ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОЕННО-МЕДИЦИНСКАЯ АКАДЕМИЯ ИМЕНИ С. М. КИРОВА» МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ

На правах рукописи

САХИН Валерий Тимофеевич

АНЕМИЯ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ: НОВАЯ КОНЦЕПЦИЯ НА ОСНОВАНИИ ОСОБЕННОСТЕЙ ПАТОГЕНЕЗА

3.1.18 – внутренние болезни

3.1.28 – гематология и переливание крови

ДИССЕРТАЦИЯ

на соискание ученой степени доктора медицинских наук

Научные консультанты: академик РАН доктор медицинских наук, профессор Крюков Евгений Владимирович

доктор медицинских наук, профессор Рукавицын Олег Анатольевич

Санкт-Петербург 2025

СОДЕРЖАНИЕ ДИССЕРТАЦИИ
введение
ГЛАВА 1. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ПАТОГЕНЕЗЕ АНЕМИИ
ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ ПРИ РАЗЛИЧНЫХ ПАТОЛОГИЧЕСКИХ
СОСТОЯНИЯХ
1.1. Анемия хронических заболеваний как одна из наиболее актуальны
медицинских и социально-экономических проблем современности
1.2. Распространенность и значение анемии хронических заболеваний
больных со злокачественными новообразованиями
1.3. Распространенность и значение анемии хронических заболеваний
пациентов с воспалительными заболеваниями суставов
1.4. Распространенность и значение анемии хронических заболеваний
пациентов с ВИЧ-инфекцией
1.5. Современные представления о механизмах регуляции обмена железа
эритропоэза в нормальных условиях
1.5.1. Биологическое значение железа
1.5.2. Всасывание железа в двенадцатиперстной кишке, межклеточна
транспортировка железа и доставка внутрь клеток
1.5.3. Системные регуляторы обмена железа
1.5.4. Эритропоэз и эритрофагоцитоз
1.5.5. Регуляция обмена железа и эритропоэза на клеточном уровне39
1.6. Многофакторный патогенез анемии хронических заболеваний: базисны
механизмы развития этой анемии
1.6.1. Изменения обмена железа
1.6.2. Нарушение синтеза и биологической активности
эритропоэтина
1.6.3. Нарушение регуляторных процессов эритропоэза
1.7. Современные представления о патогенезе анемии хронически
заболеваний у пациентов со злокачественными новообразованиями4
1.7.1. Изменения обмена железа

1.7.2. Уменьшение синтеза и биологической активности эритропоэтина у
пациентов с анемией хронических заболеваний и злокачественными
новообразованиями49
1.7.3. Исследование влияния цитокинов на эритропоэз при развитии анемии
хронических заболеваний у пациентов со злокачественными
новообразованиями50
1.8. Современные представления о патогенезе анемии хронических
заболеваний у пациентов с воспалительными заболеваниями
суставов53
1.8.1. Изменения обмена железа
1.8.2. Уменьшение синтеза и биологической активности эритропоэтина у
пациентов с анемией хронических заболеваний и воспалительными
заболеваниями суставов56
1.8.3. Исследование влияния цитокинов на эритропоэз при развитии анемии
хронических заболеваний у пациентов с воспалительными заболеваниями
суставов
1.9. Современные представления о патогенезе анемии хронических
заболеваний у пациентов с ВИЧ-инфекцией60
1.10. Диагностика анемии хронических заболеваний. Современные маркеры
дифференциальной диагностики анемии хронических заболеваний и
железодефицитной анемии63
ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ69
2.1. Объект, материалы и методы исследования
2.1.1. Пациенты со злокачественными новообразованиями70
2.1.2. Пациенты с воспалительными заболеваниями суставов
2.1.3. Пациенты с ВИЧ-инфекцией
2.2. Лабораторные методы исследования
2.2.1. Исследование гемограммы
2.2.2. Исследование биохимических показателей сыворотки крови
2.2.3. Определение концентрации гепцидина сыворотки крови

2.2.4. Определение концентрации трансферрина и растворимого рецептора
трансферрина сыворотки крови79
2.2.5. Определение концентрации цитокинов сыворотки крови
2.2.6. Определение концентрации эритропоэтина сыворотки крови80
2.3. Статистическая обработка данных
ГЛАВА 3. Особенности патогенеза анемии хронических заболеваний у
пациентов с солидными злокачественными новообразованиями83
3.1. Сравнительный анализ основных лабораторных показателей, важных в
патогенетическом отношении в развитии анемии хронических
заболеваний83
3.1.1. Показатели красной крови у пациентов с анемией хронических
заболеваний, железодефицитной анемией и их сочетанием83
3.1.2. Параметры обмена железа, С-реактивный белок у пациентов с анемией
хронических заболеваний, железодефицитной анемией и их сочетанием85
3.1.3. Секреция противоспалительных и провоспалительных цитокинов у
пациентов с анемией хронических заболеваний, железодефицитной анемией и
их сочетанием
3.1.4. Синтез гепцидина и растворимого рецептора трансферрина у пациентов
с анемией хронических заболеваний, железодефицитной анемией и их
сочетанием
3.1.5. Секреция эритропоэтина у пациентов с анемией хронических
заболеваний, железодефицитной анемией и их сочетанием90
3.2. Оценка влияния основных патогенетических факторов на развитие
анемии хронических заболеваний91
3.2.1. Влияние про- и противовоспалительных цитокинов на показатели
красной крови и обмена железа а также секрецию
эритропоэтина91
3.2.2. Взаимосвязь между гепцидином, растворимым рецептором
трансферрина и показателями красной крови98

ГЛАВА 4. Особенности патогенеза анемии хронических заболеваний у
пациентов с воспалительными заболеваниями суставов
4.1. Сравнительный анализ основных лабораторных показателей, важных в
патогенетическом отношении в развитии анемии хронических
заболеваний
4.1.1. Показатели красной крови у пациентов с анемией хронических
заболеваний, железодефицитной анемией и их сочетанием102
4.1.2. Параметры обмена железа, С-реактивный белок у пациентов с анемией
хронических заболеваний, железодефицитной анемией и их сочетание104
4.1.3. Секреция противоспалительных и провоспалительных цитокинов у
пациентов с анемией хронических заболеваний, железодефицитной анемией и
их сочетанием
4.1.4. Синтез гепцидина и растворимого рецептора трансферрина у пациентов
с анемией хронических заболеваний, железодефицитной анемией и их
сочетанием
4.1.5. Секреция эритропоэтина у пациентов с анемией хронических
заболеваний, железодефицитной анемией и их сочетанием109
4.2. Оценка влияния основных патогенетических факторов на развитие
анемии хронических заболеваний110
4.2.1. Влияние про- и противовоспалительных цитокинов на показатели
красной крови и обмена железа, а также секрецию эритропоэтина110
4.2.2. Взаимосвязь между гепцидином, растворимым рецептором
трансферрина и показателями красной крови
ГЛАВА 5. Особенности патогенеза анемии хронических заболеваний у
пациентов с ВИЧ-инфекцией
5.1. Сравнительный анализ основных лабораторных показателей, важных в
патогенетическом отношении в развитии анемии хронических
заболеваний
5.1.1. Показатели красной крови у пациентов с анемией хронических
заболеваний, железодефицитной анемией и их сочетанием123

5.1.2. Параметры обмена железа, С-реактивный белок у пациентов с анемией
хронических заболеваний, железодефицитной анемией и их сочетанием125
5.1.3. Секреция противоспалительных и провоспалительных цитокинов у
пациентов с анемией хронических заболеваний, железодефицитной анемией и
их сочетанием127
5.1.4. Синтез гепцидина и растворимого рецептора трансферрина у пациентов
с анемией хронических заболеваний, железодефицитной анемией и их
сочетанием129
5.1.5. Секреция эритропоэтина у пациентов с анемией хронических
заболеваний, железодефицитной анемией и их сочетанием130
5.2. Оценка влияния основных патогенетических факторов на развитие
анемии хронических заболеваний131
5.2.1. Влияние про- и противовоспалительных цитокинов на показатели
красной крови и обмена железа, а также секрецию эритропоэтина131
5.2.2. Взаимосвязь между гепцидином, растворимым рецептором
трансферрина и показателями красной крови140
ГЛАВА 6. Создание математических моделей и алгоритмов для проведения
дифференциальной диагностики анемии хронических заболеваний и
железодефицитной анемии143
6.1.1. Создание модели для дифференциальной диагностики анемии
хронических заболеваний и железодефицитной анемии у пациентов с
солидными злокачественными новообразованиями
6.1.2. Оценка чувствительности, специфичности и диагностической
значимости полученной модели, а также некоторых лабораторных
показателей для дифференциальной диагностики анемии хронических
заболеваний и железодефицитной анемии у пациентов со злокачественными
новообразованиями148
6.1.3. Разработка алгоритма дифференциальной диагностики анемии
хронических заболеваний и железодефицитной анемии у пациентов с

солидными злокачественными новообразованиями на основании показателей,
обладающих наибольшей чувствительностью и специфичностью150
6.2.1. Создание модели для дифференциальной диагностики анемии
хронических заболеваний и железодефицитной анемии у пациентов с
воспалительными заболеваниями суставов153
6.2.2. Оценка чувствительности, специфичности и диагностической
значимости полученной модели, а также некоторых лабораторных
показателей для дифференциальной диагностики анемии хронических
заболеваний и железодефицитной анемии у пациентов с воспалительными
заболеваниями суставов
6.2.3. Разработка алгоритма дифференциальной диагностики анемии
хронических заболеваний и железодефицитной анемии у пациентов с
солидными злокачественными новообразованиями на основании показателей,
обладающих наибольшей чувствительностью и специфичностью161
6.3.1. Создание модели для дифференциальной диагностики анемии
хронических заболеваний и железодефицитной анемии у пациентов с ВИЧ-
инфекцией
6.3.2. Оценка чувствительности, специфичности и диагностической
значимости полученной модели, а также некоторых лабораторных
показателей для дифференциальной диагностики анемии хронических
заболеваний и железодефицитной анемии у пациентов с ВИЧ-
инфекцией
6.3.3. Разработка алгоритма дифференциальной диагностики анемии
хронических заболеваний и железодефицитной анемии у пациентов с ВИЧ-
инфекцией на основании показателей, обладающих наибольшей
чувствительностью и специфичностью
ГЛАВА 7. Обоснование новой классификации анемии хронических
заболеваний на основе ведущих патогенетических факторов ее
развития

ГЛАВА	8.	ОБСУЖДЕНИЕ	ПОЛУЧЕННЫХ	РЕЗУЛЬТАТОВ
исследо)BAH	RN		179
ЗАКЛЮЧ	ЕНИЕ			202
выводы	[207
ПРАКТИЧ	IECK <i>I</i>	ИЕ РЕКОМЕНДАЦИИ	I	209
СПИСОК	СОКР	АЩЕНИЙ		213
СПИСОК	ЛИТЕ	РАТУРЫ		215

ВВЕДЕНИЕ

Актуальность темы исследования

Анемия хронических заболеваний (АХЗ) развивается у пациентов с инфекционными, опухолевыми, аутоиммунными И воспалительными заболеваниями [248, 370, 368]. Также доказана возможность развития АХЗ при патологических состояниях, как хроническая болезнь хроническая сердечная недостаточность ХСН [212, 59], патология коронарных артерий [66], хронические заболевания дыхательной системы и даже ожирение [348, 345, 336]. Установлена широкая распространенность данного типа анемии при различных патологических состояниях. По человеческой встречаемости В популяции AX3 уступает только железодефицитной анемии (ЖДА), а среди госпитализированных в стационар пациентов занимает первое место [138, 46]. При каждом патологическом состоянии частота развития АХЗ широко варьирует [83, 148, 116, 273, 279, 340, 263, 275, 98, 372].

Помимо широкой распространенности, установлена четкая взаимосвязь между развитием АХЗ и ухудшением течения и исхода основного заболевания, а также снижением качества жизни пациентов [294].

Для АХЗ характерен достаточно сложный и многокомпонентный патогенез [4, 105, 270, 370]. Многие звенья патогенеза этой анемии не до конца изучены, а результаты ранее выполненных исследований значимо различаются. В настоящее время большинством исследователей АХЗ выделяется три основных механизма ее развития: нарушения обмена железа, нарушение синтеза и биологической активности эритропоэтина, нарушение регуляторных процессов эритропоэза [4, 270, 370].

Несмотря на выделение ведущих механизмов развития АХЗ, результаты исследований, в которых изучаются отдельные компоненты патогенеза, достаточно противоречивы или неоднозначны. Сохраняется высокая актуальность дальнейших исследований для выделения ведущих факторов развития этой анемии [270, 370].

Опубликованные исследования, в которых оценивались все известные факторы развития АХЗ, немногочисленны. В связи с этим сохраняется высокая актуальность столь глубокого изучения патогенеза АХЗ, а также способов ее диагностики у пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией.

Отсутствуют необходимые диагностические модели, позволяющие с высокой чувствительностью и специфичностью проводить дифференциальную диагностику разных типов анемий у пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией.

Отсутствуют необходимые диагностические модели, позволяющие с высокой чувствительностью и специфичностью проводить дифференциальную диагностику разных типов анемий у пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией.

Отсутствует (на сегодняшний день не обоснована и не разработана) классификация АХЗ на основании ведущих факторов ее развития (обмен железа, эритропоэтин, цитокины) [151].

Данное исследование закладывает патогенетически обоснованное и математически доказанное основание для разработки новых подходов к лечению АХЗ, применимых в клинической практике у пациентов с исследованными патологическими состояниями

Степень разработанности темы исследования

Значительная часть работ посвящена изучению влияния различных цитокинов на развитие АХЗ. Исследовалось влияние отдельных цитокинов на обмен железа [219, 371], эритропоэз [88, 238, 361], синтез и биологическую активность эритропоэтина [15, 221, 222, 198]. Большинство ранее проведённых работ выполнено на небольшой выборке пациентов и посвящено

исследованию одного или двух цитокинов и их влиянию на один из компонентов патогенеза анемии. Ограничены данные о значении цитокинов в развитии АХЗ у пациентов с воспалительными заболеваниями суставов и ВИЧ-инфекцией. В нескольких исследованиях изучалось влияние цитокинов на развитие анемии без уточнения ее генеза. Приведенные выше факты отражают высокую актуальность исследования значения цитокинов в развитии АХЗ при различных патологических состояниях.

