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Общая характеристика работы 

Актуальность темы исследования. Математическое моделирование 

процессов переноса тепла, массы, импульса является одним из важных 

разделов многих научных и прикладных исследований. Классические модели, 

описывающие перенос энергии и вещества, основаны на двух основных 

предположениях: принцип локальности и гипотеза сплошной среды. Таким 

образом параболические дифференциальные уравнения формируются на 

основе концепции локального термодинамического равновесия. Их 

математическая структура описывается линейными соотношениями, 

устанавливающими связь между термодинамическими силами (градиентами 

потенциала) и соответствующими им токами, отраженными в эмпирических 

законах Фурье, Фика, Ома и т.п. Однако полученные уравнения, такие как 

уравнения теплопередачи или диффузии, являются параболическими 

уравнениями в частных производных с фундаментальным ограничением: они 

не учитывают непространственную природу процессов переноса, 

проявляющуюся как в пространстве, так и во времени. Для учета 

нелокальности Максвелл выдвинул гипотезу о том, что распространение тепла 

имеет не только диффузионный, но и волновой характер, т.е. 

теплопроводность описывается также гиперболическими уравнениями. 

В связи с актуальностью моделирования процессов теплопроводности и 

массопереноса в различных технических реализациях, весьма актуальной 

является задача совершенствования численных методов решения линейных и 

нелинейных уравнений в частных производных гиперболическо-

параболического типа. В русскоязычной научной литературе благодаря 

успехам научной школы академика Самарского А.А. широкое 

распространение получили конечно разностные методы. Также 

распространены родственные им методы конечных элементов. В 

англоязычной литературе большее распространение получили спектральные 

методы, а также родственные им вариационные методы. Спектральные и 
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вариационные методы развивались также в работах Санкт-Петербургской, а 

затем Ленинградской математической школы.  

 На пути численной реализации на компьютере всех вариаций 

проекционно-спектральных методов при оценке точности получаемых 

приближенных численных решений потребовалось перейти от доказательства 

сходимости спектральных методов и скорости сходимости к погрешности 

приближенных решений с помощью квадратурных формул вычисления 

коэффициентов спектрального разложения. При этом сформировалось целое 

направление псевдо-спектральных методов. Инженерные методы расчета, 

например, метод моментов, привели к осознанию метода коллокаций как 

квадратурного метода отыскания коэффициентов спектрального разложения.  

Было проведено сравнение скоростей сходимости и точностей 

спектрального и псевдоспектрального методов для ряда уравнений в частных 

производных. Ими была показана эквивалентность указанных методов. В это 

время в англоязычной литературе произошел бурный рост прикладных 

численных компьютерных исследований приближенного решения 

чрезвычайно широкого круга прикладных инженерно-технических задач 

различными реализациями метода коллокаций.  

Псевдоспектральные методы решения начально-краевых задач для 

уравнений в частных производных, моделирующих различные классы явления 

теплопроводности, достаточно успешно разрабатываются с середины 

двадцатого века. Они продолжают развиваться и в наши дни. Одним из 

перспективных разделов этого направления являются методы коллокации с 

использованием полиномов Лежандра и Чебышева, применимые к широкому 

классу математических моделей. 

В работах Ловецкого К.П. с соавторами около десяти лет тому назад был 

предложен модифицированный метод Чебышевской коллокации для 

численного интегрирования быстроосциллирующих функций методом Левина 

(редукции задачи интегрирования к задаче решения обыкновенного 

дифференциального уравнения). Затем область применимости этого метода 
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была расширена до решения одноточечных задач для класса всех линейных 

обыкновенных дифференциальных уравнений первого порядка (в том числе с 

нулями и особенностями). 

Однако проблема расширения области применимости 

модифицированного метода Чебышевской коллокации на двухточечные 

задачи для обыкновенных дифференциальных уравнений второго порядка и 

начально-краевых задач для параболических уравнений в частных 

производных, моделирующих явления теплопроводности, пока не решена до 

конца. Таким образом, задача расширения области применимости 

перспективного модифицированного метода Чебышевской коллокации 

является весьма актуальной. Решению этой актуальной задачи посвящено 

данное диссертационное исследование. 

Степень разработанности темы, Метод Чебышевской коллокации 

доказал свою состоятельность в численных методах решения 

дифференциальных и интегральных уравнений после работ С.А. Орсага, Д. 

Готлиба, Э. Туркеля, К. Кануто, А. Квартерони, М.И. Хусайни, Г. Брюннера. 

В работах Л. Грингарда, А. Амираслани, Р.М. Корлеса, Н. Гунасигама и др. 

были введены и исследованы спектральные Чебышевские матрицы 

дифференцирования и интегрирования.  

Метод коллокации привлекает широкое внимание благодаря своим 

явным преимуществам. Выбирая подходящие точки коллокации, метод 

коллокации позволяет преобразовывать инженерные задачи в системы 

алгебраических уравнений, что упрощает численное решение задач. Для 

многих дифференциальных задач схема коллокации часто приводит к 

наиболее эффективным практическим методам получения численных 

результатов. Метод коллокации добился большого успеха среди численных 

методов в решении различных научных и инженерных задач благодаря своей 

гибкости и адаптивности. Огромное количество практических примеров и 

рецептов было опубликовано в неоднократно переиздававшихся работах 

Бойда, Массона, Трефетена и др. 
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В работах Г. Майерхофера, А. Изерлеса, Н. Пика, А. Деано и А. 

