crossover's activation probability is computed based on the objective 

functional values of selected solution vectors 
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If the generator of random number yields a value that is smaller than 𝑃𝑟𝑐, then the 

crossover process is executed. 

Define the crossover point at random 

𝑘𝑐 ∈ {1,… , 𝐷}.                                                            (2.68) 

Following the crossover point, swap the variations' vectors in the chosen sets to 

create two novel sets of variation vectors that signify two novel solutions from 

the basic solution's 𝐷-neighborhood 

                                           𝑾𝜸+𝟏 = (𝒲𝛾,1, … ,𝒲𝛾,𝑘 ,𝒲𝜑,𝑘+1 , … ,𝒲𝜑,𝐷),    

            𝑾𝝋+𝟏 = (𝒲𝜑,1, … ,𝒲𝜑,𝑘,𝒲𝛾,𝑘+1 , … ,𝒲𝛾,𝐷).                                 (2.69) 

III. Execute the mutation process with a specified probability for the newly 

discovered possible solutions as sets of variations' vectors (2.69). Pick a mutation 

point at random, then create a new variations vector at that position. 

IV. Each newly generated candidate solution undergoes evaluation using the 

objective functional. Its fate — inclusion (via replacement of the worst population 

member) or rejection — is determined by comparing its score against the current 

population’s minimum performance threshold. 

While built upon the small variations principle, this genetic algorithm preserves all canonical 

operations of traditional genetic algorithms, including crossover executed via tail-segment swap 

following a designated cut point. This algorithm can incorporate an additional loop to alter the basic 

solution. After executing a certain number of iterations to generate novel possible solutions, it is essential 

to substitute the basic solution with a possible solution chosen for the novel basis, which is determined 

to be the best option in terms of functionality. 

The dual representation of this strategy —comprising both a basic solution and a vector of 

variations—may seem redundant but enables two critical improvements: (1) the basic solution enables 

rapid convergence in complex, multimodal optimization landscapes; (2) operating on variation vectors 

ensures that every evolved solution remains syntactically valid, thereby eliminating the risk of invalid 

outputs and reducing computational overhead associated with validation.  

The principle of small variations constitutes a refinement strategy that may be systematically 

incorporated into any symbolic regression methodology to address the computational and structural 

complexities inherent in control synthesis problems.  

𝑃𝑟𝑐 = 𝑚𝑎𝑥 {
𝐹𝑗−

𝐹𝛾
,
𝐹𝑗−

𝐹𝜑
} (2.67) 
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2.8. Symbolic Regression Techniques 

 

Multiple symbolic regression techniques are commonplace at the moment. So, here are a few 

examples: Genetic Programming (GP) [204], analytic programming [205], Cartesian GP [206], network 

operator method [207], parse-matrix evolution [208], and complete binary GP [209]. Unlike other 

symbolic regression techniques, the small-variations principle constitutes a novel contribution 

introduced exclusively within the network operator method, making it the sole representative of this 

class of evolutionary search. The extension of the small-variation principle to pre-existing symbolic 

regression paradigms gives rise to a class of augmented algorithms, each denoted by the prefix 

“variational,” e.g., Variational Genetic Programming (VGP), Variational Cartesian GP. [203]. 

 

2.9. Synthesized Genetic Programming Technique (SGP) 

 

The technique used in this study was created by the researcher. This technique is brand new, 

being the first instance in which this technique has been applied to solve the problem of control synthesis. 

Synthesized genetic programming (SGP) eschews the utilization of graphical representations for 

expressing codes of expressions. 

 

2.9.1. Encoding Approach Using Synthesized Genetic Programming 

 

The next mathematical expression is an example of how to encode it manually by synthesized 

genetic programming (SGP) 

                             𝑦 = exp(𝑞3𝑥2
2 + 𝑞1𝑥3

2) sin(𝑞2𝑥1) + cos(−𝑞3𝑥3 + 𝑥1).                             (2.70) 

where q1, q2 and q3 exemplify the parameters, x1, x2 and x3 exemplify variables, and both exemplify 

arguments of the mathematical expression. 

The symbolic encoding of any mathematical expressions is rendered feasible through the 

utilization of the following predefined sets: 

• The arguments set 

            𝑭𝟎 = {𝑓0,1 = 𝑥1, 𝑓0,2 = 𝑥2, 𝑓0,3 = 𝑥3, 𝑓0,4 = q1, 𝑓0,5 = q2, 𝑓0,6 = q3}.                     (2.71) 

• The functions set that is characterized by one argument 
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             𝑭𝟏 = {𝑓1,1(𝑧) = 𝑧, 𝑓1,2(𝑧) = −𝑧, 𝑓1,3(𝑧) = 𝑧2, 𝑓1,4(𝑧) = sin(𝑧), 

                                         𝑓1,5(𝑧) = cos(𝑧) , 𝑓1,6(𝑧) = exp(𝑧)}.                                             (2.72) 

• The functions set that is characterized by two arguments 

              𝑭𝟐 = {𝑓2,1(𝑧1, 𝑧2) = 𝑧1 + 𝑧2, 𝑓2,2(𝑧1, 𝑧2) = 𝑧1𝑧2}.                                                   (2.73) 

In general, the mathematical expression's SGP code is a six-row integer matrix. The first row of 

the matrix denotes the indexes of functions belonging to the functions set that is characterized by two 

arguments (2.73). The indexes of functions from the functions set that is characterized by one argument 

(2.72) are represented by the second and fourth rows. The third and fifth rows represent the indexes of 

arguments from the arguments set (2.71). The sixth row represents the priority, which will thereafter be 

elucidated to elucidate its role. Within each column of the matrix, the second element (the one-argument 

function) and the third element (the argument) represent the first argument for the first element of the 

column (the two-argument function). Additionally, the fourth and fifth elements represent the second 

argument for the first element of the column. The term of the pivot for each column means either the 

first argument (the second and third elements) or the second argument (the fourth and fifth elements) of 

this column. The pivot can be determined by assigning the priority (the sixth element in the column) of 

1 or 2 to opt for the desired pivot of the column. Even Nevertheless, in most contexts, its number is 1. It 

is important to acknowledge that the number of rows in the SGP matrix is contingent upon the number 

of arguments employed in the available functions. Specifically, when utilizing a three-argument function 

such as the if function, the number of rows is going to be 8. This is due to each argument being allocated 

two elements in the column, combined with the first element representing the three-argument function 

and the final element denoting the priority. After completing the calculation for each column, the result 

of this column should be appended to the set of arguments (2.71), progressively increasing the total 

number of arguments with each calculation. 

In order to implement example (2.70) by this technique, let us get started by coding the expression 

𝑞3𝑥2
2 as the first column of the SGP matrix. For the first element in this column, determine the index of 

multiplication function in the functions set that is characterized by two arguments (2.73); it is the number 

of 2, 𝑓2,2(𝑧1, 𝑧2) = 𝑧1𝑧2. For the second element, the function of the parameter 𝑞3 is the identity function, 

𝑓1,1(𝑧) = 𝑧, from the functions set that is characterized by one argument (2.72); the index of this function 

is 1. For the third element, the location of the parameter 𝑞3 in the arguments set (2.71) is 6. For the fourth 

element, the variable 𝑥2 function is the square 𝑓1,3(𝑧) = 𝑧2, and its index is 3 in the set (2.72). For the 

fifth element, the location of the variable 𝑥2 in the arguments set (2.71) is 2. The sixth element is the 

priority, and its number is 1. As a result, the code of the expression 𝑞3𝑥2
2 that represents the first column 
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in the matrix is [2  1  6  3  2  1]T. After calculating this column, it will have been appended to the 

arguments set (2.71) as the seventh element, denoted as (|𝑭𝟎| + 1 = 6 + 1 = 7). The following 

expression 𝑞1𝑥3
2 will be the second column, which is the same idea as the first column, and its code is 

[2  1  4  3  3  1]T. Consequently, it will be appended as the eighth element to the arguments set (2.71). 

The third column will demonstrate the amalgamation of the preceding two columns, specifically 

represented as 𝑞3𝑥2
2 + 𝑞1𝑥3

2. For the first element of the third column, the index of the addition function 

in the set (2.73) is 1. The identity function will be the primary function in this case for the first column 

(𝑞3𝑥2
2) and the second column (𝑞1𝑥3

2); therefore, the second and fourth elements will get number 1 as 

the identity function in the set (2.72). The indexes of the first column (𝑞3𝑥2
2) and the second column 

(𝑞1𝑥3
2) in the arguments set (2.71) are 7 and 8, respectively. So, the code of the third column is [1  1  7  

1  8  1]T and will have been appended to the arguments set (2.71) as the ninth element. 

The final code of the SGP matrix, for example (2.70), can be expressed as: 

                                    𝑹𝑆𝐺𝑃 = 

[
 
 
 
 
 
2
1
6
   

2
 1
4
    

1
1
7
    

2
1
5
    

2
2
6
   

1
1
11

   
2
6
9
 
  1
  5

   12
3
2
1
    

3
3
1
    

1
8
1
    

1
1
1
    

1
3
1
    

1
1
1
   

4
10
1

 
1

 13
 1 ]

 
 
 
 
 

.                                                (2.74) 

 

2.9.2. Search Algorithm for Synthesized Genetic Programming 

 

Let us analyze the sequential procedures of the algorithm for SGP. 

Initially, a set of codes is generated in a random manner, representing possible solutions 

                                                           𝑆 = {𝑹1, … , 𝑹𝑀},                                                        (2.75) 

where 𝑹 is the code matrix, 𝑹𝑖 = (𝒓𝑖,1, … , 𝒓𝑖,𝐻), 𝑖 = 1,… ,𝑀, 𝒓 is a placeholder for any column in the 

matrix — each is a vector. So 𝒓1 is the first column-vector, 𝒓2 the second, and so on, 𝐻 tells you how 

many such vectors (columns) there are. 

For every possible structure associated with the mathematical expression, there is a random 

generation of a parameters vector 

                                   q𝑖
𝑗
= 𝝃(q𝑖

+ − q𝑖
−) + q𝑖

−,   𝑖 = 1,… ,𝑚𝑞 ,   𝑗 = 1,… ,𝑀.                          (2.76) 



87 

 

where 𝝃 represents a random value drawn from the interval [0:1]; while q𝑖
+ and q𝑖

− denote the higher and 

lower bounds of the parameters, respectively. Additionally, 𝑚𝑞 represents the dimensionality of the 

parameters vector. 

The evaluation of every possible solution is conducted through the utilization of an objective 

function or a function of fitness 

                                         𝑮 = {𝒈1 = 𝐽(𝑹1, 𝐪
1),… , 𝒈𝑀 = 𝐽(𝑹𝑀, 𝐪𝑀)},                                   (2.77) 

where 𝐽(𝑹𝑖, 𝐪
𝑖) represents an objective function, and 𝐪𝑖 represents a parameters vector, 𝑖 = 1,… ,𝑀. 

In the context of the problem of synthesis, the objective function is represented by the functional 

(2.46). In order to determine the objective function value, the formulated code of the control function, 

in addition to the parameter vector, must be entered into the control object model (2.27). Subsequently, 

the system (2.44) is subjected to integration, followed by the calculation of the functional value (2.46). 

The best solution 𝑅𝑖− is specified 

                                                    𝒈𝑖− = 𝑚𝑖𝑛{𝒈1, … , 𝒈𝑀}.                                                     (2.78) 

For the operation of crossover, random two possible solutions (𝑹𝛾, 𝐪
𝛾) and (𝑹𝜑 , 𝐪𝜑) are chosen, 

𝛾, 𝜑 ∈ {1,… ,𝑀}.  

A probability of executing the operation of crossover is determined                                                                                                      

                                                                                                                                               (2.79)      

A random value 𝝃 is produced, generally distributed between 0 and 1. If this value is below 𝑃𝑐, 

the operation of crossover is executed. 

Two crossover operation points are selected at random 

                                            𝑘1 ∈ {1, … , 𝐻},     𝑘2 ∈ {1,… ,𝑚𝑞},                                            (2.80) 

the first point pertains to the structural portion, while the other one pertains to the parametric portion. 