Также исследуется влияние одного из ключевых регуляторов обмена железа – гепцидина – на развитие АХЗ и его взаимосвязь с цитокинами [4, 188]. Оценивалось воздействие интерлейкина-6 (ИЛ-6) на секрецию гепцидина. В ряде работ отмечен стимулирующий характер ИЛ-6 в отношении синтеза гепцидина [350, 197]. В то же время недостаточно изучено или изучено только в экспериментальных исследованиях воздействие других провоспалительных цитокинов, таких как интерлейкин-1бета (ИЛ-1β), фактор некроза опухолиальфа (ФНО-α), интерферон-гамма (ИНФ-γ), на секрецию гепцидина [133, 154].

Актуальным остается исследование роли растворимого рецептора трансферрина (sTfR) как в патогенезе AX3, так и в качестве потенциального диагностического маркера этой анемии [370]. Одним из спорных вопросов остается влияние воспаления на концентрацию этого показателя. Некоторыми эффект системного воспаления авторами отмечается негативный возможность использования sTfR для диагностики AX3 [370]. Существует и диаметрально противоположное мнение, согласно которому воспаление не влияет концентрацию sTfR И использование ЭТОГО на показателя рекомендовано для проведения дифференциальной диагностики АХЗ и ЖДА [323, 149]. Имеющиеся противоречивые результаты ранее выполненных исследований определяют актуальность дальнейшего исследования sTfR в патогенезе AX3 и в качестве лабораторного маркера этой анемии.

Получены данные об изменении секреции и биологической активности эритропоэтина (ЭПО), но результаты выполненных исследований

противоречивы. Некоторыми исследователями отмечается не соответствующая тяжести анемии концентрация ЭПО [313, 193]. По другим данным, у этой категории больных снижен клеточный ответ на эндогенный ЭПО [153, 241, 314]. В нескольких экспериментальных и клинических работах подобные обусловлены указывается, изменения действием что провоспалительных цитокинов [370]. Представлены данные о том, что на синтез ЭПО оказывают влияние гипоксия и дефицит железа, тем самым способствуя формированию порочного круга [127, 230].

Таким образом, не определены механизмы развития АХЗ у пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией. Не ясно, какой именно патогенетический механизм (сочетание механизмов) является ключевым для развития анемии в указанных группах пациентов. В этой связи не исследован вклад показателей, характеризующих обмен железа (гепцидин, sTfR), про- и противовоспалительных цитокинов (ИЛ-6, ИЛ-10, ФНО-α, ИНФ-γ, ИЛ-1β), а также эритропоэтина [43, 96].

Имеющиеся противоречивые данные, а также небольшое число проведённых исследований определяют актуальность исследования значения ЭПО в патогенезе АХЗ.

Представленные выше данные подтверждают необходимость более глубоких проведения систематизированных исследований, И углубление улучшение направленных на понимания патогенеза, диагностических подходов и индивидуализации терапии АХЗ.

Цель исследования

Цель исследования – изучить ведущие патогенетические особенности развития АХЗ. Обосновать и разработать новые подходы к диагностике и лечению больных с АХЗ.

Задачи исследования

- 1. Проанализировать значение гепцидина, sTfR, нарушений обмена железа в развитии AX3 у больных с солидными злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфицированных.
- 2. Изучить влияние провоспалительных и противовоспалительных цитокинов в развитии АХЗ у больных с солидными злокачественными новообразованиями, воспалительными заболеваниями суставов и пациентов с ВИЧ-инфекцией.
- 3. Оценить особенности секреции эритропоэтина при развитии АХЗ у больных с солидными злокачественными новообразованиями, воспалительными заболеваниями суставов и пациентов с ВИЧ-инфекцией.
- 4. Выделить ведущие патогенетические факторы развития АХЗ для каждой из исследуемых нозологических форм.
- 5. Создать математические модели, позволяющие проводить дифференциальную диагностику АХЗ и ЖДА в группах больных с солидными злокачественными новообразованиями, хроническими воспалительными заболеваниями суставов и пациентов с ВИЧ-инфекцией.
- 6. Разработать критерии дифференциальной диагностики АХЗ и ЖДА на основании наиболее информативных параметров у больных с солидными злокачественными новообразованиями, хроническими воспалительными заболеваниями суставов и пациентов с ВИЧ-инфекцией.
- 7. На основании полученных данных разработать классификацию АХЗ по ведущему патогенетическому фактору ее развития, пригодную к использованию в клинической практике.

Научная новизна

Впервые выполнено комплексное исследование основных патогенетических факторов развития АХЗ у пациентов с солидными злокачественными новообразованиями, воспалительными заболеваниями суставов и пациентов с ВИЧ-инфекцией.

Ha основании результатов исследования провоспалительных показателей обмена противовоспалительных цитокинов, железа (сывороточное железо, общая железосвязывающая способность сыворотки – ОЖСС, коэффициент насыщения трансферрина железом – КНТ, ферритин, трансферрин), регуляторов обмена железа (гепцидин и растворимый рецептор трансферрина) И эритропоэтина доказаны различия ведущих патогенетических механизмах развития АХЗ в каждой из исследуемых групп пациентов.

Предложена рабочая классификация АХЗ, основанная на выделении ведущих патогенетических механизмов, приводящих к ее развитию. Открыта возможность применения патогенетически обоснованных подходов к лечению АХЗ.

Разработаны математические модели, а также определены новые диагностические критерии, позволяющие проводить дифференциальную диагностику АХЗ и ЖДА в группах больных с солидными злокачественными новообразованиями, воспалительными заболеваниями суставов и пациентов с ВИЧ-инфекцией.

Теоретическая и практическая значимость работы

По результатам исследования установлено, что для 65–70 % пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией характерно развитие АХЗ как в изолированной форме, так и в сочетании с ЖДА.

Выявлены различия в профилях секреции цитокинов и их влияния на развитие АХЗ при злокачественных новообразованиях, воспалительных заболеваниях суставов и ВИЧ-инфекции. Установлены максимальные концентрации ИЛ-6 (73,3 (6,2–51) пг/мл), ФНО- α (24,4 (15,3–60,7) пг/мл), ИНФ- γ (22,2 (6,6–35,2) пг/мл) и ИЛ-10 (8,7 (4,7–12,1) пг/мл) у пациентов со злокачественными новообразованиями и АХЗ в сравнении с пациентами двух

групп с анемией и контрольной группой (p<0,05). Выявлены максимальные концентрации ИЛ-6 (52,8 (22,9–66,9) пг/мл), ФНО-α (10 (4-6) пг/мл), ИЛ-10 (7,1 (4–6) пг/мл) у пациентов с АХЗ и воспалительными заболеваниями суставов в сравнении с пациентами остальных групп. Определены максимальные концентрации ИЛ-6 (36,6 (11,5–51,1) пг/мл), ИЛ-10 (21,6 (11,4–28,8) пг/мл) у пациентов с АХЗ и ВИЧ-инфекцией в сравнении с пациентами остальных групп.

Ha основании корреляционного анализа показаны ключевые особенности AX3 патогенеза при солидных злокачественных новообразованиях, воспалительных заболеваниях суставов, ВИЧ-инфекции. У пациентов с солидными злокачественными новообразованиями в развитии АХЗ наибольшее значение имеют увеличение секреции провоспалительных цитокинов ИЛ-6 (r=-0,88), ФНО- α (r=-0,77) а также регулятора обмена железа - гепцидина (r=-0,66). У пациентов с воспалительными заболеваниями суставов в развитии АХЗ доказано ведущее значение увеличение секреции таких цитокинов, как Φ HO- α (r=-0,7), ИЛ-10 (r=-0,64), ИЛ-6 (r=-0,63) и чрезмерной секреции гепцидина (r=-0,6). В развитии АХЗ у пациентов с ВИЧинфекцией важное влияние оказывает увеличение секреции таких цитокинов, как Φ HO- α (r=-0,88), ИЛ-10 (r=-0,75), ИЛ-6 (r=-0,62), на фоне нормальной концентрации гепцидина.

Установлено, что пациентов с АХЗ и ДЛЯ воспалительными заболеваниями суставов характерна чрезмерная секреция гепцидина (504,9) (150-800) $H\Gamma/MЛ$), ДЛЯ пациентов c солидными злокачественными новообразованиями – его повышенная секреция (47,3 (29,7–60,5) нг/мл), а у пациентов с ВИЧ-инфекцией концентрация гепцидина в норме (22,2 (20,8– 22,5) нг/мл). Показано различное влияние гепцидина на развитие АХЗ при каждом из исследуемых патологических состояний. Установлено заметное влияние гепцидина на уровень гемоглобина при развитии АХЗ у пациентов со новообразованиями (r=-0.66)злокачественными И воспалительными заболеваниями суставов (r=-0,6), в то время у пациентов с ВИЧ-инфекцией это влияние является слабым (r=0,4).

Доказано, что различия в профилях секреции цитокинов приводят к сниженной, не соответствующей тяжести анемии или, наоборот, повышенной секреции эритропоэтина у пациентов со злокачественными новообразованиями (16,8 Ед/мл), воспалительными заболеваниями суставов (15,5 Ед/мл) и ВИЧ-инфекцией (28,5 Ед/мл) соответственно.

У пациентов с АХЗ доказана взаимосвязь между ЭПО и цитокинама, а также определено различное влияние цитокинов на концентрацию ЭПО. У пациентов со злокачественными новообразованиями и АХЗ в отношении ЭПО выявлена сильная взаимосвязь с ИЛ-6 (r=-0.71), ФНО- α (r=-0.67), заметная взаимосвязь с ИЛ-10 (r=0.52). Между ЭПО, ИНФ- γ , ИЛ-1 β выявлена умеренная И слабая взаимосвязь соответственно. У пациентов воспалительными заболеваниями суставов в отношении ЭПО выявлена сильная взаимосвязь с ИЛ-6 (r=-0.85), ИЛ-10 (r=0.72), заметная взаимосвязь с ФНО- α (r=-0,52), ИНФ- γ (r=0,67) и слабая взаимосвязь с ИЛ-1 β (r=-0,28). У пациентов с ВИЧ-инфекцией и АХЗ в отношении ЭПО установлена сильная отрицательная взаимосвязь с ИЛ-6 (r=-0.71) и ИЛ-1 β (r=-0.82), сильная положительная взаимосвязь с ИНФ-у (r=0,83) и ИЛ-10 (r=0,7) и заметная взаимосвязь с ΦHO - α (r=- 0,6).

По результатам исследования определены лабораторные маркеры и разработаны диагностические модели, позволяющие высокой чувствительностью и специфичностью проводить дифференциальную диагностику АХЗ и ЖДА при каждом из исследуемых патологических состояний. Установлено, пациентов что co злокачественными новообразованиями и воспалительными заболеваниями суставов наибольшей диагностической ценностью для проведения дифференциальной диагностики этих двух типов анемий обладают гепцидин и ферритин. Полученные на основе этих показателей математические модели позволяют проводить дифференциальную диагностику АХЗ и ЖДА у пациентов с солидными

злокачественными новообразованиями и пациентов с воспалительными заболеваниями суставов. У пациентов с ВИЧ-инфекцией наибольшей диагностической ценностью для проведения дифференциальной диагностики типов анемий обладают ферритин и ИЛ-6. Разработана двух математическая модель, позволяющая на основании ферритина, ИЛ-6, ФНО-(CPE)α, С-реактивного белка И числа эритроцитов проводить дифференциальную диагностику АХЗ и ЖДА у пациентов с ВИЧ-инфекцией.

На основании полученных данных об особенностях развития и ведущих причинах формирования АХЗ при трех исследуемых патологических состояниях предложена классификация данного типа анемии на основании ведущих патогенетических факторов ее развития. Разработанная классификация АХЗ позволит оптимизировать ее лечебную тактику у каждого отдельно взятого больного.

Методология и методы исследования

Проведено клиническое обследование 143 (121 с анемией, 22 без анемии) пациентов с солидными злокачественными новообразованиями, 126 (104 с анемией, 22 без анемии) пациентов с воспалительными заболеваниями суставов (ревматоидный артрит - РА, псориатический артрит - ПсА, анкилозирующий спондилоартрит - АС) и 125 (101 с анемией, 24 без анемии) ВИЧ-инфекцией. Пациентам пациентов co злокачественными новообразованиями проводилось стадирование заболевания на основании классификации TNM. У пациентов с воспалительными заболеваниями выполнялась оценка активности заболевания И функциональной недостаточности суставов (ФНС). При РА и ПсА рассчитывался индекс активности заболевания (DAS28), а при AC также рассчитывался индекс активности BASDAS. Для характеристики течения ВИЧ-инфекции оценивали клиническую стадию заболевания (на основании Российской клинической классификации), число CD4-лимфоцитов в крови, статус антиретровирусной терапии (АРВТ).

Всем пациентам, включенным в исследование, выполнялся клинический биохимическое анализ крови, исследование крови определением концентрации железа, общей железосвязывающей способности сыворотки, ферритина, СРБ, коэффициента насыщения трансферрина железом. Выполнено исследование таких показателей обмена железа, как гепцидин, трансферрин и sTfR. У каждого пациента также исследовались концентрации ЭПО и таких цитокинов, как ИЛ-6, ИНФ-γ, ИЛ-1β, ИЛ-10, ФНО- α.

Методы статистической обработки полученных результатов включали описательную статистику, сравнительный, корреляционный, дискриминантный анализы и ROC-анализ.

Положения, выносимые на защиту

- 1. Анемия у большинства (65–70 %) больных со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией патогенетически является АХЗ, возможно ее сочетание с ЖДА.
- 2. Для АХЗ у пациентов с исследуемыми патологическими состояниями характерен сложный многокомпонентный патогез. В ее развитии имеют важное значение повышенная секреция провоспалительных и противовоспалительных цитокинов, нарушения обмена железа, уменьшение синтеза и/или биологической активности ЭПО, угнетение эритропоэза.
- 3. У пациентов с солидными злокачественными новообразованиями, заболеваниями суставов, ВИЧ-инфекцией воспалительными различия в ведущих механизмах, приводящих к развитию АХЗ. У пациентов с солидными злокачественными новообразованиями В развитии наибольшее значение имеет увеличение секреции провоспалительных цитокинов ИЛ-6, ФНО-а, а также ключевого регулятора обмена железа – гепцидина – в сочетании с подавленной секрецией ЭПО и угнетением эритропоэза. У пациентов с воспалительными заболеваниями суставов в развитии АХЗ наибольшее влияние оказывает увеличение секреции провоспалительных (ФНО-α, ИЛ-6) и противовоспалительных (ИЛ-10)

цитокинов, чрезмерная секреция гепцидина в сочетании с нарушением эритропоэза на фоне не соответствующего тяжести анемии синтеза ЭПО. В развитии АХЗ у пациентов с ВИЧ-инфекцией в патогенезе АХЗ наибольшее значение имеет увеличение секреции провоспалительных (ФНО-а, ИЛ-6) и противовоспалительных (ИЛ-10) цитокинов на фоне нормальной концентрации гепцидина в сочетании со сниженной биологической активностью ЭПО, проявляющейся в нарушении эритропоэза на фоне его повышенного образования.