Хюйбрехса использовались методы коллокации для построения методов 

Филона интегрирования быстро осциллирующих функций. Такие методы 

сочетают в себе множество полезных свойств, включая надежность 

вычисления регулярных подынтегральных выражений и эффективную 

аппроксимацию функций на больших частотах. 

Ловецкий К. П. с соавторами предложил улучшение МЧК, а именно 

модифицированный метод Чебышевской коллокации решения начальных и 

граничных задач для ОДУ и смежных задач. В этих работах было показано 

преобладание в скорости, эффективности и устойчивости для одноточечных 

задач линейных ОДУ первого порядка и задаче численного интегрирования 

быстро осциллирующих функций. 

Целью диссертационной работы является разработка эффективных 

устойчивых численных алгоритмов решения начально-краевых задач для 

уравнений теплопроводности с граничными условиями общего вида. 

Для реализации этой цели в диссертации, т.е. для расширения области 

применимости модифицированного метода чебышевской коллокации 

Ловецкого на двухточечные задачи для линейных ОДУ второго порядка и на 

начально-краевые задачи для линейных параболических уравнений, 

моделирующих явления теплопроводности решаются следующие задачи: 

• Разработка прямого модифицированного метода Чебышевской 

коллокации решения ЛОДУ второго порядка с помощью матриц 

дифференцирования и интегрирования (антидифференцирования). 

• Разработка модифицированного метода Чебышевской коллокации 

приведения ОДУ первого порядка к виду полной производной.  

• Разработка модифицированного метода Чебышевской коллокации 

приведения ЛОДУ второго порядка к виду полной производной с линейным 

потенциалом. 
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• Решение начально-краевой задачи для уравнения 

теплопроводности с различными краевыми условиями модифицированным 

методом Чебышевской коллокации. 

Научная новизна диссертационных исследований 

• Модифицированный метод Чебышевской коллокации 

распространен на класс ОДУ второго порядка; 

• Модифицированный метод Чебышевской коллокации реализован 

при решении начально-краевой задачи для одномерного параболического 

уравнения 

• Обоснован и реализован метод построения полной системы 

решений ОДУ второго порядка на основе модифицированного метода 

Чебышевской коллокации 

Теоретическая и практическая значимость работы 

Результаты диссертационного исследования будут использованы в 

лабораторных работах в готовящемся к опубликованию учебном пособии. 

Результаты диссертационной работы будут использованы в 

диссертационных исследованиях магистров и аспирантов кафедры 

математического моделирования и искусственного интеллекта. 

Методология и методы исследования 

Двухстадийный модифицированный метод чебышевских 

коллокаций с использованием метода интегрирующего множителя, 

основанный на алгоритме поиска решения простейшего уравнения ЛОДУ 

второго порядка с одним из видов граничных условий основанная на 

простейшем алгоритме решения линейных дифференциальных уравнений 

второго порядка с различными граничными условиями, реализуется в три 

последовательных этапа: 

• Первый этап заключается в выполнении спектральной 

интерполяции в правой части уравнения для узлов Гаусса-Лобатто путем 

умножения транспонированной матрицы Чебышева на вектор 

интерполяционных коэффициентов функции; 
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• вычисление тех коэффициентов решения (кроме двух первых), 

которые определяются дифференциальными условиями задачи (решение 

должно удовлетворять дифференциальным условиям), путем умножения 

вектора интерполяционных коэффициентов функции дважды на матрицу 

антидифференцирования (спектрального интегрирования) 

• доопределение коэффициентов решения на основе граничных (или 

других независимых дополнительных) условий. 

Метод интегрирующего множителя в применении к уравнению ЛОДУ 

второго порядка общего вида формирует двухэтапный способ решения задачи, 

сохраняющий все преимущества ММЧК. 

Метод понижения порядка (редукция Даламбера) позволяет получить второе 

независимое решение при имеющемся первом независимом решении.  

Положения, выносимые на защиту 

• Предложен, реализован и протестирован прямой 

модифицированный метод Чебышевской коллокации решения ЛОДУ второго 

порядка с помощью матриц дифференцирования и антидифференцирования. 

• Разработан модифицированный метод Чебышевской коллокации 

приведения ОДУ первого порядка к виду полной производной.  

• Разработан модифицированный метод Чебышевской коллокации 

приведения ЛОДУ второго порядка к виду полной производной с линейным 

потенциалом. 

• Предложен экономичный метод решения начально-краевой задачи 

для уравнения теплопроводности с различными краевыми условиями 

модифицированным методом Чебышевской коллокации. 

Степень достоверности 

Достоверность результатов, полученных в диссертации, обеспечивается 

использованием строгих математических методов, а также сравнением с 

известными точными решениями или с результатами, полученными другими 

авторами. 
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Апробация результатов исследования 

Результаты неоднократно докладывались на заседаниях Научного 

семинара по Математическому моделированию Института компьютерных 

наук и телекоммуникаций РУДН по математическому моделированию в 2024-

25 гг. и на трех конференциях: 

• Информационные технологии и математическое моделирование 

(ИТММ-2022). Материалы XXI Международной конференции имени А.Ф. 