The application of a crossover operation yields a total of four novel possible solutions 

𝐪𝑀+1 = [q1
𝛾
, … , q𝑘2

𝛾
, q𝑘2+1

𝜑
, … , q𝑚𝑞

𝜑
]𝑇,     

𝑹𝑀+1 = (𝒓𝛾,1, … , 𝒓𝛾,𝑘1 , 𝒓𝜑,𝑘2+1 , … , 𝒓𝜑,𝐻), 

𝐪𝑀+2 = [q1
𝜑
, … , q𝑘2

𝜑
, q𝑘2+1

𝛾
, … , q𝑚𝑞

𝛾
]𝑇, 

𝑹𝑀+2 = (𝒓𝜑,1, … , 𝒓𝜑,𝑘1 , 𝒓𝛾,𝑘2+1 , … , 𝒓𝛾,𝐻), 

𝑃𝑐 = max {
𝒈𝑖 −

𝒈𝛾
,
𝒈𝑖 −

𝒈𝜑
}. 
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𝐪𝑀+3 = [q1
𝛾
, … , q𝑘2

𝛾
, q𝑘2+1

𝜑
, … , q𝑚𝑞

𝜑
]𝑇, 

𝑹𝑀+3 = 𝑹𝛾, 

𝐪𝑀+4 = [q1
𝜑
, … , q𝑘2

𝜑
, q𝑘2+1

𝛾
, … , q𝑚𝑞

𝛾
]𝑇, 

                                                             𝑹𝑀+4 = 𝑹𝜑.                                                                 (2.81) 

Four offspring are generated: two resulting from the simultaneous recombination of structural 

and parametric elements, and two from the recombination of parametric elements only, with structural 

components held constant. 

Following the crossover, a subsequent mutation operation is executed with a certain 

probability 𝑃𝜇. A random value 𝝃 is produced, generally distributed between 0 and 1. If this value is 

fewer than 𝑃𝜇, the mutation operation is implemented. 

The selection of mutation points is conducted with regard to both structural and parametric 

portions 

                                             𝜇1 ∈ {1,… ,𝐻},     𝜇2 ∈ {1,… ,𝑚𝑞},                                               (2.82) 

New values at 𝜇1 and 𝜇2 points are being generated 

                                                            𝑟𝑒1
𝑀+1,𝜇1 ∈ |𝑭𝟐|,    

 𝑟𝑒2
𝑀+1,𝜇1    and   𝑟𝑒4

𝑀+1,𝜇1 ∈ |𝑭𝟏|, 

                                       𝑟𝑒3
𝑀+1,𝜇1   and   𝑟𝑒5

𝑀+1,𝜇1 ∈ |𝑭𝟎 + 𝜇1 − 1|, 

                                                 q𝜇2
𝑀+1 = 𝝃(q𝜇2

+ − q𝜇2
− ) + q𝜇2

− .                                                  (2.83) 

where 𝑟𝑒 represents any element in the column of the code matrix, for instance, 𝑟𝑒1 is the first element 

in the column, 𝑭𝟎 represents the arguments set, 𝑭𝟏 represents the functions set that is characterized by 

one argument, 𝑭𝟐 represents the functions set that is characterized by two arguments. 

Afterwards, the first novel possible solution gets estimated based on the presented criterion 

                                                     𝑓𝑀+1 = 𝐽(𝑹𝑀+1, 𝐪
𝑀+1).                                                     (2.84) 

Following that, the worst solution within the population is identified 

                                                      𝑓𝑗+ = max {𝑓1, … , 𝑓𝑀}.                                                     (2.85) 
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If the first novel solution exhibits better results compared to the worst solution within the 

population 

                                                                𝑓𝑀+1 < 𝑓𝑗+ ,                                                              (2.86) 

then, the first novel solution is substituted with the worst solution within the population 

                                                               𝐪𝑗+
← 𝐪𝑀+1, 

                                                               𝑹𝑗+ ← 𝑹𝑀+1.                                                            (2.87) 

The previously mentioned actions (5.84)–(5.87), are iteratively performed for other 

novel possible solutions (𝑹𝑀+2, 𝐪
𝑀+2), (𝑹𝑀+3, 𝐪

𝑀+3) and (𝑹𝑀+4, 𝐪
𝑀+4). 

 

2.10. Variational Synthesized Genetic Programming (VSGP) 

 

Mirroring the encoding scheme of Cartesian GP, this technique employs a minimalistic a triplet 

of integers vector to typically identify each applied small variation 

                                                     𝒲 = [𝓌1  𝓌2  𝓌3]
𝑇 ,                                                         (2.88) 

where the variables 𝓌1, 𝓌2, and 𝓌3 correspond to the column identifier, the row position within that 

column, and the replacement value for the specified matrix element, respectively. If 𝓌2 equals 1, the 

subsequent number (𝓌3) must either be zero or modified based on the functions set that is characterized 

by two arguments (2.73). If 𝓌2 is equal to either 2 or 4, then 𝓌3 will be modified to either zero or 

selected from the functions set that is characterized by one argument (2.72). If 𝓌2 is equal to either 3 or 

5, then 𝓌3 can either be set to zero or can only be determined by the combination of the number of 

arguments (2.71) and the number of columns minus one. Certain conditions dictate the implementation 

of small variations to the SGP matrix based on the pivot and priority. These requirements can be 

elucidated by implementing the following variations to the matrix (2.74): 

𝒲1 = [3  6  2]𝑇 , 
𝒲2 = [5  2  0]𝑇 , 
𝒲3 = [4  1  1]𝑇 , 

                                                                     𝒲4 = [6  5  0]𝑇 ,                                                               (2.89) 

𝒲5 = [3  1  0]𝑇 , 
𝒲6 = [8  2  3]𝑇 , 
𝒲7 = [6  6  2]𝑇 , 

The updated matrix of the SGP will look like 
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               𝒲1 ∘ 𝒲2 ∘ 𝒲3 ∘ 𝒲4 ∘ 𝒲5 ∘ 𝒲6 ∘ 𝒲7 ∘ 𝑅𝑆𝐺𝑃 =

[
 
 
 
 
 
2
1
6
   

2
 1
4
    

𝟎
1
7
    

𝟏
1
5
    

2
2
6
   

1
1
11

   
2
6
9
 
  1
  𝟑

   12
3
2
1
    

3
3
1
    

1
8
𝟐
    

1
1
1
    

1
3
1
    

1
𝟎
1
   

4
10
1

 
1

 13
 1 ]

 
 
 
 
 

.         (2.90) 

The first variation 𝒲1 has changed the third column's priority (the 6th element) from 1 to 2. 

Consequently, it has changed the pivot from the first argument (the 2nd and 3rd elements) to the second 

argument (the 4th and 5th elements) of this column. It is worth noting that the second variation 𝒲2 did 

not affect the 5th column since it is not possible to alter any element of the pivot to zero in each column 

of the matrix, where the pivot of the 5th column is the first argument (the 2nd and 3rd elements) because 

of the number of the priority is 1 in this column. In contrast, the fourth variation 𝒲4 can be accomplished 

since the 5th element of the 6th column is not an element of the pivot in this column, where the 

expression of this column was −𝑞3𝑥3 + 𝑥1, the variable 𝑥1 has been neglected. In this case, the unit 

element of the function is used as the second argument where the unit element of the addition function 

is 0 and for the multiplication function is 1, so the expression has become (−𝑞3𝑥3 + 0). Interestingly, 

the fifth variation 𝒲5 has fulfilled a primary change, where the expression of this column was 𝑞3𝑥2
2 +

𝑞1𝑥3
2. This variation cancelled the addition function (changed the first element to 0). The number of 

priority turned out to be 2 as a result of the first variation, so the new expression of this column has got 

the expression of the pivot (the 2nd argument), whose code is [1  8]T that represents 𝑞1𝑥3
2 (the identity 

function and the expression of the second column). The seventh variation 𝒲7 was not accomplished 

since the fourth variation has changed the 5th element in the 6th column to 0, and changing the priority 

means changing the pivot of the column, and the pivot element is not allowed to be zero. Eventually, the 

third and sixth variations 𝒲3 and 𝒲6 can be performed directly.  

This new matrix can be expressed mathematically as 

                                         𝑦 = exp(𝑞1𝑥3
2) sin(𝑞2 + 𝑥1) + (−𝑞3𝑥3)

2.                                    (2.91) 

As mentioned above, the analysis highlights the crucial importance of the priority, which may be 

summed up as follows: the main task of the priority is to pick the pivot for each column. Moreover, it 

effectively avoids zero values in the pivot elements due to small variations. Additionally, it has the 

likelihood to decrease the length of mathematical expressions. 

The application of steps of variational genetic algorithm to synthesized genetic programming 

technique is as mentioned in section 2.7. 
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2.11. The synthesized genetic programming as a distinct and modern technique 

 

The Synthesized Genetic Programming technique (SGP) is regarded as a distinct technology 

separate from Genetic Programming (GP) and Cartesian Genetic Programming (CGP). This 

differentiation arises from divergences in encoding and decoding processes, code type, and the approach 

to implementing the principle of small variations within the basic solution. The significant distinctions 

among these three techniques can be exemplified as follows: 

The next mathematical expression is an example of how to encode it manually by three methods 

of symbolic regression 

                                           𝑧 = sin (cos(exp(𝑞1𝑥1 + 𝑞2𝑥2
2))).                                            (2.92) 

To encode this mathematical equation, the following fundamental sets need to be used: 

• The arguments set  

                   𝑭𝟎 = {𝑓0,1 = 𝑥1,  𝑓0,2 = 𝑥2,  𝑓0,3 = q1, 𝑓0,4 = q2,  𝑓0,5 = 0, 𝑓0,6 = 1};                  (2.93) 

• The functions set that is characterized by one argument 

                           𝑭𝟏 = {𝑓1,1(𝑦) = 𝑦, 𝑓1,2(𝑦) =  𝑦2, 𝑓1,3(𝑦) = sin(𝑦),  

                                       𝑓1,4(𝑦) = cos(𝑦) , 𝑓1,5(𝑦) = exp(𝑦)};                                                          (2.94) 

• The functions set that is characterized by two arguments 

                            𝑭𝟐 = {𝑓2,1(𝑦1, 𝑦2) =  𝑦1 + 𝑦2, 𝑓2,2(𝑦1, 𝑦2) =  𝑦1𝑦2}.                                      (2.95) 

 

2.11.1. Genetic Programming Technique (GP) 

 

In this technique, the mathematical expression's structure is represented as a computational tree. 

In this structure, functions are represented by nodes, while the arguments of mathematical expressions 

are represented by leaves. The fundamental sets (2.93)-(2.95) are required for depicting the 

computational tree corresponding to the mathematical expression (2.92), as illustrated in Figure 2.3. 

Furthermore, the mathematical expression (2.92) can be reformulated utilizing the fundamental 

sets (2.93)-(2.95) as the record: 
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                     𝑧 =  𝑓1,3 (𝑓1,4 (𝑓1,5 (𝑓2,1 (𝑓2,2(𝑓0,3, 𝑓0,1), 𝑓2,2 (𝑓0,4, 𝑓1,2(𝑓0,2)))))).               (2.96) 

 

 

 

 

 

 

Figure 2.3. The computational tree of example (2.92) by GP 

 

In the context of a mathematical expression, if an argument is present multiple times, it 

necessitates an equivalent number of occurrences on the leaves within the computational tree structure. 

The computational tree is preserved within the memory of the computer as arranged sets of 

integer vectors, each comprising two elements. The initial element designates the count of arguments, 

while the subsequent element delineates the sequence of functions. The GP code corresponding to 

example (2.92) is as follows: 

                           𝑹𝐺𝑃 = ([
1
3
] , [

1
4
] , [

1
5
] , [

2
1
] , [

2
2
] , [

0
3
] , [

0
1
] , [

2
2
] , [

0
4
] , [

1
2
] , [

0
2
]).                       (2.97) 

The indices of elements across all branches of the computational tree, extending from the top 

node to the leaves, serve as the genetic programming code.  

 

2.11.2. Cartesian Genetic Programming Technique (CGP) 

 

Cartesian genetic programming (CGP) employs a non-graphical representation for expressing 

codes of expressions. This technique involves the integration of the two sets of fundamental functions 

into a unified set. 

                                                            𝑭 =  𝑭𝟏 ∪ 𝑭𝟐.                                                                 (2.98) 
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As a result, the sets (2.94) and (2.95) will be as one set and as shown: 

                       𝑭 = {𝑓1(𝑦) = 𝑦, 𝑓2(𝑦) =  𝑦2, 𝑓3(𝑦) = sin(𝑦) , 𝑓4(𝑦) = cos(𝑦),  

                                         𝑓5(𝑦) = exp(𝑦) , 𝑓6(𝑦1, 𝑦2) =  𝑦1 + 𝑦2,  

                                                        𝑓7(𝑦1, 𝑦2) =  𝑦1𝑦2}.                                                           (2.99) 

CGP codes for mathematical expressions typically take the form of a three- or four-row integer 

matrix. The initial row of the matrix denotes the indexes of functions obtained from the set of 

fundamental functions (2.99). The fundamentals functions’ set (2.99) consists of functions that have a 

maximum of two arguments. Consequently, encoding the matrix requires only three rows. It should be 

noted that the number of rows in the matrix varies depending on the number of arguments used for the 

available functions, where in the case of using the one-argument function, the third element in the 

column does not have any practical application. The remaining rows stand for the argument indices 

(2.93). When a column's calculation is complete, its result should be appended to the arguments (2.93). 