- 4. Разработанная классификация АХЗ применима в широкой клинической практике и позволит эффективнее проводить патогенетически обоснованную терапевтическую коррекцию этой анемии.
- 5. Разработанные математические модели, а также диагностические критерии дифференциальной диагностики АХЗ и ЖДА у пациентов с солидными злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией позволяют эффективно проводить дифференциальную диагностику этих двух типов анемий.

Степень достоверности и апробация результатов

Степень достоверности результатов проведенного исследования подтверждается большим числом обследованных пациентов, однородностью выборки, адекватным набором оцениваемых показателей, использованием современных статистических программ для обработки материалов, соответствующих цели и задачам исследования, и современному уровню науки.

Основные положения и результаты проведенного исследования обсуждены и доложены на: 1) IV Межрегиональной научно-практической конференции «Диагностика и лечение анемий в XXI веке» (г. Рязань, 5-7 октября 2017 г.), 2) III Всероссийской научно-практической конференции «Актуальные вопросы гематологии» (г. Москва, 10 марта 2017 г.), 3) II научно-

практической конференции «Актуальные вопросы высокотехнологичной помощи в терапии» (г. Санкт-Петербург, 25-26 мая 2018 г.), 4) V Межрегиональной научно-практической конференции «Современные вопросы гематологии в клинической практике» (г. Рязань, 26-28 сентября 2019 г.), 5) IX Всероссийской научно-практической конференции «Современные аспекты гематологии и гепатологии» (г. Москва, 28-29 ноября 2019 г.), 6) IV конференции «Актуальные научно-практической вопросы высокотехнологичной помощи в терапии» (г. Санкт-Петербург, 22-23 октября 2020 г.), 7) Всероссийской научно-практической школе онкологов и радиологов (г. Нижний Новгород, 30-31 октября 2020 г.), 8) Х юбилейной научно-практической конференции «Современные аспекты гематологии и гепатологии» (г. Москва, 26 ноября 2020 г.), 9) ежегодной научнопрактической онлайн-конференции «Гематология Санкт-Петербурга – 2020. Новые горизонты 2020-2021» (г. Санкт-Петербург, 4-5 декабря 2020 г.), 10) региональной научно-практической конференции Ассоциации онкологов России в СКФО «Новости и достижения в онкологии» (г. Ставрополь, 26 февраля 2021 г.), 11) научно-практической конференции «Актуальные вопросы иммунотерапии» (Московская область, г. Коломна, 27 марта 2021 г.), 12) IV Терапевтическом форуме «Мультидисциплинарный больной» (г. Санкт-Петербург, 27 мая 2021 г.), 13) юбилейной научной конференции «Кафедра факультетской терапии: сохраняя традиции Боткинской школы» (г. Санкт-Петербург, 18 ноября 2021 г.), 14) конференции «Диагностика и лечение онкологических и гематологических заболеваний при ВИЧинфекции. Уверенное настоящее – без страха в будущее» (г. Москва, 19 мая 2022 г.), 15) общероссийской конференции «Современная онкология: из центра в регионы - II» (г. Курск, 26 мая 2022 г.), 16) Межрегиональной научнопрактической конференции с международным участием «Современные трансфузиологические технологии для медицинской практики. Год 2022: Менеджмент крови пациента» (г. Москва, 16 сентября 2022 г.), 17) научнопрактическом форуме «Школа гематолога» (г. Рязань, 7 октября 2022 г.), 18)

научно-практической конференции, посвященной 190-летию со дня рождения С.П. Боткина «Научно-педагогическая школа клиницистов профессора С.П. Боткина и его вклад в развитие отечественной медицины» (г. Санкт-Петербург, 12 октября 2022 г.), 19) XI Всероссийской конференции «Актуальные вопросы гематологии» (г. Москва, 17 марта 2023 г.), 20) Всероссийском конгрессе с международным участием «Дни ревматологии в Санкт-Петербурге – 2020» (Санкт-Петербург, 15-16 октября 2020 г.), 21) Еигореап congress of rheumatology, Frankfurt, 3-6 June (Европейском конгрессе ревматологов, г. Франкфурт, 3-6 июня 2020 г.).

Публикации

По теме диссертации изданы 41 научная публикация, из которых статей ВАК/РУДН/МБЦ/RSCI - 17, из них статьи ВАК с ИФ/ВАК К1, К2/МЦБ/RSCI - 16.

Издано 5 монографий (в качестве соавтора). По теме диссертационного исследования получены 3 патента на изобретение. Изданы 1 клинические рекомендации Минздрава России (в качестве соавтора).

Опубликованы 6 печатных работ в зарубежных рецензируемых научных изданиях.

Объем и структура диссертации

Работа изложена на 262 машинописных страницах и состоит из введения, семи глав, обсуждения результатов, заключения, выводов, практических рекомендаций, перечня используемых сокращений и списка литературы. Библиография включает 380 источников (37 — отечественных и 343 — зарубежных авторов). Представлены 6 клинических случаев. Диссертация содержит 46 таблиц и 3 схемы.

ГЛАВА 1. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ПАТОГЕНЕЗЕ АНЕМИИ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ ПРИ РАЗЛИЧНЫХ ПАТОЛОГИЧЕСКИХ СОСТОЯНИЯХ

1.1. Анемия хронических заболеваний как одна из наиболее актуальных медицинских и социально-экономических проблем современности

АХЗ развивается при длительно текущем опухолевом, инфекционновоспалительном или аутоиммунном заболевании [248, 368, 370]. Также правомочно название этой анемии как анемии воспаления. Согласно критериям Всемирной организации здравоохранения (BO3),анемия диагностируется при концентрации гемоглобина менее 130 г/л у мужчин и менее 120 г/л у женщин [373]. В настоящее время показана значительная заболеваний. распространенность анемии хронических По обшей распространенности AX3 занимает В мире второе место после железодефицитной анемии; до 40 % от всех анемий в мире относится к анемии хронических заболеваний или ее сочетанию с другой анемией [46, 138, 369]. Также по некоторым оценкам AX3 или ее сочетание с другой анемией может иметь место у более чем 1 миллиарда людей в мире [46, 138, 326]. Среди пациентов, госпитализированных в стационар, АХЗ занимает первое место по распространенности [46]. Имеется связь увеличения частоты развития АХЗ с возрастом. В нескольких популяционных исследованиях показано, что до 17% пожилых людей страдают анемией [325] и в 70 % случаев это анемия хронических заболеваний [223]. По данным Национального исследования здоровья и питания (The National Health and Nutrition Examination Study – NHANES III), выполненного в США в 2004 г., продемонстрировано развитие АХЗ у более чем 1 миллиона американцев в возрасте более 65 лет [147]. В исследовании Shavelle R. M. с соавт. 2012 г. доказано повышение риска летальности в 1,48 раза у пациентов в возрасте более 50 лет и анемией

хронических заболеваний в сравнении с пациентами без анемии [318]. Развитие анемии хронический заболеваний ассоциируется со снижением у пациента физической работоспособности [44], когнитивных функций и выживаемости [233].

Впервые в отдельную нозологическую единицу АХЗ выделена после публикации G. E. Cartwright, M. M. Wintrobe в 1946 г. [4]. Авторами показано развитие у пациентов с различной инфекционной патологией анемии, резистентной к терапии пероральными препаратами железа. Длительное время инфекционными развитие AX3 ассоциировалось c заболеваниями, злокачественными новообразованиями и аутоимунной патологией [67, 77, 111, 145, 210, 367]. На сегодняшний день доказано развитие АХЗ при различной терапевтической патологии, такой как хроническая болезнь почек [80, 99, 245, 296], хроническая сердечная недостаточность [59, 212], патология коронарных артерий [66], хронические заболевания дыхательной системы [336, 345, 348]. Доказано, что развитие АХЗ ассоциируется с прогрессированием и тяжестью основного заболевания, снижением качества жизни увеличением И вероятности летального исхода [77, 145, 189, 210, 245, 296, 367]. Остается спорным вопрос о том, ухудшает ли АХЗ течение основного заболевания или отражает его запущенную стадию.

1.2. Распространенность и значение анемии хронических заболеваний у больных со злокачественными новообразованиями

Анемия — одно из самых частых осложнений у больных со злокачественными новообразованиями. Симптомы анемии могут наблюдаться у 40 % пациентов с этой патологией. Нередко анемия является причиной первичного обращения пациента за медицинской помощью, может присоединиться в процессе лечения (хирургического, химиотерапевтического и/или облучения), и, наконец, анемия сопровождает большую часть пациентов, находящихся на паллиативном лечении.

Наиболее крупным клиническим исследованием, в котором изучалась распространенность анемии у больных раком, считается ECAS (European Cancer Anemia Survey), проводившееся с 2001 по 2002 г. в 34 европейских странах [340]. В исследование включено более 15 тысяч пациентов с солидными и гематологическими злокачественными новообразованиями. При первичном обследовании анемия (гемоглобин менее 120 г/л) диагностирована у 39 % пациентов, а через 6 месяцев наблюдения эта цифра увеличилась до 67 %. У большинства пациентов, а это примерно 10%, в начале исследования диагностирована анемия легкой степени тяжести (гемоглобин более 100 г/л), но через 6 месяцев эта цифра достигла 39,9 %.

В другом крупном систематическом обзоре, выполненном в 2004 г. Knight K. с соавторами, распространенность анемии варьировала от 30 до 90 %, хотя наиболее вероятно, что подобные данные получены вследствие различных подходов к диагностике анемии (90 и 120 г/л соответственно) [275]. Развитие анемии происходило чаще при рецидиве основного заболевания, а также на более поздних стадиях заболевания. Так, на начальных стадиях опухолей толстой кишки анемия может встречаться у 40 % больных, а на терминальных — уже у более 80 % [148]. Распространенность анемии выше у больных, получающих противоопухолевую терапию. Частота развития анемии зависит и от вида опухоли. Чаще уменьшение гемоглобина развивается при гематологических злокачественных новообразованиях, таких множественная миелома или лимфома. Среди солидных злокачественных новообразований наиболее часто анемия развивается при раке легкого и молочной железы. Немного уступают ИМ ПО распространенности гинекологические и гастроинтестинальные опухоли [148]. В исследовании Ludwig H. с соавторами 2013 г. установлено, что анемия с дефицитом железа встречается у 63 % больных раком поджелудочной железы, у 52 % больных колоректальным раком и у 51 % больных раком легких [279].

Установлено влияние анемии на снижение качества жизни [18, 36, 294] и физической работоспособности [169] у больных раком. Это имеет очень

важное значение, так как подобное воздействие анемии способствует снижению приверженности или невозможности придерживаться лечения по запланированной (стандартной) схеме полихимиотерапии. Развитие дефицита железа у этой категории больных также связано с большим числом клинических проявлений, таких как слабость, утомляемость, ломкость ногтей, хейлит, снижение либидо, снижение когнитивных функций, головная боль, бессонница, депрессия, одышка, тахикардия, алопеция [283].

Показано значимое влияние анемии на прогноз у пациентов со злокачественными новообразованиями. В крупном систематическом обзоре 60 исследований, выполненном Caro J. J. et al., установлено, что наличие анемии у этой категории больных на 65 % увеличивает вероятность летального исхода в сравнении с пациентами с нормальной концентрацией гемоглобина [64].

Подобное влияние анемии определяется несколькими факторами. Вопервых, диагностированная анемия обуславливала задержку начала или незавершение проводимой химиотерапии. У больных с анемией снижен ответ на лучевую и некоторые схемы полихимиотерапии из-за развивающейся тканевой гипоксии – недостаточной тканевой концентрации кислорода в тканях, необходимой для максимального эффекта проводимого лечения. Недостаточное поступление кислорода способствует активации внутриопухолевой гипоксии с активацией синтеза факторов, индуцируемых гипоксией (HIFs – hypoxia inducible factors). HIFs являются главными регуляторами опухолевой прогрессии и выработки устойчивости опухоли к за счет усиления регуляции генов-мишеней, проводимому лечению отвечающих за ангиогенез и метаболическое перепрограммирование раковых клеток [183, 191, 307, 310, 364].

Необходимо отметить, что наиболее выраженное снижение качества жизни больного наблюдается при концентрации гемоглобина от 100 до 115 г/л, что считается анемией легкой степени тяжести. Большинством врачей такие концентрации гемоглобина не воспринимаются всерьез, а предъявляемые больными жалобы рассматриваются как проявление основного заболевания. В

то же время довольно часто симптомы анемии являются первыми признаками злокачественного новообразования, как это часто бывает при раке толстой кишки [275].

Из представленных выше данных следует, что анемический синдром широко распространен у пациентов со злокачественными новообразованиями уже на начальных этапах заболевания. В этом контексте представляют клинический интерес результаты обсервационного популяционного исследования, которое проводилось с 2014 по 2018 гг. в Дании. В ходе анализа историй болезни 59993 пациентов с впервые диагностированной анемией установлено, что более чем половине пациентов не были назначены дополнительные лабораторные И инструментальные исследования, направленные на исключение злокачественного новообразования [110].В причины развития анемии национальном исследовании, проводившемся на Тайване с 2000 по 2010 гг., показано, что у пациентов с железодефицитной анемией И исключенным злокачественным новообразованием риск развития рака в следующие 5 лет больше в сравнении остальной популяцией. Увеличивался риск развития только злокачественных новообразований желудочно-кишечного тракта, но и рака поджелудочной железы, печени, почек и мочевого пузыря [299]. Полученные результаты объясняются измененной активностью иммунной системы на фоне дефицита железа.

В большом числе ранее выполненных исследований доказано, что анемия — независимый предиктор неблагоприятного клинического исхода у больных раком. В крупном систематическом обзоре, выполненном в 2016 г. Саго J. J. с соавторами, проанализированы результаты 60 исследований, в которых изучалась выживаемость больных с солидными злокачественными новообразованиями [64]. Авторами обзора доказано увеличение риска летального исхода на 65 % у больных с анемией в сравнении с пациентами с нормальной концентрацией гемоглобина. Риск летального исхода варьировал

от 19 % у больных с раком легких до почти 75 % у пациентов с карциномой головы и шеи, а также с лимфомой [64, 81, 143, 145].