Терпугова. Томск, 2023. 

• Информационно-телекоммуникационные технологии и 

математическое моделирование высокотехнологичных систем. Материалы 

Всероссийской конференции с международным участием. Москва, 2024. 

• Информационно-телекоммуникационные технологии и 

математическое моделирование высокотехнологичных систем. Материалы 

Всероссийской конференции с международным участием. Москва, 2025. 

Личный вклад автора 

• Реализован модифицированный метод Чебышевской коллокации 

решения граничных задач для обыкновенных дифференциальных уравнений 

второго порядка с использованием Чебышевских матриц дифференцирования 

и интегрирования.  

• Реализован модифицированный метод Чебышевской коллокации 

решения начально-краевой задачи для одномерного параболического 

уравнения с помощью разбиения на две вспомогательные задачи: краевая 

задача для неоднородного уравнения Пуассона и однородная задача с 

нулевыми граничными условиями для параболического уравнения. 

• Обоснован и реализован метод построения полной системы 

решений ОДУ второго порядка методом Даламбера (понижения порядка). 

Публикации по теме диссертации 

В публикациях, цитируемых в международных базах цитирования. 

1. Ловецкий К.П., Кулябов Д.С., Севастьянов Л.А., Сергеев С.В. 

Многостадийный численный метод коллокаций решения ОДУ второго порядка 
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// Вестник Томского государственного университета. Управление, 

вычислительная техника и информатика. 2023. № 63. С. 45–52. doi: 

10.17223/19988605/63/6 (SCOPUS Q4) 

2. K. P. Lovetskiy, D. S. Kulyabov, L. A. Sevastianov, S. V. Sergeev, 

Chebyshev collocation method for solving second order ODEs using integration 

matrices, Discrete and Continuous Models and Applied Computational Science 31 

(2) (2023) 150–163. DOI: 10.22363/2658-4670-2023-31-2-150-163. (SCOPUS Q4) 

3. Sevastianov L. A., Lovetskiy K. P., Kulyabov D. S., Sergeev S. V. 

Numerical solution of first-order exact differential equations by the integrating 

factor method [Севастьянов Л. А., Ловецкий К. П., Кулябов Д. С., Сергеев С. В. 

Численное решение дифференциальных уравнений первого порядка в полных 

дифференциалах методом интегрирующего множителя] // Известия 

Саратовского университета. Новая серия. Серия: Математика. Механика. 

Информатика. 2024. Т. 24, вып. 4. С. 519–532. https://doi.org/10.18500/1816-

9791-2024-24-4-519-532 (стандартное обозначение), EDN: ILSNIX (SCOPUS 

Q3) 

4. Lovetskiy K. P., Sergeev S. V., Kulyabov D. S., Sevastianov L. A., 

Application of the Chebyshev collocation method to solve boundary value problems 

of heat conduction, Discrete and Continuous Models and Applied Computational 

Science 32 (1)(2024)74–85.DOI: 10.22363/2658-4670-2024-32-1-74-85. 

5. Lovetskiy K. P., Malykh M. D., Sevastianov L. A., Sergeev S. V., 

Solving a two-point second-order LODE problem by constructing a complete system 

of solutions using a modified Chebyshev collocation method. Discrete and 

Continuous Models and Applied Computational Science. 2024. Т. 32. № 4. С. 414–

424. doi: 10.22363/2658-4670-2024-32-4-414-424. edn: DHGEBY (2024). 

(SCOPUS Q4) 

В работах, опубликованных в материалах конференций: 

6. Ловецкий К.П., Кулябов Д.С., Севастьянов Л.А., Сергеев С.В. 

Многостадийный численный метод коллокаций решения оду второго порядка. 

В сборнике: Информационные технологии и математическое моделирование 

https://doi.org/10.18500/1816-9791-2024-24-4-519-532
https://doi.org/10.18500/1816-9791-2024-24-4-519-532
https://elibrary.ru/item.asp?id=54092660
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(ИТММ-2022). Материалы XXI Международной конференции имени А.Ф. 

Терпугова. Томск, 2023. С. 253-258. 

7. С. В. Сергеев. Решение начально-граничной задачи 

теплопроводности методом чебышевской коллокации // Информационно-

телекоммуникационные технологии и математическое моделирование 

высокотехнологичных систем. Материалы Всероссийской конференции с 

международным участием. Москва, 2024. С. 336-340. 

8. Сергеев С.В. О решении ЛОДУ второго порядка 

модифицированным методом Чебышевской коллокации, Информационно-

телекоммуникационные технологии и математическое моделирование 

высокотехнологичных систем. Материалы Всероссийской конференции с 

международным участием. Москва, 2025. С. 423-426. 

• Полнота изложения материалов диссертации в работах, 

опубликованных соискателем. 

Основные результаты диссертационного исследования отражены в 8 

работах, в том числе в 5 изданиях, входящих в международные базы данных 

Scopus/Web of Science, общим объемом 74 стр. (автору принадлежит 63 стр.). 

Структура диссертации 

Диссертационная работа содержит введение, три главы, заключение и 

список использованных источников. 

Введение 

Содержит общую характеристику работы 

Глава 1 содержит обзор необходимых для изложения материалов 

диссертационного исследования результатов предшественников. 