So, after each computation, there will be more arguments. As a result, the total number of arguments 

will grow with each new calculation. 

In order to encode the example (2.92) by this technique, firstly, it is needed to encode the 

expression 𝑞1𝑥1 as the first column. The function is multiplication, as its sequence is 7 in set (2.99), 

𝑓7(𝑦1, 𝑦2) =  𝑦1𝑦2. Then, from the set of arguments (2.93), the sequence of parameter 𝑞1 is 3, and the 

sequence of variable 𝑥1 is 1. As a result, the code of the first column for the matrix is [7 3 1]𝑇. The result 

of each elementary function determination is added to the list of arguments (2.93) every time, increasing 

the total number of arguments with each calculation. Subsequently, the sequence of the first column will 

be (|𝑭𝟎| + 1 = 6 + 1 = 7) in the set of arguments. Then, the code of expression 𝑥2
2 is calculated as the 

second column, from the set (2.99), the sequence of 𝑓2(𝑦) = 𝑦2 is 2. And the variable 𝑥2 has the series 

of 2 in the set of arguments (2.93). The third element of this column is not utilized since the argument 

of this function is only one. So, it can be 2. The code of the second column for the matrix is [2 2 2]𝑇, 

and it will be added to the arguments set (2.93), and the sequence of this column will be (|𝑭𝟎| + 2 =

6 + 2 = 8) in the arguments set (2.93). 

Typically, the solution of CGP's mathematical equation (2.92) is coded as 

                                       𝑹𝐶𝐺𝑃 = [
7
3
1

2
2
2

7
4
8

6
7
9

5
10
6

3
12
1

6
13
5

].                                        (2.100) 
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2.11.3. Synthesized Genetic Programming Technique (SGP) 

 

All pertinent details concerning this technique are elaborated upon in Section 2.9 of the current 

chapter. In order to implement example (2.92) by this technique, let us get started by coding the 

expression 𝑞1𝑥1 as the first column of the SGP matrix. For the first element in this column, determine 

the index of multiplication function in the functions set that is characterized by two arguments (2.95); it 

is the number of 2, 𝑓2,2(𝑦1, 𝑦2) = 𝑦1𝑦2. For the second element, the function of the parameter 𝑞1 is the 

identity function, 𝑓1,1(𝑦) = 𝑦, from the functions set that is characterized by one argument (2.94); the 

index of this function is 1. For the third element, the location of the parameter 𝑞1 in the arguments set 

(2.93) is 3. For the fourth element, the variable 𝑥1 function is the identity function, 𝑓1,1(𝑦) = 𝑦,  and its 

index is 1 in the set (2.94). For the fifth element, the location of the variable 𝑥1 in the arguments set 

(2.93) is 1. The sixth element is the priority, and its number is 1. As a result, the code of the expression 

𝑞1𝑥1 that represents the first column in the matrix is [2  1  3  1  1  1]T. After calculating this column, it 

will have been appended to the arguments set (2.93) as the seventh element, denoted as (|𝑭𝟎| + 1 = 6 +

1 = 7).  

The final code of the SGP matrix, for example (2.92), can be expressed as: 

𝑹𝑆𝐺𝑃 =

[
 
 
 
 
 
2
1
3
1
1
1

2
1
4
2
2
1

1
1
7
1
8
1

1
5
9
1
5
1

1
4
10
1
5
1

1
3
11
1
5
1 ]

 
 
 
 
 

.                                            (2.101) 

The procedural application of the small variations’ principle within the basic solution of genetic 

programming and Cartesian genetic programming techniques was delineated in reference [203]. 

Furthermore, the application of this principle to the synthesized genetic programming technique was 

expounded upon in Section 2.10 of the current chapter. Consequently, a discernible contrast emerges in 

the application of this principle across each of these three techniques. 

Table 2.1 presents a comparative analysis of the key features pertaining to symbolic regression 

across the three techniques under consideration. 
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Table 2.1. The main features of three symbolic regression techniques (GP, CGP & SGP) 

No. The feature The technique of symbolic regression 

GP CGP SGP 

1 Appearance 1992 2000 2024 

2 The structure of mathematical 

expression 

computational tree no graph no graph 

3 The stored code in the memory 

of the computer  

as arranged sets of 

integer vectors, each 

comprising two 

elements 

a three- or four-

row integer 

matrix. 

a six-row 

integer matrix 

4 The length of code for any 

mathematical expression and 

after each crossover operation 

various 

(Needs more time for 

calculation) 

constant constant 

5 Terminology employed within 

the code 

No terms No terms innovative 

coding terms 

such as the 

pivot and the 

priority 

 

It is noteworthy that the efficiency and rapid solution discovery capabilities of the synthesized 

genetic programming technique (SGP) in addressing the problems of control general synthesis have been 

demonstrated in comparison to Cartesian genetic programming and parse-matrix evolution techniques 

[210-211]. 

 

2.12. The Search for the Effective Position of Points 

 

Following the solution of the problem of synthesis, it becomes essential to identify the effective 

position of points (2.50) inside the states' space. Evolutionary algorithms are employed in order to 

address this objective, as the quality criterion (2.31) exhibits non-convexity and non-unimodality in the 

coordinates space of points (2.50). The utilization of the particle swarm optimization (PSO) algorithm 

[212-213] serves as the basis for this study. The mentioned algorithm is currently well-recognized as a 

prominent evolutionary algorithm. 
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The PSO algorithm comprises the subsequent steps. Initially, the generation of a possible 

solution's initial set is done 

                                q𝑖
𝑗
= 𝝃(q𝑖

+ − q𝑖
−) + q𝑖

−,   𝑖 = 1,… ,𝑚𝑞 ,   𝑗 = 1,… ,𝑀.                            (2.102) 

where 𝝃 represents a random value drawn from the interval [0:1]; while q𝑖
+ and q𝑖

− denote the higher and 

lower bounds of the parameter evolution for vector values, respectively. Additionally, 𝑚𝑞 represents the 

dimensionality of the parametric vector and 𝑀 represents the total number of vectors inside the initial 

population. 

For every possible solution, a history vector is generated, initialized with a value of zero 

                                          𝜐𝑖
𝑗
= 0, 𝑖 = 1,… ,𝑚𝑞 ,   𝑗 = 1,… ,𝑀.                                               (2.103) 

Subsequently, the objective function values are estimated for every possible solution 

                                                 𝑓𝑗 = 𝐹(𝐪𝑗),    𝑗 = 1,… ,𝑀.                                                    (2.104) 

where 𝐹(𝐪) represents the objective function of this problem of optimization. 

In addition, an evaluation is determined for every possible solution 

                                              q̃𝑖
𝑗
= {

q𝑖
+, if q𝑖

𝑗
+ 𝜎𝜐𝑖

𝑗
> q𝑖

+

q𝑖
−, if q𝑖

𝑗
+ 𝜎𝜐𝑖

𝑗
< q𝑖

+ 

q𝑖
𝑗
+ 𝜎𝜐𝑖

𝑗
, otherwise

,                                                    (2.105) 

where 𝜎 represents an algorithm constant parameter, 

                                     𝜐𝑖
𝑗
← 𝛼𝜐𝑖

𝑗
+ 𝛾𝝃(q𝑖

𝑗−
− q𝑖

𝑗
) + 𝛽𝝃(q𝑖

𝑗(𝑟)
− q𝑖

𝑗
),                                 (2.106) 

𝛼, 𝛾, 𝛽 represent algorithm constant parameters, q − represents the most efficient possible solution for 

now 

                                                       𝑓𝑗− = min {𝑓1, … , 𝑓𝑀}.                                                     (2.107) 

q𝑗(𝑐) represents the most efficient possible solution, out of 𝑐 randomly chosen possible solutions 

                                  𝑓𝑗(𝑐) = min{𝑓𝑗1, … , 𝑓𝑗𝑐} , 𝑖 = 1,… ,𝑚𝑞 ,   𝑗 = 1,… ,𝑀.                         (2.108) 

The optimization problem's solution is the desired one that can be found after the provided 

evolution loops. 
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CHAPTER 3. RESULTS  

 

3.1. Introduction 

 

This chapter verifies the feasibility of the suggested synthesized optimal control technique 

described in chapter two using a mathematical model of a nonholonomic wheeled mobile robot (Khepera 

II). 

The technique of variational synthesized genetic programming (VSGP) involves achieving 

stability of the control object concerning a specific point in the space of states and controlling the objects 

by altering the positions of the points of equilibrium. 

 

3.2. Computational Experiment 

 

The optimal control problem is defined for a system comprising a pair of non-holonomic mobile 

robots, whose positions must be dynamically adjusted within the plane to circumvent environmental 

obstacles such that their environment encompasses several static phase constraints. However, the 

complexity of the task is heightened by the existence of the dynamic phase constraints, as it necessitates 

ensuring the avoidance of collisions between the two robots. 

The following is the form of the nonholonomic mobile robot mathematical model [214]: 

𝑥̇1 = 0.5(𝑢1 + 𝑢2) cos(𝑥3), 
                                                            𝑥̇2 = 0.5(𝑢1 + 𝑢2) sin(𝑥3),                                                       (3.1) 

                                                            𝑥̇3 = 0.5(𝑢1 − 𝑢2), 
 

In the first step, the task of synthesizing a stabilization system is addressed in order to establish 

a stable state for the object. 

For numerically solving the synthesis problem, it is necessary to establish a predetermined set of 

initial states: 

                                                     𝑿0 = {𝒙0,1, … , 𝒙0,𝐋}.                                                             (3.2) 

One terminal state is established: 

                                                       𝐱∗ = [𝑥1
∗  𝑥2

∗  𝑥3
∗]𝑇.                                                            (3.3) 

The subsequent quality criterion is 
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                                                                                                                                                 (3.4) 

 

where 𝑡𝑓,𝑖 is a period characterized by the attainment of the terminal state (3.10) starting from the initial 

states (3.9), 𝑖 = 1,… , 𝐋, 𝐋 represents the total number of initial states,  𝑝1 represents a weight coefficient, 

and  

𝑡𝑓,𝑖 = {
𝑡,      if   𝑡 ≤ 𝑡+ and ‖𝑥𝑓 − 𝑥(𝑡)‖ ≤ 𝜀

 𝑡+,    otherwise                                        
,                                     (3.5) 

and  

 

                                                                                                                                           (3.6) 

 

The first step represents the stabilization system synthesis that involves the search for and 

creation of a single control function: 

                                                             𝐮 = 𝐠(𝐱∗ − 𝐱),                                                            (3.7) 

which guarantees the attainment of the minimum functional value (3.4) for all provided initial states 

(3.2). 

One robot can solve the problem of control synthesis (3.1)–(3.7) because the pair of robots are 

identical to one another. This problem is solved using the variational synthesized genetic programming 

(VSGP) symbolic regression technique.  

Case one:  Eight initial states are provided: 

𝛸0 = {𝒙0,0 = [−3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3  3.5 −
5𝜋

16
]
𝑇

}.                                                                                                                                     (3.8)   

The terminal states are established as one point 

                                            𝐱∗ = [𝑥1
∗  𝑥2

∗  𝑥3
∗]𝑇 = [0  0  0]𝑇.                                                    (3.9) 

𝐽𝑠𝑦𝑛 = ∑(𝑡𝑓,𝑖

𝐋

𝑖=1

+ 𝑝1‖𝐱∗ − 𝐱(𝑡𝑓,𝑖, 𝐱
0,𝑖)‖)  → min, 

‖𝑥𝑓 − 𝑥(𝑡)‖ = √∑(𝑥𝑖
𝑓

− 𝑥𝑖(𝑡))2

3

𝑖=1

. 
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Consequently, the ensuing mathematical expression for the control function is constructed 

                                        𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

− 

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

   , 𝑖 = 1,2,                                                                  (3.10) 

where  

𝑢̃1 = (𝑥2
𝑓

− 𝑥2)
1
3(𝑥1

𝑓
− 𝑥1)𝑞1(𝑥2

𝑓
− 𝑥2) + 𝑞2(𝑥3

𝑓
− 𝑥3) 

                       +sin ((𝑥2
𝑓

− 𝑥2)
1

3(𝑥1
𝑓

− 𝑥1)𝑞1(𝑥2
𝑓

− 𝑥2) + 𝑞2(𝑥3
𝑓

− 𝑥3)),                          (3.11) 

                                    𝑢̃2 = 𝜌 (𝑞3
2(𝑥1

𝑓
− 𝑥1)) + 0.5 ∗ 𝑞3

2(𝑥1
𝑓

− 𝑥1),                                      (3.12) 

                                          𝜌(𝜇) = {
0,                     if   |𝜇| < 𝛿                                                    

 𝑠𝑔𝑛(𝜇),        otherwise                                                      
 (3.13) 

𝑞1 = 2.07946 ,  𝑞2 = 2.63935 , 𝑞3 = 2.96333,  𝛿 = 10−8. The quality criterion (3.4) for the 

variational SGP solution is 𝐽𝑠𝑦𝑛 = 2.26092, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 8, and ,  𝑝1 = 1. 