Также доказано влияние анемии на эффективность проводимой радиои/или химиотерапии. В исследовании 2020 г., выполненном J. W. Bong с соавторами, установлено, что концентрация гемоглобина менее 90 г/л до или в ходе проведения лучевой терапии у пациентов с раком прямой кишки ассоциировалась с повышенным риском недостижения полной регрессии заболевания [117]. Наличие анемии было связано с менее выраженным снижением опухолевой массы после неоадъювантной лучевой терапии у пациентов с раком прямой кишки в сравнении с пациентами без анемии [277].

Анемия влияет на выживаемость этой категории больных за счет нескольких причин. Больным с анемией чаще задерживается начало химиотерапии или не выполняется весь курс лечения. Еще одним фактором влияния анемии на выживаемость и уменьшение эффективности лечения считается цитотоксичность, индуцируемая радиотерапией или химиотерапией и требующая доставки большего объема кислорода к поврежденным тканям. Также уменьшение объема доставляемого кровью кислорода способствует прогрессированию внутриопухолевой гипоксии с активацией факторов, индуцируемых гипоксией. На сегодняшний день HIFs рассматриваются в качестве главных регуляторов раковой прогрессии за счет их способности активировать гены, вовлеченные в ангиогенез, уклонение от иммунной системы и метаболическое перепрограммирование раковых клеток. За счет подобных изменений раковые клетки становятся более устойчивыми к химио-и радиотерапии [183, 191, 307, 310, 364].

В связи с доказанным влиянием анемии на качество жизни и выживаемость пациентов, а также на течение основного заболевания важное значение имеет адекватная и своевременная коррекция концентрации гемоглобина. Установлено положительное влияние лечения анемии, в особенности легкой и средней степени тяжести, на качество жизни пациентов

[107, 207]. Коррекция анемии также позволяет улучшить переносимость химио- и радиотерапии [107, 144, 207].

Таким образом, анемия у пациентов со злокачественными новообразованиями имеет важное клиническое, социальное и экономическое значение, влияя на объективный статус пациента, его качество жизни, а также эффективность и длительность терапии основного заболевания. Ее сложный и многокомпонентный патогенез определяет трудности в ее коррекции, а частое распространение ее легких форм объясняет не всегда настороженное отношение лечащего врача к ее коррекции. Необходимы дальнейшие исследования как для уточнения особенностей патогенеза, так и для выработки оптимальной стратегии лечения [4].

1.3. Распространенность и значение анемии хронических заболеваний у пациентов с воспалительными заболеваниями суставов

Распространенность анемии варьирует при различных ревматических заболеваниях, что обусловлено особенностями патогенеза и терапевтических подходов, полиморфизмом генов, вовлеченных в иммунную регуляцию, эритропоэз и обмен железа, наличием ассоциированных клинических состояний, а также возрастом и гендерной предрасположенностью к каждому заболеванию.

ПсА, РА и АС относятся к воспалительным заболеваниям суставов [319, 321]. По оценкам некоторых авторов, тремя этими заболеваниями суммарно поражено от 2 до 4 % взрослого населения земли [116, 263]. Каждое из этих заболеваний вызывает значимое снижение качества жизни и мобильности пациентов [116, 263]. Анемический синдром — одно из самых частых внесуставных проявлений у этой категории больных. При ревматоидном артрите, по оценкам различных авторов, распространенность анемии составляет от 33 до 70 % [98, 372]. При АС частота развития анемии, по данным различных авторов, составляет от 9 % до 15 % [57, 139]. Данные по

распространенности анемии у пациентов с ПсА немногочисленны и значимо разнятся. В исследовании Ю. Л. Корсаковой с соавторами 2021 г. распространенность анемии у пациентов с ПсА составила 1,3 %, а в исследовании R. Segal et al. 2004 г. – 35 % [25, 71]. Анемия негативно влияет на качество жизни пациентов с ревматической патологией, активность и клинические проявления основного заболевания [56, 57, 139, 280]. Показана взаимосвязь между уменьшением симптомов ревматоидного артрита и улучшением качества жизни на фоне коррекции анемии [274].

Классической моделью АХЗ, или анемии воспаления, считается анемия, развивающаяся у больных ревматоидным артритом (РА). Ревматоидный артрит — хроническое системное заболевание соединительной ткани с прогрессирующим поражением преимущественно периферических (синовиальных) суставов по типу эрозивно-деструктивного полиартрита, возможным развитием полиорганного поражения и тяжелых осложнений, таких как вторичный амилоидоз [17]. РА — самое распространенное в мире аутоиммунное заболевание человека, поражающее 0,5–2,0 % населения в наиболее работоспособном возрасте 35–55 лет.

По данным выполненных ранее исследований, анемия развивается у 33—60 % больных РА [56, 372]. В многоцентровом когортном исследовании ERAS (British Early Rheumatoid Arthritis Study), проводившемся на базе 9 лечебных учреждений Великобритании, исследовались 1429 пациентов с длительностью течения РА менее двух лет. В ходе 10-летнего наблюдения у 230 пациентов (16 %) был хотя бы однократно зафиксирован уровень гемоглобина менее 100 г/л. Процент пациентов с анемией составил 5 % через год наблюдения, 11 % через 3 года, 13 % через 5 лет, 16 % через 7 лет и 7 % после 10 лет [264]. Wolfe F. et al. в 2005 г. при исследовании 2120 пациентов с РА диагностировали анемию у 30,4 % мужчин и у 32 % женщин. Распространенность анемии у больных с РА в три раза выше в сравнении с 7124 пациентами без воспалительных изменений суставов. Также в этом исследовании показана взаимосвязь между анемией и уровнями СРБ и СОЭ. Доказан более высокий балл по опроснику

оценки здоровья (HAQ — Health Assessment Questionnaire) при меньшей концентрации гемоглобина, а дальнейшее лечение анемии приводило к улучшению показателя шкалы HAQ [282]. В другом крупном регистре CORRONA, проводившемся с октября 2001 г. по февраль 2007 г., исследовались 10397 пациентов с РА. Анемия диагностирована у 16,7 % больных и ассоциировалась с тяжестью заболевания и рядом сопутствующих заболеваний [280]. В исследованиях Н. W. van Steenbergen et al. 2013 г. и В. Moller et al. 2014 г. доказано значение анемии у больных РА в качестве предиктора рентгенологического прогрессирования повреждения суставов [58, 363]. У ревматических больных доказана взаимосвязь между наличием АХЗ и ухудшением качества жизни и увеличением смертности.

1.4. Распространенность и значение анемии хронических заболеваний у пациентов с ВИЧ-инфекцией

Развитие является самым анемии частым гематологическим осложнением у пациентов с ВИЧ-инфекцией. По некоторым оценкам, до 95 % пациентов на различных этапах течения ВИЧ-инфекции имеют сниженную концентрацию гемоглобина и числа эритроцитов [83, 286]. У пациентов, получающих комбинированную антиретровирусную терапию, распространенность анемии составляет около 46 % [286]. По данным исследований, выполненных в США, анемия развивается у 18–32 % больных с ВИЧ-инфекцией без синдрома приобретенного иммунного дефицита (СПИД) и у 48–85 % больных со СПИДом [273, 286].

Несмотря на широкое распространение антиретровирусной терапии, развитие анемии у ВИЧ-больных остается серьезной проблемой [366]. Независимо от количества CD-4 и вирусной нагрузки анемия – неблагоприятный прогностический фактор, увеличивающий заболеваемость, летальность и тяжесть течения ВИЧ-инфекции [65, 83]. По результатам нескольких ранее выполненных исследований показано, что использование

антиретровирусной терапии также способствует увеличению гемоглобина и числа эритроцитов [62, 278]. Наличие и тяжесть анемии у пациентов, получающих APBT, ассоциировалось с увеличением риска летального исхода от всех причин [70, 124, 176, 208]. По данным исследования 1362 пациентов в Гамбии, не получавших APTB, показано увеличение летальности на 28 % при наличии анемии менее 90 г/л и не выявлено увеличения летальности при наличии анемии легкой степени тяжести [125]. Minchella P. A. et al. в 2007 г. по результатам обследования 196 взрослых пациентов с ВИЧ, не получающих APBT, установили, что анемия в начале исследования ассоциировалась с риском летального исхода, в 2,82 большим, чем у пациентов без анемии [124]. Наіder В.А. et al. в 2019 г. по результатам исследования 40657 взрослых пациентов, получавших APBT, продемонстрировали увеличение летальности в 1,26, 1,90 и 3,32 раза при анемии легкой, средней и тяжелой степени тяжести соответственно [70].

В нескольких исследованиях изучалось влияние наличия анемии на прогрессирование ВИЧ-инфекции. Так, у танзанийских пациентов с ВИЧинфекцией, не получавших антиретровирусную терапию, показано увеличение риска прогрессирования заболевания как при ЖДА, так и при АХЗ [211]. У пациентов с гемоглобином менее 85 г/л показано увеличение смертности от СПИДа в 3,5 раза в сравнении с пациентами без анемии [211]. У пациентов с анемией легкой степени тяжести в сравнении с пациентами без анемии в 2,2 раза выше риск летального исхода от СПИДа [211]. По результатам исследования 799 американских пациентов с ВИЧ-инфекцией, получавших антиретровирусную терапию, установлено, что наличие анемии на 55 % увеличивало риск развития ВИЧ-ассоцированных нейрокогнитивных нарушений в сравнении с пациентами без анемии [63].

В нескольких исследованиях также доказано влияние анемии на развитие туберкулеза у ВИЧ-больных. Более того, установлено, что тип анемии также оказывает различное влияние на вероятность развития туберкулеза у этой категории больных. В исследовании Isanaka S. et al. 2012 г.

установлено, что наличие АХЗ у больных с ВИЧ-инфекцией, не получавших АРВТ, увеличивает вероятность развития туберкулеза в 6,6 раз в сравнении с пациентами без анемии. В этом же исследовании показано увеличение риска развития туберкулеза в 3,8 раза у пациентов с ЖДА в сравнении с контрольной группой пациентов без анемии [211]. Наличие как АХЗ, так и ЖДА ассоциировалось с меньшей эффективностью лечения туберкулеза у пациентов с ВИЧ-инфекцией, хотя эта взаимосвязь была не очень выраженной [211]. Высокая концентрация ферритина также связывалась с повышенным риском заболевания туберкулезом. В исследовании Tenforde M.W. et al. 2015 г. в период 96-недельного наблюдения доказано увеличение заражения туберкулезом на 72 % у пациентов с концентрацией ферритина более 150 мкг/л в сравнении с пациентами с концентрацией ферритина менее 150 мкг/л [100]. Риск неэффективности лечения туберкулеза увеличивался на 95 % и 54 % соответственно у пациентов с концентрацией ферритина менее 30 мкг/л и более 150 мкг/л в сравнении с пациентами, у которых концентрация ферритина была в пределах 30–150 мкг/л [211]. Также изучалась взаимосвязь между концентрацией гепцидина и вероятностью заболевания туберкулезом. В исследовании Armitage A. E. et al. 2014 г. доказано значимое увеличение концентрации гепцидина у ВИЧ-больных и туберкулезом в сравнении с пациентами только с ВИЧ-инфекцией [112]. В то же время не найдено значимой взаимосвязи между концентрацией растворимого рецептора трансферрина и железа с вероятностью развития туберкулеза у ВИЧ-больных [176, 274].

1.5. Современные представления о механизмах регуляции обмена железа и эритропоэза в нормальных условиях

1.5.1. Биологическое значение железа

Важное значение изменений обмена железа в патогенезе АХЗ обусловлено уникальными особенностями этого металла. Способность железа менять свой окислительно-восстановительный потенциал (валентность) в зависимости от состава окружающих лигандов делает этот необходимым практически всем живым существам, в том числе и человеку [1, 29]. Железо вступает В одноэлектронные легко окислительновосстановительные реакции, переходя при ЭТОМ между двухтрехвалентными состояниями. В связи с указанными выше особенностями железосодержащие белки участвуют во многих жизненно необходимых биохимических процессах, таких как митохондриальное дыхание, синтез ДНК и гормонов, энергетический обмен, нейтрализация активных форм кислорода и т.д. [1, 45].

Тем не менее самое важное и наиболее известное значение железа — это его участие в связывании и переносе кислорода в составе гемоглобина и миоглобина [1, 270]. В нормальных условиях в костном мозге человека синтезируется около двух миллионов эритроцитов в секунду. В каждом эритроците содержится около 280 миллионом молекул гемоглобина, в каждом из которых в свою очередь находится 4 субъединицы с атомами железа для связывания кислорода. Таким образом, в каждом эритроците имеется более миллиарда участков связывания кислорода [108].

Суточная потребность взрослого человека в железе составляет 20–30 мг. Около 90 % суточной потребности в железе поступает из макрофагов, которые разрушают старые эритроциты и только 10 % железа поступает за счет всасывания из двенадцатиперстной кишки [1, 209, 270].

1.5.2. Всасывание железа в двенадцатиперстной кишке, межклеточная транспортировка железа и доставка внутрь клеток

Связывание трехвалентного железа происходит на апикальной поверхности энтероцитов посредством взаимодействия Fe³⁺ с дуоденальным цитохромом b. Цитохром b – это ферроредуктаза, белок, восстанавливающий Fe^{3+} до Fe^{2+} . Только в восстановленной форме железо связывается со следующим транспортным белком – переносчиком двухвалентных металлов DMT1 (divalent metal transporter 1) и переносится в цитоплазму энтероцита через его апикальную мембрану [1, 231, 270, 317]. Затем железо может или накапливаться в энтероцитах в связанной форме с ферритином слизистой оболочки или транспортироваться в кровоток через базальную мембрану энтероцита с помощью белка переносчика железа – ферропортина 1 [1, 342]. На сегодняшний день ферропортин – это единственный известный белокпереносчик железа из клетки во внеклеточное пространство [1, 4]. Ферропортин осуществляет экспорт железа не только из энтероцитов, но и из гепатоцитов и из макрофагов, осуществляющих эритрофагоцитоз [6, 113, 255]. После того как железо с помощью ферропортина доставляется на базолатеральную мембрану энтероцита, оно вновь окисляется до Fe^{3+} с помощью белка гефестина, после этого связывается с другим белкомпереносчиком – трансферрином – и поступает в кровяное русло [1, 317]. Железо, связанное с ферритином слизистой оболочки, выводится с постоянно слущивающимися энтероцитами двенадцатиперстной Это кишки. единственный известный механизм выведения железа [136].

