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ABSTRACT

The 20th century is renowned for the development of computer-based automatic control systems
utilized in industrial plants and manufacturing processes. In the 21st century, the contemporary control
systems necessitate the capacity to adapt, enhance, and acquire knowledge swiftly. Consequently,
mobile robots have emerged as a focal point of considerable scholarly interest in recent years. The
wheeled mobile robot (WMR) possesses an extensive variety of practical applications. However, despite
their potential and prospects, mobile robots have not yet achieved the best performance due to the
intrinsic challenges they encounter. Several critical problems have appeared in this domain, including
navigation and path planning, localization, and obstacle avoidance. Tracking of trajectories and the

problem of point stabilization are the two main control problems concerning this kind of robot.

The field of machine learning control (MLC) is well-suited to address these emerging difficulties.
The objective of machine learning control entails the identification of an unknown control function.
Through symbolic regression, control functions are automatically synthesized as closed-form
mathematical formulations. These formulations provide a structured and efficient framework for guiding
robotic motion toward target locations while circumventing environmental obstacles. Symbolic
regression methods are the exclusive means by which one can explore the very structure and parameters

associated with mathematical expressions.

This work is motivated by the construction of a control system for a pair of nonholonomic mobile
robots. The successful execution of the proposed control necessitates the establishment of a dual
feedback loop (two steps). In the internal loop (the first step), the robot is rendered stable concerning a
specific point within the state space. In order to address this objective, the general synthesis problem can
be solved by utilizing the numerical technique of symbolic regression, which is a machine learning
technique, to find feedback control functions. In the external loop (the second step), the problem of
achieving effective control over the robots is addressed by the utilization of an evolutionary algorithm
to influentially change the location of the stable points of equilibrium. The problem of control synthesis
is initially addressed using the suggested novel technique (variational synthesized genetic programming
technique). The control object achieves stability when it reaches an equilibrium point inside the state
space. These stabilization points can be changed, giving a chance to look up the coordinates of various
stabilization points in order to get the mobile robot to go from its starting point to its destination with
the improved quality criterion value and trajectory using the particle swarm optimization algorithm. The
state space's required trajectory must exhibit an attractive property for suitable solutions within a certain

vicinity.
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The aforementioned methodology is referred to as the synthesized optimal control problem. This
novel methodology not only presents a fresh perspective on addressing a widely recognized challenge
in the field of optimal control but also introduces a novel problem statement that facilitates its numerical

solution.

The proposed methodology has been applied to a pair of mobile robots. The mobile robots are
tasked with modifying their planar coordinates to satisfy static phase conditions to achieve obstacle-free
navigation, with an additional imperative: to maintain collision-free trajectories relative to one another
throughout the mission. As demonstrated by the experimental outcomes, the two mobile robots
successfully navigated to their target configurations under full compliance with phase constraints and
without any occurrence of mutual collision, underscoring the efficacy of the control system. As seen
from the findings, the effective control exerts an attractive influence on the relevant state-space
component, without requiring kinematic matching with that component. It is widely recognized that the
speed of state evolution is reduced in the immediate neighborhood of an equilibrium point compared to
distant regions. Thus, for enhanced mobility, the control object should be maintained in the vicinity of

that point without settling into it, allowing for continuous and faster motion.
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INTRODUCTION

Relevance and level of development of the research topic

Contemporary developments in industrial automation have been driven by the integration of
intelligent robotic systems that exhibit self-learning behaviors and a high degree of operational
autonomy. These advanced robots are designed to function across a broad spectrum of tasks without
requiring constant supervision. Specifically, mobile robots with non-holonomic constraints and wheel-
driven locomotion are widely utilized in industrial automation, supporting activities such as assembly

line processes, warehouse navigation, and facility maintenance.

This dissertation investigates a mobile nonholonomic robot characterized as a complex, nonlinear
system designed for autonomous locomotion. The primary focus lies in the formulation and analysis of
control algorithms for a pair of such robots, ensuring robust performance in heterogeneous operational
settings and enabling task execution without human intervention. The relevance of this research is
underscored by the increasing necessity for adaptive, intelligent robotic systems that can respond

effectively to unpredictable environmental changes while maintaining autonomous functionality.

Numerous studies in the scientific domain focus on the synthesis of control architectures and the
optimization of dynamic trajectories. Particular emphasis has been placed on analytical and
computational methods for resolving control challenges—areas that have been profoundly shaped by the
seminal contributions of renowned scholars, including S. Wolfram, W.R. Ashby, W. McCulloch, W.
Pitts, P.K. Anokhin, L.S. Pontryagin, A.l. Diveev, N. Wiener, and A.N. Kolmogorov.

The implementation of optimal control strategies faces a key challenge: the inability to directly
apply time-parameterized control functions to actual physical systems. This limitation arises from the
open-loop configuration, which offers no correction mechanism in the presence of disturbances,
potentially leading to substantial trajectory deviations and failure to meet performance criteria. In mobile
robotics, effective control necessitates robust stabilization and high-fidelity trajectory tracking. The
stability of the closed-loop system is commonly ensured by stabilizing the state trajectory near an

equilibrium point within the state space, which serves as a foundation for robust autonomous operation.
The Purpose of the Dissertation Work

This work seeks to contribute to the field of intelligent control by developing and improving
machine learning-based strategies for multi-agent systems, exemplified by a pair of non-holonomic

wheeled mobile robots. The pursuit of this goal necessitates addressing the following specific tasks:
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1. An investigation into genetic programming methods, evolutionary optimization
techniques, and symbolic regression algorithms to advance automated model discovery
and control system design.

2. Development of a numerical control approach that guarantees collision avoidance
between two mobile robotic agents, as well as between each agent and the obstacles in
the workspace.

3. Development of a symbolic regression-based control synthesis method that exploits the
small variations principle to ensure stabilization of a robot towards a specified
equilibrium point inside the state space.

4. Application of an evolutionary algorithm to dynamically reposition stable equilibrium
points within a closed-loop control system that incorporates external feedback.

5. The outcome of the stabilization stage must be mathematically represented through a
system of differential equations.

Object of Research

The focus of this study is on the maneuvering behavior of a two-robot system consisting of

nonholonomic mobile platforms with differential drive actuation.
Subject of Research

The mathematical models and algorithmic support of the symbolic regression method,
particularly as applied to identifying interpretable control function expressions and their numerical

parameter values.
Methodology and Research Methods

The control object is endowed with a stabilization system that defines its essential dynamic
property: a stable point of equilibrium within the state space. Robot control is accomplished by
intelligently manipulating this point position, employing a methodological framework of an evolutionary
algorithm, symbolic regression, and mathematical modeling through systems of differential equations.

The inner-loop control system, designed to stabilize the system around an operating point of
equilibrium, is synthesized at an early stage and forms the cornerstone for the outer-loop control strategy
that governs equilibrium point positioning. Such points can be set statically or modified online to

accommodate environmental changes.

Through symbolic regression, control functions for mobile robots are automatically synthesized
in the form of human-readable mathematical expressions. These formalized algorithms govern system

behavior to meet mission objectives and maintain collision-free trajectories. Symbolic regression
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facilitates the discovery of interpretable control functions by evolving both their functional form and
tunable parameters. It follows from the universality of symbolic representations that, in the general case,
symbolic regression can generate expressions that approximate the functional form of any neural

network to a desired degree of accuracy [192].
Scientific Novelty of the Work
In the dissertation study, the following scientific novelty results are obtained:

1. Anenhanced control problem formulation has been developed for nonholonomic mobile
robotic systems, which includes additional design requirements to ensure the
development of the stabilization system.

2. A novel machine learning approach—symbolic regression—has been introduced to
facilitate the synthesis of control systems capable of achieving state-space stabilization.

3. The new approach synthesizes a dynamical system described by differential equations,
leveraging the principle of small variations in the evolutionary processes of a genetic
algorithm.

4. A new computational solution is contributed to the trajectory optimization problem for
paired nonholonomic robots, explicitly accounting for geometric and kinematic
constraints imposed by surrounding obstacles.

5. The fundamental problem of synthesizing control systems for nonlinear mobile robotic

systems with identification of dynamic equations has been solved.
Theoretical Significance of the Work

An optimal control problem is established under extended constraint conditions, including the
stipulation that the generated state-space trajectory must be attractive—that is, it must draw the system
state into a given neighborhood. The proposed solution tackles the synthesis of a stabilizing feedback
system for nonholonomic wheeled robots by engineering a stable point of equilibrium within the
system’s state space. And then, the control design is thereby reduced to the optimization of this point’s
location. The entire suite of computational tools employed is implemented as self-contained, automated

numerical procedures.
Practical Significance of the Work

This study presents a synthesized optimal control methodology designed to solve trajectory and
stability problems by explicitly controlling the location of the robot’s stable point of equilibrium. The

resulting methodology introduces a novel control paradigm based on equilibrium-point modulation.
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The proposed methodology is specifically designed to address practical engineering challenges
by reducing the gap between the theoretical mathematical model of the controlled system and its physical
realization. This objective is accomplished through the integration of an inner-loop stabilization within
the control architecture. Additionally, symbolic regression techniques exhibit broad applicability in the
synthesis of control laws across diverse dynamical systems.

Main provisions to be defend

1. The developed control optimization method consists of two steps, where step one
exemplifies stabilization step so that one nonholonomic mobile robot moved from 14
initial points to one terminal point; while step two exemplifies optimization step, where
two nonholonomic mobile robots move from one initial point (different points) to a

terminal one (also different points).

2. The variational synthesized genetic programming technique (VSGP) matrix consisting of
6 rows and 20 columns is used to define the control function of a nonholonomic mobile
robot. The genetic algorithm parameters are: population size of 256, number of
generations of 1024, number of crossovers in each generation of 128, variation depth of
10, and mutation probability of 0.75. A total of 30 functions are used, which make up the
code space in the first stabilization stage. Two of these functions are binary operations,
and 28 are unary.

3. To change the position of the robot's equilibrium point, a particle swarm optimization
algorithm is used with control parameters : « = 0.5, § =0.8, y =15, and o =1,

population size is 3500, number of generations is 150.
The Degree of Reliability of the Results

The proposed method’s effectiveness is supported by empirical results, including comparative
assessments against Cartesian genetic programming [206] and parse-matrix evolution [208]. This study
includes the development of a tailored mathematical model for simulating the dynamics of the Khepera
Il nonholonomic robot. Computational experiments were conducted to verify the accuracy and

consistency of the dissertation’s outcomes.
Approbation of Research Results

The fundamental principles and results were deliberated upon and showcased at many

international and Russian scientific conferences:

1. Using Symbolic Regression Methods for Machine Learning to Control Robot Motion:

Advantages and Disadvantages. The XIV International Scientific and Practical
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Conference “Modern strategies and digital transformations of sustainable development
of society, education and science”. — Moscow: December 12, 2023.

2. Comparison of recurrent neural networks and symbolic regression methods. The XXII
International Scientific and Practical Conference ‘“Challenges of our time and
development strategies of society in the conditions of the new reality”. — Moscow:
December 15, 2023.

3. Problem of the Interpretability vs. Accuracy Trade-off in Symbolic Regression in robot
motion: causes and solution. The Il International Scientific and Practical Conference
“Modern research: theory, practice, results”. — Moscow: December 29, 2023.

4. The 3rd International Conference on Engineering and Science, 3-4 May 2023 / Al-
SAMAWA / IRAQ.

Furthermore, The principal findings, theoretical contributions, and practical recommendations
derived from this dissertation have been disseminated through six peer-reviewed publications: four
indexed in Scopus and two published in journals recognized by the Higher Attestation Commission
(VAK).

Dissertation Structure

This dissertation is organized into several essential sections. Chapter 1 offers a thorough
literature review of contemporary research regarding the wheeled mobile robots. Chapter 2 delineates
the research methodology employed in this study, detailing the method of symbolic regression and the
small variations principle. Chapter 3 presents the study's findings, which include a computational
experiment of the synthesized optimal control strategy and its primary results. The thesis concludes with
a summary of the research outcomes, along with conclusions and recommendations for future research

directions.
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CHAPTER 1. LITERATURE REVIEW

1.1 General Overview of Mobile Robots

The term "robot" can be traced back to its etymological origins in Slavic languages. The term
"robota” in the Polish language signifies the concept of work or labor. However, it should be noted that
in Czech or Slovenian, this word carries a more antiquated connotation and refers to statute labor or
corvée. The term "robot" was originally introduced by the renowned Czech author Karel Capek in his
science fiction drama titled R.U.R., an acronym for Rossum's Universal Robots. The robotic entities
depicted in the theatrical production can be classified as a form of artificially created human-like beings.
In contemporary parlance, the terms "cyborgs"” or "androids" would be more suitable descriptors for
these entities. The play experienced significant popularity, leading to the widespread adoption of the
term "robot™ in numerous global languages. Although the term "robot" has only been in existence for
around a century, the concept of mechanical beings has a long and rich historical background. The term

"mobile" originates from the Latin word "mobilis," which carries the same semantic connotation [1].

Mobile robots, as their designation suggests, possess the capacity for locomotion. These entities
have the ability to traverse various mediums, including terrestrial surfaces, bodies of water, submerged
environments, and aerial spaces. This stands in opposition to the prevalent use of fixed-base robotic
manipulators in manufacturing operations, such as automobile assembly, electronic parts assembly,
spray painting, and other related activities [2]. The significance of mobile robots is growing in various
fields, including manufacturing and automated warehouses [3-5], domestic and medical aid [6-8],

military uses [9-11], agricultural purposes [12-14], and rescue missions [15-16], and so on.

The emergence of mobile robots throughout the late 1960s and early 1970s marked the inception
of a novel field of study known as autonomous navigation. It is noteworthy to mention that the initial
navigation systems were presented during the inaugural International Joint Conference on Artificial
Intelligence (1JCAI 1969). The methods mentioned earlier were founded upon critical concepts that have
proven highly advantageous in the advancement of algorithms for robot motion planning. As an
illustration, during the year 1969, the mobile robot Shakey employed a grid-based methodology to
simulate and investigate the surrounding environment [17]. Similarly, in 1977, Jason utilized a visibility
graph constructed from the corners of obstacles [18]. Furthermore, in 1979, Hilare employed a technique

of decomposing the environment into convex cells that are free from collisions [19].

The concept of nonholonomic systems, derived from mechanics, was introduced in the literature

[20] concerning robot motion planning, specifically in the context of car parking, around ten years later.
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The problem at hand remained unresolved despite the ground-breaking research conducted in the field
of mobile robot navigation. The scientific field of nonholonomic motion planning has gained significant
attention [21].

1.2. Some Types of Mobile Robots

In order for a mobile robot to achieve unrestricted movement within its surroundings, it requires
locomotion mechanisms. However, choosing a robot's strategy for locomotion is a crucial component of
mobile robot development due to the wide range of alternative movement methods available. Within the
laboratory setting, a diverse array of research robots has been developed with the capability to engage
in various locomotion behaviors such as walking, jumping, running [22], sliding, skating, swimming
[23], flying [24], and, naturally, rolling [25]. The majority of such locomotion mechanisms were
originally derived from their biological equivalents.

With one notable exception, however: the actively propelled wheel, a human creation that
achieves remarkable efficiency on level terrain. Biological systems already make use of something like
this process. As can be seen in Figure 1.1, our walking bipedal system can be represented by a rolling
polygon with sides of length b equal to the span of the step. The polygon evolves into a circular shape
or wheel as the step size decreases. However, the technology required for wheeled locomotion—a

completely spinning, dynamically propelled joint—was not developed by nature.

Figure 1.1. A walking bipedal system can be modelled using a rolling polygon [42]
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Mobile robots often employ either wheeled systems, which are a widely recognized human
invention for automobiles, or a limited number of articulating legs, representing the simplest basic form

of biological locomotion.

In comparison to wheeled locomotion, legged locomotion often necessitates a higher number of
mechanical degrees of freedom. Wheels are not only easy to use but also work very well on level
surfaces. Rolling friction is reduced to a minimum on the railway's hard, flat steel surface, making it
perfect for wheeled transportation. Wheeled locomotion, however, becomes increasingly inefficient
when the surface softens as a result of rolling friction. At the same time, legged locomotion suffers

significantly less as it consists entirely of contacts of points with the ground.

The effectiveness of wheeled locomotion is significantly influenced by environmental factors,
specifically the levelness and firmness of the terrain. On the other hand, the effectiveness of legged
locomotion is contingent upon the mass of the legs and the overall body mass, in both cases of which

the robot should support them throughout different points of a legged gait.

It is comprehensible, hence, that nature exhibits a preference for locomotion, including legs, as
natural locomotion systems must function on uneven and disorganized surfaces. Similarly, the human
environment often has deliberately designed, polished surfaces found in both inside and exterior spaces.
Hence, it is comprehensible that nearly all industrial implementations of mobile robotics employ a
variant of wheeled mobility. In recent times, there has been notable advancement in the development of
hybrid and legged industrial robots, particularly in the context of creating more organic outdoor settings.

One prominent example of this improvement is the forestry robot.

1.2.1. Legged Mobile Robots

Legged mobile robots consist of many rigid bodies that are coupled through prismatic or, more
commonly, revolute joints. Certain entities in the context possess anatomical structures that constitute
the lower appendages, commonly referred to as feet, which intermittently make touch with the surface
of the earth in order to facilitate the process of movement. This category encompasses a diverse array of
mechanical structures, which frequently draw inspiration from the study of real organisms, known as
biomimetic robotics. These structures span from biped human beings to hexapod robots, with the
objective of emulating the biomechanical efficiency observed in insects.

The robot's legs make a variety of point contacts with the ground as it walks where two major

benefits comprehend adaptability and maneuverability in challenging terrain. As long as the robot has
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sufficient ground clearance, it doesn't matter how uneven the ground is between the set of point contacts.
As a bonus, a walking robot can cross a gap as long as its reach is greater than the gap's breadth. The
ability to deftly move objects in the surroundings is the icing on the cake of the benefits of legged
locomotion. The dung beetle is a particularly impressive bug because of its ability to roll a ball with its
deft front legs while moving.

The primary drawbacks associated with legged locomotion encompass problems pertaining to
power consumption and mechanical intricacy. The leg, which may possess multiple degrees of freedom,
should have the ability to support a portion of the robot's overall weight. Additionally, numerous robots
must possess the capability to elevate and descend the robot. Moreover, the attainment of high
maneuverability is contingent upon the presence of an adequate quantity of degrees of freedom in the

legs, enabling the application of forces in various directions.

The legs must be lifted off the ground and set back down in order to move forward. Gait is the
coordinated motion of the whole body, including the feet, as they are placed and lifted (in timing as well
as place) to propel the walker forward.

In the context of legged mobile robots, it is often necessary to have at least two degrees of
freedom in order to facilitate the forward movement of a leg. This involves the act of raising the leg and
subsequently swinging it forward. The inclusion of an additional degree of freedom is an increasingly
prevalent practice in order to facilitate more intricate motions. The recent advancements in the
development of bipedal walking robots have resulted in the incorporation of an additional degree of
freedom at the ankle joint. The ankle joint allows the robot to manipulate the resultant force vector
generated by contact with the ground by controlling the position of the foot's sole through actuation.

In a broad sense, the incorporation of more degrees of freedom in a robotic leg enhances the
maneuverability offered by the robot. This augmentation encompasses an expanded capacity to traverse
diverse terrains and enables the robot to adopt various gaits during locomotion. The principal drawbacks
associated with the incorporation of supplementary joints and actuators have been primarily related to
energy consumption, control mechanisms, and overall bulk. The inclusion of supplementary actuators
necessitates both energy and control while also contributing to the overall mass of the leg, hence
amplifying the power and load demands placed on pre-existing actuators.

The coordination of legs for movement, often known as gait control, poses a significant challenge
in the context of a mobile robot with several legs. The quantity of potential gaits is contingent upon the
quantity of legs [26]. The main objective of early studies regarding multilegged walking robots
concentrated on the design of robot locomotion for traversing smooth or somewhat rough terrain,

navigating basic obstacles, moving on soft ground, and performing body maneuvers, among other related
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aspects. These needs can be achieved by the implementation of periodic gaits and the utilization of binary
(yes/no) information regarding contact with the ground. Recent research has focused on the development
of quadrupedal robots capable of traversing challenging environments, including inaccessible roads and
highly intricate terrains such as mountainous regions, ditches, pits, and locations affected by seismic
activity. In such instances, it is important to possess further functionalities, together with comprehensive

assistance in determining reactions and forecasting the stability of robots [27-30].

1.2.2. Tracked Mobile Robots

Tracked robots exhibit enhanced flexibility and possess the ability to navigate over challenging
terrains. Nevertheless, their navigational capabilities are comparatively less precise when compared to
those of a wheeled robot. Tracked robots necessitate the utilization of dual motors, with each motor
assigned to a specific track located on either the left or right side. The locomotion of these robots is
facilitated by a pair of tracks, which are set in motion through the rotation of wheels that are positioned
within the sprockets of the robot [31].

Track mechanisms [32] are designed to provide precise linear motion and are well-suited for
navigating uneven terrains, a common challenge encountered in off-road conditions. In contrast, these
mechanisms exhibit a substantial size [33] and are distinguished by their somewhat lower energy
efficiency for rotational motion in comparison to alternative driving mechanisms. The utilization of skid
steering is prevalent in the operation of these vehicles. However, it is important for the reader to
acknowledge that these maneuvers entail a complex interplay between the ground track and slippage
events, which remains an area of an ongoing investigation within the discipline of ground mechanics. In
order to effectively model and operate robots of this nature, it is important to conduct extensive
experimentation prior to the formulation of the control scheme [34].

The skid steering principle, seen in Figure 1.2, operates by manipulating the relative velocities
of the two tracks, similar to the manner in which differential drive vehicles with wheels function.
Nevertheless, the task of controlling tracked locomotion presents a more intricate challenge due to the
variance in the relative velocity of both tracks, which leads to slippage, soil shearing, and compaction

as necessary mechanisms for achieving steering.

Tracked mobile robots have demonstrated their utility in various domains, including but not
limited to the agricultural sector, rescue and search, military operations, forestry management, mining

activities, and exploring other planets [35].
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Figure 1.2. Principle of skid steering [35]

1.2.3. Wheeled Mobile Robots

The development of wheeled locomotion stands as a significant invention in human history. The
invention of the wheel is estimated to have occurred about in 3000 BCE, whereas the development of
the two-wheeled cart is believed to have taken place around 2000 BCE. Currently, the presence of four-
wheeled cars is pervasive, with the global automobile population exceeding one billion. The efficacy
and widespread usage of automobiles render them a logical selection as robotic platforms for terrestrial

locomotion [36].

Wheeled mobile robots (WMR), commonly known as "ground mobile robots" in the field of
robotics, typically have a stiff body, referred to as the base or chassis, and a wheel system that facilitates
movement on the ground [37]. Additional rigid bodies, such as trailers, which are likewise equipped

with wheels, can be linked to the base via revolute joints [38].

Wheeled robots are commonly used for the purpose of achieving mobility because of their
numerous advantages, such as an uncomplicated structure, high energy efficiency, rapid speed, and

inexpensive manufacturing cost, among others.

The wheel has emerged as the predominant mode of movement in the field of mobile robots and
across many man-made vehicles. The system is capable of attaining high levels of efficiency while
employing a rather straightforward mechanical design. Furthermore, the issue of balance is typically not
a subject of research in the realm of wheeled robot designs. This is mostly due to the fact that wheeled
robots are typically engineered in such a way that ensures continuous contact between all wheels and

the ground throughout their operation. According to previous research [39-41], it has been established
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that the use of three wheels is adequate to ensure stable balance. However, it should be noted that stability

can also be achieved with two-wheeled robots.

In the context of robots intended for all-terrain conditions and those equipped with over three
wheels, it is typically necessary to integrate a suspension system in order to ensure continuous contact
between the wheels and the ground surface. One of the most straightforward methods for implementing
suspension is incorporating a degree of elasticity directly into the wheel structure. In the context of
certain indoor robots equipped with four wheels and castor wheels, the makers have implemented a
rudimentary suspension system by incorporating a deformable tyre made of soft rubber onto the wheel.
Naturally, this constrained method is unable to rival a developed suspension system in scenarios when

the robot necessitates greater dynamic suspension to navigate considerably uneven terrain [42].

Each one of the wheels in a wheeled mobile robot (WMR) possesses the ability to rotate
independently around an axis of its own. Consequently, there is a shared point that can be identified as
the point of intersection of all the wheels' axes. The term used to refer to this concept is the instantaneous
centre of rotation (ICR) or instantaneous centre of curvature. It designates a given point around which

all of the wheels exhibit uniform angular velocity during their circular motion, as stated by ICR [43].

Rather than prioritizing balance, the field of wheeled robot research prefers to concentrate on
addressing problems related to traction and stabilization, maneuverability, and control, which are

contingent upon the types of wheels and configurations (drives) employed.

1.3. Wheel Types

WMRs, or Wheeled Mobile Robots, commonly employ two primary categories of wheels:
conventional wheels as well as special wheels [38],[44]. There is significant variation in the kinematics

of mobile robots, leading to a substantial impact on overall kinematics based on the chosen wheel type.