В первом параграфе приведено описание некоторых математических 

моделей теплопроводности.  
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В качестве примера описан случай одномерного распространения тепла 

в линейном проводнике конечной протяженности (стержень, тонкая 

проволока), динамика которого иллюстрируется параболическим уравнением: 

𝑘
𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) + 𝐹(𝑥, 𝑡) =

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡),0 ≤ 𝑥 ≤ 𝐿, 𝑡 > 0.  

с граничными условиями Дирихле-Дирихле и Дирихле-третьего рода на 

концах стержня, рассмотренный в третьей главе диссертации. 

Во втором параграфе приводится краткий обзор спектральных методов и 

методов коллокации, поскольку целью диссертации является развитие 

указанных методов для решения начально-граничных задач для 

параболических уравнений. В классе спектральных методов согласно 

результатам теории аппроксимации наилучшее приближение в метрике 𝐿∞ (и 

почти наилучшее в метрике 𝐿2) обеспечивают полиномы Чебышева. 

Отличительными особенностями метода коллокации являются: выбор 

расположения коллокационных точек; способ представления численного 

решения через линейную комбинацию базисных функций. 

Метод Чебышевской коллокации (МЧК) на сетках Гаусса-Лобатто 

благодаря дискретной ортогональности чебышевских матриц сводит 

вычисление коэффициентов интерполяции к умножению матрицы на вектор 

значений интерполируемой функции. Использование же матриц 

интегрирования и дифференцирования сводит операции интегрирования и 

дифференцирования к алгебраическим операциям умножения сильно 

разреженных матриц на векторы. 

Ловецкий К.П. с соавторами предложили альтернативу (стандартному 

методу) – модифицированный метод коллокаций, который разбивает процесс 

решения линейных обыкновенных дифференциальных уравнений (ЛОДУ) с 

граничными или начальными условиями на два последовательных этапа. 

Сначала ищется общее решение дифференциального уравнения без учета 

граничных или начальных условий. Такой подход позволяет ограничиться 
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решением систем линейных алгебраических уравнений (СЛАУ) простой 

структуры. На следующем этапе по заданным граничным условиям 

вычисляются недостающие коэффициенты частного решения путем решения 

более простой одно или двумерной СЛАУ. Предложенный метод существенно 

упростил вычислительную процедуру и сократил временные затраты, 

обеспечивая при этом устойчивость решений краевых и начальных задач 

ЛОДУ.  

В третьем параграфе: изложен Модифицированный метод 

Чебышевской коллокации (ММЧК) решения одноточечной для ОДУ первого 

порядка: 

𝑝′(𝑥) = 𝑓(𝑥), 𝑥 ∈ [−1,1], 𝑝(𝑎) = 𝐴, 𝑎 ∈ [−1,1]         

состоящий из трех этапов: 

• полиномиальной интерполяции (аппроксимации, приближения) 

производной (вычисление коэффициентов разложения производной по 

полиномам Чебышева); 

• вычисление коэффициентов общего решения (первообразной) по 

найденным коэффициентам разложения производной  

• вычисление нулевого коэффициента разложения первообразной по 

заданному значению искомой функции в заданной точке (аналог 

начального/граничного условия). 

Алгоритм ММЧК решения одноточечной задачи для ОДУ первого порядка 

общего вида. 

𝑦′(𝑥) + 𝑝(𝑥)𝑦 = 𝑞(𝑥), 𝑥 ∈ [−1,1], 𝑦(𝑎) = 𝐴, 𝑎 ∈ [−1,1] (1) 

состоит из следующих шагов:   

• Отыскание интегрирующего множителя 𝜇(𝑥), 𝑥 ∈ [−1,1] 

В предположении, что 𝑝(𝑥) и 𝑞(𝑥) являются непрерывными функциями, 

интегрирующий множитель 𝜇(𝑥) удовлетворяет уравнению 
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𝜇(𝑥)𝑝(𝑥) = 𝜇′(𝑥) (2) 

Вычислив коэффициенты 𝑐𝑘 , 𝑘 = 0, 𝑛 разложения функции 𝑝(𝑥) в ряд по 

полиномам Чебышева получаем выражение для интегрирующего 

множителя: 

𝜇(𝑥) = exp(𝑐0 + ∑ 𝑐𝑘𝑇𝑘(𝑥)

𝑛

𝑘=1

)+= 𝑒𝑥𝑝(𝑐0) exp ∑ 𝑐𝑘𝑇𝑘(𝑥)

𝑛

𝑘=1

, (3) 

• Отыскание производной произведения интегрирующего множителя на 

искомое решение (𝜇(𝑥)𝑦(𝑥))
′
 как произведения 𝜇(𝑥)𝑞(𝑥) 

Умножим (1) на 𝜇(𝑥) и, учитывая соотношение (2), перейдем к 

эквивалентной записи 

𝜇(𝑥)𝑦′(𝑥) + 𝜇′(𝑥)𝑦 = 𝜇(𝑥)𝑞(𝑥)  

или 

(𝜇(𝑥)𝑦(𝑥))
′
= 𝜇(𝑥)𝑞(𝑥)  

• Следующий шаг - разложение в ряд по полиномам Чебышева произведения 

𝜇(𝑥)𝑞(𝑥) и получение коэффициентов разложения произведения 𝜇(𝑥)𝑦(𝑥) 

умножением слева на матрицу интегрирования 

Используя базовый метод (ссылка на вычисление производной) можно 

вычислить коэффициенты разложения 𝑑𝑘, 𝑘 = 0, 𝑛: 

𝜇(𝑥)𝑦(𝑥) = 𝑑0 + ∑ 𝑑𝑘𝑇𝑘(𝑥)

𝑛

𝑘=1

. (4) 

• Вычисление аппроксимации общего решения делением на интегрирующий 

множитель  

Общее решение получается делением равенства (4) на 𝜇(𝑥). 