В кровотоке практически все железо находится в связанной форме с бета-глобулином трансферрином, синтезируемым печенью [74]. Также в плазме крови Fe³⁺ может связываться с другим переносчиком – лактоферрином, но концентрация этого белка крайне мала в сравнении с трансферрином [1, 86]. В нормальных условиях концентрация трансферрина в плазме составляет 2500 мг/л, что позволяет связывать 2500–4000 мг железа

на 1000 мл плазмы (одна молекула трансферрина может связывать 1–2 атома железа) [1]. Этот показатель отражает общую железосвязывающую способность сыворотки крови. Комплекс железо-трансферрин связывается с рецепторами трансферрина, которые находятся на мембранах клеток, нуждающихся в железе. Существуют 1-й и 2-й типы рецепторов трансферрина, которые отличаются между собой по профилю тканевой секреции. Рецептор трансферрина 1 (transferrin receptor 1 – TfR1) синтезируется практически на мембранах практически всех клеток, тогда как рецептор трансферрина 2 (transferrin receptor 2 – TfR2) синтезируется только на гепатоцитах, клетках крипт двенадцатиперстной кишки, эритроидных клетках, остеобластах, нейронах и макрофагах [1, 32, 297, 349].

Трансферрин с двумя атомами железа обладает сродством к TfR1 в 30 раз больше, чем к TfR2 [226]. После связывания трансферрина с TfR1 комплекс железо-трансферрин-TfR1 попадает внутрь клетки посредством эндоцитоза. TfR2 выполняет в основном регуляторную функцию, не связанную с транспортом железа [339, 355]. В цитоплазме клетки эндоцитарный пузырек с комплексом железо-трансферрин-TfR1 сливается с первичной лизосомой. В кислой среде лизосомы нерастворимая форма Fe³⁺ высвобождается из комплекса с трансферрином и TfR1 и под действием металлоредуктазы STEAP3 (six transmembrane epithelial antigen of the prostate 3) восстанавливается до растворимой формы Fe²⁺ и затем транспортируется в цитозоль клетки с помощью переносчика DMT1 [178, 186].

Практически все запасы железа находятся в гепатоцитах и макрофагах ретикулоэндотелиальной системы в связанной с ферритином форме. Гемосидерин — еще один белок, участвующий в хранении железа в тканях. Железо, находящееся в соединении с гемосидерином, менее доступно для дальнейшего использования [1, 185].

1.5.3. Системные регуляторы обмена железа

Можно с уверенностью утверждать, что одним из наиболее значимых исследований, позволившим сформировать современный взгляд на механизмы регуляции обмена железа, стало открытие гепцидина. В 2001 г. С. Park et al. сообщили о получении из мочи человека нового антимикробного пептида, который получил название гепцидин. Название нового пептида было получено путем комбинации двух слов: *hepar* (в переводе с лат. – печень: место синтеза пептида) и *cidin* (в переводе с лат. – уничтожать: подчеркивает антимикробные свойства белка) [1, 163]. В 2001 г. С. Pigeon et al. в своем исследовании реакции печени на перегрузку железом у мышей впервые доказали взаимосвязь между гепцидином и обменом железа [41].

Гепцидин – это гормон, состоящий из 25 аминокислот и синтезируемый преимущественно печенью [160, 163]. Единственная функция гепцидина – это связывание последующей индукцией лизосомальной деградации переносчика железа ферропортина 1. После блокирования ферропортина железо не может экскретироваться из клеток в кровоток и остается запертым в депо, а также блокируется всасывание железа в двенадцатиперстной кишке [1, 27, 142, 291]. В настоящее время основным сигнальным путем, через который происходит железо-зависимая регуляция синтеза гепцидина, считается BMP/Smad. Этот сигнальный путь регулирует активность гена НАМР, кодирующего синтез гепцидина [217]. Большинством исследователей наиболее сильным индуктором синтеза гепцидина признается костный морфогенетический белок 6 (BMP-6 – Bone morphogenetic protein 6), относящийся к семейству факторов роста опухоли бета (TGF-β – tumor growth factor beta). BMP-6, как и гепцидин, синтезируется в печени в ответ на перегрузку железом [217]. ВМР-6 совместно с ко-рецептором гемоювелином связывается с рецептором BMP 1-го типа (BMPR1 – BMP receptor type 1), затем сигнал передается посредством SMAD1/5/8 на ген HAMP [250, 298]. В более поздних исследованиях установлено влияние костного морфогенетического

белка 2 (ВМР-2) на экспрессию гена НАМР. Синтез ВМР-2 также регулируется пищевым железом, хотя и в меньшей степени в сравнении с ВМР-6. ВМР-2 также связывается с ко-рецептором гемоювелином с такой же высокой аффинностью, как и ВМР-6 [72, 85]. Передача сигнала ВМР-2/6 для индукции синтеза гепцидина преимущественно осуществляется через ВМРR1 и активин-подобную киназу 3 (АLК3 – activin receptor-like kinase 3) [129].

Сигнальный путь BMP/SMAD может модулироваться рядом белков, такими как белок гемохроматоза человека (HFE - human hemochromatosis protein), рецептор трансферрина 2-го типа (TFR2) и TMPRSS6 (transmembrane serine 6) [165]. Комплекс железо-трансферрин концентрациях в сыворотке крови конкурентно связывается с TfR1, что приводит к вытеснению HFE и его последующему связыванию с TfR2. Образовавшийся комплекс HFE-TfR2 связывается с гемоювелином и ALK3, усиливает синтез ALK3 на поверхности клетки, что приводит к активации экспрессии гена НАМР [104, 199, 341]. Напротив, сериновая протеаза матриптаза-2, кодируемая геном TMPRSS6, ингибирует сигнальный путь BMP/SMAD за счет расщепления ко-рецептора гемоювелина [347]. Также в нескольких исследованиях изучалось влияние половых гормонов на синтез гепцидина. Доказано, что мужской половой гормон тестостерон подавляет синтез гепцидина за счет активации рецептора эпидермального фактора роста и последующего ингибирования сигнального пути SMAD1/5/8 [48, 333]. Более того, в исследовании Bachman E. et al. 2010 г. показан прямой дозозависимый эффект от введения тестостерона на снижение концентрации гепцидина с последующим увеличением концентрации гемоглобина [334]. В гормона прогестерона отношении женского полового показан стимулирующий эффект на синтез гепцидина по BMP/SMAD-независимому пути [281]. В отношении влияния эстрогена на синтез гепцидина получены противоречивые данные [132, 165].

1.5.4. Эритропоэз и эритрофагоцитоз

Эритроциты образуются в костном мозге после дифференцировки и пролиферации мультипотентных стволовых клеток И клеток предшественников. Из мегакариоцит-эритроидных клеток-предшественников через семь стадий дифференцировки образуются проэритробласты, затем ортохроматические эритробласты, с последующим удалением клеточного ядра в конечном итоге образуются ретикулоциты. Ретикулоциты выходят из костного мозга в кровяное русло через 1–3 дня и уже в нем еще через 1–2 дня созревают до зрелых эритроцитов. С учетов времени и особенностей созревания количество циркулирующих в крови ретикулоцитов служит надежным показателем активности костного мозга. Такой показатель, как количество гемоглобина в ретикулоцитах, служит косвенным маркером доступности железа для эритропоэза в предыдущие 3–4 дня [236, 246].

Хорошо известно, что эритропоэз зависит от доступности таких нутриентов, как фолиевая кислота (витамин В9), витамин В12 и железо, и преимущественно регулируется эритропоэтином, синтезируемым почками и в меньшей степени печенью в ответ на развивающуюся тканевую гипоксию [227, 228]. В нормальных условиях синтез ЭПО регулируется по механизму обратной связи и увеличивается при уменьшении числа эритроцитов и развивающейся тканевой гипоксии [228]. ЭПО регулирует поступление железа в эритроидные предшественники, стимулируя TfR1-опосредованный Наоборот, в случае развития дефицита железа захват железа [1, 356]. снижается синтез SCRIBBLE-компонента рецептора эритропоэтина, что приводит к ухудшению передачи сигналов ЭПО в эритробластах [1, 216]. Уменьшение концентрации железа в сыворотке крови приводит уменьшению мембранных рецепторов трансферрина 2-го типа за счет их интернализации и лизосомальной деградации совместно со SCRIBBLEкомпонентом рецептора ЭПО. Эти процессы приводят к снижению экспрессии гена НАМР и увеличению чувствительности к ЭПО клеток эритроидных

предшественников [216, 259, 353]. Эритробласты в ответ на действие ЭПО через Jak/STAT5-сигнальный путь (Jak – янус киназа, STAT 5 – signaling transducer and activator of transcription 5) синтезируют еще один регулятор синтеза гепцидина – эритроферрон [187]. Доказано, что эритроферрон, ингибируя сигнальный путь ВМР 2/6, блокирует синтез гепцидина и тем самым увеличивается доступность железа для эритропоэза [97, 128]. Установлено, что стимулировать эритропоэз могут также такие факторы, как фактор стволовых клеток, инсулиноподобный фактор роста, активин А и ангиотензин II [290, 377]. Продолжительность жизни эритроцитов 100–120 дней, после чего они утилизируются макрофагами селезенки посредством эритрофагоцитоза. Находящийся в макрофагах фермент гемоксигеназа 1 высвобождает железо из субъединиц гемоглобина [1, 156, 365]. Затем железо попадает в цитозоль с помощью белка переносчика DMT 1, где оно либо накапливается в виде комплекса железо-ферритин либо высвобождается в кровоток с помощью FPN1 [252, 328].

1.5.5. Регуляция обмена железа и эритропоэза на клеточном уровне

На сегодняшний день основными регуляторами клеточного метаболизма железа считаются факторы, индуцируемые гипоксией (HIF – hypoxia inducible factor), железорегуляторные белки (IRP – iron regulatory protein) и железозависимые элементы (IRE – iron response element) [1, 308, 368].

HIF – это транскрипционный фактор, состоящий из α- и β-субъединиц. Доказано наличие трех изоформ HIF, отличающихся между собой тем, какие элементы обмена железа они регулируют. HIF-2 участвует в регуляции активности генов, кодирующих FPN1, DMT1 и EPO, тогда как HIF-1 регулирует транскрипцию генов, кодирующих TFR, церулоплазмин, гемоксигеназу 1 и гепцидин [106, 131, 150, 172, 182, 184, 243, 354]. HIF реагирует на уменьшение насыщения тканей кислородом не только за счет изменения обмена железа, но и посредством усиления синтеза эритропоэтина

с последующей активацией эритропоэза. В условиях достаточного насыщения тканей кислородом α-субъединица HIF гидроксилируется, убиквитируется с последующим протеолизом, то есть разрушением, тогда как β-субъединица HIF постоянно экспрессируется [93]. Гидроксилирование HIF осуществляется под действием ферментов пролилгидроксилаз при наличии кислорода, а также оксиглутарата и аскорбата железа [166, 332]. При развитии тканевой гипоксии гидроксилирование α-субъединицы HIF прекращается, и она в связанном с β-субъединицей виде перемещается в клеточное ядро и связывается с участками ДНК, называющимися элементами, чувствительными к гипоксии (HRE – hypoxia responsive elements) [180]. Доказано наличие HRE в таких генах, как ЭПО, НАМР, трансферрин, TFR1, TFR2, DMT1 и фактор роста эндотелия сосудов (VEGF – vascular endothelial growth factor) [49, 309, 379].

Помимо HIF, в клеточной регуляции обмена железа важное значение имеет система IRP-IRE [1]. IRE представляют собой шпилькообразные некодирующие участки мессенджерной РНК, находящиеся В нетранслируемых областях матричных РНК, кодирующих ключевые белки, участвующие в обмене железа [288]. IRE обнаружены в матричных РНК, кодирующих ферритин, DMT1, TFR1, FPN1 и ALAS2 (ключевой фермент, участвующий в биосинтезе гема) [123]. При развитии абсолютного дефицита железа увеличивается сродство IRP к IRE, что приводит к их связыванию [242, 284]. Комплекс IRP-IRE блокирует комплекс инициации трансляции, и тем самым ингибируется экспрессия генов ферритина, FPN1 и ALAS2 и ускоряется захват железа клетками из-за увеличения периода полураспада матричной РНК рецептора трансферрина 1-го типа [242, 284]. Для клетки, нуждающейся в железе, следствием описанных процессов является увеличение внутриклеточной доступности железа за счет уменьшения его запасов и увеличения его захвата [152]. На сродство IRP и IRE также влияют оксид азота, перекись водорода и гипоксия [258, 368].

Продолжается поиск и исследование новых факторов, влияющих на клеточный метаболизм железа. В 1994 г. Моі Р. et al. опубликовано

исследование, в котором описывается открытие нового транскрипционого фактора, получившего название фактор 2, связанный с эритроидным ядерным фактором (NRF2 – nuclear factor erythroid 2-related factor 2) [220]. Показано, что NRF2 участвует в регуляции большого числа биологических процессов, таких метаболические аутофагия, как процессы, антиапоптоз, регуляция транскрипции. Также доказано важное значение NRF2 в регуляции обмена железа и эритропоэза [225]. В условиях нормооксии NRF2 постоянно подвергается протеосомной деградации, опосредованной через Kelchподобный ECH-ассоциированный белок 1 (KEAP1 – kelch-like erythroid cellderived protein with CNC homology-associated protein 1) [331]. В условиях оксидативного стресса взаимодействие между NRF2 и KEAP1 нарушается, что приводит к приостановке постоянного разрушения NRF2 и его накоплению в клетках [225]. В дальнейшем NRF2 попадает в клеточное ядро, где связывается с элементами антиоксидантного ответа, обнаруженных в нескольких генах, участвующих синтезе гема и метаболизме железа, частности ответственных за синтез субъединиц гемоглобина, гемоксигеназы 1, ВМР6, FPN1 или ферритина. Связывание NRF2 с элементами антиоксидантного стресса указанных выше генов приводит к активации их экспрессии [155, 253, 254, 303]. Опосредованная NRF2 ативация синтеза ферритина увеличивает захват железа в депо, уменьшает свободное железо, тем самым купируя оксидативный стресс, вызванный железом [254].

1.6. Многофакторный патогенез анемии хронических заболеваний: базисные механизмы развития этой анемии

Ключевой особенностью АХЗ, отличающей ее от других типов анемий, является ее многофакторный и довольно сложный патогенез [4, 105, 270, 370]. В настоящее время большинством исследователей АХЗ выделяются три основных механизма ее развития: нарушения обмена железа, нарушение

синтеза и биологической активности эритропоэтина, нарушение регуляторных процессов эритропоэза [4, 105, 270, 370].