1.3.1. Conventional Wheels

There are three distinct categories of conventional wheels, as illustrated in Figures 1.3 and 1.4,
accompanied by the corresponding icons that will be employed for their representation:

e The fixed wheels or powered fixed wheels: The propulsion of these wheels is facilitated

by motors that are affixed to stationary locations on the vehicle. The wheel has the ability
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to undergo rotation around an axis that passes through its centre and is perpendicular to
the plane of the wheel. The wheel is affixed firmly to the chassis, resulting in a consistent
orientation of the chassis with regard to the wheel.

e The caster wheels: These wheels lack power but possess a pair of axes of rotation.
However, the vertical axis cannot cross the wheel's center, instead being consistently
displaced by a fixed offset. This configuration induces the wheel to rotate spontaneously,
swiftly matching it with the chassis' direction of motion. The introduction of this
particular form of wheel serves the purpose of offering a backing point for static
equilibrium while maintaining the maneuverability of the base. Caster wheels, for
example, find widespread application in shopping carts and wheeled chairs.

e The steerable wheels or powered steering wheels: Each wheel operates under
independent motorized drive and is capable of steering through rotation about an axis
orthogonal to its rotational axis, enhancing navigational flexibility. The wheels in
question have the potential to exist either equipped with offset or without offset, resulting
in a scenario where the rotational and steering axes do not cross. There are a pair of axes
of rotation present. The initial wheel is identical to a fixed wheel, whereas the subsequent
wheel is oriented vertically and passes across the wheel's central axis. This mechanism

enables the wheel to alter its orientation relative to the chassis.

FIXED STEERABLE CASTER
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Figure 1.3. The three common types of conventional wheels and their corresponding icons [38]



22

kL

(A)

Figure 1.4. Conventional wheels (A) fixed wheel, (B) caster wheel, (C) powered steering wheel

(B) (C) (D)

without any offset, and (D) powered steering wheel with longitudinal offset [44]

In comparison to special wheel structures, conventional wheels have superior load capabilities
and greater resilience towards terrain disturbances. However, owing to their nonholonomic restrictions,

these wheels do not possess true omnidirectionality.

1.3.2. Special Wheels

The design of these wheels enables them to exhibit active traction in a particular direction and
passive movement in another one, hence enhancing maneuverability in crowded conditions. There exist

three primary categories of special wheels:

e Universal wheel
e Mecanum wheel or Swedish wheel

e Ball wheel or spherical wheel

Figure 1.5 illustrates the universal wheel, which offers a blend of restricted and unrestricted

motion when turning. The wheel is equipped with little rollers positioned orthogonally to the axis of

rotation around its external diameter. Additionally, to perform the normal rotation of the wheel, this

mechanism enables the wheel to roll parallel to its axis.

Figure 1.5. Three configurations of universal wheel [44]
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The mecanum wheel [45-49], also known as the Swedish wheel, as depicted in Figure 1.6, is a
type of wheel that is analogous to the universal wheel with the exception that its rollers are positioned

at an angle v, typically around £45° and other than 90°.

Figure 1.6. (A) Mecanum wheel with y = 45° (left wheel), (B) Mecanum wheel with y = -45° (right

wheel), and (C) an actual functioning mecanum wheel [44]

The omnidirectional wheel is depicted in Figure 1.6 A and B, showcasing its appearance when
observed from the bottom through a glass floor. The force Fr generated by the rotational motion of the
wheel is transmitted to the ground through the roller that is in contact with the ground. It is assumed that
the ground is sufficiently level and free from any abnormalities. At this particular roller, the applied
force can be separated into two components: a parallel force, denoted as Fri1, which parallels the axis of
the roller, and a perpendicular force, denoted as Fr2, which is oriented at a right angle to the axis of the
roller. The force acting perpendicular to the axis of the roller induces a small rotational motion in the
roller at a velocity denoted as v,,. Conversely, the force acting parallel to the axis of the roller applies a
force on the wheel, consequently on the auto leading to hub velocity, v,. The resultant velocity (v;) of
the auto is the sum of the horizontal velocity (v;) and the vertical velocity (v,). The actual functioning
mecanum wheel is depicted in Figure 1.6 C.

The Swedish wheel operates similarly to a normal wheel, but it also offers reduced resistance in
an additional direction, sometimes orthogonal to the traditional direction. The passive nature of the small
rollers positioned along the periphery of the wheel is complemented by the active power exerted solely
through the wheel's major axis joint. One notable benefit of this particular design is its ability to provide
movement along various trajectories with minimal friction, despite the fact that the rotation of the wheel
is solely propelled along the major axis (by the axle). This design enables the wheel to traverse not only

forward and backward paths but also numerous other potential trajectories.
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Figure 1.7. A practical application of a ball wheel [44]

The ball or spherical wheel does not impose direct limitations on motion, as it possesses
omnidirectional capabilities similar to castor or special mecanum and universal wheels. Put otherwise,
the wheel’s rotational axis is capable of assuming any arbitrary orientation. One potential method for
accomplishing this objective involves employing an active ring that is powered by a motor as well as a
gearbox. This active ring serves to convey power to the ball through the utilization of rollers and friction.
Notably, the ball possesses the ability to rotate freely in any direction without delay. Due to its intricate
design, the ball wheel remains seldom employed in practical applications. Figure 1.7 illustrates a
particular variant of a ball wheel. One approach to executing this spherical design involves emulating
the functionality of a computer mouse, wherein powered rollers are employed to make contact with the

upper surface of the sphere and generate rotating force.

Wheeled mobile robots (WMR) are extensively employed in various applications to accomplish
robot locomotion. In a broad sense, wheeled robots tend to exhibit lower energy consumption and higher
velocity compared to alternative locomotion systems such as legged robots or tracked vehicles. From a
control perspective, the simplicity of their mechanisms and the lessened occurrence of stability issues
result in a decreased need for control effort. Despite the inherent challenges posed by rugged terrain and
uneven conditions of the ground, wheeled mobile robots have proven to be well-suited for a wide range

of target situations in various practical applications [50].

The selection of wheel kinds for a mobile robot has become inextricably connected to the
selection of wheel arrangement, often known as wheel geometry. When building the locomotion system
of a wheeled robot, the mobile robot engineer must take into account two concurrent difficulties. What
is the significance of wheel kind and wheel geometry? The decisions made in designing a robot have a

direct impact on three essential attributes: controllability, maneuverability, and stability [51-52].
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A plethora of design alternatives exist regarding wheeled mobile robots. The design problems
associated with a single-body mobile robot encompass the choice of wheel types, the optimal positioning
of wheels, and the precise determination of kinematic parameters. The specification of design targets
should be contingent upon the specific target circumstances and tasks, in addition to considering the
initial costs and operational expenses associated with the operation of a robot.

In contrast to automobiles, which are primarily engineered to operate inside a standardized
environment such as the road network, mobile robots are specifically intended to cater to a diverse range
of applications and scenarios. Automobiles exhibit commonality in their wheel configurations due to the
existence of a specific region within the design space that optimizes their controllability,
maneuverability, and stability within the typical environment they operate in, namely, the paved
roadway. As a result, a notable drawback associated with wheeled robots is their reliance on a paved
road or a level terrain for effective locomotion. Nevertheless, it is important to note that there is no
singular wheel configuration that optimizes these characteristics for the diverse range of environments

encountered by various mobile robots.

1.4. Drive Types

Wheeled robots, as demonstrated in Figure 1.8, represent a minimalistic yet effective design
paradigm in mobile robotics, which commonly incorporates one or more powered wheels to facilitate
motion, as seen by the solid rectangles in the illustration. Additionally, they may feature passive caster
wheels, represented by hollow rectangles, which serve to enhance stability. Likewise, it is possible for
these vehicles to possess steered wheels, often represented by wheels depicted within a circular shape to
indicate their axis of rotation. Typically, the driving and steering mechanisms for a mobile robot
necessitate the utilization of a pair of motors in the overall design [53-57].

O+ O
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Figure 1.8. Various drive types used for the design of wheeled mobile robots [56]

The drives of Wheeled Mobile Robots (WMRs) can be categorized into the following:
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1.4.1. Differential Drive

A differential drive system is characterized by two motors mounted in a fixed orientation on
the robot's lateral sides, each providing independent propulsion to a single wheel. As this configuration
provides only two points of ground contact, supplemental passive elements—such as caster wheels or
sliders—are integrated to fulfill the minimum requirement of three ground-contact points for static
stability. Furthermore, it is acknowledged that the interaction between the wheels of a robot and the
ground is characterized by a state of non-slipping and pure rolling [58]. The differential drive system is
considered to be mechanically more straightforward compared to the single-wheel drive system, as it
eliminates the need for the rotating motion of a driving motor. Nevertheless, Compared to single-wheel
drive systems, differential drive robots exhibit increased control complexity in directional navigation,
attributable to the need for precise synchronization between the two driven wheels.

The presence of only one passive wheel in a differential drive system restricts the ability to
position the driven wheels centrally, as such a configuration would compromise stability. Consequently,
the robot rotates about a pivot point located between the two driven wheels, which is offset from the
center. With two passive wheels (front and rear), however, the robot can achieve rotation about its center,
enhancing directional control and operational efficiency. Nevertheless, this particular design may give
rise to surface contact problems due to its utilization of four contact points rather than the more

conventional three.

A differential drive robot's driving operations are depicted in Figure 1.9. When both motors
operate at equal speeds, the robot moves in a linear path, either forward or backward. However, if one
motor operates at a higher speed compared with the other, the robot follows a curved trajectory along
the curve of an instantaneous circle. Moreover, To achieve a point turn, the control system commands
the left and right motors to run at equal speeds in reverse directions, causing the platform to rotate about
the center of its driving wheel axis.

e Driving linear forward or backward: v; = v,, v; > 0
e Driving in a rightward curve: v; > v,

e Rotation in a clockwise direction on the spot: v; =-v,, v; > 0
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Figure 1.9. Driving operations of differential drive. (A) Straight path, (B) Curved path, (C) Circular
path, and (D) Obstacle-free navigation to move from an initial to a final state [44]

1.4.2. Tricycle or Single Wheel Drive

The present mechanism is equipped with a solitary wheel that fulfills the dual functions of driving
and steering. In order to ensure stability, a configuration involving two unpowered fixed wheels
positioned at the rear is employed, hence maintaining the necessary three-point contact at all times. The
system necessitates the utilization of two motors, with one motor dedicated to driving the vehicle's wheel
and the other motor dedicated to turning. One notable benefit of this design is the complete decoupling
of the driving and turning motions through the utilization of two distinct motors. Consequently, the
control software designed for maintaining straight trajectories or executing curved paths will exhibit a
high degree of simplicity. When driving in a straight line, the wheel is placed in the central position and
operated at the desired velocity, see Figure 1.10A. Once the front wheel becomes inclined, the vehicle
has a trajectory that is curved, see Figure 1.10B. When the front wheel is set at a 90° angle, the robot
will undergo rotational motion along a circular trajectory. This circular path is centered at the midpoint
of the rear wheels rather than the geometric center of the robot, as depicted in Figure 1.10C. This implies
that the WMR lacks the ability to rotate in place. The minimal turning radius refers to the measurement
of the distance separating the frontal wheel and the midway of the two rear wheels. Nonholonomic
wheeled mobile robots (WMRs), such as tricycle or differential drive robots, are unable to execute

parallel parking procedures directly. However, they can achieve parallel parking through a series of
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maneuvers involving both forward and backward movements, as seen in Figure 1.10D. The utilization
of tricycle drive is prevalent in the field of mobile robotics due to the inherent stability provided by the

three wheels, enabling the robot to maintain an upright position autonomously.
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Figure 1.10. Tricycle WMR driving modes (A—D), (E) A tricycle example [44]

1.4.3. Synchro Drive

The drive in question consists of a minimum of three wheels that are interconnected in a manner
that ensures simultaneous rotation in an identical direction and at an identical speed. Additionally, these
wheels pivot collectively around their respective steering axes when executing a turn. A conventional
synchro drive system is characterized by the presence of three wheels that are symmetrically positioned
in an equilateral triangle configuration around the center of the vehicle. In this system, all wheels are
guided in synchrony, resulting in their rotation axes consistently maintaining parallel alignment.
Furthermore, the Instantaneous Center of Rotation (ICR) point is positioned at an infinite distance. There
are different methods available for achieving mechanical steering synchronization, such as utilizing a
belt, a chain, or a gear drive. The synchro drive system can be understood as an expansion of a single
steered and driven wheel, hence maintaining a limited number of degrees of freedom, specifically two.
Characterized by its near-holonomic kinematics, the synchro drive WMR exhibits omnidirectional
mobility, allowing for movement along any path in the plane, typically requiring a cylindrical chassis to

support omnidirectional movement.

Nevertheless, it is incapable of simultaneously driving and rotating. In order to transition from

forward to lateral movement, the WMR (Wheeled Mobile Robot) must come to a halt and readjust the
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alignment of its wheels. Figure 1.11A visually illustrates the movement and rotation of a three-wheel
WMR (Wheeled Mobile Robot) equipped with a synchro drive.
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Figure 1.11. (A) An example of WMR motion with a synchro drive, (B) The two separate belts
subsystems, and (C) A synchro drive example [44]

The utilization of a belt- or chain-based synchro drive results in diminished steering precision
and alignment. The occurrence of this problem can be avoided by implementing a gear drive mechanism.
In order to ensure proper functionality, it is necessary to employ two distinct motor-drive subsystems
that operate using belt, chain, and gear mechanisms. These subsystems serve two distinct purposes: one
of them for steering and another to control the driving shaft, as depicted in Figure 1.11B. The initial
motor is responsible for regulating the rotational movement of the wheels along the horizontal axis,
thereby supplying the force that drives (traction) the robot. The second motor governs the rotational

movement of the wheels along the vertical axis, thus influencing their orientation.

It should be noted that the direction of the chassis remains constant throughout the action.
Frequently, the inclusion of one more motor is observed in the design of such robots, with the purpose
of enabling autonomous rotation of the upper section of the chassis, commonly referred to as a turret, in
relation to the bottom section. This method could potentially be advantageous for the purpose of
orienting a directional sensor, such as a camera, without any specific constraints or, alternatively, for

correcting any errors in orientation [38].

One illustrative assignment that showcases the benefits of a synchro-drive system is the
achievement of "complete area coverage" by a robot within a designated location. The practical use of

this work can be observed in the context of cleaning or vacuuming floors.
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1.4.4. Ackermann Steering

In a rear-wheel-drive vehicle, power is delivered to the rear wheels via a differential-connected
motor, while the front wheels are passive and responsible for steering via synchronized actuation. The
phenomenon referred to is commonly recognized as Ackermann steering, and offers comparative
benefits and limitations when contrasted with the differential drive paradigm. A notable benefit is the
ease of maintaining linear motion, as the rear wheels are driven through a single mechanical axis.
However, this design limits maneuverability, as the vehicle cannot rotate in place and instead requires a

minimum turning radius.

In Ackermann steering configurations, a distinct control interface is necessary because linear and
angular velocities are produced by independent actuators, leading to full decoupling. This structural
separation simplifies control, notably improving the accuracy and stability of straight-line travel. The
driving library features dual independent control units: one responsible for the velocity and positional
regulation of the rear wheels, and the other for the steering control of the front wheels. The inclusion of
a position controller is necessary for the steering system since it is responsible for accurately setting the

front wheels to a specific steering angle.

In contrast, the velocity controller is utilized to ensure a consistent speed is maintained by the
back wheels. Slippage is observed in the rear driving wheels during the execution of turns. In order to
accurately steer the front wheels, it is necessary to have supplementary sensors that can detect the zero

position, as well as potentially the maximum right and left positions.

The Ackerman steering mechanism is specifically engineered to achieve a common cross point,
known as the instantaneous center of rotation (ICR), for all-wheel axes during turns. This design feature
aims to prevent wheel slippage resulting from geometric factors. It is able to find the equations from

Figure 1.12 as follows:

cotfy ==, coth, =222, cotp; =1, (1.1)
By eliminating E, it can get
cotfs = % + cotfB;, or cotfs = cotP, — %, (1.2)

where B, represents the automobile’s true steering angle and S, ; represent the outer and inner wheel’s

steering angles, respectively.
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Figure 1.12. The intersection point (ICR) of the rotating axes across all wheels [44]

The limitation in the movement of an Ackerman-steered automobile is depicted in Figure 1.13.

The automobile is currently situated in a location where there are two inaccessible circular areas, one on
the left side and one on the right side. The reason for this limitation is that the robot is unable to execute
turns (either to the right or left) when following a trajectory with a radius lower than a predetermined

minimum value. Hence, the act of parallel parking necessitates a substantial degree of maneuvering.

It is noteworthy to mention that in order to prevent slippage, it is necessary for both of the front

wheels to possess distinct orientations as the vehicle traverses a curve. Specifically, the internal wheel

should be somewhat more steered in comparison to the external wheel.

Figure 1.13. The inaccessible shaded areas by the Ackerman-steered robot [44]

1.4.5. Omni-Directional Robots (ODR)

As can be seen in Figure 1.14, a total of three, four, or even more omnidirectional wheels can

be used to achieve this type of driving. As can be seen in Figure 1.14A, the universal wheels used on
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three-wheeled WMRs all have a roller angle of 90 degrees (Figure 1.5). Mecanum wheels, as in Figure

1.6, are arranged like in Figure 1.14B on four-wheeled omnidirectional WMRs.
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Figure 1.14. Omnidirectional WMRs. (A) Three-wheel example, (B) four-wheel example with roller

angle various than 90° (typically y = +45°) [44]
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Figure 1.15. A conventional omnidirectional WMR uses a four-mecanum-wheel configuration [44]
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Figure 1.15, it can observe four wheels total; two are designated as the left-side (L) wheels, while
the other two are designated as the right-hand (R) wheels. Roller angle y = 45° on the left-side wheels
and y = -45° on the right-hand wheels. As a result, the usual design of a four-wheel omnidirectional
WMR is depicted in Figure 1.15.

Figure 1.16 illustrates the six fundamental movements performed by a four-wheel ODR,
specifically denoted as (A) forward movement, (B) left shifting, (C) clockwise rotating (in place), (D)

backward movement, (E) right shifting, and (F) anticlockwise rotating. The arrows located on both the
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left and right sides of the vehicle serve to indicate the intended direction of motion for the respective

wheels.

The arrows depicted on the automobile platform indicate the corresponding directions of motion
for the WMR. Specifically, when the automobile is moving ahead, all wheels are required to travel in
the forward direction, as shown in Figure 1.16A. In the case of left shifting, wheels 1 and 3 move forward
while wheels 2 and 4 move backward, and so forth. The depicted locomotions in Figure 1.16 happen
when all wheels are in motion at an identical velocity. The ability to achieve movement in any orientation
on a two-dimensional plane using a WMR can be accomplished by adjusting the amount of the wheel

speeds. Several instances are depicted in Figure 1.17.
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Figure 1.16. Six fundamental movements performed by a four mecanum wheels ODR [44]

The various movements observed in Figures 1.16 and 1.17 are easily elucidated by referring to
the velocity or force diagrams depicted in Figure 1.6 A and B, respectively. For instance, due to the
symmetrical configuration of the wheels on both sides (see Figure 1.15), when all wheels move in the
forward direction, there exist four forward-pointing vectors that are combined, along with four sideways-
pointing vectors—two towards the right and two towards the left—that mutually nullify each other.
Therefore, altogether, the WMR demonstrates progress. The left (L) and right (R) wheels have the
potential to be exchanged, meaning that the front wheels can be placed between each other as well as
the back wheels. Furthermore, it should be noted that by incorporating the appropriate motion of the
wheels, it is possible to achieve several kinds of omnidirectional mobility with this particular

configuration.
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Figure 1.17. Six more movements: (A) forward-right, (B) forward-left, (C) curved right, (D)
backward-right, (E) backward-left, and (F) lateral arc [44]

1.5. WMR Maneuverability

The maneuverability of WMRs, denoted as M,,,, can be mathematically expressed as
M, = G, + G, (1.3)
where G, represents the mobility degree, and G, represents the steerability degree.

The mobility degree: The mobility degree the value of G, is contingent upon the number of
separate (independent) constraints that are imposed on the robot's motion capability by the kinds of
wheels and configuration they have. The motion of the system is solely constrained by the presence of
conventional wheels, whether they are fixed or steered. The utilization of omnidirectional wheels does
not put any constraints on the mobility of the robot. A comprehensive understanding of the separate
(independent) kinematic constraints concerning a wheeled mobile robot (WMR) can be achieved by
examining the geometric characteristics of the robot, specifically focusing on the Instantaneous Center
of Curvature (ICC) or Instantaneous Center of Rotation (ICR). As an illustration, it is worth noting that
one conventional wheel lacks the capability to execute lateral movement, specifically along the line
defined by its rotational axis. The line mentioned above is commonly referred to as the zero-motion line
of the wheel. This implies that the wheel is limited to traversing an instantaneous circular path of radius
Rai, where the center of this circle is positioned on the zero-motion line. A bicycle is composed of two

wheels: the front wheel, which is steered, and the rear wheel, which remains fixed (see Figure 1.18).
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Every wheel produces its own distinct zero motion line, which operates independently. The
intersection of the two lines occurs at the Instantaneous Center of Rotation (ICR). In the scenario of a
differential drive-wheeled mobile robot (DDWMR), as depicted in Figure 1.19, it can be observed that
the zero motion lines of the two wheels, which share a common axis, synchronize with each other.
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Figure 1.18. A bicycle's two wheels represent two independent constraints [44]
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Figure 1.19. Determination of the WMR rotation's instantaneous radius Rai [44]

Consequently, the motion of these wheels is not independent. This implies that there exists a
single independent kinematic constraint. Any point located along the common zero motion line has the
potential to serve as an Instantaneous Center of Rotation (ICR). The Ackerman steering mechanism is
characterized by the presence of four conventional wheels on a wheeled mobile robot (WMR), with two
separate (independent) kinematic constraints, as depicted in Figure 1.12. The presence of two rear wheels

in a vehicle, such as in a differential drive system, introduces a singular constraint.

Additionally, the two front-steered wheels present a second singular kinematic constraint. This
is due to the fact that these wheels intersect at an Instantaneous Center of Rotation (ICR), which lies on
the zero-motion line specified by the common axis of the rear wheels. The highest mobility degree G,,

is equal to 3 in cases if nonkinematic constraints are present. This scenario occurs when every one of
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the wheels of the wheeled mobile robot (WMR) possesses omnidirectional capabilities. In a broad sense,

the mobility degree can be considered as being equivalent to:
Gn=3—-N, (1.4)
where N, represents the number of separate (independent) constraints.

The steerability degree, G, is determined by the number of steering parameters that can be
controlled separately (independently). The range of G, is bounded by the period 0 < G; < 2. In the
absence of any wheels capable of being steered, the value of G, is equal to zero. The condition G, = 2
is satisfied just in instances where the robot does not possess any fixed standard wheels. In this scenario,
it is possible to implement a platform using two distinct steerable conventional wheels, such as those
found in a two-steer bicycle or a three-wheeled two-steer wheeled mobile robot (WMR). According to
the above information, a value of G, = 2 indicates that the WMR (Wheeled Mobile Robot) possesses
the capability to position its Instantaneous Center of Rotation (ICR) at any location inside the plane. The
prevailing scenario occurs when G, equals 1, a condition that arises when the robot's configuration
incorporates at least one steerable conventional wheel. The utilization of a conventional wheel that is
guided has the potential to reduce the overall mobility of the robot while simultaneously increasing its
steerability. Indeed, while the immediate orientation of the steering wheel enforces a kinematic
constraint, its capacity to modify the orientation may enable the exploration of supplementary
trajectories. Table 1.1 displays the maneuverability (M,,), mobility degree (G,,), and steerability degree

(G,) for various common configurations of WMRs.

Two further distinguishing parameters of WMRs are the "differential degrees of freedom™

(DDOF) and the "degrees of freedom™ (DOF), which are related by the following relation:
DDOF < M,, < DOF (1.5)

A bicycle possesses the capability to attain any given position (X, y, @) within a plane through a
series of maneuvers, so indicating that it possesses three degrees of freedom, DOF = 3. However, its
differential degrees of freedom, DDOF = G,, = 1. The omnirobot under consideration possesses three
omnidirectional wheels, resulting in G,, = 3, indicating a DDOF = 3. Additionally, the omnirobot
manifests a DOF = 3. In a similar vein, it can be observed that a tricycle possesses a differential degree
of freedom DDOF = G,, = 1, and a degree of freedom DOF = 3. This is due to its capability to attain

any desired position (X, y, @) with suitable maneuvering [44].
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Table 1.1. Mobility Degree and Steerability Degree (G,,, Gg) of popular WMRs [44]

Configuration Gn G M, Notation
Bicycle 1 1 2 (1,2
Differential drive 2 0 2 (2,0
Synchro drive 1 1 2 (1,2
Tricycle 1 1 2 (1,2
Ackerman steer 1 1 2 1,2
Two-steer 1 2 3 1,2)
Omni-steer 2 1 3 (2,1)
Omnidirectional 3 0 3 (3,0)

1.6. WMR Stability

Interestingly, it has been found that a minimum of two wheels is sufficient to achieve static
stability. A differential-drive robot with two wheels can attain static stability when the center of mass is
positioned below the axle of the wheels [59]. Nevertheless, in typical scenarios, the implementation of
such a resolution necessitates wheel widths that are excessively big and, therefore, not feasible. The
presence of dynamics in a two-wheeled robot can result in the robot making contact with the floor at a
third point, such as when there are strong motor torques applied from a stationary position. In accordance
with conventional wisdom, static stability necessitates the presence of at least three wheels. It is
important to note that the gravity center is required to be situated within the triangular region produced
by the points of contact between the wheels and the ground. Enhancing stability can be achieved by
increasing the number of wheels. However, it should be noted that when the number of connecting points
surpasses three, the geometric configuration becomes hyperstatic, necessitating the implementation of a

flexible suspension system to accommodate uneven terrain [42].
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1.7. WMR Controllability

In general, there exists a negative link between controllability and maneuverability. An instance
of this can be seen in omnidirectional designs, such as the configuration with four castor wheels, which
necessitates substantial processing in order to turn the required rotational and linear velocities into
specific orders for each wheel. Moreover, it is worth noting that omnidirectional designs frequently
exhibit a higher number of degrees of freedom in the wheel mechanism. As an illustration, the Swedish
wheel is equipped with a collection of unrestricted rollers positioned along the circumference of the
wheel. The presence of the degrees mentioned above of freedom leads to the occurrence of slippage,
which has a detrimental effect on the accuracy of dead-reckoning and also contributes to an increase in

the complexity of the design.