Figure 3.1 shows the trajectories taken by one robot as it moved from eight initial states (3.2) to 

the terminal state (3.3). 

                                                                𝑥2 (m) 

 

 

   

                                                                                                               𝑥1 (m) 

 

 

 

 

                       Figure 3.1. Robot trajectories with VSGP control function 
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The control functions (3.10) that have been acquired to guarantee the stability of the object are 

inserted into the model equations (3.1). The solution to the problem of control synthesis yields the 

emergence of a stable point of equilibrium in the space of state. The equilibrium point position is 

contingent upon the terminal vector (3.3). 

Figures 3.2 through 3.9 depict the simulation results of a nonholonomic mobile robot, 

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes 

and  time — second in the x-axes, by the VSGP method. 

 

 

 

 

 

 

 

 

 

Figure 3.2. The robot displacements in direction 𝑥1from all initial conditions by VSGP method 

 

 

 

 

 

 

 

 

 

Figure 3.3. The robot displacements in direction 𝑥2 from all initial conditions by VSGP method 
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Figure 3.4. The robot displacements in direction 𝑥3 from all initial conditions by VSGP method 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. The robot velocities in direction 𝑥1 from all initial conditions by VSGP method 
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Figure 3.6. The robot velocities in direction 𝑥2 from all initial conditions by VSGP method 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. The robot velocities in direction 𝑥3 from all initial conditions by VSGP method 
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Figure 3.8. The robot control 𝑢1 from all initial conditions by VSGP method 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. The robot control 𝑢2 from all initial conditions by VSGP method 
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Case two:  Eight initial states are provided: 

𝛸0 = {𝒙0,0 = [−3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3  3.5 −
5𝜋

16
]
𝑇

}.                                                                                                                                   (3.14)   

The terminal states are established as one point 

                                            𝐱∗ = [𝑥1
∗  𝑥2

∗  𝑥3
∗]𝑇 = [0  0  0]𝑇.                                                    (3.15) 

Consequently, the ensuing mathematical expression for the control function is constructed 

                                        𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

− 

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

   , 𝑖 = 1,2,                                                                  (3.16) 

where  

𝑢̃1 = 𝐴 ∗ (1 − exp(−𝐴2)) ∗ (1 − exp (−(𝐴 ∗ (1 − exp(−𝐴2)))
2
)),                    (3.17) 

𝑢̃2 = (((2(𝑥1
𝑓
− 𝑥1) ∗ (1 − exp (−(𝑥1

𝑓
− 𝑥1)

2
)) ∗ 𝜌 (𝑞2 + exp ((𝑥1

𝑓
− 𝑥1) + (𝑥1

𝑓
− 𝑥1)

2
) +

tanh(0.5 ∗ 𝑞3) ∗ (𝑥2
𝑓

− 𝑥2)))3)3)/2,                                                 (3.18) 

𝐴 = 𝑞1(𝑥1
𝑓

− 𝑥1) + (𝑥3
𝑓

− 𝑥3)(𝑥2
𝑓

− 𝑥2) + 𝑞2(𝑥3
𝑓

− 𝑥3),                           (3.19) 

                                          𝜌(𝜇) = {
1,                   if  𝜇 ≥ 0                                                        
 0,                   otherwise                                                      

  (3.20) 

𝑞1 = 7.18441,  𝑞2 = 7.12227, 𝑞3 = 7.87202. The quality criterion (3.4) for the variational 

SGP solution is 𝐽𝑠𝑦𝑛 = 2.35184, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 8, and ,  𝑝1 = 1.  

Figure 3.10 shows the trajectories taken by one robot as it moved from eight initial states (3.14) 

to the terminal state (3.15). 
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                                                                𝑥2 (m) 

 

 

   

                                                                                                               𝑥1 (m) 

 

 

 

 

                       Figure 3.10. Robot trajectories with VSGP control function 

 

Figures 3.11 through 3.16 depict the simulation results of a nonholonomic mobile robot, 

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes 

and  time — second in the x-axes, by the VSGP method. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. The robot displacements in direction 𝑥1from all initial conditions by VSGP method 
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Figure 3.12. The robot displacements in direction 𝑥2 from all initial conditions by VSGP method 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. The robot velocities in direction 𝑥1 from all initial conditions by VSGP method 
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Figure 3.14. The robot velocities in direction 𝑥2 from all initial conditions by VSGP method 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. The robot control 𝑢1 from all initial conditions by VSGP method 
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Figure 3.16. The robot control 𝑢2 from all initial conditions by VSGP method 

 

Case Three:  Twelve initial states are provided: 

𝛸0 = {𝒙0,0 = [−3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,8 = [−3  3.5  0]𝑇 , 𝒙0,9 = [−3 − 3.5  0]𝑇 , 𝒙0,10 = [3 − 3.5  0]𝑇 , 𝒙0,11 =

[3  3.5  0]𝑇}.                                                                                                                                         (3.21)   

The terminal states are established as one point 

                                            𝐱∗ = [𝑥1
∗  𝑥2

∗  𝑥3
∗]𝑇 = [0  0  0]𝑇.                                                    (3.22) 

Consequently, the ensuing mathematical expression for the control function is constructed 

                                        𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

− 

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

   , 𝑖 = 1,2,                                                                  (3.23) 
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where  

𝑢̃1 = 2 ∗ (𝑞1(𝑥1
𝑓

− 𝑥1) + (𝑥3
𝑓

− 𝑥3)(𝑥2
𝑓

− 𝑥2) + (𝑞3(𝑥3
𝑓

− 𝑥3))
3
) ,         (3.24) 

𝑢̃2 = 𝑞2(𝑥1
𝑓

− 𝑥1) ∗ ln (|2𝑞4(𝑥2
𝑓

− 𝑥2)|),                                                 (3.25) 

𝑞1 = 5.94890,  𝑞2 = 8.05063, 𝑞3 = 0.86430 and 𝑞4 = 1.64740. The quality criterion (3.4) for the 

variational SGP solution is 𝐽𝑠𝑦𝑛 = 1.88384, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 12, and ,  𝑝1 = 1.  

Figure 3.17 shows the trajectories taken by one robot as it moved from twelve initial states (3.21) 

to the terminal state (3.22). 

 

                                                                              𝑥2 (m) 

                                                                 

 

 

                                                                                                                       𝑥1 (m) 

 

                                                                                                                          

 

 

 

                       Figure 3.17. Robot trajectories with VSGP control function 

 

Figures 3.18 through 3.29 depict the simulation results of a nonholonomic mobile robot, 

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes 

and  time — second in the x-axes, by the VSGP method. 
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Figure 3.18. The robot displacements in direction 𝑥1from first six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. The robot displacements in direction 𝑥2 from first six initial conditions by VSGP  
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Figure 3.20. The robot velocities in direction 𝑥1 from first six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. The robot velocities in direction 𝑥2 from first six initial conditions by VSGP 
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Figure 3.22. The robot control 𝑢1 from first six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. The robot control 𝑢2 from first six initial conditions by VSGP 
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Figure 3.24. The robot displacements in direction 𝑥1from second six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25. The robot displacements in direction 𝑥2 from second six initial conditions by VSGP  
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Figure 3.26. The robot velocities in direction 𝑥1 from second six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27. The robot velocities in direction 𝑥2 from second six initial conditions by VSGP 
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Figure 3.28. The robot control 𝑢1 from second six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29. The robot control 𝑢2 from second six initial conditions by VSGP 
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Case Four:  Twelve initial states are provided: 

𝛸0 = {𝒙0,0 = [−3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,8 = [−3  3.5  0]𝑇 , 𝒙0,9 = [−3 − 3.5  0]𝑇 , 𝒙0,10 = [3 − 3.5  0]𝑇 , 𝒙0,11 =

[3  3.5  0]𝑇}.                                                                                                                                         (3.26)   

The terminal states are established as one point 

                                            𝐱∗ = [𝑥1
∗  𝑥2

∗  𝑥3
∗]𝑇 = [0  0  0]𝑇.                                                    (3.27) 

Consequently, the ensuing mathematical expression for the control function is constructed 

                                        𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

− 

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

   , 𝑖 = 1,2,                                                                  (3.28) 

where  

𝑢̃1 = 𝐵 ∗ (1 − exp(−𝐵2)) + (𝑥3
𝑓

− 𝑥3),                                              (3.29) 

𝑢̃2 = (((𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1))
3

+ 𝜌 ((𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1)))

3

,                             (3.30) 

𝐵 =  𝑠𝑔𝑛(𝑞1) ∗ ln(|𝑞1| + 1) (𝑥1
𝑓

− 𝑥1) + 𝑠𝑔𝑛(𝑞1) ∗ ln(|𝑞1| + 1) (𝑥1
𝑓

− 𝑥1)(𝑥2
𝑓

− 𝑥2) +

𝑞2(𝑥3
𝑓

− 𝑥3),                                                                                                                                      (3.31) 

                                          𝜌(𝜇) = {
0,                     if   |𝜇| < 𝛿                                                    

 𝑠𝑔𝑛(𝜇),        otherwise                                                      
 (3.32) 

𝑞1 = 7.60454, 𝑞2 = 5.86686 and 𝛿 = 10−8. The quality criterion (3.4) for the variational SGP solution 

is 𝐽𝑠𝑦𝑛 = 2.37900, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 12, and ,  𝑝1 = 1. 

Figure 3.30 shows the trajectories taken by one robot as it moved from twelve initial states (3.26) 

to the terminal state (3.27). 
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                                                                              𝑥2 (m) 

                                                                 

 

 

                                                                                                                        

                                                                                                                         𝑥1 (m) 

                                                                                                                          

 

 

 

                       Figure 3.30. Robot trajectories with VSGP control function 

 

Figures 3.31 through 3.42 depict the simulation results of a nonholonomic mobile robot, 

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes 

and  time — second in the x-axes, by the VSGP method. 

 

 

 

 

 

 

 

 

 

Figure 3.31. The robot displacements in direction 𝑥1from first six initial conditions by VSGP 
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Figure 3.32. The robot displacements in direction 𝑥2 from first six initial conditions by VSGP  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33. The robot velocities in direction 𝑥1 from first six initial conditions by VSGP 
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Figure 3.34. The robot velocities in direction 𝑥2 from first six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35. The robot control 𝑢1 from first six initial conditions by VSGP 
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Figure 3.36. The robot control 𝑢2 from first six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37. The robot displacements in direction 𝑥1from second six initial conditions by VSGP 
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       Figure 3.38. The robot displacements in direction 𝑥2 from second six initial conditions by VSGP  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.39. The robot velocities in direction 𝑥1 from second six initial conditions by VSGP 
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Figure 3.40. The robot velocities in direction 𝑥2 from second six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.41. The robot control 𝑢1 from second six initial conditions by VSGP 
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Figure 3.42. The robot control 𝑢2 from second six initial conditions by VSGP 

 

Case Five:  Twelve initial states are provided: 

𝛸0 = {𝒙0,0 = [−3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,8 = [−3  3.5  0]𝑇 , 𝒙0,9 = [−3 − 3.5  0]𝑇 , 𝒙0,10 = [3 − 3.5  0]𝑇 , 𝒙0,11 =

[3  3.5  0]𝑇}.                                                                                                                                         (3.33)   

The terminal states are established as one point 

                                            𝐱∗ = [𝑥1
∗  𝑥2

∗  𝑥3
∗]𝑇 = [0  0  0]𝑇.                                                    (3.34) 

Consequently, the ensuing mathematical expression for the control function is constructed 

                                        𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

− 

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

   , 𝑖 = 1,2,                                                                  (3.35) 

where  
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                       𝑢̃1 = 𝐶 ∗ (1 − exp(−𝐶2)) + 𝑎𝑟𝑐𝑡𝑎𝑛(𝑞2(𝑥3
𝑓

− 𝑥3)),                                    (3.36) 

𝑢̃2 = 𝑠𝑔𝑛 (𝑞1(𝑥1
𝑓

− 𝑥1)) ∗ (exp(|𝑞1(𝑥1
𝑓
− 𝑥1)|) − 1) + 𝑠𝑔𝑛 (𝑞3 ((𝑥3

𝑓
− 𝑥3) ∗

(1 − exp(−((𝑥3
𝑓

− 𝑥3)
2
))))) ∗ (|𝑞3((𝑥3

𝑓
− 𝑥3) ∗ (1 − exp (−((𝑥3

𝑓
− 𝑥3)

2
))))|)0.5,            (3.37) 

      𝐶 =  (𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1) + (𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1)(𝑥2
𝑓

− 𝑥2) + 𝑞2(𝑥3
𝑓

− 𝑥3),               (3.38) 

𝑞1 = 7.62259, 𝑞2 = 6.27694 and 𝑞3 = 7.40398. The quality criterion (3.4) for the variational 

SGP solution is 𝐽𝑠𝑦𝑛 = 2.38341, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 12, and ,  𝑝1 = 1. 