𝑦(𝑥) =
(𝑑0 + ∑ 𝑑𝑘𝑇𝑘(𝑥)𝑛

𝑘=1 )

𝜇(𝑥)
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• Завершается алгоритм вычислением константы сдвига, позволяющей 

получить искомое частное решение начальной/краевой задачи.  

Величина неизвестной константы 𝑑0 определяется заданными начальными 

или граничными условиями по формулам 

𝑑0 = 𝑦(𝑥0)𝜇(𝑥0) − ∑ 𝑑𝑘𝑇𝑘(𝑥0)

𝑛

𝑘=1

  

Глава 2. Содержит изложение прямого метода решения ЛОДУ второго 

порядка с помощью матриц дифференцирования и антидифференцирования в 

рамках модифицированного метода Чебышевской коллокации.  

Напомним, что спектральный метод решения ОДУ основан на 

представлении решения дифференциального уравнения (например, задачи 

Коши) 

𝑦′(𝑥) = 𝑓(𝑥),    𝑦(𝑥0) = 𝑦0,    𝑥 ∈ [−1,1]. 

в виде ряда 

𝑦(𝑥) ≈ 𝑝(𝑥) = ∑ 𝑐𝑘𝑇𝑘(𝑥)
𝑛

𝑘=0
, 𝑥 ∈ [−1,1] 

по базису из полиномов Чебышева первого рода {𝑇𝑘(𝑥)}𝑘=0
∞ . 

Метод коллокации для вычисления интерполяционных коэффициентов 

{𝑏0, 𝑏1, … , 𝑏𝑛} производной решения  

𝑝′(𝑥) = ∑ 𝑐𝑘𝑇𝑘
′(𝑥)

𝑛

𝑘=0
= ∑ 𝑏𝑘𝑇𝑘(𝑥)

𝑛

𝑘=0
 

приводит при некотором выборе точек коллокации (например, точек Гаусса-

Лобатто {𝑥𝑗 = cos (
𝜋𝑗

𝑛
) , 𝑗 = 0,1,… , 𝑛}) к необходимости решения СЛАУ 

∑ 𝑏𝑘𝑇𝑘(𝑥𝑗)
𝑛

𝑘=0
= 𝑓(𝑥𝑗),  𝑗 = 0,… , 𝑛. 

В матричной форме СЛАУ имеет вид: 
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𝑻𝒃 = 𝒇. 

Использование свойства дискретной ортогональности чебышевской 

матрицы 𝑻̃, полученной при делении на √2 первого и последнего уравнений 

этой системы позволяет перейти к эквивалентной системе 𝑻̃𝒃 = 𝒇̃. Умножение 

ее слева на транспонированную 𝑻̃𝑻 дает систему с диагональной матрицей без 

разброса собственных значений 

[
 
 
 
 
 
𝑛 0 0 … 0

0
𝑛

2
0 … 0

0 0
𝑛

2
… 0

… … … ⋱ …
0 0 0 … 𝑛]

 
 
 
 
 

[
 
 
 
 
𝑏0

𝑏1

𝑏2

…
𝑏𝑛]

 
 
 
 

= 𝑻̃𝑻

[
 
 
 
 
 
𝑓0
𝑓1
𝑓2
…
𝑓𝑛]

 
 
 
 
 

,  

где 𝒇̃ = (𝑓0 √2⁄ , 𝑓1, … , 𝑓𝑛−1, 𝑓𝑛 √2⁄ )
𝑇
.  Получили простой и устойчивый метод 

вычисления интерполяционных коэффициентов практически сводящийся к 

умножению матрицы на вектор значений известной функции 𝒇 в точках 

коллокации. 

Связь между интерполяционными коэффициентами спектрального 

разложения {𝑐0, 𝑐1, … , 𝑐𝑛} исследуемой функции по чебышевскому базису и 

коэффициентами разложения ее производной {𝑏0, 𝑏1, … , 𝑏𝑛} по тому же базису 

описывается матрицами спектрального дифференцирования 𝑫𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣𝒄 = 𝒃, 

где 

𝑫𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 =

(

 
 
 
 
 
 

0 1 0 3 0 5 0 7 ⋯
0 4 0 8 0 12 0 ⋯

0 6 0 10 0 14 ⋯
0 8 0 12 0 ⋯

0 10 0 14 ⋯
0 12 0 ⋯

0 14 ⋱
0 ⋱

⋱)

 
 
 
 
 
 

 

и спектрального интегрирования 𝑫𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣
+ 𝒃 = 𝒄 
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𝑫𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣
+ =

(

 
 
 
 
 
 

0 0
1 0 −1/2

1/4 0 −1/4

1/6 0 −1/68 0

1/8 0 −1/8 0

1/10 0 −1/10 ⋱

1/12 0 ⋱

1/14 ⋱)

 
 
 
 
 
 

 

Надо отметить, что при вычислении коэффициентов производной по 

коэффициентам разложения функции первый коэффициент 𝑏0 остается 

неопределенным, а при определении коэффициентов первообразной 

коэффициент 𝑐0 также не может быть определен. 