The task of directing an omnidirectional robot towards a specific direction of motion is inherently
more challenging and frequently exhibits lower levels of accuracy in comparison to less maneuverable
robot designs. As an illustration, a vehicle equipped with an Ackerman steering mechanism is capable
of maintaining a straight trajectory by immobilizing the steerable wheels while powering the drive
wheels. In the context of a differential-drive vehicle, it is imperative to ensure that the two motors
connected to the two wheels are driving at an identical velocity profile. However, achieving this
synchronization can pose difficulties due to inherent variations among the wheels, motors, and the
outside environment. The challenge becomes more complex when utilizing a four-wheel omni-drive
system, exemplified by the Uranus robot equipped with four Swedish wheels. In this configuration,
maintaining a precise straight trajectory necessitates the synchronization of all four wheels to operate at

identical speeds [42].

In conclusion, it can be stated that no universally optimal drive design may effectively optimize
stability, maneuverability, and controllability all at once. Every mobile robot application imposes
specific constraints on the design challenge, and the designer's objective is to select the best suitable

drive configuration among the range of trade-offs available.

1.8. Motion Modeling for Differential Drive Wheeled Mobile Robots

Motion models are utilized to describe the kinematics of robots. There has been a notable focus
on the mathematical aspects of robot motion, disregarding the underlying causes like forces or torques.

The kinematic model elucidates the inherent geometric relationships within the system. This statement
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elucidates the correlation between the inputs (control parameters) and the behavior of a system as
delineated by its state-space representation. The kinematic model pertains to the velocities of a system

and is represented by a collection of differential equations of the first degree.

Dynamic models are utilized to depict the motion of a system in response to the application of
forces. These models incorporate the principles of physics pertaining to motion, encompassing the
utilization of forces, energy, mass of a system, velocity, and inertia parameters. The dynamic models’

description can be expressed by second-order differential equations.

In the field of wheeled mobile robotics, it is well-accepted that kinematic models are typically
adequate for the purpose of designing locomotion strategies. However, in the case of other systems
involving robots operating in air, space, water, or walking robots, the inclusion of dynamic modeling

becomes necessary [60].

As previously said, the Differential Drive Wheeled Mobile Robot (DDWMR) is considered to
be a straightforward and efficient structure among the various types of mobile robots [61]. The
DDWMRs possess the capability to navigate inside a predetermined operational environment in order
to accomplish a specified path or trajectory [62]. The capacity for mobility renders them highly
advantageous for a wide range of applications in both structured and non-structural environments. The
differential drive system consists of a pair of wheels positioned at opposite ends of a mobile platform.
These wheels can be operated independently in terms of both position and velocity [63]. In certain
instances, the implementation of an additional wheel known as the Castor wheel can be used to maintain
equilibrium in the event of any potential instability [64]. Various scenarios occur during the DDWMR
rotation. When the two wheels of the DDWMR rotate in the same direction at equal speeds, the robot
travels in a straight trajectory [65]. Additionally, when one wheel is in motion while the other remains
stationary, the DDWMR exhibits circular motion, with the center of the circle being the pivotal point of
the stationary wheel. Similarly, if the roles are reversed, the DDWMR follows a circular trajectory, with
the center being the pivotal point of the rotating wheel [66].

The classification of Differential Drive Wheeled Mobile Robots (DDWMRSs) encompasses four

distinct models:

e The posture kinematic model
e The configuration kinematic model
e The posture dynamic model

e The configuration dynamic model
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The kinematic models of the DDWMR characterize its behavior through a mathematical function
that relates the velocity and orientation of its wheels. On the other hand, the dynamic models of the
DDWMR describe its behavior by a mathematical function that relates the generalized forces exerted by
the actuators. The posture models exclusively focus on the robot's position and orientation as state
variables, in contrast to configuration models that incorporate other internal variables, such as the

wheels' angular displacement [67-69].

1.8.1. Kinematics of Differential Drive Wheeled Mobile Robots

The field of robot kinematics encompasses the study of the configuration (arrangement) of robots
within their operational environment, Robot kinematics encompasses the analysis of the geometric
configuration of robotic systems, the functional dependencies between their structural parameters, and
the kinematic constraints imposed on their trajectories—all of which are fundamentally determined by
the robot’s physical architecture. The choice of wheel type, the number of wheels, and the manner in
which they are connected to the chassis of the robot have a substantial impact on the kinematics of
mobile robots [70].

A comprehensive understanding of kinematics is an essential foundation for studying the
principles of dynamics, the analysis of stability characteristics, and the implementation of control
mechanisms in the field of robotics. Ongoing research is being conducted on the development of novel
and special robotic kinematic structures, with the aim of creating robots capable of executing advanced

and intricate tasks in various industrial and societal domains [71-76].

The nonholonomic mechanical system, known as the DDWMR, as depicted in Figure 1.20,
serves as a representative illustration. The system under consideration comprises a rigid body, referred
to as the base, which incorporates a pair of conventional fixed wheels that are driven by separate
actuators, such as direct current motors. These wheels enable the system to achieve both movement and
orientation. Additionally, a third wheel is present, and occasionally a fourth wheel, which are passive
and solely serve the purpose of providing support to the DDWMR. The influence of these passive wheels
on the dynamics of the DDWMR is considered to be trivial [77].

The posture vector, denoted as { = [x y 8]7, represents the characteristics of the system. Here,
x and y denote the coordinates of point C, which serves as both the mass center as well as the guidance
point. These coordinates are defined within the inertial coordinate system OXoYo. Additionally, 6

represents the angle of orientation of the mass center coordinate system of the DDWMR CXcYc relative
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to the inertial coordinate system OXoYo. The OXoYo frame, referred to as the inertial reference frame,
also represents the fixed frame of reference in the robot's surroundings within which it operates. On the
other hand, the DDWMR CXcYc frame, known as the robot frame, denotes a local coordinate system
that is affixed to the robot itself [78].

> actuated wheel
@l frcewheel

Figure 1.20. DDWMR and systems of coordinates [77]

The local coordinates of mechanical systems are capable of being represented using the
generalized coordinate vector Q, where Q = [Q1, Qz, . .. ,Qn]™ € R". In numerous scenarios, the motion
of mechanical systems is governed by a range of constraints that are consistently upheld throughout the
movement. These constraints manifest as algebraic relationships between the velocities and positions of

the system's points [79].

The parameter nomenclature employed in the DDWMR study, as depicted in Figure 1.20 and

enumerated in Table 1.2.

The DDWMR depicted in Figure 1.20 exhibits three kinematic restrictions, as documented in
references [80-82]. The initial constraint pertains to the inability of the DDWMR to undergo lateral
sliding, thereby adhering to a non-slipping constraint. Consequently, the DDWMR is only capable of
movement along the perpendicular direction to the actuated wheels' symmetry axis. The constraint

mentioned above can be expressed as
y cos(f) —xsin(8) =0, forC=P, (1.6)

y cos(8) — xsin(f) —dO =0, for C#P. (1.7)
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The next two constraints pertain to the wheel's rotation, namely the pure rolling constraints.

Table 1.2. DDWMR Parameters [77]

Parameter Description
P Intersection of the axis of the symmetry with the wheels’ axis.
C Center of mass or point of guidance.
d The distance between point P and point C.
ra Radius of left or right wheel.
2a The distance between the actuated wheels and the axis of symmetry.
@1, Pr The angular velocities of the left and right wheels.
W,V The angular and linear velocities of DDWMR.
Q The generalized coordinate vector.

These constraints ensure that the actuated wheels do not experience any incorrect rotation. They

can be expressed as follows:

where ¢; and ¢, represent angular displacements of the left and right wheels, respectively.

% cos(0) + ysin(@) +ab —r¢, =0, forC=PandC#P,

x cos(8) + ysin(@) —ab —r¢, =0, forC=PandC#P.

Equations (1.8) and (1.9) can be expressed as follows:

since

v+aw = re,, forC=PandC#P,

v—aw = r¢;, forC=Pand C#P,

v = x cos(@) + ysin(0),

w=0.

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)
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By utilizing Equations (1.10) and (1.11), it is possible to establish a correlation between the
angular velocities of the right and left wheels (¢, ¢;) of the DDWMR, and the angular and linear

velocities of the mass center of the DDWMR (w, v). This correlation yields the following relationship:

. 1a
ol=ell=l L[] (1.14)

and vice versa:

a2

=2 [51-1; )] =

where b = — .
2a

Kinematic constraints are prevalent in a wide range of applications. Equations (1.6)—(1.9)
represent linear relationships involving the generalized coordinate vector. These relationships can be

described in matrix format as:
A(Q)Q = 0. (1.16)
The state vector is denoted by a set of five generalized coordinates,

Q=[{"o"" =[xy 00 0], (1.17)

the three constraints are able to be expressed in the format of Equation (1.16), i.e.,

X

—sin(@) cos(@ 0 0 0]|Y
A(Q)Q =|—cos(@) —sin(@) —a r 0||8]| forCc=P, (1.18)

—cos(f) —sin(@) a 0 r||or

@1

X

—sin(@) cos(@) —-d 0 o||Y
AQ)Q =|-cos(@ -sin(®) —-a r 0||8]| forC#P, (1.19)

—cos (f) —sin (0) a 0 r||er

P

The referential of DDWMR velocity is determined by the angular velocity of the left and right

wheels (¢; and ¢,.), respectively,

_ [
v = q.)r]. (1.20)
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By assuming neglect of the inertia and mass of the motors and wheels, it may be postulated that
the DDWMR adheres to the principles of pure rolling and non-slipping conditions [83]. Therefore, the

matrix A(Q) that encompasses the nonholonomic constraints is simplified to:
A(Q) = [—sin(8) cos(6) 0], forC=P, (1.21)
A(Q) = [—sin(@) cos(8) —d], forC#P, (1.22)

in such a way that the displacements are limited to the direction of the axis of symmetry of the actuated

wheels and

Q=¢=[xyol" (1.23)

Furthermore, it should be noted how the referential velocity of the DDWMR is determined by its

linear velocity (v) and angular velocity (w), i.e.,

v = [:)] (1.24)

It is crucial to highlight that the system's configuration space, denoted as n, consists of the
generalized coordinate vector @ and the number of constraints represented by p. Consequently, the
dimension of the velocity vector is m = n - p, where in this particular case, m = 2, indicating the system's

degrees of freedom.

The objective is to eliminate the limitations imposed by the constraints [79] on the Jacobian
matrix S$(Q). This matrix, consisting of a collection of linearly independent and smooth vector fields, is

of complete rank (n - p) and is dispersed inside the null space of A(Q), i.e.,

A(Q)S(Q) = 0. (1.25)

Based on Equations (1.16) and (1.25), it is feasible to determine an auxiliary velocity vector,

denoted as v € RP*1, which is dependent on time. This vector satisfies the condition for all values of t:

0=SQv. (1.26)
The configuration kinematic model, denoted as matrix S(Q), is provided as follows:
= From Equations (1.18) and (1.19):

bacos(8) bacos(8)
b asin(8) basin(8)
S(Q) = b —-b , forC=P, (1.27)
1 0
0 1
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b(a cos(8) —d sin(6) b(a cos(8) + d sin(0)

b(asin(6) + d cos(8) b(asin(8) —d cos(H)
5(Q) = b —b , forC#P,  (1.28)

1 0
| 0 1 ]
where b = — .
2a

In a similar vein, the posture kinematic model, represented by the matrix $(Q), leads to:

=  From equations. (1.21) and (1.22):

cos(d) O
S(Q) = [sin(@) 0], forC =P, (1.29)
0 1
cos(0) —dsin(6)
5@ = [sin(@) d cos(0) ] for C # P, (1.30)
0 1

An alternative approach to expressing the posture kinematic model Equations (1.29) and (1.30)
involves leveraging the velocity of the DDWMR in terms of x, ¥, and @ as depicted in Figure (1.19),
ie.,

X = v cos(0)
{5/ = vsin(f) , forC=P, (1.31)

0=w

x = v cos(8) — wd sin(0)
y = v sin(8) + wd cos(6) , for C #P. (1.32)
6=ow
It is imperative to underscore the necessity of conducting an investigation into the correlation
between the wheels and the DDWMR in order to ascertain the matrices A(Q) and S(Q). The method for

deducing these matrices has been analyzed in [67-69].
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v sin(@)

S

-dw cos(9)

-dw sin(9)

Figure 1.21. The depiction of the DDWMR velocities of Figure 1.20. [77]

1.9. Motion Constraints

All robotic systems are bound by different constraints on their motion, but not each of these is
capable of being articulated as constraints on their configuration. An illustrative instance of this kind of
system involves an automobile. At lower velocities, both automobile rear wheels exhibit unrestricted
rotational movement in the direction they are oriented while impeding any lateral sliding motion in the
direction perpendicular to them. This constraint indicates that the automobile is unable to move laterally.
It has been empirically observed that the velocity constraint lacks any constraints on the configurations
of the automobile. In other words, the automobile has the ability to attain any location or orientation
inside the plane that does not contain obstacles. Indeed, the hindered lateral displacement can be

estimated through the execution of parallel parking maneuvers.

The no-slip constraint can be classified as a nonholonomic constraint, which specifically pertains
to the velocity of the system. Besides the condition of rolling without slipping, the principle of
conservation of angular momentum is frequently encountered as a prevalent origin of nonholonomic
constraints with mechanical systems.

Suppose we shift our perspective from perceiving the automobile as a system that adheres to a
motion constraint. Instead, we acknowledge that merely two control inputs (the speed and steering angle)
are available to govern the automobile's three degrees of freedom. In that case, it is plausible to
categorize the system as underactuated. Underactuated systems are characterized by a fewer number of

controls than the present degrees of freedom [84].
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Kinematic constraints are able to be classified into two categories: holonomic constraints and
nonholonomic constraints. The mobility of a robot is restricted in some directions due to nonholonomic
constraints [85]. The concept of holonomic constraints is closely linked to the dimensionality associated

with the system's state description, specifically in generalized coordinates.

Nonholonomic constraints manifest in two principal fashions [15]:

1. In the context of rolling motion without slipping constraints. An instance that illustrates
the interdependence of translation and rotation occurs when a wheel undergoes rolling
motion without sliding. Some examples that can be provided are a WMR, a unicycle, a
vehicle, and a tractor-trailer.

2. In systems characterized by the conservation of angular momentum. Some examples of
robotic applications include the utilization of satellites and space robots, as well as the
development of robots for gymnastics, diving, and running.

The expression of holonomic constraints is achieved by the utilization of equations that
incorporate generalized coordinates. The equations mentioned above can be employed to exclude a
subset of generalized coordinates, reducing the number of necessary generalized coordinates for
describing a given system. Nonholonomic constraints have no effect on the reduction of the
dimensionality of the generalized coordinates; instead, they only affect the dimensionality of the
generalized velocity space. The inclusion of nonholonomic constraints has a significant impact on the
problem of path planning [60], [86].

The problem of motion planning for a nonholonomic system can be formulated as follows: given
a representation of the environment containing obstacles in the workspace, a robot that is constrained by
nonholonomic constraints, the initial position, and the final position, the objective is to determine a
feasible path that is free from collisions between the initial and final positions. The resolution of this
issue necessitates the consideration of both the constraints imposed by obstacles inside the configuration
space as well as the nonholonomic constraints. The methods that have been created to tackle this issue
effectively integrate techniques from both motion planning as well as control theory. Constraints arising
from obstacles are explicitly represented in the configuration space, which is a manifold. However,

nonholonomic constraints are described within the tangent space [87-91].

1.9.1. Holonomic Constraints

The holonomic constraints are contingent upon the utilization of generalized coordinates. In a
system characterized by n generalized coordinates Q = [Q;, ..., Q,,]7, @ holonomic constraint can be

mathematically represented as follows:
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f@Q) = f(Qy, ., Qn) =0, (1.33)

where f and its associated derivatives are assumed to be continuous functions, this constraint establishes
a subspace within the set of all the possible configurations in the generalized coordinates, wherein
Equation (1.33) holds valid. Constraint (1.33) is capable of being employed to eliminate specific

generalized coordinates, as it can be represented in terms of n — 1 other coordinates.

Typically, there exists a possibility of having m holonomic constraints, where (m < n). If the
mentioned constraints are linearly independent, they establish a subspace of dimension (n — m), which

corresponds to the genuine configuration space of the system with (n — m) degrees of freedom.

1.9.2. Nonholonomic Constraints

Nonholonomic constraints impose limitations on the possible system velocities or the possible
motion directions. The formulation of the nonholonomic constraint is capable of being expressed by

f(Ql Q) = f(Qli ""in Ql' ] Qn) = 0’ (134)

where f represents a smooth function possessing continuous derivatives, whereas Q is the vector
containing the velocities of the system within the generalized coordinates. If the system lacks constraints

(1.34), it is unconstrained in its range of motion directions.

A kinematic constraint (1.34) becomes holonomic in the academic context if it satisfies the
condition of integrability. Integrability implies that the velocities Q;, ..., Q,, are able to be omitted from
Equation (1.34), resulting in the constraint being represented in the format of Equation (1.33). If the

constraint denoted by equation (1.34) lacks integrability, it can be classified as nonholonomic.

If there are m nonholonomic constraints in the form of Equation (1.34) that are linearly
independent, then the dimension of the velocity space becomes (n — m). The system's velocities are
constrained by nonholonomic constraints. An instance of a differential drive vehicle, such as a
wheelchair, has the capability to travel in the direction determined by the current orientation of its
wheels, but lacks the ability to move laterally.

Considering linear constraints in the equation Q = [Qy, ..., Q,]7, equation (1.34) is able to be

expressed as

0
f(@Q)=a"(@Q =[0:(Q) .. a,(@]]: |=0, (1.35)
Qn
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where a” (Q) represents the parameter vector of the constraint. To obtain a constraint matrix for a system

with m nonholonomic constraints, the following matrix is employed:

ai (@)
AQ=| | (1.36)
an(Q)
and all of nonholonomic constraints are presented in matrix representation
A(Q)Q =0. (1.37)

At every given time interval, the matrix denoting the set of attainable motion directions is
represented as S(Q) = [s1(Q), ..., S,—m(@)]. The number of constraints determines the number of
attainable directions, which is equal to (n-m). The kinematic model is defined by this matrix in the

following manner:

Q1) = S(Qv(v), (1.38)

where v(t) represents the control vector. The resultant matrix obtained by multiplying the constraint

matrix A and the kinematic matrix S is a matrix consisting entirely of zeros
AS=0. (1.39)

The idea of holonomic motion is defined by the relative values of a robot's degree of freedom
(DOF) and the mobility degree (G,,). A robot exhibits holonomic motion when the mobility degree is
equal to degrees of freedom (G,, = DOF). Conversely, a robot demonstrates nonholonomic motion
when the mobility degree is less than the degrees of freedom (G,,, < DOF). A holonomic robot, such as
the omni robot, possesses the capability to exert direct control over all of its degrees of freedom (DOF)
without necessitating complex maneuvers. Figure 1.23 illustrates the relative ease with which the
omnidirectional robot equipped with three Swedish wheels, as depicted in Figure 1.22, is able to execute

parallel parking.

free motion

Figure 1.22. An omni-directional robot equipped with three Swedish wheels [92]
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An automobile and a robot equipped with differential drive belong to non-holonomic systems
due to their limited mobility degree (G,,,). The automobile has a mobility degree of 1, while the robot
has a mobility degree of 2. This is lower than their degrees of freedom (DOF), which is 3 for both
systems. Due to this restricted mobility degree, these vehicles necessitate intricate steering maneuvers,

such as those employed during parallel parking. A notable disparity exists between both of these

7
%

= = wg

Figure 1.23. Parallel parking maneuvers by an omni-directional robot [92]

vehicles.

The DDWMR requires three distinct movements, which are characterized by simplicity: left
rotation, backward motion, and right rotation, as depicted in Figure 1.24a. The automobile also
necessitates three distinct motions, albeit executing them accurately proves exceedingly challenging (see
Figure 1.24b). One must determine the optimal initiation point of the maneuver, the degree of curvature
for each turn, and the distance to be covered between successive turns. The greater mobility degree (G,,,)

of the DDWMR provides a notable benefit in the given scenario [92].

(a) (b)

|
O D D40

Figure 1.24. (a) Non-holonomic DDWMR parallel parking. (b) Non-holonomic automobile parallel
parking [92]
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1.10. Navigation of WMR

The process of robot navigation involves deliberate design strategies aimed at reaching a
specified destination while simultaneously circumventing any encountered obstacles. The principal
objective in the field of navigation involves either attaining a pre-established objective or following a
predefined path while avoiding any instances of collision. A mobile robot possesses the capability to
move intelligently throughout a wide range of environments, including static, dynamic, uncluttered, and
unpredictable settings, among others [93]. Navigation is a fundamental methodology employed to
facilitate the movement of a robotic entity across diverse environments, enabling it to traverse from an
initial position to a desired destination [94]. The dependability of maps in navigational approaches is
often called into question as a result of the dynamic and unexpected nature of applications in the real
world [95]. The process depicted in Figure 1.25 [96-100] comprises four fundamental components: (i)
perception, the system of perception refers to the ability of a robot to identify objects in its surrounding
environment in real-time. This information is then transmitted to the decision-making system, which
enables the robot to effectively reason concerning future actions necessary to accomplish the intended
task [101]; (i) localization, on the other hand, pertains to the robot's capability to accurately determine
its precise position within a given map in the real world [102]; (iii) cognition and path planning, involve
the process of determining a path that avoids collisions and optimizes specific objectives, such as
minimizing the distance navigated or energy consumption, from an initial location to a desired goal
location [103-104]; (iv) motion control, refers to the robot's ability to adjust its motor output in order to
reach the intended route [105]. Furthermore, the successful navigation of a mobile robot necessitates the
acquisition of supplementary skills, encompassing control aptitude, planning of trajectory, obstacle
avoidance, and the establishment of secure distances to the intended destination. These competencies
are imperative for mobile robots to execute optimal navigation performance. In order to ensure the
successful completion of all tasks, it is essential for every navigation system to take into account those
mentioned above basic design [106-107]. The navigation problem, as a whole, has been constructed
based on the suitable answer to three fundamental questions. In which location am | currently situated?
To what destination am | headed? Furthermore, what is the most efficient approach for reaching that
destination? The fundamental philosophy of all research within this discipline is to provide answers to

these three fundamental questions [108-109].
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Figure 1.25. Mobile robot systems reference navigation scheme [42]

Since the primary focus of this study pertains to motion control, encompassing its various
problem kinds and the most significant previous research in the field, all of these will be addressed
sequentially.

1.10.1. Motion Control

In kinematic-based formulations of the motion control problem, it is assumed that the control
inputs directly determine the generalized velocities of the wheeled mobile robot. There are two primary
reasons for adopting this simplified assumption. Initially, given appropriate assumptions, it is feasible
to nullify the dynamic influences by employing state feedback, so effectively shifting the control
problem to the second-order kinematic model and then to the first-order kinematic model. Furthermore,
in most cases of mobile robots, direct command over wheel torques is not feasible due to the presence
of low-level loops of control that are embedded within either the hardware or the software construction.
The loops in question are designed to receive a reference value through the angular speed of the wheel
as input. This reference value is then replicated as precisely as possible via the use of typical regulation
actions, such as PID controllers. In this scenario, the accessible inputs for high-level controls consist

exclusively of the reference velocities [38]. Furthermore, it is worth noting that in most mobile robot
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platforms, the internal torque controller is pre-installed, allowing users to focus on commanding the

appropriate velocities of the system by considering its kinematics [60].

There exists a variety of tools that can be utilized for controlling nonholonomic systems.
Nevertheless, up until now, there has been no definitive identification of a control method or collection
of tools that exhibits superior performance compared to others. This can be attributed mostly to the
following concrete proofs. A well-designed control law should possess two fundamental characteristics.
Firstly, the system should be guided from its starting state to the destination state in a simple manner.
Secondly, it should exhibit robustness against discrepancies between the model and the actual system,
as well as measurements of noise and approximate knowledge regarding initial conditions. Open loop
techniques have the capability to provide the initial item. However, their robustness remains uncertain,

though they can be effectively utilized in the development of robust iterative designs.