1.6.1. Изменения обмена железа

Активация клеток иммунной системы на фоне бактериальной инфекции, аутоимунного процесса или злокачественного новообразования приводит к активному выбросу кровяное провоспалительных русло противовоспалительных цитокинов, которые в свою очередь значимо влияют на обмен железа [4]. ИНФ-у преимущественно синтезируется Т-клетками, тогда как ФНО-α, ИЛ-6, ИЛ-1 и ИЛ-6 синтезируются преимущественно макрофагами [87, 205]. Доказано, что ФНО-α также секретируется нейтрофилами, макрофагами, Т-клетками и естественными клеткамикиллерами. Установлено, что разные цитокины влияют на обмен железа через отличающиеся точки приложения. В исследованиях, проводившихся на клеточных культурах, показано, что интерферон-у (ИНФ-у), бактериальные липополисахариды и фактор некроза опухоли-альфа (ФНО-α) увеличивают синтез DMT1 и подавляют синтез FPN1, в результате чего усиливается накопление железа в депо и уменьшается его высвобождение из макрофагов ретикулоэндотелиальной системы [103, 113]. Так как FPN1 участвует во всасывании железа в двенадцатиперстной кишке, подавление его активности приводит к уменьшению всасывания пищевого железа [113]. Доказано, что не только провоспалительные цитокины, такие как ИЛ-6, ИЛ-1В, но и например, ИЛ-3, Ил-4, ИЛ-10, противовоспалительные цитокины, увеличивают поглощение клетками железа, связанного трансферрином, и усиливают синтез ферритина. Механизмы, за счет которых реализуется данный эффект, различны [219, 302, 371]. На фоне развивающегося воспаления доказана активация синтеза ключевого регулятора обмена железа – гепцидина [4, 188]. По данным большого числа исследований, признается ведущее значение ИЛ-6 в стимуляции синтеза гепцидина. ИЛ-6 и в меньшей степени ИЛ-22 влияют на синтез гепцидина в гепатоцитах за счет усиления экспрессии его гена НАМР через ЈАК/STAT3-сигнальный путь [162, 324]. В относительно недавних исследованиях также показано влияние ИЛ-6 на гепцидин посредством фермента ALK3, но точные механизмы этого влияния пока не до конца понятны [197, 350]. Кроме ИЛ-6, также в условиях in vitro показано влияние на синтез гепцидина другого цитокина из семейства факторов некроза опухоли-альфа – активина В. В отличие от ИЛ-6, активин В активирует экспрессию гена НАМР через другой сигнальный путь – BMP/SMAD, но функциональное значение этого механизма пока остается не до конца понятным [50, 194, 289]. Наконец, установлено, что ИЛ-1В стимулирует синтез гепцидина через JAK/STAT3- и BMP/SMAD-независимый сигнальный ПУТЬ путем стимуляции связывания ССААТ/энхансерсвязывающегося белка с промоторным участком гена НАМР [203]. Также установлено, что липополисахариды и ИЛ-6 стимулируют синтез гепцидина через толл-подобные рецепторы, после чего аутокринно блокируется ферропортин [79, 352].

1.6.2. Нарушение синтеза и биологической активности эритропоэтина

Описаны клинические ситуации, когда при диагностированной АХЗ уровень секреции эритропоэтина не соответствует тяжести анемического синдрома, а назначение эритропоэзстимулирующих препаратов не приводит к коррекции анемического синдрома [16, 370]. Это состояние обусловлено еще одним важным механизмом развития АХЗ, вызванным нарушением синтеза и биологической По активности эритропоэтина. данным некоторых исследований, у пациентов с АХЗ уровни ЭПО низкие, даже несмотря на развивающийся функциональный дефицит железа и тканевую гипоксию [26, 359]. Доказано влияние цитокинов как на синтез эритропоэтина, так и на его биологическую активность. Так, для ИЛ-1β, ФНО-α и ИНФ-у доказано их подавляющее действие на синтез эритропоэтина почками с последующим развитием оксидативного стресса и еще большим повреждением клеток, синтезирующих ЭПО [16, 198, 221, 222]. Также цитокины нарушают опосредованную ЭПО передачу сигналов, тогда как количество рецепторов эритропоэтина остается неизменным [222]. Нарушение сигнального пути ЭПО также вызывается снижением экспрессии SCRIBBLE-компонента рецептора эритропоэтина вследствие дефицита железа в клетках-эритроидных предшественниках [216]. Доказан такой эффект ЭПО и гипоксии, как ингибирование экспрессии гена **HAMP** 3a счет индукции HIF-1, эритроферрона, матриптазы-2, тромбоцитарного фактора роста ВВ и фактора дифференцировки роста 15 [127, 167, 179, 230, 292]. Все это приводит к формированию порочного круга, в котором вызванное воспалением снижение синтеза ЭПО утяжеляет опосредованное гепцидином поступление железа в клетки-эритроидные предшественники [370].

1.6.3. Нарушение регуляторных процессов эритропоэза

Также установлено, что некоторые цитокины, такие как интерфероны типа I, ИНФ-γ, ФНО-α и ИЛ-1, могут напрямую ингибировать пролиферацию и дифференцировку клеток-эритроидных предшественников, вызывая образование радикалов и последующий церамид-опосредованный апоптоз [88, 238, 361].

Более 30 лет назад доказано ингибирующее влияние ФНО-α на эритропоэз. М. Blick et al. в 1987 г. продемонстрировали уменьшение концентрации гемоглобина у пациентов со злокачественными новообразованиями, получивших препарат рекомбинантного ФНО-α [269].

G. D. Roodman et al. в 1987 г. в условиях in vitro показали, что ΦΗΟ-α ингибирует образование бурстобразующих и колониеобразующих единиц эритроцитов [358].

В нескольких экспериментальных исследованиях показано, что ИНФ-γ и ФНО-α также вызывают деградацию и распад эритроцитов с последующим

продолжительности стимуляции снижением ИΧ жизни за счет эритрофагоцитоза макрофагами печени и особенно селезенки [87, 94, 359]. ИНФ-у способствует усилению апоптоза также за счет уменьшения синтеза некоторых факторов роста эритроидных предшественников, в частности фактора стволовых клеток [370]. Доказано, что в подавлении эритропоэза также участвует ИЛ-6. Особенно интересным является факт, что ИЛ-6 подавляет эритропоэз за счет механизмов, не связанных с обменом железа. ИЛ-6 ингибирует экспрессию гена SLC4a1 в поздних эритроидных предшественниках, что приводит к уменьшению синтеза гемоглобина [205]. Этот эффект ИЛ-6 также способствует уменьшению массы и активности митохондрий в поздних эритроидных предшественниках [205]. По мнению некоторых исследователей, ИЛ-6 подавляет эритропоэз за счет других, пока не изученных механизмов [164].

Также доказано, что на фоне воспалительного процесса развиваются ремоделирование липидов мембран эритроцитов, окислительное повреждение эритроцитов, что в дальнейшем приводит к нарушению их функции и продолжительности жизни [195, 338]. По мнению некоторых авторов, уменьшение продолжительности жизни эритроцитов имеет меньшее значение в развитии АХЗ в сравнении с двумя представленными выше патогенетическими факторами. Важнуую роль этот механизм играет при различных инфекционных заболеваниях и при критических состояниях, сопровождающихся массированным выбросом цитокинов с последующим эритрофагоцитозом и гемолизом [31, 370].

Активно ведется изучение влияния различных витаминов и гормонов на патогенез АХЗ. Доказано, что кальцитриол усиливает пролиферацию эритроидных предшественников посредством активации 1α-гидроксилазы [213, 295]. Установлен дозозависимый эффект назначения витамина D на уменьшение концентраций ИЛ-6 и ИЛ-1β [119]. Следствием этого взаимодействия является увеличение интенсивности пролиферации эритроидных предшественников и снижение активности воспаления [295].

Доказан положительный эффект добавления витаминов A, D, E на коррекцию AX3, а также на уменьшение дозировки эритропоэзстимулирующих препаратов [47, 213, 295].

Представленные выше данные отражают мультифакторный и сложный патогенез АХЗ. Не все компоненты патогенеза на сегодняшний день понятны и изучены. Это обусловливает необходимость дальнейших исследований патогенеза АХЗ в том числе и с целью улучшения терапевтических подходов к ее коррекции.

1.7. Современные представления о патогенезе анемии хронических заболеваний у пациентов со злокачественными новообразованиями

Анемия – одно из наиболее распространенных осложнений у пациентов со злокачественными новообразованиями [262, 275, 340]. В основе патогенеза анемии у этой категории больных лежат механизмы, характерные для классической модели АХЗ, такие как нарушения обмена железа, нарушение синтеза и биологической активности эритропоэтина, нарушения эритропоэза и продолжительности жизни эритроцитов, влияние провоспалительных цитокинов [4, 7, 8, 24, 144]. Однако в развитии анемии могут также участвовать факторы, специфичные именно ДЛЯ злокачественных новообразований, например, особенности течения основного заболевания или его лечения, такие как острая или хроническая кровопотеря вследствие прорастания опухоли в окружающие ткани, метастатическая инфильтрация костного мозга, аутоимунный или лекарственный гемолиз, дефицит витамина B_{12} и фолиевой кислоты, почечная недостаточность. Также у одного и того же пациента в процессе лечения злокачественного новообразования может меняться ведущая причина развития анемии (например, после операции или курса химиотерапии) [4, 61, 367]. Основные механизмы, участвующие в развитии АХЗ у пациентов со злокачественными новообразованиями, представлены ниже.

1.7.1. Изменения обмена железа

c AX3 Для пациентов этой категории характерно функционального дефицита железа, который характеризуется снижением концентрации железа, увеличением коэффициента насыщения трансферрина железом и ферритина в плазме крови и наличием больших запасов железа в депо [4, 61]. Одним из важнейших факторов, приводящих к развитию функционального дефицита железа у больных раком, является повышенный синтез ключевого регулятора обмена железа – гепцидина [159]. В нескольких клинических лабораторных исследованиях выявлено увеличение концентрации гепцидина пациентов co злокачественными y новообразованиями при развитии у них АХЗ [20, 134, 159, 161]. В исследовании Z. Cheng et al. 2020 г. также показано увеличение концентрации гепцидина у пациентов со злокачественными новообразованиями с наличием АХЗ и повышенной концентрации СРБ [134]. В этом же исследовании показана нормальная концентрация гепцидина, и повышенная концентрация ВМР-6 у пациентов с анемией и нормальной концентрацией СРБ [134]. Авторы исследования отмечают, что полученные результаты могут свидетельствовать о разных механизмах развития анемии на фоне воспаления и без него. Также не выявлено увеличения концентрации гепцидина у пациентов со злокачественными новообразованиями и развившейся ЖДА [20, 161]. У пациентов со злокачественными новообразованиями и АХЗ показано отрицательной корреляционной связи между концентрацией гепцидина и гемоглобина, особенно на терминальных стадиях заболевания Высокая концентрация гепцидина ассоциировалась с высокой концентрацией ферритина и сниженной концентрацией железа [346]. Также отрицательная взаимосвязь между высокой концентрацией гепцидина и пониженной концентрацией железа выявлена в исследовании T. Shu et al. 2015 г. [161]. Напротив, в исследовании A. Durigova et al. 2013 г. у пациенток с ранними стадиями рака молочной железы, получающих адъювантную химиотерапию, выявлена положительная корреляционная связь между гепцидином и концентрацией гемоглобина [60]. Также авторами установлено, что сниженная перед началом химиотерапии концентрация гепцидина и концентрация гемоглобина менее 130 г/л являлись предикторами последующего развития тяжелой анемии.

В исследованиях in vitro показано стимулирующее влияние на синтез гепцидина таких факторов, как ИЛ-6, ИЛ-1В, активин В, костный морфогенетический белок-2, фактор роста и дифференциации-15 [79, 162, 203, 324, 350]. По данным исследования Т. Shu et al. 2015 г., выявлена положительная корреляционная взаимосвязь между гепцидином и ИЛ-6 у пациентов с АХЗ и отсутствие взаимосвязи между гепцидином и ИЛ-6 у пациентов с ЖДА. Также авторами не выявлено взаимосвязи между гепцидином и ФНО-а как у пациентов с АХЗ, так и с ЖДА [161]. Схожие данные получены в исследовании E. Nemeth et al. 2003 г., где в условиях in vitro показан стимулирующий эффект ИЛ-6 на синтез гепцидина и отсутствие такого эффекта у ИЛ-1 и ФНО-а. В то же время очень мало исследований, в которых изучалось влияние и механизмы действия ИЛ-10 на гепцидин. В экспериментальном исследовании P. Huang et al. 2017 г. на мышиной модели воспаления установлено ингибирующее влияние ИЛ-10 на экспрессию матричной РНК и последующий синтез гепцидина, а также его негативное влияние на синтез белка STAT3, участвующего в регуляции синтеза гепцидина [121]. Также в этом исследовании показано ингибирующее влияние ИЛ-10 на концентрацию ФНО-а и ИЛ-1β, а также на экспрессию трансферринового рецептора 2-го типа. Доказано влияние ИЛ-10 на развитие АХЗ за счет его ингибирующего влияния на синтез ферритина, что приводит к накоплению ретикулоэндотелиальной железа В клетках системы И развитию функционального железа [302, 371]. дефицита Значительное изучению **sTfR** исследований также посвящено пациентов co злокачественными новообразованиями и анемией. В работе Y. Zhang et al. 2023 г. в ходе исследования более 5000 пациентов установлено, что высокие

концентрации sTfR ассоциировались с повышенным риском развития злокачественных новообразований [78]. Авторами также установлено, что sTfR положительно коррелировал с воспалением и отрицательно – с ферритином и сывороточным железом [78]. В некоторых исследованиях показана возможность использования sTfR для дифференциальной диагностики AX3 и ЖДА [305]. Однако, по данным нескольких исследований, на концентрацию sTfR могут оказывать влияние провоспалительные цитокины, что делает использование этого показателя для диагностики AX3 не всегда корректным [238].