Вначале с помощью матриц дифференцирования рассматривается 

приближенное решение двухточечной краевой задачи для дифференциального 

уравнения второго порядка вида  

𝑦′′(𝑥) + 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) = 𝑟(𝑥), 𝑥 ∈ (−1,1) (5) 

где 𝑝(𝑥), 𝑞(𝑥), 𝑟(𝑥) - достаточно регулярные функции. Единственность 

решения для любых 𝛼, 𝛽 обеспечивают граничные условия  

𝛼0𝑦(0) − 𝛼1𝑦
′(0) = 𝛼,    𝛽0𝑦(1) + 𝛽1𝑦′(1) = 𝛽  (6) 

при неотрицательных константах 𝛼0, 𝛼1, 𝛽0, 𝛽1. 

Условие непрерывности 𝑝(𝑥) и 𝑞(𝑥), положительности 𝑞(𝑥) > 0, 𝑥 ∈

[−1,1], и отличие от нуля величин 𝛼0 + 𝛼1 ≠ 0, 𝛼0 + 𝛽0 ≠ 0, 𝛽0 + 𝛽1 ≠ 0 

гарантирует существование решения задачи (5)-(6). 

Решение уравнения (5) ищем в виде ряда  

𝑦(𝑥) = ∑ 𝑐𝑘𝑇𝑘(𝑥)
𝑛

𝑘=0
, 𝑥 ∈ [−1,1],  

то есть считая искомыми коэффициенты разложения самого решения. 

Используя матрицы спектрального дифференцирования, приходим к 
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матричному уравнению, решение которого даст коэффициенты «общего» 

решения  

𝑻𝑫𝑫𝒄 + 𝑑𝑖𝑎𝑔(𝒑)𝑻𝑫𝒄 + 𝑑𝑖𝑎𝑔(𝒒)𝑻𝒄 = 𝒓,      𝑥 ∈ (−1,1)  

Получаем плотно заполненную систему. Решение уравнения (5) без 

граничных условий – вектор 𝒄 – состоит из двух частей. Первые две найденные 

компоненты надо доопределить (для получения «частного» решения), 

задействовав граничные условия (6). Остальные компоненты остаются 

неизменными и позволяют удовлетворять уравнению (5) при любых первых 

коэффициентах.  

Далее рассматривается алгоритм решения той же задачи, основанный 

на использовании матриц интегрирования, но теперь неизвестными 

коэффициентами будем считать коэффициенты разложения в ряд второй 

производной решения уравнения (5) 

𝑦′′ (𝑥) = ∑ 𝑎𝑘𝑇𝑘(𝑥)
𝑛

𝑘=0
, 𝑥 ∈ [−1,1],  

Использование матриц интегрирования позволяет выразить коэффициенты 

разложения по тому же базису как первой производной решения (𝒃 = 𝑫+𝒄), 

так и коэффициенты разложения искомого решения (𝒂 = 𝑫+𝑫+𝒄). Однако 

надо отметить, что применение спектральных матриц интегрирования 𝑫+ для 

определения коэффициентов 𝒄 = {𝑐0, 𝑐1, … , 𝑐𝑛} функции 𝑦(𝑥) при известных 

коэффициентах разложения 𝒂 = {𝑎0, 𝑎1, … , 𝑎𝑛} ее второй производной 𝑦′′(𝑥) 

позволяет вычислить все коэффициенты разложения функции по формуле 

𝒂 = 𝑫+𝑫+𝒄 за исключением первых двух. Это объясняется тем, что первая 

строка матрицы 𝑫+ является нулевой. 

Выражения для 𝒄 = 𝑫+𝑫+𝒂 и 𝒃 = 𝑫+𝒂 позволяют записать уравнение 

(5) в спектральном представлении в следующем матричном виде: 

𝑻𝒄 + 𝑑𝑖𝑎𝑔(𝒑)𝑻𝑫+𝒄 + 𝑑𝑖𝑎𝑔(𝒒)𝑻𝑫+𝑫+𝒄 = 𝒓,      𝑥 ∈ (−1,1)  
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Решение системы линейных алгебраических уравнений (3) представляет 

собой вектор коэффициентов {𝑐0, 𝑐1, … , 𝑐𝑛} разложения в (𝑛 + 1)-мерном 

пространстве второй производной искомого решения уравнения (5). При этом 

компоненты {𝑐2, 𝑐3, … , 𝑐𝑛} фактически определяют «общее» решение 

обыкновенного дифференциального уравнения (5). Для выделения из этого 

множества некоторого конкретного «частного» решения требуется наложить 

дополнительные ограничения на компоненты {𝑐0, 𝑐1}, опираясь на граничные 

условия (6). 

Глава 3 посвящена обобщению модифицированного метода 

Чебышевской коллокации на класс параболических уравнений. 