Figure 3.43 shows the trajectories taken by one robot as it moved from twelve initial states (3.33) 

to the terminal state (3.34). 

                                                                              𝑥2 (m) 

                                                                 

 

 

                                                                                                                          𝑥1 (m)  

                                                                                                                       

                                                                                                                        

 

 

 

 

                       Figure 3.43. Robot trajectories with VSGP control function 
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Figures 3.44 through 3.55 depict the simulation results of a nonholonomic mobile robot, 

showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes 

and  time — second in the x-axes, by the VSGP method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.44. The robot displacements in direction 𝑥1from first six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

Figure 3.45. The robot displacements in direction 𝑥2 from first six initial conditions by VSGP  
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Figure 3.46. The robot velocities in direction 𝑥1 from first six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.47. The robot velocities in direction 𝑥2 from first six initial conditions by VSGP 
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Figure 3.48. The robot control 𝑢1 from first six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.49. The robot control 𝑢2 from first six initial conditions by VSGP 
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Figure 3.50. The robot displacements in direction 𝑥1from second six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 3.51. The robot displacements in direction 𝑥2 from second six initial conditions by VSGP  
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Figure 3.52. The robot velocities in direction 𝑥1 from second six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.53. The robot velocities in direction 𝑥2 from second six initial conditions by VSGP 
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Figure 3.54. The robot control 𝑢1 from second six initial conditions by VSGP 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.55. The robot control 𝑢2 from second six initial conditions by VSGP 
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Case Six:  Fourteen initial states are provided: 

𝛸0 = {𝒙0,0 = [−3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,1 = [−3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,2 = [3 − 3.5 
5𝜋

16
]
𝑇

, 𝒙0,3 =

[3  3.5 
5𝜋

16
]
𝑇

, 𝒙0,4 = [−3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,5 = [−3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,6 = [3 − 3.5 −
5𝜋

16
]
𝑇

, 𝒙0,7 =

[3  3.5 −
5𝜋

16
]
𝑇

, 𝒙0,8 = [−3  3.5  0]𝑇 , 𝒙0,9 = [−3 − 3.5  0]𝑇 , 𝒙0,10 = [3 − 3.5  0]𝑇 , 𝒙0,11 =

[3  3.5  0]𝑇 , 𝒙0,12 = [0   0   
5𝜋

16
]
𝑇

, 𝒙0,13 = [0   0 −
5𝜋

16
]
𝑇

 }.                                                                                  (3.39)   

The terminal states are established as one point 

                                            𝐱∗ = [𝑥1
∗  𝑥2

∗  𝑥3
∗]𝑇 = [0  0  0]𝑇.                                                    (3.40) 

Consequently, the ensuing mathematical expression for the control function is constructed 

                                        𝑢𝑖
1 = {

𝑢𝑖
−, if 𝑢̃𝑖 < 𝑢𝑖

− 

𝑢𝑖
+, if 𝑢̃𝑖 > 𝑢𝑖

+

𝑢̃𝑖 , otherwise

   , 𝑖 = 1,2,                                                                  (3.41) 

where  

𝑢̃1 = ((𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1) (𝑞1 + (𝑥2
𝑓

− 𝑥2)) + 𝑞2(𝑥3
𝑓

− 𝑥3) + 𝑠𝑔𝑛 ((𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

−

𝑥1) (𝑞1 + (𝑥2
𝑓

− 𝑥2)) + 𝑞2(𝑥3
𝑓

− 𝑥3)) ln (|(𝑥2
𝑓

− 𝑥2)(𝑥1
𝑓

− 𝑥1) (𝑞1 + (𝑥2
𝑓

− 𝑥2)) + 𝑞2(𝑥3
𝑓

− 𝑥3)| +

1) +  𝜌 (𝑞2(𝑥3
𝑓

− 𝑥3))) /2,                                                                                                                 (3.42) 

                                           𝑢̃2 = (4 ∗ 𝑠𝑖𝑛(𝑞3) ∗ (𝑥1
𝑓

− 𝑥1))
3,                                                (3.43) 

                                          𝜌(𝜇) = {
0,                     if   |𝜇| < 𝛿                                                    

 𝑠𝑔𝑛(𝜇),        otherwise                                                      
 (3.44) 

𝑞1 = 0.23307,  𝑞2 = 6.87832, 𝑞3 = 8.36356,  𝛿 = 10−8. The quality criterion (3.4) for the variational 

SGP solution is 𝐽𝑠𝑦𝑛 = 1.75102, where 𝜀 = 0.01, 𝑡+ = 2.5 sec, 𝐋 = 14, and ,  𝑝1 = 1. 

Figure 3.56 shows the trajectories taken by one robot as it moved from fourteen initial states 

(3.39) to the terminal state (3.40). 
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                                                                𝑥2 (m) 

 

 

   

                                                                                                               𝑥1 (m) 

 

 

 

 

                       Figure 3.56. Robot trajectories with VSGP control function 

 

The control functions (3.41) that have been acquired to guarantee the stability of the object are 

inserted into the model equations (3.1). The solution to the problem of control synthesis yields the 

emergence of a stable point of equilibrium in the space of state. The equilibrium point position is 

contingent upon the terminal vector (3.40). 

In the second step, the particle swarm optimization (PSO) algorithm is employed to find the 

stabilization points, resulting in the discovery of these points for every single mobile robot. 

Mathematical models of two mobile robots [214] are presented 

𝑥̇1
𝑗
= 0.5(𝑢1

𝑗
+ 𝑢2

𝑗
) cos(𝑥3

𝑗
), 

                                                           𝑥̇2
𝑗
= 0.5(𝑢1

𝑗
+ 𝑢2

𝑗
) sin(𝑥3

𝑗
),                                                       (3.45) 

                                                           𝑥̇3
𝑗
= 0.5(𝑢1

𝑗
− 𝑢2

𝑗
), 

where 𝐱𝑗 = [𝑥1
𝑗
 𝑥2

𝑗
 𝑥3

𝑗
]𝑇 represents a state vector of robot 𝑗, 𝐮𝑗 = [𝑢1

𝑗
 𝑢2

𝑗
]𝑇 represents a control vector 

of robot 𝑗, 𝑗 = 1,2.  

The control vectors elements are subject to specific constraints 

                                 𝑢𝑖
− = −10 ≤ 𝑢𝑖

𝑗
≤ 10 = 𝑢𝑖

+,   𝑗 = 1,2,    𝑖 = 1,2.                                    (3.46) 

The initial states are established 
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𝐱1(0) = 𝐱0,1 = [0  0  0]𝑇 , 
                                                              𝐱2(0) = 𝐱0,2 = [10  10  0]𝑇.                                                  (3.47) 

The terminal states are established 

                                                             𝐱1(𝑡𝑓) = 𝐱𝑓,1 = [10  10  0]𝑇 , 

                                                             𝐱2(𝑡𝑓) = 𝐱𝑓,2 = [0  0  0]𝑇 ,                                                       (3.48) 

where 

                                      𝑡𝑓 = {
𝑡,      if   𝑡 ≤ 𝑡+ and ‖𝑥𝑓 − 𝑥(𝑡)‖ ≤ 𝜀

 𝑡+,    otherwise                                        
                                     (3.49) 

and 

 

                                                                                                                                               (3.50) 

 

The constraints of static phase are presented 

                               𝑟𝑠𝑡 − √(𝑥1
𝑗
− 𝑥1,𝑠𝑡)

2
+ (𝑥2

𝑗
− 𝑥2,𝑠𝑡)

2
≤ 0, 𝑗 = 1,2.                                  (3.51) 

where 𝑟𝑠𝑡, 𝑥1,𝑠𝑡, 𝑥2,𝑠𝑡 are provided parameters (radius and coordinates of center) of the constraints of 

static phase, 𝑠𝑡 = 1, … , 𝑃𝑡, 𝑃𝑡 represents the total number of phase constraints.  

The constraints of dynamic phase are provided 

                                          𝑟𝑑 − √(𝑥1
1 − 𝑥1

2)2 + (𝑥2
1 − 𝑥2

2)2 ≤ 0,                                            (3.52) 

where 𝑟𝑑 the minimal acceptable secure distance between robots, 𝑟𝑑 = 2. 

The next quality functional is defined for the solution of optimal control: 

 

 

                                                                                                               

 

 

                                                                                                                                                           (3.53) 

‖𝑥𝑓 − 𝑥(𝑡)‖ = √∑(𝑥𝑖
𝑓

− 𝑥𝑖(𝑡))2

3

𝑖=1

. 

𝐽𝑜𝑝𝑡 = 𝑡𝑓 + 𝑐1 ∑ ∑∫ 𝜗(𝑟𝑠𝑡 − √(𝑥1
𝑗
− 𝑥1,𝑠𝑡)

2
+ (𝑥2

𝑗
− 𝑥2,𝑠𝑡)

2
)

𝑡𝑓

0

2

𝑗=1

5

𝑠𝑡=1

+ 𝑐2 ∫ 𝜗 (𝑟𝑑 − √(𝑥1
1 − 𝑥1

2)2 + (𝑥2
1 − 𝑥2

2)2)

𝑡𝑓

0

+ 𝑐3 ∑√∑(𝑥𝑖
𝑓,𝑗

− 𝑥𝑖
𝑗
)2

3

𝑖=1

2

𝑗=1
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where 𝜗(𝐴) represents the Heaviside step function 

               𝜗(𝐴) = {
1,      if   𝐴 > 0
 0,    otherwise

 ,                                                        (3.54) 

The problem (3.45)–(3.54) can be solved by the utilization of the technique of synthesized 

optimal control and for all next cases, the control functions (3.42)-(3.44) are used. 

Case 1: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding 

the stabilization points and it is possible to search the control function (the equilibrium points) as a 

piecewise constant function. The constraints pertaining to the elements of points are as follows: 

−2 ≤ 𝑥1
𝑗,∗,𝑖

≤ 12, 

                                                         −2 ≤ 𝑥2
𝑗,∗,𝑖

≤ 12,                                                              (3.55) 

−
𝜋

2
≤ 𝑥3

𝑗,∗,𝑖
≤

𝜋

2
. 

where 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2.5, 𝑃𝑡 = 4, 𝑟1 = 1.5, 𝑟2 = 2, 𝑟3 = 2, 𝑟4 = 1.5, 𝑥1,1 = 1.5, 𝑥1,2 = 2, 𝑥1,3 =

8, 𝑥1,4 = 8.5, 𝑥2,1 = 2.5, 𝑥2,2 = 7.5, 𝑥2,3 = 2.5, 𝑥2,4 = 7.5,  𝜀 = 0.01 and 𝑡+ = 2.7 sec. 

The three points for each mobile robot have the subsequent coordinates in the state space 

{𝑥1, 𝑥2, 𝑥3}:  

                                                      𝐱1,∗,1 = [4.462  − 1.8995   1.5701]𝑇 ,       

           𝐱1,∗,2 = [10.7687   11.8605 − 0.6636]𝑇 ,   

                                                      𝐱1,∗,3 = [9.7937   11.4512    0.2058]𝑇 ,   

       𝐱2,∗,1 = [−0.6247   9.2577 − 0.382 ]𝑇 , 

       𝐱2,∗,2 = [2.248   10.6802  − 0.2329]𝑇 , 

                                                      𝐱2,∗,3 = [0.1365    5.131   − 0.477 ]𝑇.                                      (3.56) 

where the first three points are for the first robot and the other points for the second one. 

In Figures (3.57)-(3.63) the findings of the simulation are laid out. Figure 3.57 displays 

suitable trajectories generated by the pair of mobile robots in the {𝑥1, 𝑥2} plane. In the graphical 

representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple 

circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium 

configurations for the first and second robots are denoted by small green and black squares, respectively. 