1.7.2. Уменьшение синтеза и биологической активности эритропоэтина у пациентов с анемией хронических заболеваний и злокачественными новообразованиями

Результаты исследований, В которых изучалась концентрация эритропоэтина у пациентов со злокачественными новообразованиями и АХЗ, значимо различаются. Данные некоторых из них демонстрируют снижение концентрации ЭПО у этих больных в сравнении с пациентами с ЖДА [312]. В исследовании W. Wang et al. 2007 г. выявлена сниженная концентрация ЭПО у больных раком и анемией в сравнении с пациентами без анемии. Также в этом исследовании доказана отрицательная корреляционная взаимосвязь между ЭПО и ФНО-а и отсутствие корреляции между ЭПО и ИНФ-у. ИНФ-у ΦΗΟ-α имели отрицательную корреляционную И взаимосвязь концентрацией гемоглобина [196]. Однако необходимо отметить, что в этом исследовании не указывался тип анемии, развивающийся у исследуемой группы больных раком. В исследование A. Maccio et al. 2015 г. включены 888 пациентов с различной локализацией злокачественных новообразований и анемическим синдромом. Авторами установлен не соответствующий тяжести анемии уровень эндогенного ЭПО [346]. Также выявлено отрицательное влияние повышенной концентрации ИЛ-6 на синтез ЭПО.

Напротив, В некоторых исследованиях выявлено увеличение концентрации ЭПО у пациентов со злокачественными новообразованиями и AX3 [224]. В работе Р. Kalyani et al. 2015 г. у больных с различными злокачественными новообразованиями и развившейся АХЗ выявлено компенсаторное увеличение концентрации ЭПО в ответ на снижение концентрации гемоглобина [224, 311]. Также в этом исследовании показано положительной корреляционной связи между ΦΗΟ-α концентрацией ЭПО. В работе Chabowska A. et al. 2007 г. у пациентов с колоректальным раком выявлено компенсаторное увеличение концентрации ЭПО при развитии анемии, выявлена отрицательная корреляционная взаимосвязь между ЭПО и концентрацией гемоглобина [311].

В исследовании І. Pavese et al. 2009 г. доказано, что высокие концентрации ИЛ-6 и ФНО-альфа являлись факторами плохого ответа на терапию эритропоэзстимулирующими агентами у пациентов со злокачественными новообразованиями и анемией [170].

1.7.3. Исследование влияния цитокинов на эритропоэз при развитии анемии хронических заболеваний у пациентов со злокачественными новообразованиями

Большое число исследований посвящено проблеме значения различных цитокинов в патогенезе АХЗ у больных раком. Значение цитокинов в развитии АХЗ подробно описано в главе 3. Большая часть исследований выполнена в условиях in vitro, тогда как данные клинических исследований, выполненных у постели больного, довольно ограничены или значимо различаются.

Значительная часть экспериментальных и клинических исследований посвящена исследованию ИЛ-6 в патогенезе АХЗ у больных раком. В исследовании К. Mori et al. 2009 г. показано развитие АХЗ у мышей после

инокуляции им раковых клеток, синтезирующих ИЛ-6 [251]. Так, у пациентов с почечно-клеточной карциномой концентрация ИЛ-6 более 10 пг/мл ассоциировалась с повышенным риском развития анемии [101]. У пациенток с терминальными стадиями рака яичников показано наличие обратной корреляционной взаимосвязи между ИЛ-6 и концентрацией гемоглобина [240].

Показано негативное влияние цитокинов на концентрацию гемоглобина и число эритроцитов при различных типах злокачественных новообразований [22, 28]. В исследовании А. Массіо et al. 2005 г. выявлена отрицательная корреляционная взаимосвязь между гемоглобином и ИЛ-6, ФНО-α, ИЛ-1β у пациенток с раком яичников [157]. Также показано наличие корреляционной связи между ИЛ-6 и маркерами воспалениями, такими как СРБ, фибриноген. В исследовании М. Jocic et al. 2020 г. показано негативное влияние ИЛ-1 и ИЛ-33 на концентрацию гемоглобина у пациентов с колоректальным раком [69].

У пациентов со злокачественными новообразованиями, помимо влияния обмен эритропоэз железа, установлено влияние на И многих провоспалительных цитокинов на энергетический, липидный, углеводный и жировой обмен. ИЛ-1 способствует развитию анорексии счет ингибирования синтеза одного из орексигенных факторов – нейропептида Y – и уменьшения синтеза кортикотропин-рилизинг-гормона [265]. Это приводит к снижению синтеза гормона роста и инсулиноподобного фактора роста-1, вследствие чего происходит снижение мышечной массы, особенно у пациентов с терминальными стадиями рака [306]. Показано, что ИЛ-1 ингибирует синтез инсулина β-клетками поджелудочной железы, что провоцирует гиперинсулинемию и инсулинорезистентность. Нарушения обмена глюкозы из-за влияния ИЛ-1 также способствуют развитию АХЗ. Снижение доступности глюкозы и инсулинорезистентность способствуют замедлению эритропоэза, так как дифференцировка эритроцитов остро зависит от метаболизма глюкозы [239].

ФНО-а оказывает наиболее выраженное влияние на липидный обмен, изменения в котором наиболее выражены у пациентов с раковой кахексией [261]. ФНО-а подавляет экспрессию и активность одного из ключевых ферментов липидного обмена – липопротеиновой липазы, отвечающей за конверсию циркулирующих триглицеридов в жирные кислоты [261]. Также показана способность ΦΗΟ-α уменьшать синтез переносчиков жирных кислот в адипоциты, что приводит к снижению липогенеза и усилению липолиза за счет уменьшения активности таких ферментов, как ацетил-КоА-карбоксилаза, ацил-КоА-синтаза и синтаза жирных кислот [75]. Еще один важный механизм, за счет которого ФНО-а оказывает влияние на жировой обмен, это его ингибирующее воздействие на один из ключевых регуляторов жирового обмена – рецептор, активируемый пролифераторами пероксисом, гамма (PPARg – peroxisome proliferator activated receptor gamma) [90]. Подавление PPARg приводит к состоянию, известному как липоатрофия [51]. Примечательно, что в экспериментальном исследовании E. Nagasawa et al. 2005 г. показано значение PPARg в регуляции созревания эритроидных предшественников [271]. Таким образом, ФНО-а может угнетать эритропоэз, в том числе и за счет влияния на липидный обмен, однако это требует дальнейших исследований.

В отношении ИЛ-6 показано его ключевое значение в белковом метаболизме снижении мышечной пациентов массы V злокачественными новообразованиями [244]. Влияние на белковый обмен осуществляется посредством ИЛ-6/STAT3-зависимой регуляции другого сигнального пути, PI3K/Akt/mTOR, который отвечает за оценку имеющейся энергии и за рост мышечной массы в физиологических условиях [244]. После того, как ИЛ-6 активирует сигнальный путь PI3K/Akt/mTOR, происходит усиление деградации и снижение доступности аминокислот, что также способствует снижению эритропоэза у пациентов со злокачественными новообразованиями, особенно на поздних стадиях. Показана зависимость синтеза гемоглобина и последующего созревания эритроцитов от активации

то сокращении запаса аминокислот уменьшается активность mTOR, что приводит к снижению синтеза гемоглобина [247, 344]. Характерный для АХЗ у пациентов со злокачественными новообразованиями функциональный дефицит железа способствует снижению синтеза гема, входящего в состав мышечного миоглобина. Это свидетельствует о том, что развитие анемии приводит к уменьшению мышечной массы у больных раком [244]. Для ИЛ-6, как и для ИЛ-1, доказано ингибирующее влияние на синтез инсулина и негативное влияние на метаболизм β-клеток поджелудочной железы [204].

Результаты представленных выше исследований отражают сложный, многокомпонентый генез AX3V пациентов co злокачественными новообразованиями. Показано важное значение изменений обмена железа, нарушений синтеза ЭПО и снижения чувствительности его рецепторов, а также нарушения эритропоэза преимущественно вследствие цитокинов и развивающейся гипоксии. Многие вопросы патогенеза, а также диагностики АХЗ у этой категории больных остаются спорными или нерешенными, что обусловливает высокую актуальность дальнейших исследований в этом направлении.

1.8. Современные представления о патогенезе анемии хронических заболеваний у пациентов с воспалительными заболеваниями суставов

Патогенез АХЗ, развивающейся у пациентов с ПсА, РА и АС, имеет сложный и многокомпонентный характер, в основе которого лежат изменения, связанные с хроническим воспалением [11, 13, 37, 300]. Несмотря на то, что анемия при этих заболеваниях имеет преимущественно воспалительный генез, в зависимости от стадии заболевания в ее развитии также могут участвовать другие факторы. Описаны случаи развития ЖДА у пациентов с ревматической патологией на фоне мальабсорбции, или потери железа [42, 327]. Также возможно развитие малых кровотечений как вследствие проводимой

лекарственной терапии (терапия нестероидными или гормональными противовоспалительными препаратами или антитромботическая терапия), так и в результате сопутствующей патологии желудочно-кишечного тракта (гастриты, дуодениты, заболевания кишечника) или гинекологических заболеваний (кровопотеря во время месячных, миома матки, рак эндометрия) [4, 367].

Пациенты с ревматической патологией получают специфическую терапию, направленную как на уменьшение воспаления, так и на уменьшение активности заболевания. Проводимая терапия также может способствовать развитию анемии за счет различных механизмов. Доказано влияние на эритропоэз препаратов, ингибирующих внутриклеточные «сигнальные» молекулы янус-киназы (JAK), называемых якинибы (Jakinibs), и первым представителем этого класса является препарат тофацитиниб. Якинибы ослабляют действие ЭПО на клетки путем ингибирования ЈАК2, важного нисходящего сигнального компонента рецептора ЭПО, и тем самым приводят к развитию анемии легкой степени. Такие иммуносупрессивные препараты, азатиоприн, метотрексат, лефлуномид, циклоспорин, лефлуномид, микофеноловая кислота, также ингибиторы a протонной нестероидные противовоспалительные препараты также способствуют развитию анемии и уменьшению продолжительности жизни эритроцитов за счет различных механизмов [4, 235, 367].

Кроме того, иммуносупрессивная терапия может приводить к реактивации имеющейся у больного хронической инфекции (хронические вирусные гепатиты В и С, ВИЧ, парвовирус В19, герпетическая инфекция, кишечные гельминты) и прогрессированию анемии за счет таких механизмов, как подавление эритропоэза, гемолиз, гастроинтестинальные кровотечения или задержка железа в депо на фоне развивающейся воспалительной реакции [4, 235, 367]. Ниже представлены результаты исследований, в которых изучались ключевые компоненты патогенеза АХЗ у пациентов с ревматической патологией.

1.8.1. Изменения обмена железа

Для пациентов с ревматической патологией и АХЗ характерно развитие функционального дефицита железа с характерными для этого состояния лабораторными показателями. У пациентов с ревматоидным артритом и АХЗ имеется сниженная концентрация железа, ОЖСС, коэффициента насыщения трансферрина железом, повышенная концентрация ферритина в сравнении со здоровыми добровольцами [201]. Также у пациентов с ревматической патологией и АХЗ выявлено увеличение концентрации острофазовых показателей, таких как СРБ, фибриноген, амилоид А [141]. В нескольких исследованиях показано повышение концентрации гепцидина у пациентов с ревматической патологией и анемией хронических заболеваний [95, 98, 315]. Однако в исследовании G. A. Scholz et al. 2019 г. не выявлено межгрупповых различий в концентрации гепцидина у пациентов с РА и АХЗ, ЖДА и их сочетанием [343].

В нескольких исследованиях показана взаимосвязь между высокой концентраций гепцидина и некоторых провоспалительных цитокинов, таких как ИЛ-6 и ФНО-α [95, 314]. В то же время в исследовании Song et al. 2013 г. у пациентов с РА и анемией корреляция между ИЛ-6 и гепцидином оказалась невыраженной, что авторы объясняют смешанным генезом анемии с включением истинной ЖДА [98]. По результатам исследования G.A. Scholz et al. 2019 г., у пациентов с РА и анемией установлена выраженная взаимосвязь гепцидина с дефицитом железа и ставится под сомнение взаимосвязь между гепцидином, концентрацией гемоглобина и уровнем воспаления [343].

Косвенное доказательство влияния цитокинов на концентрацию гепцидина продемонстрировано в исследовании S. N. J. Song et al. 2013 г., согласно которому у пациентов с РА и анемическим синдромом оценивалось влияние антител к рецептору ИЛ-6 тоцилизумаба и ингибиторов ФНО-α (этанерцепт, инфликсимаб, адалимумаб) на концентрацию гемоглобина и параметры обмена железа, включая гепцидин. На фоне терапии обеими

группами препаратов отмечалось статистически значимое увеличение концентрации гемоглобина с более выраженным эффектом в группе получавших тоцилизумаб. Также на фоне лечения как тоцилизумабом, так и ингибиторами ΦНО-α отмечалось значимое увеличение концентрации железа, уменьшение концентрации ферритина, СРБ и гепцидина [98].

В 2013 г. S. N. J. Song et al. на клеточной культуре гепатомы выполнена экспериментальная оценка влияния ИЛ-6 и ФНО-α на синтез гепцидина. В ходе исследования показано стимулирующее воздействие ИЛ-6 на синтез гепцидина. Также на клетках гепатомы показано, что ФНО-α снижает как базальную, так и активированную ИЛ-6 секрецию гепцидина [98]. В нескольких исследованиях показана способность ФНО-α влиять на развитие АХЗ у ревматических больных через гепцидин-независимый механизм за счет ингибирования экспрессии мРНК белка ферропортина [67, 98, 103].

Кроме того, выполнены исследования, в которых изучалось значение sTfR в патогенезе AX3, а также возможность использования этого показателя для диагностики AX3. Существующие данные, касающиеся этого показателя, существенно отличаются. Большая часть работ посвящена возможности использования этого показателя для дифференциальной диагностики AX3 и ЖДА. Результаты этих исследований приведены в разделе, посвященном диагностике AX3.

1.8.2. Уменьшение синтеза и биологической активности эритропоэтина у пациентов с анемией хронических заболеваний и воспалительными заболеваниями суставов

Данные по значению ЭПО в развитии AX3 у пациентов с ревматической патологией достаточно ограничены, число исследований немногочисленно.

В исследовании Y. Zhu et al. 2000 г. у пациентов с PA и AX3 выявлена сниженная концентрация ЭПО в сравнении с пациентами с PA и ЖДА, при этом концентрации гемоглобина были сопоставимы [379]. В исследовании G.