В параграфе 3.1 рассмотрено решение неоднородной начально-краевой 

задачи для одномерного параболического уравнения, включающей 

независимую от времени неоднородную часть уравнения и не зависящие от 

времени граничные условия. Далее модифицированным методом 

Чебышевской коллокации рассмотрено решение неоднородной краевой 

задачи, когда на левом конце задано условие Дирихле, а на правом конце 

интервала – условие третьего рода. Также задано начальное распределение 

температуры стержня 𝑓(𝑥) по его длине     0 < 𝑥 < 𝐿. 

Решение этой неоднородной краевой задачи при заданных граничных и 

начальных условиях: 

𝑘
𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) −

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = −𝐹(𝑥), 0 < 𝑥 < 𝐿, 𝑡 > 0

𝑢(0, 𝑡) = 𝑢0,     𝑢0 = 𝑐𝑜𝑛𝑠𝑡
𝜕𝑢

𝜕𝑥
|
𝑥=𝐿

= −ℎ(𝑢(𝐿, 𝑡) − 𝑢𝑚)     ℎ > 0 and 𝑢𝑚 =  𝑐𝑜𝑛𝑠𝑡

𝑢(𝑥, 0) = 𝑓(𝑥),    0 < 𝑥 < 𝐿.

  

представляется в виде комбинации из двух слагаемых 

𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝜓(𝑥),  

каждое из которых являются решением отдельной краевой задачи 

соответственно. 
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Функция пространственной переменной 𝜓(𝑥) является решением 

неоднородного обыкновенного дифференциального уравнения с граничным 

условием Дирихле на левом конце интервала и краевым условием Робена на 

правом конце, а именно: 

𝑘
𝜕2𝜓(𝑥)

𝜕𝑥2
(𝑥) + 𝐹(𝑥) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0

𝜓(0) = 𝑢0,     𝑢0 = 𝑐𝑜𝑛𝑠𝑡
𝜕𝜓

𝜕𝑥
|
𝑥=𝐿

+ ℎ𝜓(𝐿) = ℎ𝑢1     ℎ > 0 and 𝑢1 =  𝑐𝑜𝑛𝑠𝑡.

  

Функция двух переменных 𝑣(𝑥, 𝑡) - представляет собой решение однородной 

краевой задачи с нулевыми граничными условиями первого-третьего рода и с 

начальным условием: 

𝑘
𝜕2𝑣

𝜕𝑥2
(𝑥, 𝑡) −

𝜕𝑣

𝜕𝑡
(𝑥, 𝑡) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0

𝑣(0, 𝑡) = 0,
𝜕𝑣

𝜕𝑥
|
𝑥=𝐿

+ ℎ𝑣(𝐿, 𝑡) = 0     ℎ > 0 

𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥),    0 < 𝑥 < 𝐿.

  

Обе задачи (вторая методом разделения переменных) сводятся к уже 

известному решению задачи для уравнения Пуассона. В более общих случаях 

экономичный алгоритм решения ОДУ второго порядка с использованием 

интегрирующего множителя включает этап приведения ОДУ к виду полной 

производной. Этот этап вначале отработан на ОДУ первого порядка.  

В параграфе 3.2 ОДУ первого порядка (общего вида) приводится к виду 

полной производной с помощью интегрирующего множителя. 

Устойчивое определение интегрирующих множителей обеспечивается 

за счет использования Чебышевской интерполяции искомых функций и 

проведения расчетов на сетках Гаусса-Лобатто, обеспечивающих дискретную 

ортогональность Чебышевских матриц. После чего процедура вычисления 

множителя осуществляется с помощью Чебышевских матриц интегрирования. 

Интегрирующий множитель и итоговый потенциал решения ОДУ 
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представляются в виде интерполяционных полиномов, зависящих от 

ограниченного количества численно восстанавливаемых коэффициентов 

разложения. 

В параграфе 3.3 мы расширяем разработанный алгоритм на класс 

линейных ОДУ второго порядка.  

Рассматриваем неоднородное линейное ОДУ второго порядка с 

коэффициентами, зависящими от независимой переменной: 

𝑎(𝑥)𝑦𝑥𝑥
′′ + 𝑏(𝑥)𝑦𝑥

′ + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 0 (7) 

Теорема 1. Линейное ОДУ (7) является точным и имеет линейный потенциал:  

𝑎(𝑥)𝑦′′ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 + 𝑓(𝑥) =
𝑑

𝑑𝑥
(𝐴(𝑥)𝑦′ + 𝐵(𝑥)𝑦 + 𝐹(𝑥)) 

в том и только в том случае, когда коэффициенты линейного ОДУ (7) 

удовлетворяют условию  

𝑐(𝑥) = (𝑏(𝑥) − 𝑎′(𝑥))′,  

И потенциал имеет вид: 

𝑢(𝑥, 𝑦, 𝑦′) 𝑎(𝑥)𝑦′ + (𝑏(𝑥) − 𝑎′(𝑥))𝑦 + ∫𝑓(𝑥)𝑑𝑥 = 𝐶𝑜𝑛𝑠𝑡  

Следствие 1. Линейное однородное ОДУ  

𝑎(𝑥)𝑦𝑥𝑥
′′ + 𝑏(𝑥)𝑦𝑥

′ + 𝑐(𝑥)𝑦 = 0  

является точным и имеет линейный потенциал:  