These markers correspond bijectively to the three equilibrium points per agent that were identified 
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through the solution of the underlying optimal control problem (3.56). As evident from the observation, 

the two robots have successfully attained their terminal states without violating phase constraints. The 

functional value in Equation (3.53) was 𝐽𝑜𝑝𝑡 = 2.7000. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.57. Synthesized optimal control trajectories for two robots in the {𝑥1, 𝑥2} plane 

 

 

 

 

 

 

 

 

Figure 3.58. The variable 𝑥1
1 in black and effective control 𝑥1

∗,1
 in blue 
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Figure 3.59. The variable 𝑥2
1 in black and effective control 𝑥2

∗,1
 in blue 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.60. The variable 𝑥3
1 in black and effective control 𝑥3

∗,1
 in blue 
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Figure 3.61. The variable 𝑥1
2 in black and effective control 𝑥1

∗,2
 in blue 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.62. The variable 𝑥2
2 in black and effective control 𝑥2

∗,2
 in blue 
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Figure 3.63. The variable 𝑥3
2 in black and effective control 𝑥3

∗,2
 in blue 

 

Case 2: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding 

the stabilization points and it is possible to search the control function (the equilibrium points) as a 

piecewise constant function. The constraints pertaining to the elements of points are as follows: 

−2 ≤ 𝑥1
𝑗,∗,𝑖

≤ 12, 

                                                         −2 ≤ 𝑥2
𝑗,∗,𝑖

≤ 12,                                                              (3.57) 

−
𝜋

2
≤ 𝑥3

𝑗,∗,𝑖
≤

𝜋

2
. 

where 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2.5, 𝑃𝑡 = 5, 𝑟1 = 1.5, 𝑟2 = 1.5, 𝑟3 = 1.5, 𝑟4 = 1.5, 𝑟5 = 1.5, 𝑥1,1 =

1.5, 𝑥1,2 = 1.5, 𝑥1,3 = 8.5, 𝑥1,4 = 8.5, 𝑥1,5 = 5, 𝑥2,1 = 2.5, 𝑥2,2 = 7.5, 𝑥2,3 = 2.5, 𝑥2,4 = 7.5, 𝑥2,5 =

5, 𝜀 = 0.01 and  𝑡+ = 2.7 sec. 

The three points for each mobile robot have the subsequent coordinates in the state space 

{𝑥1, 𝑥2, 𝑥3}:  

                                                      𝐱1,∗,1 = [2.6034  − 2       1.5708]𝑇 ,       

                                                      𝐱1,∗,2 = [12      8.3517    0.0366]𝑇 ,   
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                                                      𝐱1,∗,3 = [9.9742   10.1032    1.5708]𝑇 ,   

                                                      𝐱2,∗,1 = [12      5.5246    1.5708 ]𝑇 , 

                                                      𝐱2,∗,2 = [7.648   − 2      0.2991]𝑇 , 

                                                  𝐱2,∗,3 = [0.1696   11.9731   − 0.8627]𝑇.                                  (3.58) 

where the first three points are for the first robot and the other points for the second one. 

In Figures (3.64)-(3.70) the findings of the simulation are laid out. Figure 3.64 displays 

suitable trajectories generated by the pair of mobile robots in the {𝑥1, 𝑥2} plane. In the graphical 

representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple 

circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium 

configurations for the first and second robots are denoted by small green and black squares, respectively. 

These markers correspond bijectively to the three equilibrium points per agent that were identified 

through the solution of the underlying optimal control problem (3.58). As evident from the observation, 

the two robots have successfully attained their terminal states without violating phase constraints. The 

functional value in Equation (3.53) was 𝐽𝑜𝑝𝑡 = 2.7335. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.64. Synthesized optimal control trajectories for two robots in the {𝑥1, 𝑥2} plane 
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Figure 3.65. The variable 𝑥1
1 in black and effective control 𝑥1

∗,1
 in blue 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.66. The variable 𝑥2
1 in black and effective control 𝑥2

∗,1
 in blue 



141 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.67. The variable 𝑥3
1 in black and effective control 𝑥3

∗,1
 in blue 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.68. The variable 𝑥1
2 in black and effective control 𝑥1

∗,2
 in blue 
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Figure 3.69. The variable 𝑥2
2 in black and effective control 𝑥2

∗,2
 in blue 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.70. The variable 𝑥3
2 in black and effective control 𝑥3

∗,2
 in blue 
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Case 3: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding 

the stabilization points and it is possible to search the control function (the equilibrium points) as a 

piecewise constant function. The constraints pertaining to the elements of points are as follows: 

−2 ≤ 𝑥1
𝑗,∗,𝑖

≤ 12, 

                                                         −2 ≤ 𝑥2
𝑗,∗,𝑖

≤ 12,                                                              (3.59) 

−
𝜋

2
≤ 𝑥3

𝑗,∗,𝑖
≤

𝜋

2
. 

where 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2.5, 𝑃𝑡 = 5, 𝑟1 = 2, 𝑟2 = 1.5, 𝑟3 = 2, 𝑟4 = 2, 𝑟5 = 2, 𝑥1,1 = 0, 𝑥1,2 =

5, 𝑥1,3 = 10, 𝑥1,4 = 5, 𝑥1,5 = 5, 𝑥2,1 = 5, 𝑥2,2 = 5, 𝑥2,3 = 5, 𝑥2,4 = 0, 𝑥2,5 = 10, 𝜀 = 0.01 and  𝑡+ =

2.8 sec. 

The four points for each mobile robot have the subsequent coordinates in the state space 

{𝑥1, 𝑥2, 𝑥3}:  

                                                      𝐱1,∗,1 = [−2      4.313    1.5681]𝑇 ,       

                                                      𝐱1,∗,2 = [0.8889  − 0.4234   1.5649]𝑇 ,   

                                                      𝐱1,∗,3 = [5.5287   7.4658   1.5708]𝑇 ,   

                                                      𝐱1,∗,4 = [12      9.9375    1.5708]𝑇 , 

                                                      𝐱2,∗,1 = [12      6.0535    1.3051 ]𝑇 , 

                                                      𝐱2,∗,2 = [−2     − 0.3394    1.5708]𝑇 , 

                                                      𝐱2,∗,3 = [4.181    0.1354    0.1268]𝑇 

                                                  𝐱2,∗,4 = [0.1342     8.9329   − 1.5708]𝑇.                                  (3.60) 

where the first four points are for the first robot and the other points for the second one. 

In Figures (3.71)-(3.77) the findings of the simulation are laid out. Figure 3.71 displays 

suitable trajectories generated by the pair of mobile robots in the {𝑥1, 𝑥2} plane. In the graphical 

representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple 

circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium 

configurations for the first and second robots are denoted by small green and black squares, respectively. 

These markers correspond bijectively to the four equilibrium points per agent that were identified 

through the solution of the underlying optimal control problem (3.60). As evident from the observation, 
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the two robots have successfully attained their terminal states without violating phase constraints. The 

functional value in Equation (3.53) was 𝐽𝑜𝑝𝑡 = 2.8000. 

 

 

 

 

 

 

 

 

 

Figure 3.71. Synthesized optimal control trajectories for two robots in the {𝑥1, 𝑥2} plane 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.72. The variable 𝑥1
1 in black and effective control 𝑥1

∗,1
 in blue 
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Figure 3.73. The variable 𝑥2
1 in black and effective control 𝑥2

∗,1
 in blue 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.74. The variable 𝑥3
1 in black and effective control 𝑥3

∗,1
 in blue 
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Figure 3.75. The variable 𝑥1
2 in black and effective control 𝑥1

∗,2
 in blue 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.76. The variable 𝑥2
2 in black and effective control 𝑥2

∗,2
 in blue 
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Figure 3.77. The variable 𝑥3
2 in black and effective control 𝑥3

∗,2
 in blue 

 

Case 4: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding 

the stabilization points and it is possible to search the control function (the equilibrium points) as a 

piecewise constant function. The constraints pertaining to the elements of points are as follows: 

−2 ≤ 𝑥1
𝑗,∗,𝑖

≤ 12, 

                                                         −2 ≤ 𝑥2
𝑗,∗,𝑖

≤ 12,                                                              (3.61) 

−
𝜋

2
≤ 𝑥3

𝑗,∗,𝑖
≤

𝜋

2
. 

where 𝑐1 = 2, 𝑐2 = 4, 𝑐3 = 2.5, 𝑃𝑡 = 5, 𝑟1 = 2, 𝑟2 = 2, 𝑟3 = 2, 𝑟4 = 2, 𝑟5 = 2, 𝑥1,1 = 0, 𝑥1,2 = 5, 𝑥1,3 =

10, 𝑥1,4 = 5, 𝑥1,5 = 5, 𝑥2,1 = 5, 𝑥2,2 = 5, 𝑥2,3 = 5, 𝑥2,4 = 0, 𝑥2,5 = 10, 𝜀 = 0.01 and  𝑡+ = 2.7 sec.                                                   

The three points for each mobile robot have the subsequent coordinates in the state space 

{𝑥1, 𝑥2, 𝑥3}:  

                                                      𝐱1,∗,1 = [−0.0372   3.2964   1.4551]𝑇 ,       

𝐱1,∗,2 = [5.304   8.5296   0.6911]𝑇 ,   
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                                                      𝐱1,∗,3 = [10.2478   5.3404   − 0.7197]𝑇 ,   

       𝐱2,∗,1 = [7.4218    10.7499    0.5217]𝑇 , 

       𝐱2,∗,2 = [4.3332   11.0171    1.3788]𝑇 , 

                                                      𝐱2,∗,3 = [0.1775   4.6068  − 0.518 ]𝑇.                                      (3.62) 

where the first three points are for the first robot and the other points for the second one. 

In Figures (3.78)-(3.84) the findings of the simulation are laid out. Figure 3.78 displays 

suitable trajectories generated by the pair of mobile robots in the {𝑥1, 𝑥2} plane. In the graphical 

representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple 

circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium 

configurations for the first and second robots are denoted by small green and black squares, respectively. 

These markers correspond bijectively to the three equilibrium points per agent that were identified 

through the solution of the underlying optimal control problem (3.62). As evident from the observation, 

the two robots have successfully attained their terminal states without violating phase constraints. The 

functional value in Equation (3.53) was 𝐽𝑜𝑝𝑡 = 2.7032. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.78. Synthesized optimal control trajectories for two robots in the {𝑥1, 𝑥2} plane 
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Figure 3.79. The variable 𝑥1
1 in black and effective control 𝑥1

∗,1
 in blue 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.80. The variable 𝑥2
1 in black and effective control 𝑥2

∗,1
 in blue 
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Figure 3.81. The variable 𝑥3
1 in black and effective control 𝑥3

∗,1
 in blue 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.82. The variable 𝑥1
2 in black and effective control 𝑥1

∗,2
 in blue 
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Figure 3.83. The variable 𝑥2
2 in black and effective control 𝑥2

∗,2
 in blue 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.84. The variable 𝑥3
2 in black and effective control 𝑥3

∗,2
 in blue 
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The coordinates of a stable point of equilibrium are determined by the effective control 

𝑥𝑖
∗,𝑗(𝑡), 𝑗 = 1, 2, 𝑖 = 1, 2, 3, in every second of time, based on the construction of a control system for 

objects. As seen from the findings, the effective control exerts an attractive influence on the relevant 

state-space component, without requiring kinematic matching with that component. It is widely 

recognized that the speed of state evolution is reduced in the immediate neighborhood of an equilibrium 

point compared to distant regions. Thus, for enhanced mobility, the control object should be maintained 

in the vicinity of that point without settling into it, allowing for continuous and faster motion. 

 

3.3. Summary 

 

It can be summarized this chapter as follows: 

1. It has provided an introduction to the problem of optimal control concerning two 

nonholonomic mobile robots. 

2. The environment in question encompassed several static phase constraints, as well as 

dynamic phase constraints arising from the collision between these two robots. 

3. The topic of synthesis of a stabilization system, which could have effectively been 

addressed using a single robot, was tackled using the variational synthesized genetic 

programming (VSGP) technique. 

4. The solution to the problem of control synthesis yielded the emergence of a stable point 

of equilibrium in the space of states. 

5. The particle swarm optimization (PSO) algorithm was employed to find the previously 

mentioned points, resulting in the discovery of three points for every single mobile robot. 
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CONCLUSION  

 

Conclusion and Discussion 

This dissertation proposed a synthesized optimal control technique for a pair of nonholonomic 

wheeled mobile robots operating in a complicated environment, which includes both static and dynamic 

phase constraints. The study employed a synthesized optimal control approach, which included a further 

step of synthesis of a stabilization feedback control system. This control system aimed to achieve a 

steady state for the robot with respect to a specific point in the space of states. The proposed approach 

incorporates tunable stabilization points as decision variables in the optimization process. Their effective 

coordinates are determined such that the resulting closed-loop trajectory satisfies initial and terminal 

boundary conditions, adheres to obstacle-avoidance constraints, and minimizes a researcher-defined 

quality criterion. The proposed methodology presented a novel strategy to address a widely known 

problem in optimal control. However, it additionally introduced a novel problem statement in the field 

of optimal control, subsequently facilitating its numerical solution. The results have shown that 

employing this methodology enabled the computer to generate innovative and remarkable solutions, 

surpassing the expectations of engineers in certain instances. 