Conversely, closed-loop techniques possess the likelihood for enhanced robustness, yet the
inherent dynamics of the closed-loop system may lack naturalness. The closed-loop system may exhibit
oscillatory behavior, which is not essential or demanded for reaching the required final point. It is worth
noting that closed-loop techniques have the potential to be more robust compared to open-loop ones
[110].

The motion of a mobile robot can be classified into one of the following scenarios:

1.10.1.1. Posture Control (Posture Stabilization)

The first potential approach is posture control, which refers to the ability to control both the
position as well as the orientation of the robot in order to achieve the intended position and orientation.
The term "posture™ encompasses both the position as well as the orientation of the robot. In the context
of the DDWMR, it is possible to divide the task into two distinct subtasks. The first subtask involves
guiding the robot towards a destination position (x4, y4) within the navigation plane, beginning with an
initial position (x;, y;) within the same plane. The second subtask entails rotating the robot around its

vertical axis (6,) in order to correct its orientation subsequent to reaching the destination position.

It should be noted that this capability is only applicable to the particular robot under
consideration, as it possesses the ability to rotate without altering its position. Another significant
characteristic in this scenario is that the trajectory used by the robot to reach the destination position is
inconsequential. The problem merely specifies the desired destination point as well as the intended

orientation at this point for the robot without specifying any particular trajectory that should be taken
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[111]. It is not possible for the nonholonomic mobile robot to get a point stabilization using a feedback
law that is time-invariant and continuous in the variables of state. There are feedback laws that are time-
varying and discontinuous, which have been shown to achieve the desired task [112-113]. Due to the
provision of solely the initial and final postures, with the trajectory between these locations being
arbitrary, novel opportunities arise, including the ability to select an "optimal trajectory. It is imperative
to emphasize the selection of a feasible trajectory that incorporates considerations of environmental,
dynamic, and kinematic constraints. Typically, this results in an extensive array of possible trajectories,
from which a specific trajectory is selected based on further criteria such as distance, curvature, time
frame, energy consumption, and similar factors. The trajectory can be explicitly set and adjusted during
movement, or it can be implicitly determined through the implementation of a control algorithm to get
the desired position [60]. Figure 1.26 illustrates the specific task under consideration, wherein the
DDWMR effectively tracks possible trajectories. To clarify, stabilizing a system can be understood as

the process of attaining a particular point of equilibrium for the system's state [77].
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Figure 1.26. Example of posture control task [77]

1.10.1.2. Trajectory-Tracking Control

The second potential approach is trajectory-tracking control, wherein the robot is tasked with
precisely tracking a specific trajectory. A trajectory refers to a vanishing point, which is a point located
in the plane for ground robots or in 3D space for aerial robots. This point's position changes throughout
time. This implies that the intended location is presently represented by the coordinates (x4 (t), y,(t))
or (x4(8), ya(t), 84(t)), which undergo motion at velocities (x4(t),y,(t)) or (x4(t), ya(t), 6,4(t)). In
this scenario, the robot should increase its velocities beyond the ones of the trajectory in order to surpass
them. Subsequently, the robot should decrease its velocity, so it matches the trajectory’s velocity, thereby
maintaining its position above it. Figure 1.27 depicts a trajectory tracking challenge in which a
DDWMR, denoted as R, endeavors to reach a target position, denoted as M while adhering to specific

timing constraints relative to a reference curve. In robotics, trajectory tracking is a commonly employed
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technique to provide collision avoidance within a controlled environment. In such scenarios, DDWMRs

are required to adhere to specific postures at certain time instances [77].
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Figure 1.27. An illustration of a trajectory tracking control task [77]

It is worth noting that there are two variations of the tracking of trajectory problem that can be
taken into consideration. The primary aim in the first scenario is to control the position of the robot
solely; however, in the second scenario, the target extends to encompass simultaneously the orientation
and position of the robot [114-115]. It should be noted that achieving flawless tracking is only possible
when the trajectory used as a reference is feasible for a real robot [112], [116]. Additionally, it is essential
to recognize that a trajectory that is feasible for a DDWMR may not necessarily be feasible for either a
car-like robot. In the context of nonholonomic robots such as the DDWMR, the feasibility of a reference
trajectory is contingent upon its generation by a reference robot that shares identical kinematic
constraints with the real robot. For example, the majority of trajectories generated using an
omnidirectional robot cannot be feasible for any nonholonomic mobile robot. Nevertheless, it should be
noted that the lack of feasibility does not always mean that the reference trajectory is unable to be tracked
to some extent, albeit with minor tracking errors that are not zero [116].

1.10.1.3. Path-Following Control

The third possible approach involves following a specified path, akin to the actions of an
individual operating a car on a designated road. In order to remain on the road, it is imperative for the
driver to maintain a target velocity that is consistently tangent relative to the path. Alternatively, if the
velocity vector is not tangent to the vehicle's path, it will deviate from the road. To begin, the act of
following a path entails initially identifying the point along the supplied path that is in closest proximity

to the robot and subsequently directing the robot to attain the point in question. Secondly, the subsequent
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procedure entails ensuring that the robot evolves a velocity consistently tangent to that path, irrespective
of its magnitude. This implies that the value of the velocity is freely determined along the path. This
implies that individuals have the freedom to choose any velocity, even zero, resulting in the vehicle
coming to a temporary halt along its path, similar to when a car pauses at a red traffic light [111]. Hence,
the primary goal is to control the robot's lateral displacement concerning the designated path by
manipulating the robot's orientation or steering mechanism [114]. The path-following task is depicted in
Figure 1.28. The objective of the task is for the DDWMR, denoted as R, to follow the reference curve
and reach the point M, closest to the robot's current position on that curve, without any specific time

constraints [77].
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Figure 1.28. An illustration of a path-following control task [77]

1.10.1.4. Fault-Tolerant [77]

Fault tolerance can be conceptualized as the capacity of a system to successfully do a designated
task, notwithstanding the existence of either software or hardware imperfections where the control
system is reconfigured following the specific defect that has been isolated.

The primary distinction observed in the initial three instances is that posture control solely entails
the definition of a desired destination without any specification of path or velocity. In contrast, trajectory
tracking involves the determination of the vehicle's velocity, considering both its magnitude and
direction, based on the trajectory currently being tracked. On the other hand, in path-following, the
vehicle's velocity is determined by the designer and is constrained to be tangent to the followed path
continuously [111].

From a control perspective, the unique characteristics of nonholonomic kinematics result in path
following and trajectory tracking being comparatively simpler to control than posture stabilization. This
is due to the availability of continuous time-invariant feedback laws that can stabilize the intended

motions. Indeed, it is widely acknowledged that the attainment of feedback stabilization at a specific
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posture is unattainable through the implementation of smooth time-invariant control strategies. This
statement suggests that the issue at hand is genuinely nonlinear in nature, rendering linear control
methods ineffectual, even locally. As a result, novel design approaches are required [111-112]. In
addition, when considering various types of robot control methods, such as trajectory-tracking and path-
following, posture stabilization is generally not regarded as a favorable solution for real-world
environments. This is primarily due to the lack of predictability regarding the robot's movement
trajectory and the potential occurrence of unforeseen collisions. It is evident that compelling the robot
to navigate along or in proximity to a predetermined trajectory significantly diminishes the likelihood of
collisions [38], [77].

These three cases are capable of being shown using commonplace everyday scenarios. When an
individual boards a bus that reaches their workplace and subsequently falls asleep throughout the
journey, they are left unaware of both the duration of the commute and the specific route taken by the
bus. It is worth noting that the intended goal, namely the arrival at the workplace, has been successfully
achieved, and this represents posture control. In the context of trajectory tracking, a pertinent illustration
may be found in the role of a bus driver who possesses precise knowledge of the specific moments at
which the bus is expected to reach each designated stop. This implies that the driver must possess
knowledge of the timetable in order to effectively execute the responsibility of arriving at every bus stop
punctually. To illustrate the concept of path-following, let us create a scenario where an individual
operates a car on a roadway. Occasionally, individuals have the ability to increase their speed in order
to travel at a faster speed. Still, at other times, it is necessary for them to decelerate in order to comply
with prescribed speed limits on the road or to come to a complete halt when encountering a red traffic
signal. The individual follows the designated path, specifically the roadway, during a variable timeframe,

which is of negligible significance as temporal constraints are absent in this particular scenario.

1.11. Control Techniques for Wheeled Mobile Robots

In recent years, the rapid progress in mobile robotics and advancements in information
processing and automation technologies have necessitated the development of control systems to
enhance the autonomy of mobile robots across various work environments. The controlling of
trajectories (trajectory-tracking) and the control of position and orientation (posture stabilization) have
been prominent topics in the advancements within this field [117]. These topics have been approached
through various traditional control methodologies, including nonlinear model predictive control,
continuous time-varying adaptive controllers, back-stepping control with asymptotic stability, PID

controllers, and others. In traditional control methodologies, the design of a controller often involves
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utilizing the system's model and acquiring its parameters. Various current strategies can be employed to
modify these parameters. The result of this process is an algorithm, commonly referred to as a control
law, which obtains the inputs and computes the optimal action for effectively executing the control [118].

In contrast, Machine Learning (ML) techniques typically derive a law of control from data,
wherein an agent autonomously adjusts its internal parameters to handle a given problem effectively. In
recent times, there has been a shift towards the adoption of these novel paradigms in place of
conventional ones. This topic can be approached using machine learning techniques, which offer
alternative solutions and yield intriguing results. For instance, symbolic regression methods, neural
networks, and fuzzy logic are among the several approaches that can be applied [118].

In this study, the strategies for posture and trajectory-tracking control have been classified into
three categories based on previous research: artificial intelligence (machine learning) techniques,

traditional techniques, and hybrid techniques.

1.11.1. Artificial Intelligence (Machine Learning) Techniques

1.11.1.1. Neural Network (NN)

A neural network comprises several individual units known as neurons, which form connections
with one another. Every unique neuron possesses several inputs, a node of processing, and a solitary
output. Every connection between two neurons is accompanied by a weight. The processing within a
neural network occurs concurrently for all neurons [48]. The NN technique is well-suited for processes
and systems that lack concise and precise mathematical models, such as mobile robot planning,
identification, and control. The three main characteristics of neural networks are as follows: (i) the ability
to utilize extensive sensory information effectively, (ii) the collective processing aptitude, and (iii) the
capacity to learn and adapt [44], [119]. In [120-121], the authors' primary focus was the investigation of
neural networks' role in controlling the trajectory tracking and posture stabilization of wheeled mobile
robots. However, the adaptive control method for achieving point stabilization, as described in [122], is
based on the utilization of backpropagation neural networks. The concept of identifying the two-wheeled
robot was introduced. The study [123] introduced a novel control method based on adaptive neural
networks. This control scheme was designed to address an omnidirectional mobile robot's trajectory
tracking control problem, specifically in the face of uncertainty and external disturbance. In [124], a
suggested neural network controller was presented for the trajectory-tracking of a mecanum-wheel

mobile robot (MWMR). The controller featured a simple design and was based on a reference controller.
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1.11.1.2. Fuzzy Logic (FL)

Fuzzy logic is a soft computing methodology that primarily addresses the challenge of
uncertainty. It aims to capture and describe forms of knowledge that are unable to be adequately
expressed using traditional Boolean algebra. The fuzzy logic concept was initially introduced by Lotfi
A. Zadeh in the early 1990s [125-126]. The significance of fuzzy controllers is underscored by their
ability to offer simplicity in control, inexpensiveness, and the potential for design even in the absence of
precise mathematical models of the process. Due to such scenarios, fuzzy logic has emerged as a
prominent and captivating topic within the field of robotics and computer science, finding extensive
utilization across multiple applications, particularly in the realm of navigation control for autonomous
mobile robots. The authors of [127] developed and executed a kinematic model for a tricycle robot,
employing a trajectory tracking control system based on a fuzzy logic algorithm. The study [128]
presented a novel methodology for tracking and position control in omnidirectional mobile robots
(OMRs). This strategy incorporates type-2 fuzzy systems in order to efficiently control the responses

and actions of these robots during intelligent navigation.

1.11.1.3. Reinforcement Learning (RL)

Reinforcement Learning (RL) pertains to a subfield within the domain of Machine Learning
(ML), wherein an agent engages in interactions with its surroundings in order to obtain rewards in
response to its actions. Based on this interaction, the agent is required to acquire the ability to effectively
do a particular task by striking a harmonious equilibrium between the novel information acquired from
the surroundings and its existing knowledge base [129]. In the context of addressing the motion control
issue on non-holonomic restricted mobile robots, the study [130] presented a proposed kinematic control
law of point stabilization for mobile robots. This control law is grounded in the principles of deep
reinforcement learning. The articles [131], [118] have provided a comprehensive account of the process
involved in designing, developing, and implementing an algorithm for controlling the position of a
wheeled mobile robot. This algorithm utilizes Reinforcement Learning techniques and operates within
a sophisticated 3D simulation environment. In the study [132], the application of reinforcement learning
(RL) algorithms for the purpose of position control of a simulated Kephera IV mobile robot within a
virtual environment was suggested. The study [133] presented a novel approach utilizing deep
reinforcement learning to address the control challenges associated with non-holonomic-restricted
mobile robots. The novel approach was accomplished by a proximal policy optimization learning

algorithm to achieve end-to-end control, precisely posture control, of the mobile robot. The topic of
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achieving robust trajectory tracking control for a three-mecanum wheeled mobile robot (MWMR) in the
presence of external disturbance was investigated in [134] through the utilization of a model-based
reinforcement learning (RL) algorithm. In [135], the authors have introduced a deep reinforcement
learning algorithm known as the Deep Deterministic Policy Gradient algorithm for the purpose of
controlling the posture of a DDWMR.

1.11.1.4. Symbolic Regression (SR)

Symbolic regression, a machine learning technique, enables the exploration of the effective
structure and parameters of the desired function [136]. Symbolic regression techniques have shown
significant advancements in the last ten years. Moreover, the broader scientific community has recently
acknowledged the significance of interpretable machine learning. Symbolic regression approaches are
predominantly employed in the context of supervised machine learning, specifically for the purpose of
approximating given data [137-140]. In addition, symbolic regression methods can be employed as a
form of unsupervised learning in situations where the machine learning issue for control lacks a training
set. In such cases, finding a control function is guided by the objective of minimizing the quality criterion
[141]. A novel numerical technique has been developed to address the optimal control issue while
incorporating phase constraints in the realm of controlling wheeled mobile robots. This approach,
referred to as synthesized optimal control, involves a two-step numerical technique. The problem
combines two prominent tasks: the development of stabilizing control systems through symbolic
regression (first step) and the optimization of control trajectories using optimal control theory, precisely
the optimization step (second step), which utilizes evolutionary algorithms to tackle its objective [142].
A demonstration of the optimal control problem, specifically on the control of the equilibrium point's
position, has been showcased in [143], focusing on a mobile robot equipped with mecanum wheels
where the network operator method was used at the first step. The papers [144-146] have proposed a
computational machine learning methodology for addressing the extended issue related to optimal
control. This approach involves the utilization of a computationally synthesized optimal control
technique, specifically targeting the controlling of the equilibrium point's position, in the context of
DDWMR. Notably, the methodology accounts for perturbations in both models and initial conditions.
The network operator method was used in [144-145], while the complete binary genetic programming
method was used in [146] at the first step. The study [147] has examined the optimal control problem
involving phase constraints for a collective of mobile robots. The problem is addressed by employing
the synthesized optimal control approach, specifically in the context of control of the equilibrium point's

position, where variational Cartesian genetic programming was used at the first step. The research
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conducted in [148-150] has explored the application of machine learning via symbolic regression
techniques to address the problem of trajectory tracking in optimal control. The proposed approach aims
to enhance movement stability along the optimal trajectory, using the network operator method for all

mentioned research.

1.11.2. Traditional Techniques

1.11.2.1. Proportional Integral Derivative (PID Controller)

The PID controller is generally recognized as a commonly used controller for a variety of control
system purposes. The simplicity of the controller design and implementation is attributed to the ease of
adjusting the gain parameters. Nevertheless, the model encounters significant obstacles pertaining to its
non-linear nature, imprecise parameters, and erroneous parameter values. Hence, the utilization of a PID
controller imposes constraints on the system's implementation design and affects its overall performance
[151]. In the study [152], the implementation of PID control was explored as a means to enhance the
response of a DDWMR during posture control, specifically when it is required to reach a predetermined
position. The odometry approach was utilized in this context. A proposed controller in [153], with a
simple PID-like structure, has been introduced for the purpose of posture control in a nonholonomic
DDWMR. This controller exhibits smoothness and time-variant characteristics.

In the study [154], a PID controller was offered as a viable and efficient method to address the
trajectory tracking issue of a DDWMR. In [155], a technique is shown for the development of a variable
parameter PID controller fora DDWMR that is capable of tracking a NURBS trajectory with an intended
velocity that varies over time. The design methodology for a PID controller containing time-varying
parameters to obtain trajectory tracking control for a mecanum-wheeled robot has been provided in

[156], wherein a little inaccuracy is observed.

1.11.2.2. Backstepping Controller

The utilization of backstepping control is a highly significant approach in the realm of stabilizing
nonholonomic systems. The concept of backstepping involves employing a recursive approach to
decompose a design problem pertaining to an overall system into a series of design problems pertaining
to subsystems of lower order. The backstepping control law originates from the stability proof through
the application of Lyapunov-like analysis, which ensures the asymptotic convergence of the posture

error [157]. In the study [158], a generalized nontriangular normal form was introduced to aid in the
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development of a recursive integral backstepping control strategy for a specific category of
underactuated nonholonomic systems. Specifically, this control strategy was designed for wheeled
mobile robots (WMRSs) tasked with posture stabilization and tracking desired trajectories in obstacle-
free environments. The authors of [159] have introduced a novel approach for posture stabilization of a
WMR employing backstepping control with the inclusion of output feedback. The authors of [160-162]
introduced a trajectory-tracking controller for a wheeled mobile robot that utilizes the backstepping
approach. In the study [163], a time-varying feedback trajectory-tracking control method was introduced

for stabilizing the trajectory of a WMR using the backstepping strategy.

1.11.2.3. Sliding Mode Controller (SMC)

The sliding mode control (SMC) is a nonlinear control strategy that has been primarily devised
for the purpose of controlling variable-structure systems. The proposed approach involves the utilization
of a time-varying state-feedback discontinuous control law that rapidly switches between different
continuous structures based on the current position of the state variables in the state space. The primary
goal is to ensure that the dynamics of the controlled system precisely follow what is needed and
predefined [164]. The study [165] focuses on the finite-time posture stabilization of a unicycle mobile
robot, specifically when merely position information is accessible. This is achieved through the
development of a discrete-time sliding mode controller (DSMC). The authors of [166] have presented a
trajectory-tracking robust algorithm solution for the perturbed kinematic model of a unicycle mobile
robot. This algorithm employs the first-order sliding mode control approach. The authors of [167] have
presented a robust adaptive trajectory tracking controller, specifically a sliding mode controller, intended
to control an electric wheeled mobile robot operating in a scenario of dynamic disturbances. The problem
pertaining to trajectory tracking control for nonholonomic mobile robots in the presence of unknown

disturbances has been investigated in the study [168] using the approach of sliding mode control.

1.11.2.4. Model Predictive Control (MPC)

Model Predictive Control (MPC) has emerged as a technique utilized for the design and
implementation of feedback control systems, which has demonstrated superior performance compared
to other approaches in numerous scenarios. Furthermore, Model Predictive Control (MPC) offers a
robust and versatile approach for the development of control systems applicable to a wide range of
multiple-input, multiple-output (MIMO) systems [169]. In the study [170], the authors implemented two

stabilizing nonlinear model predictive control (NMPC) designs, known as the final-state equality
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constraint stabilizing design and the final-state inequality constraint stabilizing design, in order to
accomplish control objectives for a two-wheeled mobile robot. These objectives included point
stabilization and trajectory tracking. In the study [171], a novel approach to model predictive control
was introduced for achieving point stabilization of wheeled mobile robots (WMRs) under nonholonomic
constraints. The proposed method involved formulating a linearized error model by converting the
position of the robot into a polar frame. The researchers in [172] conducted a study on Model Predictive
Control strategies that do not incorporate stabilizing restrictions or costs to achieve set-point stabilization
for holonomic mobile robots. The utilization of a nonlinear model predictive control technique was
documented in [173]. This approach was applied to a DDWMR in order to address point-stabilization
challenges while incorporating avoidance strategies for both static and dynamic impediments. In order
to ensure system safety and achieve optimal performance within a limited prediction horizon, researchers
in [174] have investigated the application of a control barrier function in a nonlinear model predictive
control (NMPC) framework. This approach effectively decreases the computational burden associated
with real-time NMPC implementation. In [175], a proposal was made for a model predictive control
approach that is linear and time-varying. This technique is intended for the trajectory-tracking of a

single-wheeled mobile robot, taking into account nonholonomic restrictions and control constraints.

1.11.2.5. Lyapunov-Based Controller

The utilization of a Lyapunov-based controller constitutes a prevalent approach within control
theory for the purpose of designing nonlinear controllers specifically tailored for mechanical systems
[176]. In the study [177], researchers introduced two kinematic control techniques that are not smooth
in nature. These strategies were developed specifically for the purpose of posture stabilization of a
wheeled mobile robot using a differential drive system. The approach that was formulated relied on the
principles of kinematic coordinate transformation and the Lyapunov-like stability technique. The
research conducted by [178] has introduced a robust switching control approach based on passivity for
stabilizing the posture of wheeled mobile robots (WMRS) in the presence of model uncertainty. This
control law was derived using the Lyapunov approach and energetic passivity.

Numerous traditional techniques exist, although the most significant and prevalent ones have

been briefly discussed.
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1.11.3. Hybrid Techniques

These techniques encompass a combination of exclusively artificial intelligence techniques as a
first type, as documented in [179], utilized neural networks and fuzzy logic to achieve trajectory tracking
for an omnidirectional mobile robot. Similarly, the study [180] presented the application of
reinforcement learning and fuzzy logic for trajectory tracking control of an autonomous mobile robot.
As a second type of these techniques is solely traditional techniques, as in [181], the authors have
proposed the utilization of backstepping and nonlinear PID controller to achieve trajectory tracking
control for a two-wheeled mobile robot. The study [182] also introduced the application of backstepping
and second-order sliding mode for trajectory tracking of a car-like robot. Furthermore, as a third type,
there are approaches that integrate both artificial intelligence techniques and traditional techniques, as
exemplified in [183], where fuzzy logic and PID controller were suggested to address the precise
trajectory-tracking issue of two nonholonomic WMRs with a variety of disruptions and noises.

Additionally, [184] proposed the use of a deep neural network and model predictive controller
for trajectory-tracking of a car-like robot. In [185], a new intelligent controller (an adaptive neural
network implemented within a nonlinear control framework based on Lyapunov) was proposed to
enhance the accuracy of trajectory tracking in omnidirectional robots, particularly in the presence of
unstructured uncertainty. The primary objective of the research study [186] was to ascertain the PID-
controller coefficients through the implementation of reinforcement learning method in order to regulate
the angular velocity of the turning motion of the two wheels of DDWMR for the purpose of trajectory
tracking. The study by [187] introduced the application of a deep reinforcement learning method to
adjust the PID controller gain parameters combined with fuzzy control. This approach aimed to improve
the trajectory tracking performance of a wheeled mobile robot (WMR). In the study [188], researchers
devised an advanced control methodology for trajectory-tracking tasks of an omnidirectional mobile
robot. This methodology involved the use of an intelligent Proportional Integral Derivative (PID) neural
network, and the weights of the controller were tuned using the Particle Swarm Optimization (PSO)
algorithm. The research [189] introduced a novel approach for achieving path-tracking control of an
omnidirectional robot using model predictive control (MPC) integrated with an adaptive neural-fuzzy
inference system. The study [190] introduced a fuzzy adaptive sliding mode controller designed for an
electrically driven WMR. The controller's purpose was to achieve trajectory tracking in an environment
of uncertainties and disruptions. In the study conducted by [191], a novel fuzzy adaptive PID control
approach was introduced. This method was specifically designed for the purpose of achieving trajectory

tracking control in an eight-mecanum-wheeled omnidirectional mobile robot.
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CHAPTER 2. METHODOLOGY

2.1. The Problems of Machine Learning

Machine learning systems, in nearly all practical implementations, are designed for estimation of
functional relationships between input features and desired outputs. Neural networks, for instance, serve
as powerful tools for modeling such relationships, enabling the discovery of mappings between feature
spaces, However, these relationships are always represented as computational black box. The resultant
functional relationship can be utilized for purposes such as classification, modeling, prediction, and so
forth. However, a precise mathematical formulation of this function cannot be inferred.

An unknown function refers to a collection of computational approaches that convert a vector x
in some input space X into a vector y in some output space Y. It is characterized by the absence of a
mathematical statement y = f(x) to describe the relationship between the two vectors. The unknown
function that relates the input vector x to the output vector y is denoted as

y = ). (2.1)

Machine learning refers to the computational execution of a procedure aimed at finding an
unknown function using computer systems. In order to effectively utilize machine learning techniques
to address a variety of problems, these problems must be conceptualized as tasks aimed at inferring an
unknown function

y=nx9q), (2.2)
where q signifies the vector comprising the system's requisite parameters, q € R™a, and n is a function
that equals or approximated to y based on a specific criterion.