𝑎(𝑥)𝑦′′ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 =
𝑑

𝑑𝑥
(𝐴(𝑥)𝑦′ + 𝐵(𝑥)𝑦) 

в том и только в том случае, когда коэффициенты линейного ОДУ (7) 

удовлетворяют условию  

𝑐(𝑥) = (𝑏(𝑥) − 𝑎′(𝑥))′,  
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Предположим теперь, что уравнение (7) не является точным. В этом 

случае можно попытаться найти интегрирующий множитель 𝜇(𝑥) такой, что 

уравнение:  

𝜇(𝑥)𝑎(𝑥)𝑦𝑥𝑥
′′ + 𝜇(𝑥)𝑏(𝑥)𝑦𝑥

′ + 𝜇(𝑥)𝑐(𝑥)𝑦 + 𝜇(𝑥)𝑓(𝑥) = 0  

будет точным. 

Теорема 2. После введения множителя 𝜇(𝑥) ЛОДУ (7) становится точным и 

обладает линейным потенциалом:  

𝜇(𝑥) ⋅ (𝑎(𝑥)𝑦′′ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 + 𝑓(𝑥)) =
𝑑

𝑑𝑥
(𝐴(𝑥)𝑦′ + 𝐵(𝑥)𝑦 + 𝐹(𝑥)) 

в том и только в том случае, когда коэффициенты ЛОДУ (7) удовлетворяют 

условию  

𝜇(𝑥)𝑐(𝑥) = (𝜇(𝑥)𝑏(𝑥) − (𝜇(𝑥)𝑎(𝑥))
′
) ′  

При этом потенциал имеет вид: 

𝑢(𝑥, 𝑦, 𝑦′) 𝜇(𝑥)𝑎(𝑥)𝑦′ + (𝜇(𝑥)𝑏(𝑥) − (𝜇(𝑥)𝑎(𝑥))′)𝑦 + ∫𝜇(𝑥)𝑓(𝑥)𝑑𝑥 = 𝐶𝑜𝑛𝑠𝑡 

Любое решение потенциала при любом значении константы является 

решением уравнения (7). 

Следствие 2. Если линейное ОДУ (7) – однородное (𝑓(𝑥) = 0) и его 

коэффициенты удовлетворяют соотношению 

𝑏′(𝑥)𝑎(𝑥) − 𝑎′(𝑥)𝑏(𝑥) − 𝑐(𝑥)𝑎(𝑥) = 0  

то линейное ОДУ (7) имеет интегрирующий множитель  

𝜇(𝑥) =
1

𝑎(𝑥)
.  

При этом потенциалом исходного линейного ОДУ 2-го порядка является 

линейное ОДУ первого порядка 
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𝑢(𝑥, 𝑦, 𝑦′)𝑦′(𝑥) +
𝑏(𝑥)

𝑎(𝑥)
𝑦(𝑥) = 𝐶𝑜𝑛𝑠𝑡.  

Если уравнение (7) не удовлетворяет условиям теорем 1 и 2, первое 

решение можно искать менее экономным методом главы 2. В параграфе 

показано, что использование метода интегрирующих множителей и метода 

редукции Даламбера позволяет свести отыскания второго независимого 

решения уравнения второго порядка к последовательности решений пары 

уравнений первого порядка.  

Общее решение начальной или краевой задачи для неоднородного 

уравнения 2-го порядка представляется в виде суммы базисных решений с 

неизвестными постоянными коэффициентами. Такой подход позволяет 

обеспечить численную устойчивость, наглядность и простоту алгоритма. 

Полученные результаты позволяют решать неоднородные задачи для 

неоднородных линейных параболических уравнений довольно общего вида. 

Заключение 

В заключении приведены положения, выносимые на защиту. 
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В диссертации изучены возможности применения модифицированного 

метода Чебышевской коллокации Ловецкого при решении двухточечных 

задач для линейных ОДУ второго порядка и решении начально-краевых задач 

для линейных параболических уравнений, моделирующих явления 

теплопроводности. Модифицированный метод Чебышевской коллокации 

усовершенствован и применен для решения ЛОДУ второго порядка с 

помощью матриц дифференцирования и антидифференцирования; разработан 

алгоритм получения полного решения ЛОДУ второго порядка; предложен и 

реализован экономичный алгоритм решения начально-краевой задачи для 

уравнения теплопроводности с различными краевыми условиями. 

Приведенные примеры численного решения модельных задач демонстрируют 

высокую скорость, устойчивость и надежность предлагаемых алгоритмов. 

Sergeev Stepan (Russia) 

MODELING HEAT CONDUCTIVITY PROCESSES BY A MODIFIED 

CHEBYSHEV COLLOCATION METHOD 

The dissertation studies the possibilities of applying the modified Chebyshev 

collocation method of Lovetskiy to solving two-point problems for second-order 

linear ODEs and to solving initial-boundary value problems for linear parabolic 

equations modeling heat conduction phenomena. The modified Chebyshev 

collocation method is improved and applied to solving second-order LODEs using 

differentiation and anti-differentiation matrices; an algorithm for obtaining a 

complete solution to a second-order LODE is developed; an efficient algorithm for 

solving an initial-boundary value problem for the heat conduction equation with 

various boundary conditions is proposed and implemented. The given examples of 

numerical solutions of model problems demonstrate the high speed, stability and 

reliability of the proposed algorithms. 