The problem of synthesized optimal control has been solved by a two-step process, namely the 

stabilization step and optimization step. The stabilization step represented the first step. The primary 

challenge encountered in addressing the mentioned synthesized optimal control problem was mostly 

associated with the first step. Solving the problem of control synthesis has consistently posed a more 

intricate challenge compared to the problem of optimal control. The synthesis problem has been solved 

via the utilization of controllers in feedback, wherein control is sought as a function involving the robot's 

state. However, this approach necessitated an accurate model of the controlled robot. It is essential to 

acknowledge that solving the problem of control synthesis in the first step has brought about substantial 

modifications to the control robot mathematical model. A more generalized technique has relied on the 

utilization of symbolic regression, a computer technique known as variational synthesized genetic 

programming (VSGP), to address the synthesis problem. The control synthesis problem has been solved 

with the objective of guaranteeing the control robot's stability with respect to a specific point inside the 

state space. The present step of the stabilization system synthesis has facilitated the incorporation of 

control within the robot, ensuring that the differential equations system possesses the essential attribute 

of feasibility. The implementation of this form of control in actual systems was well accepted due to its 

ability to minimize model errors through the utilization of feedback control. This methodology belongs 

to the broader family of machine learning algorithms; however, it transcends the limitations of neural 

networks by enabling the search over both the space of possible functional architectures and their 
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parameter values of the control function—thereby supporting interpretable, equation-based modeling. 

The VSGP implements an evolutionary framework that evolves the structural-parametric search of 

candidate control functions, evaluating their performance solely through the quality functional’s output. 

The VSGP technique has been utilized to obtain a solution without relying on explicit model equations. 

The first step yielded the acquisition of the control function's structure and parameters. Consequently, 

the researcher has automatically obtained the efficient controller function structure and its proper 

parameters. The first step of synthesis of the stabilization system was a crucial concept within this 

methodology, leading to improved results in tasks involving intricate environments. At present, the 

problem of general synthesis can only be effectively solved by employing symbolic regression-based 

machine learning techniques that offer approximate solutions. 

The optimization step was the second step in this proposed approach. Following the previous 

step, which guaranteed a steady system movement to a stabilization point, a series of stabilization points 

were meticulously sought to transition among them at specified times sequentially. This strategic 

approach enabled the robots to ultimately attain the terminal state, besides the quality criterion improved 

estimation. During this step, the optimal control problem was addressed by utilizing the robot's stability 

points' coordinates as control. In order to ensure the existence of adjacent areas with attractive properties 

for the effective solution, it was necessary to carefully select the stability points' position within the state 

space. This positioning was done in such a way that specific solutions originating from a specific area 

of initial states, which are attracted to such stability points, would exhibit nearness to each other as they 

progress towards the terminal state. The equilibrium point exhibited attractor features in an algorithmic 

manner, as it was seen that all solutions converged in close vicinity to this point, so satisfying the 

principle of feasibility. This methodology implemented a control mechanism for the robot by 

transitioning among stable equilibrium points. However, it is essential to note that these equilibrium 

points were not coincident with the reference trajectory. The positions of such points were determined 

by the utilization of an evolutionary algorithm known as Particle Swarm Optimization (PSO), which was 

applied based on the criterion of the problem of optimal control. It is essential to observe that at the 

stable point of equilibrium within the state space, the velocity of the robot was equal to zero. 

Consequently, the placement of stable points over the reference trajectory resulted in ineffective mobility 

characterized by stops at such points. The points have the potential to be located at any position inside 

the state space. By strategically switching these points, the robot could accomplish an efficient 

movement on the reference trajectory without any stops. The computer memory was set up with the 

found stabilization points' coordinates and a designated time interval for transitioning among these 

points, thus establishing the suitable trajectory. The proposed methodology introduced a novel control 

strategy that involved altering the position of a stable point of equilibrium. This approach compelled the 
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robot's stabilization system to drive it towards the equilibrium point. By altering the position of the 

equilibrium point over time, it became possible to guide the robot to its intended terminal state while 

improving the quality criterion. In the second step of the applied technique for synthesized optimal 

control, we conducted a search for the positions of the points of equilibrium using a piece-wise constant 

function. 

This technique possesses numerous advantages. One great thing about this technique was that it 

did not depend on a specific model of the control object. This meant that the symbolic regression 

technique could be used to search the feedback function of control automatically. The primary advantage 

of this technique consisted of its versatility and capacity to be applied to diverse, dynamic models of 

control objects. One additional benefit resulted from the establishment of systems of optimal control that 

possess the property of feasibility. This characteristic emerges as a result of the control object 

stabilization during the first step. This system of stabilization has facilitated the establishment of an 

equilibrium point for the robot inside the space of states. This implies that the system was designed for 

its attraction to a specific equilibrium point. Another benefit of this technique was the implementation 

of control through the alteration of equilibrium points. The ability to achieve optimal control over an 

object has been made possible such that the control parameters' effective values could be rapidly 

computed employing numerical optimization techniques; moreover, it has been possible to update these 

parameters in real-time, even on board. Interestingly, it could be noted that all techniques employed for 

the purpose of calculation were automated numerical techniques, obviating the need for manual 

calculations. This pivotal aspect facilitated the automation and universalization of the control system 

development process. One of several primary characteristics of the synthesized technique was the hands-

on feasibility of obtaining numerical solutions for the problem of optimal control in intricate systems. 

One objective of the process reformulation for the known problem represented that its solution was able 

to be directly applied to a real object. The problem of refined optimal control incorporated one extra 

requirement for the suitable trajectory, namely that this trajectory possessed an attractive close vicinity. 

In order to achieve this objective, it is necessary for a control function to be dependent not just on time 

but also on the vector of state space. 

In summary, the methodology of synthesized optimal control presented in this study was a novel 

approach to solving optimal control problems by focusing on controlling a stable robot's equilibrium 

point. The methodology consisted of two different steps. In the initial design phase, a stabilization system 

was embedded within the control architecture of the robotic system, thereby inducing a structurally 

stable equilibrium point in its phase space. This was motivated by the established principle that such an 

equilibrium is a necessary condition for ensuring desirable control properties in the robot's mathematical 

model. Secondly, Although the equilibrium point could be reconfigured over time, the system remained 
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stable at all times because of the underlying stabilization system, which allowed for control through 

manipulating the position of the equilibrium point. This technique possesses the ability to be universal, 

enabling a numerical solution of the synthesis problem within a broad context, devoid of the necessity 

to construct a training set. Instead, it relies just on the evaluation of the quality criterion, so exemplifying 

the utilization of unsupervised machine learning. 

Suggested Future Works 

The subsequent recommendations are proposed for future works: 

1. A two-stage methodology is proposed for solving the optimal control problem: (i) 

numerical solution of the optimal control problem over a set of initial conditions to 

generate a collection of optimal trajectories; (ii) application of symbolic regression to 

approximate the resulting trajectories with an interpretable expression. In this context, 

supervised machine learning is employed rather than unsupervised machine learning. 

2. One possible way to execute the proposed synthesized optimal control technique is to 

employ a holonomic mobile robot rather than a nonholonomic one. 

3. The suggested technique can potentially be applied in various forms of motion control 

for mobile robots, such as trajectory tracking, as an alternative to the current approach of 

altering the stable point of equilibrium. 

4. The proposed technique can be employed to address the optimal control problem and 

evaluate its efficacy in the existence of uncertainties, which may arise due to 

considerations such as model inaccuracies, noise, initial conditions uncertainty, and other 

similar sources. 

5. It is essential to persist in the exploration of other evolutionary algorithms, such as the 

Grey Wolf Optimization Algorithm (GWO) or hybrid algorithms, such as (GA and PSO 

or GA and GWO), to solve the problem of optimal control rather than relying solely on 

the Particle Swarm Optimization Algorithm (PSO), as mentioned in this dissertation. 
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LIST OF ABBREVIATIONS 

Abbreviation Definition 

R.U.R Rossum's Universal Robots 

MLC Machine learning control 

WMR Wheeled mobile robot 

SGP Synthesized genetic programming 

VSGP Variational synthesized genetic programming 

PSO Particle Swarm Optimization Algorithm 

WMRs Wheeled mobile robots 

ICR Instantaneous center of rotation 

ICC Instantaneous Center of Curvature 

DDWMR Differential drive wheeled mobile robot 

DOF Degrees of freedom 

DDOF Differential degrees of freedom 

DDWMRs Differential drive wheeled mobile robots 

PID Proportional Integral Derivative 

ML Machine learning 

NN Neural Network 

MWMR Mecanum-wheel mobile robot 

FL Fuzzy Logic 

OMRs Omnidirectional mobile robots 

RL Reinforcement Learning 

SR Symbolic Regression 

SMC Sliding Mode Control 

MPC Model Predictive Control 

MIMO Multiple-Input Multiple-Output System 

NMPC Nonlinear Model Predictive Control 

GA Genetic Algorithm 

GAs Genetic Algorithms 

VarGA Variational Genetic Algorithm 

GP Genetic Programming 

CGP Cartesian Genetic Programming 

GWO Grey Wolf Optimization Algorithm 
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LIST OF SYMBOLS 

 

Symbol Definition 

𝛼, 𝛾, 𝛽, 𝜎 The PSO algorithm constant parameters. 

𝛽𝑖 The inner wheel’s steering angle in the Ackerman steering mechanism. 

𝛽𝑜 The outer wheel’s steering angle in the Ackerman steering mechanism. 

𝛽𝑠 The automobile’s true steering angle in the Ackerman steering mechanism. 

𝛿 A positive value of tiny magnitude. 

Δ A provided time interval. 

𝜀 and 𝑡+ positive numerical values. 

𝜀1 and 𝑡1
+ Provided positive numerical values. 

𝜁 The posture vector of differential drive wheeled mobile robot (DDWMR). 

𝜂 A function that equals or approximated to 𝜓 based on a specific criterion. 

𝜃 the angle of orientation of the mass center coordinate system of the DDWMR 

 CXCYC relative to the inertial coordinate system OXOYO. 

𝜃𝑑 The destination orientation of the robot within the navigation plane. 

𝜗(𝐴) The Heaviside step function. 

𝜇1 , 𝜇2 The random mutation points for SGP technique. 

𝜇(𝒙) The Bellman function. 

𝝃 A random value drawn from the interval [0:1]. 

𝜚 An evaluation criterion. 

𝜑̇𝑙 , 𝜑̇𝑟 The angular velocities of the left and right wheels. 

ψ The angle of the roller in the Swedish wheel. 

𝜓 The unknown function. 

𝛹(𝒃) The function that transforms a non-numerical structure's code into an actual function. 

𝜔, 𝜐 The angular and linear velocities of differential drive wheeled mobile robot. 

𝛀 A correlation between the angular velocities of the right and left wheels (𝜑𝑟 , 𝜑𝑙) of  

the DDWMR, and the angular and linear velocities of the mass center of  

the DDWMR (𝜔, 𝜐). 

𝑨(𝑸) The matrix that encompasses nonholonomic constraints. 

𝑎 The distance from the center of wheel to the center of automobile in the Ackerman  

steering mechanism.  

2a The distance between the actuated wheels and the axis of symmetry. 
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𝒂𝑇(𝑸) The parameter vector of the constraint. 

b The length of rolling polygon side. 

𝒃0 The basic solution. 

𝒃𝑖 The new basic solution. 

C Center of mass or point of guidance. 

CXCYC The mass center coordinate system of differential drive wheeled mobile robot. 

𝑐1, 𝑐2, 𝑐3 The weight coefficients for the quality criterion of the synthesized optimal control  

for mobile robot example. 

𝑐 Randomly chosen possible solutions. 

𝐷 The total count of variation vectors that presents in a single set. 

d The distance between point P and point C. 

𝑑𝑒𝑝 The dimension of the variation vector. 

𝐸 The distance from the instantaneous center of rotation (ICR) to the nearest wheel  

in the Ackerman steering mechanism.  

𝑒1, … , 𝑒𝑣 The unit elements for two-argument functions. 

𝑭 A unified set of the two sets of fundamental functions 

𝑭𝟎 The arguments set. 

𝑭𝟏 The functions set that is characterized by one argument. 

𝑭𝟐 The functions set that is characterized by two arguments. 

𝐹(𝐪) The objective function of the optimization problem in PSO algorithm. 

𝐹𝑖 The objective function value for genetic algorithm. 

𝐹𝑗− The best objective function value for genetic algorithm. 

Fr The generated force by the rotational motion of the omnidirectional wheel. 

Fr1 A parallel force of Fr, which parallels the axis of the roller. 

Fr2 A perpendicular force of Fr, which is oriented at a right angle to the axis of  

the roller. 