There exist two distinct methodologies for searching an unknown function: parametric and
structural-parametric techniques.

The parametric approach involves the investigator defining the functional template of the
unknown function, including its structural assumptions, while designating certain parameters, for
example, n in Eq. (2.2) is specified. The machine learning task accordingly becomes one of parameter
estimation—seeking the parameter vector q that satisfies the chosen criterion. In the context of unknown
function approximation, neural networks belong to the class of parametric approaches. Their
computational transformations are governed by a predefined functional structure, with performance
dictated by the optimization of numerous internal parameters.

The structural-parametric methodology extends beyond conventional parametric modeling by
treating not only the parameters but also the functional form itself of the unknown function. It seeks to

determine the most suitable functional structure () and concurrently identify the desired values of its
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internal parameters (q). Currently, the structural-parametric approach is being effectively employed
through the utilization of symbolic regression techniques. These methodologies establish a foundational
repertoire of elementary functions and associated structural encoding rules. Subsequently, employing a
genetic algorithm, the system searches for the desired symbolic structure of the target function while
concurrently tuning its numerical parameters within the predefined code space. Symbolic regression
techniques exhibit variations in coding rules as well as the crossover and mutation processes employed
by the genetic algorithm on the codes.

Machine learning's end goal is to seek out an unknown function, and this search must be guided
by some sort of evaluative criterion. Machine learning problems are often broadly classified as either
unsupervised or supervised, contingent upon the nature of the evaluative criterion being used. It's
essential to keep in mind that the many different kinds of machine learning that exist today can be placed
in one of these classes depending on the evaluation criteria used to classify them. An evaluation criterion

is given in some problems as follows:

o(n(x,q)): X X R™ - R*. (2.3)

2.1.1. Unsupervised machine learning

Unsupervised machine learning involves the find of a function (3.2) that satisfies a specified

estimate (2.3), resulting in the fulfilment of the subsequent inequation

If* =< a)ll < 6, (2.4)

where f* represents a value that meets the estimate requirements, and & represents a positive value of

tiny magnitude.

2.1.2. Supervised machine learning

A second method for assessing the target function involves concocting a training set. A training
set refers to a set of potential examples that are utilized in the process of learning to pinpoint an unknown

function.
Two sets of dimensions that are compatible with each other

X.Y) (2.5)
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are known as a training set in a case
X={xt..,x"} X, (2.6)

Y={'=9&D,..y" =9t} cy, 2.7)

and it can be postulated that there exists a mapping of one-to-one between the elements of set X and set
Y.

Supervised machine learning includes the creation of a training set (2.5) and the identification of

a function (2.2) where if the overall error for said training set is smaller than the specified value &

Ly —n@h o <e (2.8)
then for every value of x* that is not contained in said training set x* ¢ X, the next inequation is satisfied

ly* —n(x" @Il <6, (2.9)
where y* = (x").

Machine learning control constitutes a paradigm wherein machine learning methods are
employed to autonomously discover an unknown control function. The discipline of control
encompasses several challenging problems, such as the optimization of control in different formulations,
such as Pontryagin or Bellman formulations. Another significant problem is the control general

synthesis, which involves designing a feedback function based on the object's state [192].

2.2. The Problem of Optimal Control

The optimal control issue holds a prominent position within the domain of control theory. The
aforementioned issue has historically garnered the attention of mathematicians, leading to the integration
of control theory as a distinct area within the study of mathematics.

The problem of optimal control involves the characterization of the control object through an
ordinary differential equations system, wherein the right part of these equations contains an unknown
control vector. The provided information includes the initial and terminal conditions, as well as the
integral quality functional. The finding of the control as a time function is an imperative task in this
problem. By substituting the given function into the right part of the differential equations, a non-
stationary differential equations system is obtained, where the right part is a known function of time.
The non-stationary differential equations system yields a specific solution that satisfies the initial
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conditions and eventually arrives at terminal conditions. In this scenario, the value of the quality

functional is satisfied.

Several reasons represent the rationale for presenting the problem of optimal control in this
context here. Initially, in the context of the problem of optimal control, it is imperative to identify a
function for one variable at least. Consequently, the utilization of machine learning techniques becomes
viable in the pursuit of such a function. Furthermore, once the optimal control problem has been solved
and the control as a function of time has been determined for the hands-on execution of the identified
optimal solution, an effective stabilization system must be designed to constrain the motion of the
controlled agent to the desired optimal trajectory. This gives rise to the challenge of identifying an
additional control function, thereby necessitating a renewed focus on the machine learning problem.
Ultimately, the problem of achieving optimal control is able to be handled subsequent to the solution of
the stabilization problem of the object concerning the point of equilibrium inside the state space.

Give the following mathematical problem statement for the problem of optimal control. The
control object is represented by a mathematical model in the form of an ordinary differential equations

system
x = f(x,u), (2.10)

with x being a vector representing the state space, x € R", u denotes a vector representing the control,

u € U € R™, and U representing a compact set, m < n.
The initial conditions for the system model (2.10) are provided
x(0) = x°. (2.11)
Terminal conditions are determined by
x(t;) = «/, (2.12)

where t; represents a terminal time for this system, which is an unspecified value that is assigned by the

fulfillment of the terminal conditions.

The quality criterion can be expressed through the utilization of an integral and/or terminal

functional

1= F (x(tr)) + [ Fox,u(e)de ~ min 213
It is essential to ascertain the obtained control should be as a time function

u = h(t), (2.14)
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where h(t) € U for ¢ € [0:tf].

The control function h(t) that is obtained is commonly referred to as a program control. When
the control function (2.14) is replaced into the right-hand side of the system (2.10), the resulting

differential equations system appears as follows
x = f(x, h(1)). (2.15)

The system (2.10) possesses a partial solution x(t, x°) that satisfies the initial conditions (2.11)
and leads to the attainment of the terminal conditions (2.12), while the quality criterion value (2.13) is

satisfied.

Therefore, under the provided mathematical formulation of the problem of optimal control, the
task entails finding the optimal function of control (2.14). This implies that the aforementioned problem
can be classified as a problem of machine learning control and is capable of being solved through the

utilization of machine learning techniques.

2.3. The Problem of Control Synthesis

The problem of control synthesis holds significant prominence within the field of control theory.
Unlike the earlier optimal control problem, this formulation possesses a more application-oriented
nature, as the control is synthesized as a state-dependent function. This results in a feedback control
structure that dynamically responds to sensor-derived state information. This unit assures that the object
attains the control objective, while the value of the quality criterion of this control for any object's current
state is satisfactory. The problem of control synthesis is characterized by this particular feature. The
solution of one problem of control synthesis can be considered tantamount to the solution of an infinite
collection of problems of optimal control. Once the control synthesis problem has been solved, the
derived control architecture inherently enables the solution of the optimal control problem across all

feasible states of the system.

In the nascent phase of modern control theory, particularly during the 1960s, R. Bellman engaged
in a rigorous mathematical examination of optimal control problems, which culminated in the formal
articulation of the control synthesis problem and the derivation of the Bellman equation—a defining
achievement in dynamic systems theory [193]. The stated equation represents a partial differential
equation. The equation's solution is represented by the Bellman function, which takes the control vector

as one of its arguments. The finding of this control that optimizes the Bellman function represents a



70

viable solution to the problem of control synthesis. It is essential to acknowledge the following: Partial
differential equations exhibit a much higher level of complexity compared to ordinary differential
equations, and in the majority of cases, they do not possess a universal solution at all. Bellman suggested
a numerical approach to finding a solution using dynamic programming [194-195]. Using this approach
on a vast array of numerical values representing state vectors generates a significant quantity of control

vectors.

Many control synthesis problems had been effectively solved during that specific period via the
Pontryagin maximum principle [196]. The result was favorable, as the analysis primarily focused on
simple second-order models of the control objects. The problem of time-optimal has been successfully
solved, resulting in the derivation of comprehensive solutions for the differential equations governing
the control object as well as conjugate variables. Subsequently, the switching points of the control have
been determined based on the derived solutions obtained from various initial conditions. It is evident
that this approach is not universally applicable. However, when employing this approach, Boltyanskii
[197] performed the formulation of the control general synthesis problem, which remains a pressing
mathematical problem to this day since its mathematical formulation lacks comprehensive analytical and

numerical techniques for solution at present.

Let us contemplate a traditional formulation of the problem of control synthesis. The differential
equations system is characterized by a control object having a particular form (2.10). The
initial conditions domain within the state space can be given by

X, S R™ (2.16)

The presence of the domain for the initial condition constitutes a fundamental characteristic of
the general synthesis of the control problem. Boltyanskii first established the initial conditions domain
as the entire space of states X, S R", as he searched for tackling this topic by analytical means. In this
particular scenario, we adopt a numerical approach to address the problem at hand. Hence, the domain

X, can be considered a constrained subset within the state space.
The terminal conditions (2.12) are provided.

The quality criterion is provided

uel

tr
Ji = f f F (x(tf,xo)) + ! fo(X(t,xo),u(t))dt dx? ...dx% - min, (2.17)
Xo
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where x° = [x? ...x3]" € X,, the value of ¢t is not explicitly provided, but rather is calculated by
fulfilling the terminal conditions (2.12). It is vital to note that the value of ¢; can change depending on

the change of initial conditions.
It is crucial for pinpointing of a control function in terms of the vector of state space
u=gx)eUlU, gkx): R*'->R™ (2.18)

If the control function that has been acquired is included into the right-hand side of the

mathematical equation (3.10), then the resulting system of stationary differential equations
x=f(x,gx)), (2.19)
will possess a partial solution for any initial condition within the initial domain (2.16).
x(0) = x° € X,, (2.20)

which fulfills the terminal condition (2.12) and the quality criterion value (2.17) is satisfied. Therefore,
the task of addressing the synthesis problem can be seen as the search for the control function (2.18),

which coincides with the principles of machine learning control.

In order to computationally solve the problem of control synthesis (2.10), (2.16), (2.12), (2.17),

the domain of initial condition (2.16) is substituted with a limited set of initial conditions
X, = {x%%, ..., x%L, (2.21)

and the quality criterion multiple integral (2.17) is substituted with the corresponding summation for all

of the initial conditions

L tri
], = Z F (x(tf,l-,xo'i)) +f fo (x(t, xo'i),u(t)) dt |, (2.22)
i=1 0

where t;; represents the time at which the terminal condition is reached, starting from the initial

onex®, i=1,..,L
The equation provided determines the time at which the terminal condition gets achieved during
the search procedure is

(2.23)

{t, if t<ttand|x/ —x|<e
tf,l' ==

tt , otherwise
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where & represents the degree of accuracy required to achieve the terminal condition, while t* denotes
the maximum time allowed for obtaining this condition. It is crucial to note that both £ and t* are positive

numerical values.

There is a method for solving the synthesis problem, based on the Bellman equation

d d T oF

In case of the Bellman function u(x) exists, the control function can be obtained by solving the

Bellman equation (2.24)

9 r oF
u= argmin{( Mx)) fx,u) + %f (x,w) + folx, u)}- (2.25)

ox
In order to address the synthesis problem utilizing the Bellman equation through machine
learning, it needs to employ an approximation technique for the Bellman function. In order to implement

the symbolic regression technique for the Bellman function, it is necessary to modify the functional to

incorporate the various initial as well as terminal conditions

L trj n
Js= 2| | £ (xlex®)u@) de+py |3 Gf = w2002 | - i, (2.26)
j=1\0 =1

where p; represents a weight coefficient, and x(t, x®) denotes the system partial solution with control

(2.25) beginning with the initial condition x%/.

2.4. The Problem of Synthesized Optimal Control (The Problem Statement of This Study)

In an effective scenario, our ongoing objective remains the pursuit of developing systems that
exhibit influential performance concerning the specified criterion. In this particular scenario, the
problem of optimal control is addressed as a preliminary step. However, it should be noted that the
solution to this problem cannot be implemented directly on a control object's board processor. This is
because the optimal control function obtained is dependent on time, and its implementation would result

in an open-loop control system. Consequently, Any temporal misalignment between the motion of the
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controlled object and the application of control actions may result in the failure to achieve the desired
control objective, leading to a deviation between the actual performance and the theoretically computed
value of the quality criterion. To counteract deviations arising between the real-time trajectory of the
system and its computed optimal counterpart, practical control architectures incorporate feedback
stabilization mechanisms designed to maintain adherence to the optimal reference trajectory.

However, as a result of the implementation of the system of stabilization, we once again

encounter a loss of optimality. Several pieces of evidence suggest this assertion:

1. The inclusion of a stabilization system leads to the transformation of the system’s
behavior and its mathematical representation, which may result in a control strategy that
no longer satisfies optimality conditions for the updated dynamics.

2. The deviation of the system state from the trajectory may be characterized by temporal
misalignment or spatial displacement; both forms yielding motion patterns that no longer
satisfy the criteria for optimality.

3. The capacity of the stabilization system to restore the system state to the reference
trajectory necessitates the reservation of sufficient control resources. Optimal control
strategies should therefore incorporate this allocation, yet such accounting is routinely
absent from standard computational frameworks.

4. Lastly, it should be noted that the object's motion in close proximity to the programmed
trajectory can show notable deviations from the desired trajectory concerning the

functional value.

Based on the suggested approach, it is necessary to first establish the stability of the control object
within the state space before addressing the problem of optimal control. Hence, this approach is referred
to as synthesized optimal control. The foundational premise is the derivation of a feedback control
function that ensures the presence of a stable equilibrium point for the closed-loop system of differential
equations. Moreover, the equilibrium’s position is rendered controllable through a set of design

parameters internal to the controller.
Contemplate About the Statement of the Problem of Synthesized Optimal Control:
Assuming the control object mathematical model, expressed as differential equations system
x = f(x,u), (2.27)

with x being a vector representing the state space, x € R™, u denotes a vector representing the control,

u € U € R™, and U representing a compact set, m < n.

Provided the initial condition
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x(0) = x°.
Terminal conditions is determined by

x(t) = «/,

(2.28)

(2.29)

where t; represents the time at which the terminal condition is reached, ¢ is not explicitly provided but

is bounded

and t* is provided.

Given the quality criterion

tr
Js01 = f fo(x,u)dt - min.
uevu
0

It is crucial to pinpoint a control that matches to the subsequent form:

u=gx(t)—x) €U,
where x*(t) is a time function.
The function

g(x*(t) — x):R" - R™,

(2.30)

(2.31)

(2.32)

(2.33)

is sought in a manner that exhibits a property of feasibility [198], i.e. at each given time t =t < tf, the

system

x = f(x g(x (t) — 1),
possesses a stable point of equilibrium

X(x*(t)) € R,

f& gx (t) —%) =0,

n
det(A—2E) = " + @, " 4+ At ap = | [(1-2) =0,
=1

]

where

(2.34)

(2.35)

(2.36)

(2.37)
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/‘{] = aj + l,BJ, aj < 0, ] = 1, e, N (238)
i =+/—1,
X

The function (2.32) serves as a stabilization system for the object (2.27). Consequently, the
object achieves stability in relation to a certain point inside the state space X (2.36). The positioning of
this point of stabilization is contingent upon the parameters x*. The parameters x* are able to serve as
the direct coordinates of the stabilization point inside the state space. Alternatively, in the general

situation, x* can influence the positioning of a point of stabilization ¥ (x*) within the state space.

The solution to the problem of synthesized optimal control and the finding of the control function
(2.32) is considered to be performed algorithmically in two steps, which are treated as sequential

activities.

2.4.1. First Step: Synthesis of Stabilization System

In the first step of stabilization, the problem of control synthesis is addressed in order to establish
the presence of a stable point of equilibrium inside the state space. The problem statement can be

addressed using numerical solutions utilizing machine learning approaches.
The control object mathematical model (2.27) is given.
The initial conditions set is provided by
X, = {(x%%, ..., xOL}. (2.40)

The terminal position is provided. Any point in the state space has the potential to serve as the
terminal position, enabling the system to achieve stabilization at such a point. In the problem of optimal
control, the position of the terminal condition (2.29) cannot be the exact position of the mentioned

terminal position.
x(t*) =x" € R", (2.41)
where the value of t* is not provided, but bounded

. + * 0
o {t, if t<tTand|x"—x(tx")|[<¢ (2.42)

t*, otherwise
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where x(t, x°) is the system partial solution (2.27), and £ and t* are provided positive numerical values.
It is crucial to pinpoint a control that matches to the subsequent form:
u=gx"—x), (2.43)
that generally partial solution of the differential equations system
x = f(x,g(x" —x)), (2.44)
from whatever initial condition inside the specified area (2.40)
x% e€X,i=1,..,L (2.45)

will fulfil the terminal condition (2.41) by optimizing the value of the subsequent criterion:

L
Jop = z(t; + o = x(t1, 20D, (2.46)
i=1
where
: + * 0,i
= {t,+ if t< t.1 and ||x* — x(t, x*)|| < & (2.47)
t;, otherwise
n
v = w00 = | D @ = xe a0y, (249
i=1

where p, represents a weight coefficient, and ; and t;" are provided positive numerical values.

2.4.2. Second Step: Solution of the Problem of Optimal Control

As a second step in synthesized optimal control, following the solution of the problem of control
synthesis (2.27), (2.40)—(2.48), the problem of optimal control (2.27)—(2.31) is addressed for the
mathematical formula (2.44). This entails the finding of a control function using the subsequent form:

x*(t) = h(b), (2.49)

to minimize the specified criterion (2.31).
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In the second step, it is essential to observe that the dimension of the sought function (2.49) is
equivalent to that of the state space. In the context of this specific scenario, it is possible to search the

function as a piecewise constant function
h(t) = x*, if (i—1)A<t<iA, (2.50)

where x*! are obtained influential coordinates values of the point of equilibrium, i = 1, ..., K, and A is

a provided time interval,

K = H (2.51)

Therefore, per this methodology, the primary objective of synthesized optimal control is first to
guarantee the object's stability, which involves the emergence of an equilibrium point inside the phase
space. In the vicinity of the point of equilibrium, the phase trajectories exhibit a contraction property,
which plays a crucial role in determining the system's feasibility. The principal property of this
framework, relative to conventional optimal control paradigms, lies in its intrinsic capacity to synthesize
feedback-based control laws — thereby yielding closed-loop systems — as opposed to the open-loop

nature of most optimal control solutions derived under idealized assumptions.

To realize the target behavior, the control strategy must be computed numerically as part of the
stabilization synthesis process; once derived, these control expressions replace the original input terms
in the system’s differential equations. In a usual scenario, the control object functions within a dynamic
environment, necessitating the essential ability to compute the desired trajectory on board. The
utilization of synthesized optimal control methodology enables the achievement of this objective. The
stabilization synthesis problem is addressed during the design phase initially, yielding a parametric
control structure wherein the location of the equilibrium point — acting as a design variable — may be
precomputed or updated recursively in real time via onboard computation to ensure continued

performance optimality.

2.5. The General Methodology of Symbolic Regression

Symbolic regression techniques refer to a set of approaches utilized in machine learning tasks to
encode mathematical expressions. These techniques involve a range of algorithms that aim to identify
the most influential mathematical expressions within the space that contains these encoded codes (see
Figure 2.1).
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Figure 2.1. The overarching framework of symbolic regression approaches [192]

2.5.1. The Encoding Approach

The application of symbolic regression methodologies for encoding equations demands the prior
initialization with a symbolic primitive alphabet — a finite set encompassing elementary mathematical
functions and the independent variables of the target expression. The foundational methodology for the
bidirectional transformation between symbolic expressions and their encoded representations entails the
decomposition of the elementary function set into subsets based on the number of arguments they

require.

The number of input arguments accepted by a function dictates how elementary function sets

may be compositionally combined. The basic sets are as follows:

- The arguments set, or functions set without arguments

Fo = {fo,l ) ---'fO,r+mq+v } = {xp =X Qe e Qmgr €15 -5 €y }' (2.52)

where x4, ..., x,- stand for the variables, q, ..., Am, stand for the parameters, e;, ..., e,, stand for the unit

elements for two-argument functions;

e The functions set that is characterized by one argument

Fl = {fl,l(z) =2z f1,2 (Z)' "'lfl,W(Z)}l (253)
where f; 1 (z) stands for a common identity function, which is typically required for coding;

e The functions set that is characterized by two arguments



79

F, = {fz,l(zpzz)' ---,fz,n(zl'zz)}- (2.54)
All two-argument functions must have the following features:

= commutative

f2,i(21,25) = f2i(22,21), i =1,..,n. (2.55)

= associative

[, (21 »fZ,i(ZZ’Z3)) = f2,i(f2,i(21'22)’z3)' (2.56)
= possess a unit element
fz,i(Z: e;) = fz,i(Zi'Z) =2z (2.57)
where e; is a function's unit element, i = 1,..., v.

In order for solving the problems of machine learning control and while finding unknown
functions, it becomes crucial to establish the principles governing the construction of mathematical
expressions using primary functions. One widely applicable method for composing mathematical
expressions using primary functions involves representing a series of primary functions in the form of a

composition of such functions nested within one another. To illustrate,

fcl,dlfcz,dzfc;;,dg, = fcl,dl ° fcz,dz ° fc3,d3 = fcl,dl (fcz,dz (ng,dg("' ). (2.58)

It is essential to acknowledge that the representation utilized in symbolic regression techniques
corresponds entirely with the principles outlined in the Kolmogorov-Arnold theory regarding the
function's representation. According to this theory, if a function f is multidimensional and continuous,
it can be expressed in the form of a finite composition consisting of continuous functions that involve a

single variable and an addition binary operation [192].

2.5.2. The Search Algorithm

The methodology of symbolic regression within machine learning involves the identification of
diverse functional architectures and optimization of their associated parameters concurrently for an
unknown function. This dual-objective search is predominantly executed via genetic algorithms, which

operate over a hybrid search space comprising symbolic structures and real-valued parameter vectors.
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The genetic algorithm (Figure 2.2) has demonstrated its usefulness over a significant period of
time [199-201]. One notable characteristic of the genetic algorithm includes its capacity to function
inside a space of codes. The process of searching within the code space presents a challenge due to the
discrepancy between the metric employed in the code space and the metric used in the calculation of the

objective functional within the vector numeric space.

The genetic algorithm, due to its distinct structure, has the ability to conduct searches in non-
numerical spaces. The foundational distinction of genetic algorithms resides in their operator set —
comprising selection, crossover, and mutation — which operates independently of arithmetic or
analytical operations. This enables their applicability to non-numerical optimization domains, including

symbolic regression in machine learning and control systems.

1. Initialization:
- randomly generate the set of possible solutions

2. Evaluation:
- Determine functional values of possible solutions

3. Until convergence repeat:

3.1. Selection:
- Select “parents” from the set of possible solutions

3.2. Crossover:
- Randomly exchange parts of parents and generate new possible solutions

3.3. Mutation:
- Randomly change some parts of new possible solutions

3.4. Evaluation:
- Determine functional values for the new set of possible solutions

Figure 2.2. The genetic algorithm mechanism [192]

2.6. The Small Variations Principle within the Basic Solution

The complexity of finding an effective solution within the space of encoded codes is attributed
to the classification of this work as a non-numerical optimization issue. The utilization of evolutionary
algorithms involving arithmetic operations is not possible for search spaces of this nature. The
predominant class of evolutionary algorithms employs arithmetic operators to manipulate candidate
solutions numerically. In contrast, genetic algorithms constitute a principal search paradigm over
symbolic or discrete-coded solution spaces, wherein all evolutionary operations are defined
independently of arithmetic computation, relying instead on stochastic, structure-preserving genetic

operators. Simultaneously, When symbolic regression employs sophisticated coding structures, the
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derivation of appropriate crossover and mutation operators becomes a critical research problem. This
has led to the formalization of the small variations principle, which constrains evolutionary variations to

minimal changes from an established basic solution [202-203].

Contemplate a universal methodology for developing genetic algorithms to address non-
numerical optimization issues. The methodology is centered upon the small variations’ principle within

the basic solution.

The fundamental tenets underlying this technique can be summarized as follows. An initial
candidate solution, termed the basic solution, is often encoded to serve as a starting point for
optimization. In complex scenarios, it is adequate to select this candidate solution that approximates the
optimal outcome, as judged by the researcher, to reduce the time required for searching. Subsequently,
The set of small variations is constructed so that every one applied to the basic solution code generates
a structurally correct new solution. Furthermore, all such variations are represented in coded form for
algorithmic execution. In the context of symbolic search, a small variation functions as a transformation
operator applied to the code space of the basic solution, generating neighboring solutions through
minimal structural modifications. Consequently, in all instances, a small variation code represents an
integer vector that encompasses the essential information required to execute operations on the code in
accordance with the operator of the small variation. The proposed approach benefits significantly from
the existence of domain experts capable of constructing effective control systems through intuitive
reasoning or extensive experience; these designed effective systems can be purposed as a basic solution.

In order to elucidate the concept of variation, it is necessary to introduce a vector denoting the

extent of variation
W = [wy ...wdep]T, (2.59)

where dep represents the dimension of the variation vector, specified by the information necessary to
execute a small variation. This dimension is contingent upon the symbolic regression technique
employed. As an illustration, let 2+, represents an index denoting a small variation. Similarly, «, and

w4ep—1 CaN be understood as indices indicating the element position in the code that define the variable

element. Finally, w4, represents the updated value of the defined element.

For instance, a small variation to the Cartesian genetic programming (CGP) code involves
altering an element within the matrix. In order to implement a small variation, a three-element integer

vector will do the trick

W = [wy wy ws]", (2.60)
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where the variables w,, w,, and w5 correspond to the column identifier, the row position within that

column, and the replacement value for the specified matrix element, respectively.

2.7. Variational Genetic Algorithm

The effective solution is sought using a genetic algorithm known as the variational genetic
algorithm (VarGA), which operates in the ordered sets space of vectors with small variations to find the

proper solution.

The genetic algorithm, in accordance with the small variations principle within the basic solution

(VarGA), consists of the following sequential steps:

1. Define the basic solution such that this solution is deemed, based on the researcher's
perspective, to be the most proximate to the potential effective solution.

b° = [b? ... bO]". (2.61)
2. Generate ordered multisets form consisting of variation vectors as the initial population
wi=(w, . wiP)i=1,..,1 (2.62)

where in this given context, [ represents the sequence of possible solutions within the
initial population, whereas D is the total count of variation vectors present in a single set.
The initial population is formed by subjecting the basic solution to a set of small
variations, each yielding a candidate solution

bi = Wiob® = WP o WiP—1 ouo Wil o hO. (2.63)
where each potential solution inside the population is an element of the D-neighborhood

of the basic solution

bteD(b%),i=1,..,L (2.64)
3. Determine the objective function value for every possible solution within the population
F,=J®bY),i=1,..,1, (2.65)

where ¥(b) serves as a decoding function that translates a structured, non-numeric
representation into a computable real-valued function.
4. The evolution cycle is executed unless the condition of stop is met:
I.  Choose two sets of variations vectors at random
W, =W , WrP), w, = (W, .., weP). (2.66)
Il.  The crossover's activation probability is computed based on the objective

functional values of selected solution vectors
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Fi_ Fi_
P, = max {J_,J_} (2.67)
FV F‘P

If the generator of random number yields a value that is smaller than A, , then the
Crossover process is executed.
Define the crossover point at random

k. €{1,..,D}. (2.68)
Following the crossover point, swap the variations' vectors in the chosen sets to
create two novel sets of variation vectors that signify two novel solutions from

the basic solution's D-neighborhood

W, = (WL Wrk weksl | oD,
W, = (WOL L Wekwrkil | wrD), (2.69)
1. Execute the mutation process with a specified probability for the newly
discovered possible solutions as sets of variations' vectors (2.69). Pick a mutation
point at random, then create a new variations vector at that position.
IV. Each newly generated candidate solution undergoes evaluation using the
objective functional. Its fate — inclusion (via replacement of the worst population
member) or rejection — is determined by comparing its score against the current

population’s minimum performance threshold.

While built upon the small variations principle, this genetic algorithm preserves all canonical
operations of traditional genetic algorithms, including crossover executed via tail-segment swap
following a designated cut point. This algorithm can incorporate an additional loop to alter the basic
solution. After executing a certain number of iterations to generate novel possible solutions, it is essential
to substitute the basic solution with a possible solution chosen for the novel basis, which is determined

to be the best option in terms of functionality.

The dual representation of this strategy —comprising both a basic solution and a vector of
variations—may seem redundant but enables two critical improvements: (1) the basic solution enables
rapid convergence in complex, multimodal optimization landscapes; (2) operating on variation vectors
ensures that every evolved solution remains syntactically valid, thereby eliminating the risk of invalid

outputs and reducing computational overhead associated with validation.

The principle of small variations constitutes a refinement strategy that may be systematically
incorporated into any symbolic regression methodology to address the computational and structural

complexities inherent in control synthesis problems.
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2.8. Symbolic Regression Techniques

Multiple symbolic regression techniques are commonplace at the moment. So, here are a few
examples: Genetic Programming (GP) [204], analytic programming [205], Cartesian GP [206], network
operator method [207], parse-matrix evolution [208], and complete binary GP [209]. Unlike other
symbolic regression techniques, the small-variations principle constitutes a novel contribution
introduced exclusively within the network operator method, making it the sole representative of this
class of evolutionary search. The extension of the small-variation principle to pre-existing symbolic
regression paradigms gives rise to a class of augmented algorithms, each denoted by the prefix

“variational,” e.g., Variational Genetic Programming (VGP), Variational Cartesian GP. [203].

2.9. Synthesized Genetic Programming Technique (SGP)

The technique used in this study was created by the researcher. This technique is brand new,
being the first instance in which this technique has been applied to solve the problem of control synthesis.
Synthesized genetic programming (SGP) eschews the utilization of graphical representations for
expressing codes of expressions.

2.9.1. Encoding Approach Using Synthesized Genetic Programming

The next mathematical expression is an example of how to encode it manually by synthesized
genetic programming (SGP)

y = exp(qsx7 + qux3) sin(q,x,) + cos(—qzxs + x1). (2.70)

where qi, g2 and gs exemplify the parameters, x1, X2 and x3 exemplify variables, and both exemplify

arguments of the mathematical expression.

The symbolic encoding of any mathematical expressions is rendered feasible through the

utilization of the following predefined sets:
e The arguments set

Fy = {f0,1 = X1:f0,2 = xz:fo,s = x3:f0,4 = qpfo,s = QZ’fo,s = q3}. (2.71)

e The functions set that is characterized by one argument
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Fq= {f1,1(Z) = Z»f1,2(Z) = —Z,f1,3(Z) = 22,f1,4(z) = sin(2),
f15(2) = cos(2), f1,6(2) = exp(2)}. (2.72)

e The functions set that is characterized by two arguments

F, = {fz,l(zpzz) =2zt Zz'fz,z(zpzz) = lez}- (2.73)

In general, the mathematical expression's SGP code is a six-row integer matrix. The first row of
the matrix denotes the indexes of functions belonging to the functions set that is characterized by two
arguments (2.73). The indexes of functions from the functions set that is characterized by one argument
(2.72) are represented by the second and fourth rows. The third and fifth rows represent the indexes of
arguments from the arguments set (2.71). The sixth row represents the priority, which will thereafter be
elucidated to elucidate its role. Within each column of the matrix, the second element (the one-argument
function) and the third element (the argument) represent the first argument for the first element of the
column (the two-argument function). Additionally, the fourth and fifth elements represent the second
argument for the first element of the column. The term of the pivot for each column means either the
first argument (the second and third elements) or the second argument (the fourth and fifth elements) of
this column. The pivot can be determined by assigning the priority (the sixth element in the column) of
1 or 2 to opt for the desired pivot of the column. Even Nevertheless, in most contexts, its number is 1. It
Is important to acknowledge that the number of rows in the SGP matrix is contingent upon the number
of arguments employed in the available functions. Specifically, when utilizing a three-argument function
such as the if function, the number of rows is going to be 8. This is due to each argument being allocated
two elements in the column, combined with the first element representing the three-argument function
and the final element denoting the priority. After completing the calculation for each column, the result
of this column should be appended to the set of arguments (2.71), progressively increasing the total

number of arguments with each calculation.

In order to implement example (2.70) by this technique, let us get started by coding the expression
qsx2 as the first column of the SGP matrix. For the first element in this column, determine the index of
multiplication function in the functions set that is characterized by two arguments (2.73); it is the number
of 2, f; ,(zy, z;) = z1z,. For the second element, the function of the parameter g is the identity function,
f11(2) = z, from the functions set that is characterized by one argument (2.72); the index of this function
is 1. For the third element, the location of the parameter g5 in the arguments set (2.71) is 6. For the fourth
element, the variable x, function is the square f; 5(z) = z?%, and its index is 3 in the set (2.72). For the
fifth element, the location of the variable x, in the arguments set (2.71) is 2. The sixth element is the

priority, and its number is 1. As a result, the code of the expression g;x2 that represents the first column
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in the matrix is [2 1 6 3 2 1]". After calculating this column, it will have been appended to the
arguments set (2.71) as the seventh element, denoted as (|Fo| +1 =6+ 1= 7). The following
expression g;x2 will be the second column, which is the same idea as the first column, and its code is
[2 1 4 3 3 1]". Consequently, it will be appended as the eighth element to the arguments set (2.71).
The third column will demonstrate the amalgamation of the preceding two columns, specifically
represented as q;x2 + g, xZ. For the first element of the third column, the index of the addition function
in the set (2.73) is 1. The identity function will be the primary function in this case for the first column
(q3x2) and the second column (q,x2); therefore, the second and fourth elements will get number 1 as
the identity function in the set (2.72). The indexes of the first column (g;x3) and the second column
(q1x%) in the arguments set (2.71) are 7 and 8, respectively. So, the code of the third columnis[1 1 7

1 8 1]" and will have been appended to the arguments set (2.71) as the ninth element.

The final code of the SGP matrix, for example (2.70), can be expressed as:

221221219
|11112165|
6 4 7 5 6 11 9 12
RSGP_|33111141|‘ (2.74)
l2381311013J
171111111

2.9.2. Search Algorithm for Synthesized Genetic Programming

Let us analyze the sequential procedures of the algorithm for SGP.
Initially, a set of codes is generated in a random manner, representing possible solutions
S == {Rl,...,RM}, (275)

where R is the code matrix, R; = (r*%, ..., r*"), i = 1, ..., M, r is a placeholder for any column in the
matrix — each is a vector. So ! is the first column-vector, r? the second, and so on, H tells you how
many such vectors (columns) there are.

For every possible structure associated with the mathematical expression, there is a random
generation of a parameters vector
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where & represents a random value drawn from the interval [0:1]; while q; and q; denote the higher and
lower bounds of the parameters, respectively. Additionally, m, represents the dimensionality of the

parameters vector.

The evaluation of every possible solution is conducted through the utilization of an objective

function or a function of fitness

G = {gl =](R1, ql)""'gM ZJ(RM' qM)}’ (277)
where | (Rl-, qi) represents an objective function, and q‘ represents a parameters vector, i = 1, ..., M.

In the context of the problem of synthesis, the objective function is represented by the functional
(2.46). In order to determine the objective function value, the formulated code of the control function,
in addition to the parameter vector, must be entered into the control object model (2.27). Subsequently,

the system (2.44) is subjected to integration, followed by the calculation of the functional value (2.46).

The best solution R;- is specified

gi- =min{g4, ..., gu} (2.78)
For the operation of crossover, random two possible solutions (R, ") and (R,,, q¥) are chosen,
v, €{1,..,M}.

A probability of executing the operation of crossover is determined

P. = max {‘qi -9 _}. (2.79)
9y 9y

A random value ¢ is produced, generally distributed between 0 and 1. If this value is below P,,

the operation of crossover is executed.

Two crossover operation points are selected at random
ky €{1,..,H}, ky€efl,..,my}, (2.80)
the first point pertains to the structural portion, while the other one pertains to the parametric portion.
The application of a crossover operation yields a total of four novel possible solutions
AL, s Ay iy o -0 Aimg]
Ry = (Y, . vk pPlee | ol
T

q"*? = [q7, ... d% . qy,, o O )T

— ,1 k k H
Ryyp = (r?F, .. r@5 pVietr Vi
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q"*? = [q7, -, ey iy o0 Ao 1T
Ry 3 = Ry,
q"** = [a7, - Ay Dy 0 A1
Ry.. =R, (2.81)

Four offspring are generated: two resulting from the simultaneous recombination of structural
and parametric elements, and two from the recombination of parametric elements only, with structural

components held constant.

Following the crossover, a subsequent mutation operation is executed with a certain

probability F,. A random value § is produced, generally distributed between O and 1. If this value is

fewer than F,, the mutation operation is implemented.

The selection of mutation points is conducted with regard to both structural and parametric

portions

u €{1,..,H}, u, € {1, ...,mq}, (2.82)
New values at u, and u, points are being generated

M+1,
rgl Ha e |F2|1

M+1,
r U1

M+1,
- and 7., "M € |F,4],

e4

M+1,uq
re3

M+1,
and 1,5 "€ |Fg+py — 1],

qi\l/l;l = f(qZZ - ql_lz) + ql_iz (283)

where 7, represents any element in the column of the code matrix, for instance, r,, is the first element
in the column, F, represents the arguments set, F; represents the functions set that is characterized by

one argument, F, represents the functions set that is characterized by two arguments.
Afterwards, the first novel possible solution gets estimated based on the presented criterion

fu+1 = TRy, qM+1)- (2.84)

Following that, the worst solution within the population is identified

fi+ = max {fy, .., fu}. (2.85)
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If the first novel solution exhibits better results compared to the worst solution within the

population
fuer < fj+, (2.86)

then, the first novel solution is substituted with the worst solution within the population

M+1

q’" < gt
Rj+ «— RM+1' (287)

The previously mentioned actions (5.84)—(5.87), are iteratively performed for other

novel possible solutions (Ry42, 4¥2), (Ry+3,9M+3) and (Ry 44, qM*4).

2.10. Variational Synthesized Genetic Programming (VSGP)

Mirroring the encoding scheme of Cartesian GP, this technique employs a minimalistic a triplet
of integers vector to typically identify each applied small variation

W = [wy wy ws]", (2.88)

where the variables w;, w,, and w5 correspond to the column identifier, the row position within that
column, and the replacement value for the specified matrix element, respectively. If «, equals 1, the
subsequent number (ur3) must either be zero or modified based on the functions set that is characterized
by two arguments (2.73). If w, is equal to either 2 or 4, then w5 will be modified to either zero or
selected from the functions set that is characterized by one argument (2.72). If w, is equal to either 3 or
5, then w5 can either be set to zero or can only be determined by the combination of the number of
arguments (2.71) and the number of columns minus one. Certain conditions dictate the implementation
of small variations to the SGP matrix based on the pivot and priority. These requirements can be

elucidated by implementing the following variations to the matrix (2.74):

wt =3 6 27,
w? =15 2 0],
w3 =1[41 1],
w* =16 5 0], (2.89)
ws =131 0],
weé =18 2 3],
w7 =16 6 2],

The updated matrix of the SGP will look like
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22 012121
1111216 3
10 M2 0 T3 0 M4 0 M5 0 W76 0 W7 o _|6 4 7 5 6 11 9 12
WWWWWWWRSGP—33111141. (2.90)
2 3813 01013
11211111

The first variation W has changed the third column's priority (the 6th element) from 1 to 2.
Consequently, it has changed the pivot from the first argument (the 2nd and 3rd elements) to the second
argument (the 4th and 5th elements) of this column. It is worth noting that the second variation W? did
not affect the 5th column since it is not possible to alter any element of the pivot to zero in each column
of the matrix, where the pivot of the 5th column is the first argument (the 2nd and 3rd elements) because
of the number of the priority is 1 in this column. In contrast, the fourth variation W* can be accomplished
since the 5th element of the 6th column is not an element of the pivot in this column, where the
expression of this column was —q;x3 + x4, the variable x; has been neglected. In this case, the unit
element of the function is used as the second argument where the unit element of the addition function
is 0 and for the multiplication function is 1, so the expression has become (—qs;x3 + 0). Interestingly,
the fifth variation W?> has fulfilled a primary change, where the expression of this column was qsx2 +
q.x2. This variation cancelled the addition function (changed the first element to 0). The number of
priority turned out to be 2 as a result of the first variation, so the new expression of this column has got
the expression of the pivot (the 2nd argument), whose code is [1 8]" that represents q,x? (the identity
function and the expression of the second column). The seventh variation W7 was not accomplished
since the fourth variation has changed the 5th element in the 6th column to 0, and changing the priority
means changing the pivot of the column, and the pivot element is not allowed to be zero. Eventually, the

third and sixth variations W3 and W° can be performed directly.

This new matrix can be expressed mathematically as

y = exp(q,x3) sin(q, + x1) + (—qsx3)*. (2.91)

As mentioned above, the analysis highlights the crucial importance of the priority, which may be
summed up as follows: the main task of the priority is to pick the pivot for each column. Moreover, it
effectively avoids zero values in the pivot elements due to small variations. Additionally, it has the
likelihood to decrease the length of mathematical expressions.

The application of steps of variational genetic algorithm to synthesized genetic programming

technique is as mentioned in section 2.7.
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2.11. The synthesized genetic programming as a distinct and modern technique

The Synthesized Genetic Programming technique (SGP) is regarded as a distinct technology
separate from Genetic Programming (GP) and Cartesian Genetic Programming (CGP). This
differentiation arises from divergences in encoding and decoding processes, code type, and the approach
to implementing the principle of small variations within the basic solution. The significant distinctions

among these three techniques can be exemplified as follows:

The next mathematical expression is an example of how to encode it manually by three methods

of symbolic regression
z = sin (cos(exp(q1x; + qx3))). (2.92)
To encode this mathematical equation, the following fundamental sets need to be used:
e The arguments set

Fy = {fo,1 =x1, fo2 = X2, fo,3 = A1, foa =42, fos =0, foe = 1}i (2.93)

e The functions set that is characterized by one argument

F1={f1,,0) =y f,.0) = ¥% fi3(y) = sin(y),

fray) = cos(y), f15(y) = exp(M)}; (2.94)

e The functions set that is characterized by two arguments

F, = {f2,1()’1'3’2) = y1+¥222001,Y2) = 3’13’2}- (2.95)

2.11.1. Genetic Programming Technique (GP)

In this technique, the mathematical expression’s structure is represented as a computational tree.
In this structure, functions are represented by nodes, while the arguments of mathematical expressions
are represented by leaves. The fundamental sets (2.93)-(2.95) are required for depicting the

computational tree corresponding to the mathematical expression (2.92), as illustrated in Figure 2.3.

Furthermore, the mathematical expression (2.92) can be reformulated utilizing the fundamental
sets (2.93)-(2.95) as the record:
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z= fiz| fia (fl,s (fz,l (fz,z (fo,s,fo,l),fz,z (fo,4: f1,2(f0,2))>>> . (2.96)

Figure 2.3. The computational tree of example (2.92) by GP

In the context of a mathematical expression, if an argument is present multiple times, it

necessitates an equivalent number of occurrences on the leaves within the computational tree structure.

The computational tree is preserved within the memory of the computer as arranged sets of
integer vectors, each comprising two elements. The initial element designates the count of arguments,
while the subsequent element delineates the sequence of functions. The GP code corresponding to

example (2.92) is as follows:

R = (L ELELELELOLELLLELED). e

The indices of elements across all branches of the computational tree, extending from the top

node to the leaves, serve as the genetic programming code.

2.11.2. Cartesian Genetic Programming Technique (CGP)

Cartesian genetic programming (CGP) employs a non-graphical representation for expressing
codes of expressions. This technique involves the integration of the two sets of fundamental functions

into a unified set.
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As a result, the sets (2.94) and (2.95) will be as one set and as shown:

F={iy)=y.£0) = vy f:(y) =sin®), fs(y) = cos(y),
fs) =exp(¥), fe(V1,¥2) = y1+ 2

7y, ¥2) = y1Y2}- (2.99)

CGP codes for mathematical expressions typically take the form of a three- or four-row integer
matrix. The initial row of the matrix denotes the indexes of functions obtained from the set of
fundamental functions (2.99). The fundamentals functions’ set (2.99) consists of functions that have a
maximum of two arguments. Consequently, encoding the matrix requires only three rows. It should be
noted that the number of rows in the matrix varies depending on the number of arguments used for the
available functions, where in the case of using the one-argument function, the third element in the
column does not have any practical application. The remaining rows stand for the argument indices
(2.93). When a column's calculation is complete, its result should be appended to the arguments (2.93).
So, after each computation, there will be more arguments. As a result, the total number of arguments

will grow with each new calculation.

In order to encode the example (2.92) by this technique, firstly, it is needed to encode the
expression g,x; as the first column. The function is multiplication, as its sequence is 7 in set (2.99),
f>(y1,¥2) = v1y,. Then, from the set of arguments (2.93), the sequence of parameter g, is 3, and the
sequence of variable x; is 1. As a result, the code of the first column for the matrix is [7 3 1]7. The result
of each elementary function determination is added to the list of arguments (2.93) every time, increasing
the total number of arguments with each calculation. Subsequently, the sequence of the first column will
be (|Fo| + 1 = 6 + 1 = 7) in the set of arguments. Then, the code of expression xZ is calculated as the
second column, from the set (2.99), the sequence of f,(y) = y? is 2. And the variable x, has the series
of 2 in the set of arguments (2.93). The third element of this column is not utilized since the argument
of this function is only one. So, it can be 2. The code of the second column for the matrix is [2 2 2]7,
and it will be added to the arguments set (2.93), and the sequence of this column will be (|Fq| + 2 =

6 + 2 = 8) in the arguments set (2.93).

Typically, the solution of CGP's mathematical equation (2.92) is coded as

72 7 6 5 3 6
Reep=1|3 2 4 7 10 12 13|. (2.100)
1289 6 1 5
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2.11.3. Synthesized Genetic Programming Technique (SGP)

All pertinent details concerning this technique are elaborated upon in Section 2.9 of the current
chapter. In order to implement example (2.92) by this technique, let us get started by coding the
expression q,x; as the first column of the SGP matrix. For the first element in this column, determine
the index of multiplication function in the functions set that is characterized by two arguments (2.95); it
is the number of 2, f, ,(y1,¥.) = y1y. For the second element, the function of the parameter g, is the
identity function, f; ;(y) = y, from the functions set that is characterized by one argument (2.94); the
index of this function is 1. For the third element, the location of the parameter g, in the arguments set
(2.93) is 3. For the fourth element, the variable x; function is the identity function, f; ; (y) = y, and its
index is 1 in the set (2.94). For the fifth element, the location of the variable x; in the arguments set
(2.93) is 1. The sixth element is the priority, and its number is 1. As a result, the code of the expression
q1x, that represents the first column in the matrix is[2 1 3 1 1 1]". After calculating this column, it
will have been appended to the arguments set (2.93) as the seventh element, denoted as (|Fo| + 1 = 6 +
1=7).

The final code of the SGP matrix, for example (2.92), can be expressed as:

2 211 1 1
1115 4 3

34 7 9 10 11

Rcr=[] 5 1 1 1 1} (2.101)
1285 5 5
1111 1 1

The procedural application of the small variations’ principle within the basic solution of genetic
programming and Cartesian genetic programming techniques was delineated in reference [203].
Furthermore, the application of this principle to the synthesized genetic programming technique was
expounded upon in Section 2.10 of the current chapter. Consequently, a discernible contrast emerges in

the application of this principle across each of these three techniques.

Table 2.1 presents a comparative analysis of the key features pertaining to symbolic regression

across the three techniques under consideration.
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Table 2.1. The main features of three symbolic regression techniques (GP, CGP & SGP)

No. The feature The technique of symbolic regression
GP CGP SGP
1 Appearance 1992 2000 2024
2 The structure of mathematical computational tree no graph no graph
expression
3 | The stored code in the memory as arranged sets of | a three- or four- a six-row
of the computer integer vectors, each row integer integer matrix
comprising two matrix.
elements
4 The length of code for any various constant constant
mathematical expression and | (Needs more time for
after each crossover operation calculation)
5 Terminology employed within No terms No terms innovative
the code coding terms
such as the
pivot and the
priority

It is noteworthy that the efficiency and rapid solution discovery capabilities of the synthesized

genetic programming technique (SGP) in addressing the problems of control general synthesis have been

demonstrated in comparison to Cartesian genetic programming and parse-matrix evolution techniques
[210-211].

2.12. The Search for the Effective Position of Points

Following the solution of the problem of synthesis, it becomes essential to identify the effective

position of points (2.50) inside the states' space. Evolutionary algorithms are employed in order to

address this objective, as the quality criterion (2.31) exhibits non-convexity and non-unimodality in the

coordinates space of points (2.50). The utilization of the particle swarm optimization (PSO) algorithm

[212-213] serves as the basis for this study. The mentioned algorithm is currently well-recognized as a

prominent evolutionary algorithm.
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The PSO algorithm comprises the subsequent steps. Initially, the generation of a possible

solution's initial set is done
) =&Qqf —q) +q;, i=1,.,mg j=1,.,M. (2.102)

where & represents a random value drawn from the interval [0:1]; while q; and q; denote the higher and
lower bounds of the parameter evolution for vector values, respectively. Additionally, m, represents the

dimensionality of the parametric vector and M represents the total number of vectors inside the initial
population.
For every possible solution, a history vector is generated, initialized with a value of zero
j

v; =0,i=1,.,mq j=1,..,M. (2.103)

l

Subsequently, the objective function values are estimated for every possible solution
fi=F(d’), j=1,..,M. (2.104)
where F(q) represents the objective function of this problem of optimization.
In addition, an evaluation is determined for every possible solution
qf,ifq + ov! > q}

4/ ={q;,ifq) +ov/ <qf, (2.105)

q) + ov/, otherwise

where o represents an algorithm constant parameter,

v/« avl +yE(al” —a7) + pé@” — ), (2.106)

a, y, B represent algorithm constant parameters, q — represents the most efficient possible solution for

now
fi- = min {fy, ..., fu}. (2.107)

q’© represents the most efficient possible solution, out of ¢ randomly chosen possible solutions
fic = min{fj1, ... fic}, i=1,..,mg, j=1,..,M. (2.108)

The optimization problem's solution is the desired one that can be found after the provided

evolution loops.
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CHAPTER 3. RESULTS

3.1. Introduction

This chapter verifies the feasibility of the suggested synthesized optimal control technique
described in chapter two using a mathematical model of a nonholonomic wheeled mobile robot (Khepera

).