𝐹𝛾 The objective function value for the set of variations vector 𝑾𝜸. 

𝐹𝜑 The objective function value for the set of variations vector 𝑾𝜑. 

𝑓(𝑸) The holonomic constraint. 

𝑓(𝑸, 𝑸̇) The nonholonomic constraint. 

𝑓∗ A value that meets the estimate requirements. 

𝑮 The evaluation of an objective function or a function of fitness for SGP technique. 

𝐺𝑚 The mobility degree of wheeled mobile robots (WMRs). 
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𝐺𝑠 The steerability degree of wheeled mobile robots (WMRs). 

𝒈(𝒙) The control function in terms of the vector of state space. 

𝒈(𝒙∗ − 𝒙) The control function that obtained from the stabilization step. 

𝒈𝜸 , 𝒈𝝋 The objective functions values of random two possible solutions of SGP technique. 

𝐻 The number of columns (vectors) in the code matrix. 

𝒉(𝑡) The control function that is obtained is commonly referred to as a program control. 

𝑖 General serial counter. 

𝐽 The general quality criterion of the optimal control. 

𝐽1 The general quality criterion of the control synthesis system with a domain of initial  

condition. 

𝐽2 The general quality criterion of the control synthesis system with a limited set of  

initial conditions. 

𝐽(𝑹𝑖, 𝐪
𝑖) The objective function for SGP technique. 

𝐽𝑜𝑝𝑡 The quality criterion of the synthesized optimal control for mobile robot example. 

𝐽𝑠 The general quality criterion of the control synthesis system with a limited set of  

initial conditions for symbolic regression techniques. 

𝐽𝑠1 The general quality criterion of system with a limited set of initial conditions in the  

stabilization step. 

𝐽𝑠𝑜1 The general quality criterion of the synthesized optimal control. 

𝐽𝑠𝑦𝑛 The general quality criterion of system with a limited set of initial conditions in the  

stabilization step for mobile robot example. 

𝑗 General serial counter. 

𝐾 Number of intervals or number of points of equilibrium. 

𝑘1 , 𝑘2 The random crossover points for SGP technique. 

𝑘𝑐 The random crossover point for genetic algorithm. 

𝐋 The number of initial conditions. 

𝑙 The sequence of possible solutions within the initial population. 

𝑀 The total number of the set of codes that representing the possible solutions. 

𝑀𝑤 The maneuverability of wheeled mobile robots (WMRs). 

𝑚𝑞 The dimensionality of the parameters vector. 

m The dimension of the velocity (control) vector. 

𝑁𝑐 The number of separate (independent) constraints for wheeled mobile robot. 

n The dimension of the state space. 
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OXOYO The inertial coordinate system of differential drive wheeled mobile robot. 

P Intersection of the axis of the symmetry with the wheels’ axis. 

𝑃𝑐 The crossover probability for SGP technique. 

𝑃𝑟𝑐 The crossover probability. 

𝑃𝑡 The total number of phase constraints. 

𝑃𝜇  The mutation probability for SGP technique. 

p The number of nonholonomic constraints. 

𝑝1 A weight coefficient for the quality criterion of the control synthesis system. 

Q The generalized coordinate vector. 

𝑸̇ The vector containing the velocities of the system within the generalized coordinates. 

𝐪 The parameters vector. 

q1, . . . , q𝑚𝑞
 The parameters of the mathematical expression. 

q𝑖
+ and q𝑖

− The higher and lower bounds of the parameters. 

q𝑗(𝑐) The most efficient possible solution in PSO algorithm. 

𝑹 The code matrix. 

𝑹𝑖−  or 𝒈𝒊−  The best solution for the code of SGP technique. 

𝑹𝐶𝐺𝑃 The code matrix of Cartesian genetic programming technique. 

𝑹𝐺𝑃 The code matrix of genetic programming technique. 

𝑹𝑆𝐺𝑃 The code matrix of synthesized genetic programming technique (SGP). 

𝑹𝛾, 𝐪
𝛾, 

𝑹𝜑, 𝐪𝜑 

Random two possible solutions of SGP technique for the crossover operation. 

Rai The radius of an instantaneous circular path for wheeled mobile robot. 

ℝ𝑛 The state space. 

ℝ𝑚 The control space. 

𝒓 The column in the code matrix such that it can be considered the column as a vector. 

rA Radius of left or right wheel. 

𝑟𝑑 The minimal acceptable secure distance between robots. 

𝑟𝑒 An element in the column of the code matrix. 

𝑟𝑠𝑡, 𝑥1,𝑠𝑡, 

𝑥2,𝑠𝑡 

Radius and coordinates of center of the constraints of static phase. 

𝑺(𝑸) The Jacobian matrix. 

𝑆 A set of codes that representing the possible solutions. 



162 

 

𝑡𝑓 The time at which the terminal condition is reached, starting from the initial one in  

the optimal control.  

𝑡𝑘 A given time. 

𝑡∗ The general time at which the terminal condition is reached, starting from the initial 

 one in the stabilization step. 

𝑡𝑖
∗ The time at which the terminal condition is reached, starting from the initial 

 one in the stabilization step and used in the general quality criterion 𝐽𝑠1. 

𝑼 A compact set. 

𝒖 The vector representing the control, 𝒖 ∈ 𝑼. 

𝑢̃1, 𝑢̃2 The effective control functions. 

𝑉 The distance from the center of front wheel to the center of rear wheel in the  

Ackerman steering mechanism.  

𝒗 The auxiliary velocity vector. 

𝑣ℎ A hub velocity in the roller of the omnidirectional wheel. 

𝑣𝑙 The velocity of the left wheel in a differential drive robot. 

𝑣𝑟 The velocity of the right wheel in a differential drive robot. 

𝑣𝑡 The sum of the horizontal velocity (𝑣ℎ) and the vertical velocity (𝑣𝑣). 

𝑣𝑣 A small rotational velocity in the roller of the omnidirectional wheel. 

𝜐𝑖
𝑗
 A history vector in PSO algorithm. 

𝑾𝑖 The ordered multiset consisting of variation vectors as the initial population. 

𝑾𝜸 , 𝑾𝝋 Two sets of variations vectors. 

𝑾𝜸+𝟏 , 

𝑾𝝋+𝟏 

The new sets of variations’ vectors generated from the crossover. 

𝒲 The vector of small variations. 

𝓌1 An index denoting a small variation. 

 𝓌2 , 𝓌𝑑𝑒𝑝−1 Indices indicating the element position in the code that define the variable element. 

𝓌𝑑𝑒𝑝 The updated value of the defined element.  

𝐗 The input space. 

𝐗0 The initial conditions domain within the state space. 

𝐗̃, 𝐘̃ The training sets. 

𝒙 The input vector (state space vector). 

𝒙0 The initial conditions of the control object model. 

𝒙̇ The mathematical model of the control object in the form of an ordinary differential equations 
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system. 

𝒙𝑓 The terminal conditions of the control object model. 

𝒙(𝑡, 𝒙0) A partial solution of the control object system. 

𝒙(𝑡∗) The terminal position, enabling the system to achieve stabilization at such a point. 

𝒙̃(𝒙∗(𝑡𝑘)) A stable point of equilibrium. 

𝒙∗(𝑡) A time control function. 

𝑥 , 𝑦 The coordinates of point C. 

𝑥1, . . . , 𝑥𝑟 The variables of the mathematical expression. 

𝑥𝑖, 𝑦𝑖 The initial position of the robot within the navigation plane. 

𝑥𝑑, 𝑦𝑑 The destination position of the robot within the navigation plane. 

𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 

𝜃𝑑(𝑡) 

The destination position of the robot within the navigation plane throughout time. 

𝑥̇𝑑(𝑡), 𝑦̇𝑑(𝑡), 

𝜃̇𝑑(𝑡) 

The destination velocity of the robot within the navigation plane throughout time. 

𝑥𝑖
∗,𝑗(𝑡) The coordinates of a stable point of equilibrium. 

𝐘 The output space. 

𝒚 The output vector. 
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APPENDIX I. 

 

The operations of addition and multiplication were used as binary operations, and a set of 28 

smooth elementary functions was used as unary operations. The total number of functions was 30, and 

they were used as the space for codes in the first step (the stabilization step) and as follows: 

 

𝑓1(𝑧) = 𝑧 𝑓2(𝑧) = 𝑧2 

𝑓3(𝑧) = −𝑧 𝑓4(𝑧) = 𝑠𝑔𝑛(𝑧)√|𝑧| 

𝑓5(𝑧) = 𝑧−1 𝑓6(𝑧) = 𝑒𝑥𝑝(𝑧) 

𝑓7(𝑧) = 𝑙𝑛 (|𝑧|) 𝑓8(𝑧) = 𝑡𝑎𝑛ℎ (0.5𝑧) 

𝑓9(𝑧) = {
1,        if  𝑧 ≥ 0 
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
𝑓10(𝑧) = 𝑠𝑔𝑛(𝑧) 

𝑓11(𝑧) = 𝑐𝑜𝑠 (𝑧) 𝑓12(𝑧) = 𝑠𝑖𝑛 (𝑧) 

𝑓13(𝑧) = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑧) 𝑓14(𝑧) = 𝑧3 

𝑓15(𝑧) = √𝑧
3

 𝑓16(𝑧) = {
𝑧,                   if  |𝑧| < 1

𝑠𝑔𝑛(𝑧), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑓17(𝑧) = 𝑠𝑔𝑛(𝑧) 𝑙𝑛(|𝑧| + 1) 𝑓18(𝑧) = 𝑠𝑔𝑛(𝑧) (𝑒𝑥𝑝(|𝑧|) − 1) 

𝑓19(𝑧) = 𝑠𝑔𝑛(𝑧) 𝑒𝑥𝑝(−|𝑧|) 𝑓20(𝑧) = 0.5𝑧 

𝑓21(𝑧) = 2𝑧 𝑓22(𝑧) = 1 − 𝑒𝑥𝑝(−|𝑧|) 

𝑓23(𝑧) = 𝑧 − 𝑧3 
𝑓24(𝑧) =

1

1 + 𝑒𝑥𝑝(−𝑧)
 

𝑓25(𝑧) = {
1,        if  𝑧 > 0 
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓26(𝑧) = {
0,                   if  |𝑧| < 𝜀

𝑠𝑔𝑛(𝑧), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑓27(𝑧) = 𝑠𝑔𝑛(𝑧)(1 − √1 − 𝑧2) 𝑓28(𝑧) = 𝑧(1 − 𝑒𝑥𝑝(−𝑧2)) 

𝑓29(𝑧1, 𝑧2) = 𝑧1 + 𝑧2 𝑓30(𝑧1, 𝑧2) = 𝑧1𝑧2 
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APPENDIX II. 

 

The final code matrix of the first control function (𝑢̃1) in Eq. (3.16) was as follows: 

𝑢̃1 = 

[
 
 
 
 
 
2
1
2
3
1
1

1
1
5
3
2
1

2
1
6
3
3
1

2
1
10
1
11
1

1
1
13
1
12
2

2
1
14
28
0
1

1
1
15
0
0
1

0
1
16
7
0
1

1
1
17
17
0
1

1
1
18
0
11
1

1  
1  
19  
17  
15  
1  

 1
 1
 20
 0
 19
 1

1
1
12
18
0
1

1
1
22
0
0
1

1
1
23
28
0
1

1
1
21
0
0
1

1
1
25
0
0
1

1
1
26
26
24
1

1
20
27
0
15
1

1
1
28
18
0
1 ]

 
 
 
 
 

 

 

The final code matrix of the second control function (𝑢̃2) in Eq. (3.17) was as follows: 

𝑢̃2 = 

[
 
 
 
 
 
2
12
7
3
1
1

2
1
8
3
2
2

0
1
9
17
3
1

0
21
10
1
11
1

1
1
13
16
0
1

2
1
14
0
0
1

1
1
15
0
0
1

1
1
16
0
0
1

2
21
17
0
15
1

1
14
18
7
0
1

1  
1  
19  
25  
0  
1  

 1
 1
 20
 0
 0
 1

1
1
21
2
0
1

1
1
22
0
0
1

1
11
19
22
6
1

1
1
24
9
3
2

1
1
25
0
0
1

1
1
26
0
0
1

2
1
27
0
4
1

1
1
21
0
0
1 ]

 
 
 
 
 

 

 

The final matrix of the small variations (𝑆𝑉) was as follows: 

𝑆𝑉 =

[
 
 
 
 
 
 
 
 
2
2
2
1
2
1
1
1
2
2

2 6 2
15 2 11
16
4
1
15
9
10
15
14

6
3
2
6
4
5
4
6

2
10
12
2
17
11
22
2 ]

 
 
 
 
 
 
 
 

 

 

 

 

 