The technique of variational synthesized genetic programming (VSGP) involves achieving
stability of the control object concerning a specific point in the space of states and controlling the objects

by altering the positions of the points of equilibrium.

3.2. Computational Experiment

The optimal control problem is defined for a system comprising a pair of non-holonomic mobile
robots, whose positions must be dynamically adjusted within the plane to circumvent environmental
obstacles such that their environment encompasses several static phase constraints. However, the
complexity of the task is heightened by the existence of the dynamic phase constraints, as it necessitates
ensuring the avoidance of collisions between the two robots.

The following is the form of the nonholonomic mobile robot mathematical model [214]:

%1 = 0.5(uy + uy) cos(xy),
).CZ = 05(u1 + uZ) Sin(x:;), (31)

x3 = 0.5(u; —uy),

In the first step, the task of synthesizing a stabilization system is addressed in order to establish

a stable state for the object.

For numerically solving the synthesis problem, it is necessary to establish a predetermined set of

initial states:
X, = {(x%%, ..., xOL}. (3.2)
One terminal state is established:
x* =[x x5 x3]7. (3.3)

The subsequent quality criterion is
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L
Jsyn = Z(tf,i + p1”X* - x(tf,i’xo’i)”) — min, (3.4)

i=1

where t;; is a period characterized by the attainment of the terminal state (3.10) starting from the initial

states (3.9), i = 1, ..., L, L represents the total number of initial states, p, represents a weight coefficient,

and
t, if t<ttand|x’ —x@®)|<e
t i = y 3.5
! {t*, otherwise (3:5)
and
3
Ix/ = x(t)| = Z(x[ — %, (0)2 (3.6)
i=1

The first step represents the stabilization system synthesis that involves the search for and
creation of a single control function:

u=gx" —x), (3.7)

which guarantees the attainment of the minimum functional value (3.4) for all provided initial states
(3.2).

One robot can solve the problem of control synthesis (3.1)—(3.7) because the pair of robots are
identical to one another. This problem is solved using the variational synthesized genetic programming

(VSGP) symbolic regression technigue.

Case one: Eight initial states are provided:

T T T
Xy = {xO'O =|-335Z| 2% = [-3-35F] x02=[3-35Z| , x* =
16 16 16

3352 ,x%* =([-3 3. ——T, x0% =|-3 —35 ——T,x°'6= 3 —35-2f, x07 =
335 %] 2o =[-3 352 [ ] e = =k
[3 35 —j—Z]T}. (3.8)

The terminal states are established as one point

x" =[x} % x]7 =0 0 0]". (3.9)
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Consequently, the ensuing mathematical expression for the control function is constructed

uf = ufifd >uf L i=12, (3.10)
ii;, otherwise

where

1
iy = (6] —2,)° (¢ — %) (] —22) + q2(x] — x3)

1
+ sin ((x{ — )2 () = %) a1 (o) — %) + g2 (xf — x3)> (3.11)
i, =p (q%(x{ - xl)) +0.5 % g2(x] — x), (3.12)
_ (0, if |ul<é
P = {sgn(,u), otherwise (3.13)

q; = 2.07946, q, =2.63935 , g3 =2.96333, & =108 The quality criterion (3.4) for the
variational SGP solution is /sy, = 2.26092, where ¢ = 0.01,t™ = 2.5sec, L= 8,and, p; = 1.

Figure 3.1 shows the trajectories taken by one robot as it moved from eight initial states (3.2) to
the terminal state (3.3).

AXZ (m)

N x1 (M)

v

=3 =2 =1 0 1 2 3

Figure 3.1. Robot trajectories with VSGP control function
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The control functions (3.10) that have been acquired to guarantee the stability of the object are
inserted into the model equations (3.1). The solution to the problem of control synthesis yields the
emergence of a stable point of equilibrium in the space of state. The equilibrium point position is

contingent upon the terminal vector (3.3).

Figures 3.2 through 3.9 depict the simulation results of a nonholonomic mobile robot,
showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.

— x00
— %01
— 02
- X03
x04
— X05
— X006
S 0T

0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.2. The robot displacements in direction x;from all initial conditions by VSGP method

4 4 . - X00
— X001
3 A — X02
— %03
2 x04
- Xx05
1- — Xx06
— x07
R "N
_1 B
_2 -~
_3 -
0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.3. The robot displacements in direction x, from all initial conditions by VSGP method
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-8 T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.4. The robot displacements in direction x5 from all initial conditions by VSGP method
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Figure 3.5. The robot velocities in direction x; from all initial conditions by VSGP method
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Figure 3.6. The robot velocities in direction x, from all initial conditions by VSGP method
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Figure 3.7. The robot velocities in direction x5 from all initial conditions by VSGP method
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Figure 3.8. The robot control u, from all initial conditions by VSGP method
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Figure 3.9. The robot control u, from all initial conditions by VSGP method
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Case two: Eight initial states are provided:

T T T
X, = {xO'O =|-335%Z] 2= [-3-35Z] x2=[3-35Z| , x* =
16 16 16

57TT

T
51
—| X% = [3 —35-— , 2% =

|3 35 j—Z]T,xOA =|-3 35 —j—Z]T, x%5 =|-3 =35 -
T
335 - } (3.14)
The terminal states are established as one point
x* = [x; x; x3]7 =10 0 0]. (3.15)
Consequently, the ensuing mathematical expression for the control function is constructed

u;,ift; <wup
ul =3 uf,ift; >uf L, i=12, (3.16)
ii;, otherwise

where

fi; = Ax* (1 —exp(—A42)) * (1 —exp (—(A x (1 — exp(—AZ)))Z)), (3.17)

i, = (((Z(x{ — xl) * (1 — exp (—(xf - xl)z)) * P <q2 + exp ((x{ - xl) + (xf — x1)2> +

tanh(0.5 * q3) * (x] — x2)>)3)3)/2, (3.18)

A= ql(xf - xl) + (xér — xg)(xéc - xz) + qz(x:f - x3), (3.19)
_ (1, ifu=>0

p) = {O, otherwise (3:20)

q: = 7.18441, q, =7.12227, q3 = 7.87202. The quality criterion (3.4) for the variational
SGP solution is /5y, = 2.35184, where ¢ = 0.01,t* = 2.5sec, L = 8,and, p; = 1.

Figure 3.10 shows the trajectories taken by one robot as it moved from eight initial states (3.14)
to the terminal state (3.15).
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Figure 3.10. Robot trajectories with VSGP control function

Figures 3.11 through 3.16 depict the simulation results of a nonholonomic mobile robot,
showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.

x00
x01
x02
x03
- X04
x05
x06
x07

0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.11. The robot displacements in direction x, from all initial conditions by VSGP method
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time

Figure 3.12. The robot displacements in direction x, from all initial conditions by VSGP method
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Figure 3.13. The robot velocities in direction x; from all initial conditions by VSGP method
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Figure 3.14. The robot velocities in direction x, from all initial conditions by VSGP method
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Figure 3.15. The robot control u, from all initial conditions by VSGP method
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Figure 3.16. The robot control u, from all initial conditions by VSGP method

Case Three: Twelve initial states are provided:

T T T
Xy = {x°r° =|-335%Z| 2% = [-3-35Z] x02=[3 -35Z| , x* =
16 16 16

[3 35 i—Z]T,xOA =[-335-Z " x05 = -3 -35 —i—’g]T,xO'ﬁ =[3-35-2 " x0T =
[3 3.5 _i_: T,x°'8 =[-3 3.5 0]7,x%% = [-3 —3.5 0]",x%10 = [3 — 3.5 0]7, x%1! =
3 3.5 O]T}. (3.21)
The terminal states are established as one point
x* =[x} x; x3]" =[0 0 0]7. (3.22)

Consequently, the ensuing mathematical expression for the control function is constructed

u;,ift; <uy
uf = uf,ifd >uf L i=12, (3.23)
ii;, otherwise
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where
i, = 2% (ql(x{ —x;) + (xéc — x3)(x£ —x;) + (q3(x£ — x3))3) , (3.24)

fiy = q(x) — x1) *In (|2q4(x] — x2)]). (3.25)

q1 = 5.94890, g, =8.05063, q; = 0.86430 and q, = 1.64740. The quality criterion (3.4) for the
variational SGP solution is J,,, = 1.88384, where ¢ = 0.01,t™ = 2.5sec, L=12,and, p, = 1.

Figure 3.17 shows the trajectories taken by one robot as it moved from twelve initial states (3.21)
to the terminal state (3.22).

x1 (M)

v

-3 -2 o | 0 1 2 3
Figure 3.17. Robot trajectories with VSGP control function

Figures 3.18 through 3.29 depict the simulation results of a nonholonomic mobile robot,
showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.
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Figure 3.18. The robot displacements in direction x; from first six initial conditions by VSGP

0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.19. The robot displacements in direction x, from first six initial conditions by VSGP
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Figure 3.20. The robot velocities in direction x; from first six initial conditions by VSGP
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Figure 3.21. The robot velocities in direction x, from first six initial conditions by VSGP
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Figure 3.22. The robot control u,; from first six initial conditions by VSGP
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Figure 3.23. The robot control u, from first six initial conditions by VSGP
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Figure 3.24. The robot displacements in direction x, from second six initial conditions by VSGP
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time

Figure 3.25. The robot displacements in direction x, from second six initial conditions by VSGP
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Figure 3.26. The robot velocities in direction x; from second six initial conditions by VSGP
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Figure 3.27. The robot velocities in direction x, from second six initial conditions by VSGP
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time
Figure 3.28. The robot control u; from second six initial conditions by VSGP
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Figure 3.29. The robot control u, from second six initial conditions by VSGP
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Case Four: Twelve initial states are provided:

T T T
X, = {xO'O =|-335%Z] 2= [-3-35Z] x2=[3-35Z| , x* =
16 16 16

57TT

T
51
—| X% = [3 —35-— , 2% =

T T
335 %] a0 =[-335-Z] , x%=|-3 -35 -
16 16
T
335 —Z| 2% =[-3 3.5 0]7,x% = [-3 =35 0]7,2%1 = [3 =35 0], 2% =

[3 3.5 O]T}. (3.26)

The terminal states are established as one point
x* = [x; x5 x3]" =10 0 0]. (3.27)
Consequently, the ensuing mathematical expression for the control function is constructed
u;,iff; <wup

ul =<ufifg >uf ,i=12, (3.28)
ii;, otherwise

where
iy, = B* (1 —exp(~B2)) + (x] — x3), (3.29)
3
i, = (((xg ) = x) (1 — ) (oL - xl))> , (3:30)
B = sgn(q)) *In(lqy| + 1) (x] —x1) + sgn(ay) * In(lgs | + 1) (x] = x,) (%] —x,) +
a2 (%} — x3), (3.31)
_ (0, if |ul<é
pl) = {sgn(,u), otherwise (3.32)

q, = 7.60454, g, = 5.86686 and § = 1078, The quality criterion (3.4) for the variational SGP solution
iS Jsyn = 2.37900, where e = 0.01,t™ = 2.5sec, L =12, and, p; = 1.

Figure 3.30 shows the trajectories taken by one robot as it moved from twelve initial states (3.26)

to the terminal state (3.27).
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Figure 3.30. Robot trajectories with VSGP control function

Figures 3.31 through 3.42 depict the simulation results of a nonholonomic mobile robot,
showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.

— 00
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time

Figure 3.31. The robot displacements in direction x; from first six initial conditions by VSGP
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Figure 3.32. The robot displacements in direction x, from first six initial conditions by VSGP

dx1/dt

0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.33. The robot velocities in direction x; from first six initial conditions by VSGP
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dx2/dt
J

0.0 0.5 1.0 1.5 2.0
time

Figure 3.34. The robot velocities in direction x, from first six initial conditions by VSGP
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Figure 3.35. The robot control u, from first six initial conditions by VSGP
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Figure 3.36. The robot control u, from first six initial conditions by VSGP
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Figure 3.37. The robot displacements in direction x;from second six initial conditions by VSGP
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0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.38. The robot displacements in direction x, from second six initial conditions by VSGP

dx1/dt

0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.39. The robot velocities in direction x; from second six initial conditions by VSGP
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dx2/dt

Figure 3.40. The robot velocities in direction x, from second six initial conditions by VSGP
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Figure 3.41. The robot control u; from second six initial conditions by VSGP
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Figure 3.42. The robot control u, from second six initial conditions by VSGP

Case Five: Twelve initial states are provided:

Xo = {xO'O =[-3 35 j—Z]T,xOJ = [-3-35 j—’g]T,xO'Z =[3-35% X038 =

3 35— ,x%* =[-3 3. ——T,x°f5= -3 -35 ——T,x°'6= 3 -35——|, x%7 =
335 5] =[-8 -5 won < =3 -as -]

T
335 —Z| 2% =[-3 3.5 0]7,x%° = [-3 =35 0]7,2%1° = [3 =35 0], 2% =

3 35 O]T}. (3.33)
The terminal states are established as one point
x* = [x; x; x3]" =1[0 0 0]. (3.34)
Consequently, the ensuing mathematical expression for the control function is constructed
u;,iff; <uj
ul =3 ufift >uf ,i=12, (3.35)

ii;, otherwise

where
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i, = C* (1 —exp(—C?)) + arctan(qz(x_f — x3)), (3.36)

ii, = sgn (ql(x{ — xl)) * (exp(|q1(x{ —x)|) = 1) +sgn| g3 ((xg — Xx3) *

<1 — exp (— ((xf - x3)2)>>> . (

C = (x{ — xz)(xlf — xl) + (xéc — xz)(xlf — xl)(xg — xz) + qz(xéc - x3), (3.38)

as (< —x%5) « (1—exo (L —x))Dpes, @3D)

q, = 7.62259, g, = 6.27694 and q; = 7.40398. The quality criterion (3.4) for the variational
SGP solution is Jsy,, = 2.38341, where ¢ = 0.01,t™ = 2.5sec, L=12,and, p, = 1.

Figure 3.43 shows the trajectories taken by one robot as it moved from twelve initial states (3.33)
to the terminal state (3.34).

+ x; (m)
4
2 4
0 »
—2
_a /\
T | I I I I
-3 -2 - | | | 3

Figure 3.43. Robot trajectories with VSGP control function
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Figures 3.44 through 3.55 depict the simulation results of a nonholonomic mobile robot,
showcasing its behavior for displacement — meter, velocity — m/s, and control — m/s, in the y-axes

and time — second in the x-axes, by the VSGP method.
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Figure 3.44. The robot displacements in direction x; from first six initial conditions by VSGP
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Figure 3.45. The robot displacements in direction x, from first six initial conditions by VSGP
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dx1/dt
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time

Figure 3.46. The robot velocities in direction x; from first six initial conditions by VSGP

dx2/dt

0.0 0.5 1.0 1.5 2.0 2.5
time

Figure 3.47. The robot velocities in direction x, from first six initial conditions by VSGP
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Figure 3.48. The robot control u, from first six initial conditions by VSGP
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Figure 3.49. The robot control u, from first six initial conditions by VSGP
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Figure 3.50. The robot displacements in direction x, from second six initial conditions by VSGP
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Figure 3.51. The robot displacements in direction x, from second six initial conditions by VSGP
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Figure 3.52. The robot velocities in direction x; from second six initial conditions by VSGP
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Figure 3.53. The robot velocities in direction x, from second six initial conditions by VSGP
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Figure 3.54. The robot control u; from second six initial conditions by VSGP
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Figure 3.55. The robot control u, from second six initial conditions by VSGP
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Case Six: Fourteen initial states are provided:

T T T
X, = {xO'O =|-335%Z] 2= [-3-35Z] x2=[3-35Z| , x* =
16 16 16

57TT

T
51
—| X% = [3 —35-— , 2% =

T T
335 %] a0 =[-335-Z] , x%=|-3 -35 -
16 16
T
335 —Z| 2% =[-3 3.5 0]7,x% = [-3 =35 0]7,2%1 = [3 =35 0], 2% =
51 51

T T
[3 3.5 0]7, 2012 = [0 0 I, x013 = [o 0 _E] } (3.39)

The terminal states are established as one point
x* =[x} x; x3]7 =[0 0 0]. (3.40)
Consequently, the ensuing mathematical expression for the control function is constructed
u;,iff; <wup

=<uf,ify >ub i=12, (3.41)
ii;, otherwise

Bl
I

where
iy = <(x£ — xz)(x{ — x1) (Ch + (X§ - xz)) + %(xg —X3) +sgn ((xéc - xz)(x{ -

1) (a1 + (2 —x2)) + 42 () - x3))ln(|(x£ — 1) (] = x1) (a1 + (e = 22)) + g (2] — x5)| +

1) + p (qz (x3f — x3))> /2, (3.42)
i, = (4 = sin(qs3) * (x{c - xl))3, (3.43)

_ (0, if |ul<é
p) = {sgn(u), otherwise (3.44)

q, = 0.23307, g, = 6.87832, q; = 8.36356, & = 10~8. The quality criterion (3.4) for the variational
SGP solution is /gy, = 1.75102, where ¢ = 0.01,t* = 2.5sec, L = 14,and, p; = 1.

Figure 3.56 shows the trajectories taken by one robot as it moved from fourteen initial states
(3.39) to the terminal state (3.40).
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Figure 3.56. Robot trajectories with VSGP control function

The control functions (3.41) that have been acquired to guarantee the stability of the object are
inserted into the model equations (3.1). The solution to the problem of control synthesis yields the
emergence of a stable point of equilibrium in the space of state. The equilibrium point position is
contingent upon the terminal vector (3.40).

In_the second step, the particle swarm optimization (PSO) algorithm is employed to find the

stabilization points, resulting in the discovery of these points for every single mobile robot.

Mathematical models of two mobile robots [214] are presented

x{ = O.S(u'{ + ué) cos(xg),
xé = O.S(ui + ué) sin(x3), (3.45)
x5 =0.5(u] —ud),

where x/ = [x] x5 x3]7 represents a state vector of robot j, w/ = [u] uJ]" represents a control vector

of robot j, j = 1,2.
The control vectors elements are subject to specific constraints
ui=-10<u/ <10=uf, j=12, i=1.2 (3.46)

The initial states are established
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x1(0) =x%t =10 0 0],
x2(0) = x%% = [10 10 0]". (3.47)

The terminal states are established

x!(t;) =x/t =10 10 0]”,

x%(t;) =x/2 =10 0 0], (3.48)
where
' <tt f— <
= { t, if t< t and ||x x(t)” <e¢ (3.49)
t*, otherwise
and
3
| - x| = > ol - x> (3.50)
i=1
The constraints of static phase are presented
j z j 2 ;
Tst — (xl - xl’st) + (xz - xZ,St) < 0, ] = 1,2 (351)

where 7, X1 5, X2 ¢ are provided parameters (radius and coordinates of center) of the constraints of

static phase, st = 1, ..., P, P; represents the total number of phase constraints.

The constraints of dynamic phase are provided

rg — (k= x3)? + (xd —x2)2 <0, (3.52)
where r,; the minimal acceptable secure distance between robots, r; = 2.

The next quality functional is defined for the solution of optimal control:

2

5
Jopt =t + ¢4 Z Zf I(rge — \/(x{ - x1,st)2 + (xé - xz,st)z)

st=1j=1¢

ty

‘o ﬁ(rd— (x%—x%)2+(x%—x%)2)
fofo-|

3
+c; Z(xif’] —xi])2

j=1.|i=1

(3.53)
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where 9(A) represents the Heaviside step function

1, if A>0

9(4) = { 0, otherwise’ (3.:54)

The problem (3.45)—(3.54) can be solved by the utilization of the technique of synthesized
optimal control and for all next cases, the control functions (3.42)-(3.44) are used.

Case 1: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding
the stabilization points and it is possible to search the control function (the equilibrium points) as a
piecewise constant function. The constraints pertaining to the elements of points are as follows:

—2<x)" <12, (3.55)

Where 1= 2, Cy = 4‘, C3 = 2.5, Pt = 4,7‘1 = 1.5,7‘2 = 2,T3 = 2,T4 = 1.5,X1’1 = 1.5,x1’2 = 2,x1‘3 =

8, x1'4 = 85, x2,1 = 2'5’x2,2 = 75, x2,3 = 25, x2,4 = 75, E = 001 and t+ = 27 SecC.

The three points for each mobile robot have the subsequent coordinates in the state space

{x1, %2, %3}

x*1 =[4.462 —1.8995 1.5701]7,

xt*2 =[10.7687 11.8605 — 0.6636]7,

x1*3 =[9.7937 11.4512 0.2058],

x?*1 = [-0.6247 9.2577 —0.382]7,

x?"2 =[2.248 10.6802 — 0.2329]7,

x2*3 =[0.1365 5.131 —0.477]". (3.56)
where the first three points are for the first robot and the other points for the second one.

In Figures (3.57)-(3.63) the findings of the simulation are laid out. Figure 3.57 displays
suitable trajectories generated by the pair of mobile robots in the {x;,x,} plane. In the graphical
representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple
circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium
configurations for the first and second robots are denoted by small green and black squares, respectively.

These markers correspond bijectively to the three equilibrium points per agent that were identified
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through the solution of the underlying optimal control problem (3.56). As evident from the observation,
the two robots have successfully attained their terminal states without violating phase constraints. The

functional value in Equation (3.53) was J,,,; = 2.7000.

x1(m)

2-1 012 3 456 7 8 9101112

Figure 3.57. Synthesized optimal control trajectories for two robots in the {x;, x,} plane

0 0.5 1 1.5 2 2.5 2.7

Figure 3.58. The variable x; in black and effective control x;* in blue
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t (sec)

Figure 3.60. The variable x3 in black and effective control x;* in blue
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Figure 3.62. The variable xZ in black and effective control x;? in blue
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Figure 3.63. The variable x2 in black and effective control x;? in blue

Case 2: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding
the stabilization points and it is possible to search the control function (the equilibrium points) as a

piecewise constant function. The constraints pertaining to the elements of points are as follows:
—2<xl" <12,
—2<xl <12, (3.57)

<xJ" <

N[ R
NS

where ¢, =2, ¢;=4, ¢3=25  P.=51r=151r=15r=157rn=15r=15x,=
1.5, xl'z = 15, x1'3 == 85, x1’4 == 85, x1’5 == 5, xz’l == 25, xz’z == 75, x2‘3 == 25, x2,4_ = 75, x2'5 =

5 =0.0land t* = 2.7 sec.

The three points for each mobile robot have the subsequent coordinates in the state space

{X1,X2:x3}:
x'*1 =[2.6034 —2 1.5708]",

x% =[12 83517 0.0366],
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xt*3 =1[9.9742 10.1032 1.5708]7,

x?*1 =112 5.5246 1.5708]7,

x?*2 =[7.648 —2 0.2991]7,

x2*3 =10.1696 11.9731 - 0.8627]. (3.58)
where the first three points are for the first robot and the other points for the second one.

In Figures (3.64)-(3.70) the findings of the simulation are laid out. Figure 3.64 displays
suitable trajectories generated by the pair of mobile robots in the {x;,x,} plane. In the graphical
representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple
circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium
configurations for the first and second robots are denoted by small green and black squares, respectively.
These markers correspond bijectively to the three equilibrium points per agent that were identified
through the solution of the underlying optimal control problem (3.58). As evident from the observation,
the two robots have successfully attained their terminal states without violating phase constraints. The

functional value in Equation (3.53) was J,,,; = 2.7335.

L e TR PR P

2-1 012 3 456 7 8 9101112

Figure 3.64. Synthesized optimal control trajectories for two robots in the {x;, x,} plane
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Figure 3.66. The variable x} in black and effective control x,* in blue
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Figure 3.67. The variable x3 in black and effective control x;* in blue
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Figure 3.68. The variable x? in black and effective control x}"* in blue
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Figure 3.70. The variable xZ in black and effective control x; in blue
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Case 3: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding
the stabilization points and it is possible to search the control function (the equilibrium points) as a

piecewise constant function. The constraints pertaining to the elements of points are as follows:

-2 <x]™ <12,

J
-2 < x,

L

IA

12, (3.59)

<xJ"<

NI
NS

Where C1 = 2, C2 = 4‘, C3 = 25, Pt = 5,7'1 = 2,7'2 = 1.5,7'3 = 2,7'4 == 2,7'5 = 2,x1,1 = O,xl,z =
5, x1,3 = 10, x1,4 - 5, x1,5 == 5, xz'l == 5, xz’z == 5, x2’3 - 51x2,4 - O,x2'5 - 10,8 - 001 and t+ =

2.8 sec.
The four points for each mobile robot have the subsequent coordinates in the state space

{x1, %2, x3}:

x'*1=[-2 4313 1.5681],

x'*2 = [0.8889 — 0.4234 1.5649],

x*3 = [5.5287 7.4658 1.5708]",

xU** =[12 9.9375 1.5708]7,

x?*1 =[12 6.0535 1.3051]7,

x?*? =[-2 —0.3394 1.5708]7,

x?*3 = [4.181 0.1354 0.1268]7

x#** =10.1342 89329 - 1.5708]". (3.60)
where the first four points are for the first robot and the other points for the second one.

In Figures (3.71)-(3.77) the findings of the simulation are laid out. Figure 3.71 displays
suitable trajectories generated by the pair of mobile robots in the {x;,x,} plane. In the graphical
representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple
circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium
configurations for the first and second robots are denoted by small green and black squares, respectively.
These markers correspond bijectively to the four equilibrium points per agent that were identified

through the solution of the underlying optimal control problem (3.60). As evident from the observation,
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the two robots have successfully attained their terminal states without violating phase constraints. The

functional value in Equation (3.53) was J,,,; = 2.8000.

N
X2 (m)

x1

(m)

2-1 012 3 456 7 8 9101112
Figure 3.71. Synthesized optimal control trajectories for two robots in the {x;, x,} plane

t (sec)

0 0.5 1 15 2 25 2.8

Figure 3.72. The variable x; in black and effective control x;* in blue
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t (sec)

0 0.5 1 15 2 25 28

Figure 3.73. The variable x} in black and effective control x;* in blue
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Figure 3.74. The variable x3 in black and effective control x;* in blue
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0 0.5 1 1.5 2 25 238

Figure 3.76. The variable xZ in black and effective control x; in blue
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t (sec)
>

0 0.5 1 1D 2 25 28

Figure 3.77. The variable x2 in black and effective control x;? in blue

Case 4: The particle swarm optimization (PSO) algorithm is employed for the purpose of finding
the stabilization points and it is possible to search the control function (the equilibrium points) as a

piecewise constant function. The constraints pertaining to the elements of points are as follows:
—2<xl" <12,

—2<x" <12,

(3.61)

<xJ" <

N[ R
NS

wherec; =2,c, =4,c3 =25 P =51n=21,=2,13=2,1,=2,15 = 2,11 = 0,1, =5,x13 =

10,x14 = 5,%15 = 5,%21 = 5,25 = 5,%,3 =5,x34 = 0,x,5 = 10, ¢ = 0.01 and t* = 2.7 sec.

The three points for each mobile robot have the subsequent coordinates in the state space
{Xl, X2, X3}:

x'*1 =[-0.0372 3.2964 1.4551]",

x'*? =[5.304 8.5296 0.6911],
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x1*3 = [10.2478 5.3404 —0.7197]T,
x?*1 =[7.4218 10.7499 0.5217]7,
x?*2 =[4.3332 11.0171 1.3788]7,
x**% =[0.1775 4.6068 —0.518]". (3.62)
where the first three points are for the first robot and the other points for the second one.

In Figures (3.78)-(3.84) the findings of the simulation are laid out. Figure 3.78 displays
suitable trajectories generated by the pair of mobile robots in the {x;,x,} plane. In the graphical
representation, the red curve traces the motion of the first robot, and the yellow curve the second. Purple
circles highlight locations where phase constraints are enforced. Furthermore, the equilibrium
configurations for the first and second robots are denoted by small green and black squares, respectively.
These markers correspond bijectively to the three equilibrium points per agent that were identified
through the solution of the underlying optimal control problem (3.62). As evident from the observation,
the two robots have successfully attained their terminal states without violating phase constraints. The

functional value in Equation (3.53) was J,,,; = 2.7032.

- X1 (M)

2-1 012 3 456 7 8 9101112
Figure 3.78. Synthesized optimal control trajectories for two robots in the {x;, x,} plane
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Figure 3.80. The variable x} in black and effective control x,* in blue
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The coordinates of a stable point of equilibrium are determined by the effective control

xl.*'j(t),j =1,2, i =1,2,3, in every second of time, based on the construction of a control system for
objects. As seen from the findings, the effective control exerts an attractive influence on the relevant
state-space component, without requiring kinematic matching with that component. It is widely
recognized that the speed of state evolution is reduced in the immediate neighborhood of an equilibrium
point compared to distant regions. Thus, for enhanced mobility, the control object should be maintained

in the vicinity of that point without settling into it, allowing for continuous and faster motion.

3.3. Summary

It can be summarized this chapter as follows:

1. It has provided an introduction to the problem of optimal control concerning two
nonholonomic mobile robots.

2. The environment in question encompassed several static phase constraints, as well as
dynamic phase constraints arising from the collision between these two robots.

3. The topic of synthesis of a stabilization system, which could have effectively been
addressed using a single robot, was tackled using the variational synthesized genetic
programming (VSGP) technique.

4. The solution to the problem of control synthesis yielded the emergence of a stable point
of equilibrium in the space of states.

5. The particle swarm optimization (PSO) algorithm was employed to find the previously

mentioned points, resulting in the discovery of three points for every single mobile robot.
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CONCLUSION

Conclusion and Discussion

This dissertation proposed a synthesized optimal control technique for a pair of nonholonomic
wheeled mobile robots operating in a complicated environment, which includes both static and dynamic
phase constraints. The study employed a synthesized optimal control approach, which included a further
step of synthesis of a stabilization feedback control system. This control system aimed to achieve a
steady state for the robot with respect to a specific point in the space of states. The proposed approach
incorporates tunable stabilization points as decision variables in the optimization process. Their effective
coordinates are determined such that the resulting closed-loop trajectory satisfies initial and terminal
boundary conditions, adheres to obstacle-avoidance constraints, and minimizes a researcher-defined
quality criterion. The proposed methodology presented a novel strategy to address a widely known
problem in optimal control. However, it additionally introduced a novel problem statement in the field
of optimal control, subsequently facilitating its numerical solution. The results have shown that
employing this methodology enabled the computer to generate innovative and remarkable solutions,

surpassing the expectations of engineers in certain instances.

The problem of synthesized optimal control has been solved by a two-step process, namely the
stabilization step and optimization step. The stabilization step represented the first step. The primary
challenge encountered in addressing the mentioned synthesized optimal control problem was mostly
associated with the first step. Solving the problem of control synthesis has consistently posed a more
intricate challenge compared to the problem of optimal control. The synthesis problem has been solved
via the utilization of controllers in feedback, wherein control is sought as a function involving the robot's
state. However, this approach necessitated an accurate model of the controlled robot. It is essential to
acknowledge that solving the problem of control synthesis in the first step has brought about substantial
modifications to the control robot mathematical model. A more generalized technique has relied on the
utilization of symbolic regression, a computer technique known as variational synthesized genetic
programming (VSGP), to address the synthesis problem. The control synthesis problem has been solved
with the objective of guaranteeing the control robot's stability with respect to a specific point inside the
state space. The present step of the stabilization system synthesis has facilitated the incorporation of
control within the robot, ensuring that the differential equations system possesses the essential attribute
of feasibility. The implementation of this form of control in actual systems was well accepted due to its
ability to minimize model errors through the utilization of feedback control. This methodology belongs
to the broader family of machine learning algorithms; however, it transcends the limitations of neural

networks by enabling the search over both the space of possible functional architectures and their
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parameter values of the control function—thereby supporting interpretable, equation-based modeling.
The VSGP implements an evolutionary framework that evolves the structural-parametric search of
candidate control functions, evaluating their performance solely through the quality functional’s output.
The VSGP technique has been utilized to obtain a solution without relying on explicit model equations.
The first step yielded the acquisition of the control function's structure and parameters. Consequently,
the researcher has automatically obtained the efficient controller function structure and its proper
parameters. The first step of synthesis of the stabilization system was a crucial concept within this
methodology, leading to improved results in tasks involving intricate environments. At present, the
problem of general synthesis can only be effectively solved by employing symbolic regression-based

machine learning techniques that offer approximate solutions.

The optimization step was the second step in this proposed approach. Following the previous
step, which guaranteed a steady system movement to a stabilization point, a series of stabilization points
were meticulously sought to transition among them at specified times sequentially. This strategic
approach enabled the robots to ultimately attain the terminal state, besides the quality criterion improved
estimation. During this step, the optimal control problem was addressed by utilizing the robot's stability
points' coordinates as control. In order to ensure the existence of adjacent areas with attractive properties
for the effective solution, it was necessary to carefully select the stability points' position within the state
space. This positioning was done in such a way that specific solutions originating from a specific area
of initial states, which are attracted to such stability points, would exhibit nearness to each other as they
progress towards the terminal state. The equilibrium point exhibited attractor features in an algorithmic
manner, as it was seen that all solutions converged in close vicinity to this point, so satisfying the
principle of feasibility. This methodology implemented a control mechanism for the robot by
transitioning among stable equilibrium points. However, it is essential to note that these equilibrium
points were not coincident with the reference trajectory. The positions of such points were determined
by the utilization of an evolutionary algorithm known as Particle Swarm Optimization (PSO), which was
applied based on the criterion of the problem of optimal control. It is essential to observe that at the
stable point of equilibrium within the state space, the velocity of the robot was equal to zero.
Consequently, the placement of stable points over the reference trajectory resulted in ineffective mobility
characterized by stops at such points. The points have the potential to be located at any position inside
the state space. By strategically switching these points, the robot could accomplish an efficient
movement on the reference trajectory without any stops. The computer memory was set up with the
found stabilization points' coordinates and a designated time interval for transitioning among these
points, thus establishing the suitable trajectory. The proposed methodology introduced a novel control

strategy that involved altering the position of a stable point of equilibrium. This approach compelled the
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robot's stabilization system to drive it towards the equilibrium point. By altering the position of the
equilibrium point over time, it became possible to guide the robot to its intended terminal state while
improving the quality criterion. In the second step of the applied technique for synthesized optimal
control, we conducted a search for the positions of the points of equilibrium using a piece-wise constant

function.

This technique possesses numerous advantages. One great thing about this technique was that it
did not depend on a specific model of the control object. This meant that the symbolic regression
technique could be used to search the feedback function of control automatically. The primary advantage
of this technique consisted of its versatility and capacity to be applied to diverse, dynamic models of
control objects. One additional benefit resulted from the establishment of systems of optimal control that
possess the property of feasibility. This characteristic emerges as a result of the control object
stabilization during the first step. This system of stabilization has facilitated the establishment of an
equilibrium point for the robot inside the space of states. This implies that the system was designed for
its attraction to a specific equilibrium point. Another benefit of this technique was the implementation
of control through the alteration of equilibrium points. The ability to achieve optimal control over an
object has been made possible such that the control parameters' effective values could be rapidly
computed employing numerical optimization techniques; moreover, it has been possible to update these
parameters in real-time, even on board. Interestingly, it could be noted that all techniques employed for
the purpose of calculation were automated numerical techniques, obviating the need for manual
calculations. This pivotal aspect facilitated the automation and universalization of the control system
development process. One of several primary characteristics of the synthesized technique was the hands-
on feasibility of obtaining numerical solutions for the problem of optimal control in intricate systems.
One objective of the process reformulation for the known problem represented that its solution was able
to be directly applied to a real object. The problem of refined optimal control incorporated one extra
requirement for the suitable trajectory, namely that this trajectory possessed an attractive close vicinity.
In order to achieve this objective, it is necessary for a control function to be dependent not just on time

but also on the vector of state space.

In summary, the methodology of synthesized optimal control presented in this study was a novel
approach to solving optimal control problems by focusing on controlling a stable robot's equilibrium
point. The methodology consisted of two different steps. In the initial design phase, a stabilization system
was embedded within the control architecture of the robotic system, thereby inducing a structurally
stable equilibrium point in its phase space. This was motivated by the established principle that such an
equilibrium is a necessary condition for ensuring desirable control properties in the robot's mathematical

model. Secondly, Although the equilibrium point could be reconfigured over time, the system remained
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stable at all times because of the underlying stabilization system, which allowed for control through
manipulating the position of the equilibrium point. This technique possesses the ability to be universal,
enabling a numerical solution of the synthesis problem within a broad context, devoid of the necessity
to construct a training set. Instead, it relies just on the evaluation of the quality criterion, so exemplifying

the utilization of unsupervised machine learning.
Suggested Future Works
The subsequent recommendations are proposed for future works:

1. A two-stage methodology is proposed for solving the optimal control problem: (i)
numerical solution of the optimal control problem over a set of initial conditions to
generate a collection of optimal trajectories; (ii) application of symbolic regression to
approximate the resulting trajectories with an interpretable expression. In this context,
supervised machine learning is employed rather than unsupervised machine learning.

2. One possible way to execute the proposed synthesized optimal control technique is to
employ a holonomic mobile robot rather than a nonholonomic one.

3. The suggested technique can potentially be applied in various forms of motion control
for mobile robots, such as trajectory tracking, as an alternative to the current approach of
altering the stable point of equilibrium.

4. The proposed technique can be employed to address the optimal control problem and
evaluate its efficacy in the existence of uncertainties, which may arise due to
considerations such as model inaccuracies, noise, initial conditions uncertainty, and other
similar sources.

5. It is essential to persist in the exploration of other evolutionary algorithms, such as the
Grey Wolf Optimization Algorithm (GWO) or hybrid algorithms, such as (GA and PSO
or GA and GWO), to solve the problem of optimal control rather than relying solely on
the Particle Swarm Optimization Algorithm (PSO), as mentioned in this dissertation.
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LIST OF ABBREVIATIONS

Abbreviation

Definition

R.U.R Rossum's Universal Robots

MLC Machine learning control

WMR Wheeled mobile robot

SGP Synthesized genetic programming
VSGP Variational synthesized genetic programming
PSO Particle Swarm Optimization Algorithm
WMRs Wheeled mobile robots

ICR Instantaneous center of rotation

ICC Instantaneous Center of Curvature
DDWMR Differential drive wheeled mobile robot
DOF Degrees of freedom

DDOF Differential degrees of freedom
DDWMRs Differential drive wheeled mobile robots
PID Proportional Integral Derivative

ML Machine learning

NN Neural Network

MWMR Mecanum-wheel mobile robot

FL Fuzzy Logic

OMRs Omnidirectional mobile robots

RL Reinforcement Learning

SR Symbolic Regression

SMC Sliding Mode Control

MPC Model Predictive Control

MIMO Multiple-Input Multiple-Output System
NMPC Nonlinear Model Predictive Control
GA Genetic Algorithm

GAs Genetic Algorithms

VarGA Variational Genetic Algorithm

GP Genetic Programming

CGP Cartesian Genetic Programming

GWO Grey Wolf Optimization Algorithm
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LIST OF SYMBOLS

Symbol Definition
a,v,B,0 | The PSO algorithm constant parameters.
Bi The inner wheel’s steering angle in the Ackerman steering mechanism.
Bo The outer wheel’s steering angle in the Ackerman steering mechanism.
Bs The automobile’s true steering angle in the Ackerman steering mechanism.
) A positive value of tiny magnitude.
A A provided time interval.
cand t* | positive numerical values.
g and t; | Provided positive numerical values.
{ The posture vector of differential drive wheeled mobile robot (DDWMR).
n A function that equals or approximated to i based on a specific criterion.
0 the angle of orientation of the mass center coordinate system of the DDWMR
CXcYc relative to the inertial coordinate system OXoYo.
0,4 The destination orientation of the robot within the navigation plane.
9(A) The Heaviside step function.
Uy, Uy The random mutation points for SGP technique.
ulx) The Bellman function.
'3 A random value drawn from the interval [0:1].
0 An evaluation criterion.
@1, O The angular velocities of the left and right wheels.
U The angle of the roller in the Swedish wheel.
Y The unknown function.
¥ (b) The function that transforms a non-numerical structure's code into an actual function.
W,V The angular and linear velocities of differential drive wheeled mobile robot.
Q A correlation between the angular velocities of the right and left wheels (¢, ¢;) of
the DDWMR, and the angular and linear velocities of the mass center of
the DDWMR (w, v).
A(Q) The matrix that encompasses nonholonomic constraints.
a The distance from the center of wheel to the center of automobile in the Ackerman
steering mechanism.
2a The distance between the actuated wheels and the axis of symmetry.
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a’ (Q) The parameter vector of the constraint.
b The length of rolling polygon side.
b° The basic solution.
b! The new basic solution.
C Center of mass or point of guidance.
CXcYc | The mass center coordinate system of differential drive wheeled mobile robot.
c1, C2, ¢3 | The weight coefficients for the quality criterion of the synthesized optimal control
for mobile robot example.
c Randomly chosen possible solutions.
D The total count of variation vectors that presents in a single set.
d The distance between point P and point C.
dep The dimension of the variation vector.
E The distance from the instantaneous center of rotation (ICR) to the nearest wheel
in the Ackerman steering mechanism.
e1, .-,€, | The unit elements for two-argument functions.
F A unified set of the two sets of fundamental functions
Fy The arguments set.
Fq The functions set that is characterized by one argument.
F, The functions set that is characterized by two arguments.
F(q) The objective function of the optimization problem in PSO algorithm.
F; The objective function value for genetic algorithm.
F;_ The best objective function value for genetic algorithm.
Fr The generated force by the rotational motion of the omnidirectional wheel.
Fri A parallel force of Fr, which parallels the axis of the roller.
Fr2 A perpendicular force of Fr, which is oriented at a right angle to the axis of
the roller.
E, The objective function value for the set of variations vector W,,.
F, The objective function value for the set of variations vector W ,.
f(Q) The holonomic constraint.
£(Q,Q) | The nonholonomic constraint.
fr A value that meets the estimate requirements.
G The evaluation of an objective function or a function of fitness for SGP technique.

The mobility degree of wheeled mobile robots (WMRS).
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G The steerability degree of wheeled mobile robots (WMRS).
gx) The control function in terms of the vector of state space.
g(x* — x) | The control function that obtained from the stabilization step.
gy .9, | Theobjective functions values of random two possible solutions of SGP technique.
H The number of columns (vectors) in the code matrix.
h(t) The control function that is obtained is commonly referred to as a program control.
i General serial counter.
] The general quality criterion of the optimal control.
A The general quality criterion of the control synthesis system with a domain of initial
condition.
I The general quality criterion of the control synthesis system with a limited set of
initial conditions.
J(R;,q") | The objective function for SGP technique.
Jopt The quality criterion of the synthesized optimal control for mobile robot example.
Js The general quality criterion of the control synthesis system with a limited set of
initial conditions for symbolic regression techniques.
Js1 The general quality criterion of system with a limited set of initial conditions in the
stabilization step.
Jso1 The general quality criterion of the synthesized optimal control.
Jsyn The general quality criterion of system with a limited set of initial conditions in the
stabilization step for mobile robot example.
Ji General serial counter.
K Number of intervals or number of points of equilibrium.
ki, k, The random crossover points for SGP technique.
k. The random crossover point for genetic algorithm.
L The number of initial conditions.
l The sequence of possible solutions within the initial population.
M The total number of the set of codes that representing the possible solutions.
M, The maneuverability of wheeled mobile robots (WMRS).
mg The dimensionality of the parameters vector.
m The dimension of the velocity (control) vector.
N, The number of separate (independent) constraints for wheeled mobile robot.
n The dimension of the state space.
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OXoYo | Theinertial coordinate system of differential drive wheeled mobile robot.
P Intersection of the axis of the symmetry with the wheels’ axis.
P. The crossover probability for SGP technique.
B, The crossover probability.
P, The total number of phase constraints.
P, The mutation probability for SGP technique.
p The number of nonholonomic constraints.
P1 A weight coefficient for the quality criterion of the control synthesis system.
Q The generalized coordinate vector.
Q The vector containing the velocities of the system within the generalized coordinates.
q The parameters vector.
q1,.--,dm, | The parameters of the mathematical expression.
q; and q; | The higher and lower bounds of the parameters.
q/© The most efficient possible solution in PSO algorithm.
R The code matrix.
R;- or g;- | The best solution for the code of SGP technique.
Rccp The code matrix of Cartesian genetic programming technique.
R;p The code matrix of genetic programming technique.
Rgcp The code matrix of synthesized genetic programming technique (SGP).
R, q", Random two possible solutions of SGP technique for the crossover operation.
R, q
Rai The radius of an instantaneous circular path for wheeled mobile robot.
R™ The state space.
R™ The control space.
r The column in the code matrix such that it can be considered the column as a vector.
ra Radius of left or right wheel.
g The minimal acceptable secure distance between robots.
T, An element in the column of the code matrix.
Tst, X150, | Radius and coordinates of center of the constraints of static phase.
X2,st
S(Q) The Jacobian matrix.
S A set of codes that representing the possible solutions.
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tr The time at which the terminal condition is reached, starting from the initial one in
the optimal control.
tk A given time.
t* The general time at which the terminal condition is reached, starting from the initial
one in the stabilization step.
t; The time at which the terminal condition is reached, starting from the initial
one in the stabilization step and used in the general quality criterion J;.
A compact set.
The vector representing the control, u € U.
Uy, U, The effective control functions.
|4 The distance from the center of front wheel to the center of rear wheel in the
Ackerman steering mechanism.
v The auxiliary velocity vector.
v A hub velocity in the roller of the omnidirectional wheel.
2] The velocity of the left wheel in a differential drive robot.
vy The velocity of the right wheel in a differential drive robot.
U The sum of the horizontal velocity (v},) and the vertical velocity (v,,).
vy, A small rotational velocity in the roller of the omnidirectional wheel.
Uij A history vector in PSO algorithm.
Wt The ordered multiset consisting of variation vectors as the initial population.
w,,W, | Two sets of variations vectors.
W, .1, The new sets of variations’ vectors generated from the crossover.
W1
w The vector of small variations.
wy An index denoting a small variation.

Wy, Weaep—1

Indices indicating the element position in the code that define the variable element.

Waep The updated value of the defined element.
X The input space.
Xo The initial conditions domain within the state space.
X, Y The training sets.
x The input vector (state space vector).
x° The initial conditions of the control object model.
X The mathematical model of the control object in the form of an ordinary differential e
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system.
x! The terminal conditions of the control object model.
x(t,x%) | A partial solution of the control object system.
x(t”) The terminal position, enabling the system to achieve stabilization at such a point.
X(x*(tx)) | A stable point of equilibrium.
x*(t) A time control function.
X,y The coordinates of point C.
X1,...,%. | The variables of the mathematical expression.
X, Vi The initial position of the robot within the navigation plane.
Xq, Va The destination position of the robot within the navigation plane.
x4(t),y4(t),| The destination position of the robot within the navigation plane throughout time.
04(1)
x4(t),y4(t),| The destination velocity of the robot within the navigation plane throughout time.
04(t)
x:’j(t) The coordinates of a stable point of equilibrium.
Y The output space.

y

The output vector.
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APPENDIX I.

The operations of addition and multiplication were used as binary operations, and a set of 28
smooth elementary functions was used as unary operations. The total number of functions was 30, and

they were used as the space for codes in the first step (the stabilization step) and as follows:

file) =z fo(2) = 2
fs(2) =~z fi(2) = sgn(2)\/|z|
fs(2) =271 fs(2) = exp(2)

f2(2) = In (|z[)

fs(z) = tanh (0.52)

(1, ifz=0
fo(2) = {0, otherwise

f10(2) = sgn(2)

f11(2) = cos (2)

f12(2) = sin (2)

f13(z) = arctan (2) fia(2) = 2°
=Vz (2 if 2] <1
o ’ fie(2) = {sgn(z), otherwise

fi7(2) = sgn(z) In(|z| + 1)

f18(2) = sgn(z) (exp(|z]) — 1)

fio(2) = sgn(z) exp(—|z|)

f20(2) = 0.5z

f21(2) = 2z f22(2) = 1 —exp(—|z])
fos(z2) =z —7° _ 1
v fa(2) = 1+ exp(—z)
(1, ifz>0 0, if |z] <e¢
fos(2) = {0, otherwise f26(2) = {sgn(z), otherwise

f27(2) = sgn(z)(1 — m)

f28(2) = z(1 — exp(—zz))

f29(Z1lzz) =71+ 2,

f30(Z1' Z3) = 712,
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The final code matrix of the first control function (i,) in Eq. (3.16) was as follows:

212 2 1 2 1 o0 1 1 11 1 1 1 1 1 1 1 1

$1 111 1 1 1 1 1 1 11 1 1 1 1 1 1 20 1

. = 2 5 6 10 13 14 15 16 17 18 19 20 12 22 23 21 25 26 27 28
! 333 1 1 28 0 7 17 0 17 0 18 0 28 0 O 26 0O 18
1 2 3 112 0 0 O O0 11 1519 0 O O O O 24 15 O

1 111 2 1 1 1 1 1 11 1 1 1 1 1 1 1 1

The final code matrix of the second control function (ii,) in Eq. (3.17) was as follows:

22 0 0 1 2 1 1 2 1 11 1 1 1 1 1 1 2 1
211 221 1 1 1 1 21 14 1 1 1 1 11 1 1 1 1 1
i, = 7 8 9 10 13 14 15 16 17 18 19 20 21 22 19 24 25 26 27 21
z 3 317 1 16 0O O O O 7 250 2 0 22 9 O O 0 O
l1 2 3 1 0 0 O 0 15 0 0 0O 0O 0 6 3 0 0 4 OJ
1 21 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1

The final matrix of the small variations (SV) was as follows:

2 2 6 2
2 15 2 11
2 16 6 2
1 4 3 10
2 1 2 12
SV_11562
1 9 4 17
1 10 5 11
2 15 4 22
2 14 6 2/