А. Scholz et al. 2019 г. у пациентов с РА не выявлено межгрупповых различий в концентрации ЭПО при развитии АХЗ, ЖДА и при их сочетании [343]. Авторами этого исследования отмечается и то, что концентрация ЭПО больше коррелировала с уровнем дефицита железа, а не с концентрацией гемоглобина. Также в этом исследовании у всех пациентов с анемией показана недостаточно низкая концентрация ЭПО даже на фоне применения ингибиторов ФНО-α и антител к рецептору ИЛ-6. Это состояние расценивается авторами как следствие развития тканевой резистентности к ЭПО [343]. В исследовании М. А. Smith в условиях in vitro на клетках костного мозга пациентов с РА показано снижение чувствительности колониеобразующих единиц эритроцитов к действию ЭПО [68].

1.8.3. Исследование влияния цитокинов на эритропоэз при развитии анемии хронических заболеваний у пациентов с воспалительными заболеваниями суставов

По результатам небольшого числа ранее выполненных исследований показано значение провоспалительных цитокинов в патогенезе АХЗ у пациентов с ревматической патологией.

В исследовании М. Jongen-Lavrencic et al. 1997 г. исследовалась концентрация ИЛ-6 и ФНО-α в пунктате костного мозга у 14 пациентов с РА и АХЗ в сравнении с 14 пациентами с РА без анемии. В ходе исследования выявлены более высокие концентрации ИЛ-6 и ФНО-α у пациентов с АХЗ [126]. В исследовании Р.V. Voulgari et al. 1999 г. исследовались концентрации ИЛ-6, ИЛ-1β, ФНО-α и ИЛ-10 у греческой популяции пациентов с РА и АХЗ. По результатам исследования установлено, что у пациентов с РА и АХЗ в сравнении с пациентами без анемии имеются более высокие концентрации ИЛ-6, ФНО-α и ИЛ-1β. В отношении ИЛ-10 авторами не выявлено межгрупповых различий [301].

В исследовании Y. Zhu et al. 2000 г. у больных PA с AX3 выявлены более высокие концентрации ФНО-а и ИНФ-у в сравнении с контрольной группой пациентов без анемии. Авторами исследования показано негативное влияние ФНО-α и ИНФ-у на концентрацию гемоглобина и сывороточного железа [181]. В целом в отношении ревматических больных возможно сказать, что имеются исследования, в которых описывалось повышение концентраций отдельных цитокинов при развитии АХЗ. Механизмы, с помощью которых опосредуется действие цитокинов на эритропоэз, до сих пор до конца не ясны. Имеется небольшое число экспериментальных исследований, в которых изучалось влияние цитокинов на эритропоэз у пациентов с ревматической патологией. Так, в экспериментальной работе W. Kheansaard et al. 2013 г. изучалось влияние ИНФ-у на эритропоэз у пациентов с РА и АХЗ. Авторами установлено, что ИНФ-у способствует выработке оксида азота клеткамиэритроидными предшественниками с последующим апоптозом этих клеток. Для ИЛ-1В, ФНО-а не выявлено такого выраженного проапоптотического эффекта, как для ИНФ-у.

О важном значении провоспалительных цитокинов в развитии АХЗ у этой группы больных свидетельствует высокая эффективность таргетной терапии ревматических заболеваний, направленной на блокирование действия этих цитокинов. В исследовании D. E. Furst et al. 2013 г. у пациентов с РА, ПсА и АС оценивалось влияние терапии ингибитором ФНО-α галимумабом на концентрацию гемоглобина. На фоне терапии галимумабом отмечалось статистически значимое увеличение концентрации гемоглобина при каждом типе исследуемых артритов. Наиболее выраженный эффект отмечен у пациентов с диагностированной анемией хронических заболеваний [337].

В клиническом регистре CorEvitas у 2772 пациентов с РА оценивалось влияние терапии в течение 6 месяцев ингибиторами ФНО-α (адалимумаб, этанерцепт, цертолизумаба пегол, голимумаб или инфликсимаб), антителами к рецептору ИЛ-6 (тоцилизумаб или сарилумаб) и ингибиторами янус-киназы (тофацитиниб, барицитиниб, упадацитиниб) на концентрацию гемоглобина и

СРБ. У 1044 пациентов в начале исследования имелись отклонения в концентрации гемоглобина или СРБ, а у 252 пациентов изменены сразу оба показателя. По результатам исследования установлено, что наиболее выраженным эффектом на коррекцию анемии и уменьшение концентрации СРБ обладают антитела к рецептору ИЛ-6. Эффект не зависел от исходной концентрации гемоглобина и СРБ [257]. В исследовании А. Соггаdо et al. 2017 г. оценивалось влияние ингибиторов ФНО-α (этанерцепт, адалимумаб и инфликсимаб) на анемию у пациентов с РА и ПсА. У пациентов с анемией на фоне проводимой терапии ингибиторами ФНОα показано увеличение концентрации гемоглобина и уменьшение концентрации ферритина, СРБ. Данный эффект выявлен как у пациентов с РА, так и с ПсА [74].

Представленные выше данные отражают сложный, многокомпонентный патогенез АХЗ у пациентов с ревматической патологией. Большое число исследований посвящено значению провоспалительных цитокинов в развитии АХЗ. На сегодняшний день не до конца понятны механизмы, за счет которых реализуется влияние цитокинов на обмен железа, синтез и биологическую активность эритропоэтина. Большая часть исследований посвящена изучению небольшого лабораторных показателей числа И проводилась преимущественно у пациентов с РА. Обращает на себя внимание отличие в результатах выполненных исследований. При этом проведено крайне мало исследований, в которых изучалось значение ЭПО в патогенезе АХЗ, взаимосвязь между ним, цитокинами и регуляторами обмена железа. Все эти факторы обусловливают актуальность дальнейших исследований патогенеза АХЗ у пациентов с ревматической патологией, а также выявление ведущих факторов ее развития. Это актуально также и с позиции оптимизации и улучшения терапевтических подходов к лечению анемии у этой категории больных.

1.9. Современные представления о патогенезе анемии хронических заболеваний у пациентов с ВИЧ-инфекцией

Как уже указывалось выше, анемия – одно из самых частых осложнений ВИЧ-инфекции, развивающееся, по оценкам некоторых исследователей, у 80–90 % пациентов [70, 286]. У этой категории пациентов возможно развитие АХЗ, ЖДА, а также анемии, ассоциированной с присоединением сопутствующей инфекции и вследствие проводимой антиретровирусной терапии [92, 109, 286, 374]. АХЗ как основная причина снижения концентрации гемоглобина и числа эритроцитов может затрагивать до 47 % пациентов [70]. ЖДА развивается у 20–44 % пациентов и занимает второе место как причина развития анемии у пациентов с ВИЧ-инфекцией [70, 214, 335, 218].

Как и при других нозологических формах, в развитии АХЗ возможно выделить три основных механизма развития: изменения обмена железа, нарушение пролиферации и дифференцировки клеток эритропоэза, уменьшение синтеза и биологической активности ЭПО [12, 34, 35].

В нескольких исследованиях установлено, что у пациентов с ВИЧ-инфекцией и АХЗ развиваются изменения в обмене железа, прежде всего за счет усиления синтеза гепцидина. У пациентов с ВИЧ-инфекцией и АХЗ показана взаимосвязь между повышением концентрации гепцидина и снижением концентрации гемоглобина [55, 62]. В исследовании А. Somia et al. 2019 г. установлено, что повышенная концентрация гепцидина — это фактор риска развития АХЗ у ВИЧ-больных [168]. Также в небольшом количестве исследований показано повышение концентрации гепцидина у пациентов с ВИЧ-инфекцией в сравнении со здоровыми добровольцами [112]. В ряде исследований оценивалась возможность использования sTfR для диагностики дефицита железа у ВИЧ-инфицированных. Предполагается, что увеличение sTfR отражает развитие абсолютного дефицита [234]. Однако влияние

сопутствующего воспаления на его концентрацию до сих пор остается спорным моментом [362].

В небольшом количестве работ показана способность ИЛ-6 стимулировать синтез гепцидина у этой категории больных [286]. У пациентов с ВИЧ-инфекцией и АХЗ в сравнении с пациентами без анемии выявлены повышенные концентрации ИЛ-6, ФНО-α, ИНФ-γ и ИЛ-10 [168, 202, 293].

По данным нескольких исследований, у больных ВИЧ-инфекцией в развитии АХЗ имеет важное значение уменьшение синтеза и биологической активности ЭПО. Некоторыми исследователями отмечается не соответствующий тяжести анемии уровень ЭПО [193, 313]. По другим данным, у этой категории больных снижен клеточный ответ на эндогенный ЭПО [153, 241, 314]. Подобный эффект может быть обусловлен действием провоспалительных цитокинов. В исследовании S. Parinitha et al. 2012 г. показана способность ФНО-α и ИЛ-1β ингибировать синтез ЭПО у пациентов с ВИЧ-инфекцией [260].

В отличие от групп пациентов со злокачественными новообразованиями и хроническими воспалительными заболеваниями суставов у пациентов с ВИЧ-инфекцией имеются другие механизмы нарушения эритропоэза, не связанные с действием провоспалительных цитокинов. Значительное число исследований посвящено возможности инфицирования вирусом иммунодефицита человека гемопоэтических стволовых клеток и клетокэритроидных предшественников. Ранее установлена возможность заражения клеток вирусом иммунодефицита человека не только через CD4-рецептор, но и через C-C рецептор хемокина типа 5 (CCR5) и C-X-C рецептор хемокина типа 4 (CXCR4) [174, 175]. Важным стало открытие на клеточной мембране гемопоэтических стволовых клеток небольшого количества рецепторов СD4, количества CCR5- и CXCR4-рецепторов, также разного потенциально восприимчивы к ВИЧ-инфекции [91, 175, 285]. На клеточной мембране ранних эритроидных предшественников обнаружены только СХСR4-рецепторы, при этом не найдены CD4- и CCR5-рецепторы, что

обусловливает возможность заражения этих клеток только через один рецептор [174, 237]. Возможность вируса иммунодефицита человека заражать клетки, участвующие в эритропоэзе, до сих пор обсуждается, результаты исследований разнятся между собой. Так, в исследованиях С. С. Carter et al. 2011 г. и С. С. Nixon et al. 2013 г. в условиях in vitro показана возможность вируса иммунодефицита человека заражать гемопоэтические стволовые клетки [174, 175]. Напротив, ряд исследователей в условиях in vitro не смогли доказать заражения гемопоэтических стволовых клеток ВИЧ-инфекцией [173, 154]. Несмотря на различные мнения исследователей в отношении возможности прямого заражения гемопоэтических клеток ВИЧ-инфекцией, в большом числе экспериментальных и клинических исследований показана пролиферацию возможность ЭТОГО вируса значимо подавлять И дифференцировку гемопоэтических стволовых клеток [256, 285].

У этой категории пациентов описан еще один механизм влияния на клетки-эритроидные предшественники. В исследованиях in vitro показана возможность связывания комплекса антител человека с белками оболочки вируса иммуннодефицита человека с СD4-рецептором. Так, комплекс, состоящий из гликопротеина вирусной оболочки gp120 и антитела к нему (анти-gp120), после связывания с CD4-рецептором на клеточной стенке гемопоэтической стволовой клетки способствует развитию ее Fas-индуцированного апоптоза [52, 120].

Еще одним механизмом, за счет которого ВИЧ-инфекция снижает способность эритропоэз, является доказанная вируса заражать мезенхимальные и эндотелиальные клетки костного мозга, что приводит к И последующей гибели нарушению передачи сигналов цитокинов гемопоэтических стволовых клеток в костном мозге [177, 190].

Таким образом диагностика АХЗ у пациентов с ВИЧ-инфекцией остается важной проблемой в связи с высоким распространением этой анемии и ее значимым влиянием на прогноз и течение основного заболевания. Показан сложный, многокомпонентный генез этой анемии с важным вкладом в ее

развитие нарушений обмена железа и провоспалительных цитокинов, а также нарушений эритропоэза. В то же время количество исследований, в которых изучается патогенез этой анемии у ВИЧ-инфицированных, достаточно ограничено, большая часть исследований посвящена изучению преимущественно ИЛ-6. Многие исследования выполнены в условиях in vitro, и недостаточно клинических исследований о влиянии цитокинов на эритропоэз. Все это обусловливает актуальность дальнейшего исследования патогенеза АХЗ у пациентов с ВИЧ-инфекцией.

1.10. Диагностика анемии хронических заболеваний. Современные маркеры дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии

Согласно критериям ВОЗ, анемия диагностируется при концентрации гемоглобина менее 130 г/л у мужчин и менее 120 г/л у женщин [374]. На сегодняшний день не существует лабораторных маркеров, позволяющих со 100%-ной чувствительностью специфичностью И проводить диференциальную диагностику АХЗ и ЖДА. Принципиальное отличие этих двух анемий заключается в том, какой дефицит железа развивается. При ЖДА развивается абсолютный дефицит железа, характеризующийся низкой концентрацией железа в депо и снижением поступления железа извне [4]. Для AX3 характерно функционального дефицита развитие характеризующегося высоким содержанием железа в депо организма, но блокированием этих запасов и невозможностью их доставки к органам и тканям, нуждающимся в железе [4]. Ситуация еще больше осложняется, когда у одного пациента происходит сочетание двух этих типов анемий.

AX3 Классическая представляет ИЗ себя нормохромную, нормоцитарную анемию легкой ИЛИ средней степени тяжести развивающимся функциональным дефицитом который железа,

характеризуется высокой концентрацией ферритина и низкой концентрацией железа и трансферрина в сыворотке крови [4, 115]. Однако, по данным ряда исследователей, АХЗ характеризуется гипохромией и микроцитозом, характерным для классической железодефицитной анемии [4]. В связи с подавлением синтеза трансферрина такой лабораторный показатель, как КНТ, может оставаться нормальным [351]. В клинической практике для диагностики АХЗ часто используется пороговое значение КНТ, равное 20 %, однако в связи с подавлением синтеза трансферрина применение этого показателя не всегда возможно и корректно [114, 276].

Также некоторыми исследователями для проведения дифференциальной диагностики АХЗ и ЖДА используется одни из самых доступных критериев, предложенный Van Santen и M. Worwood [158, 376]:

- диагноз AX3 устанавливался при КНТ >16 %, ферритине \geq 100 нг/мл, СРБ \geq 10 мг/л;
- диагноз ЖДА устанавливался при КНТ <16 %, ферритине <30 нг/мл, СРБ <10 мг/л;
- диагноз АХЗ/ЖДА устанавливался при КНТ <16 %, ферритине <100 нг/мл, СРБ \geq 10 мг/л.

Более дифференциальной четкие рекомендации относительно диагностики АХЗ и ЖДА даны Европейским обществом медицинской онкологии в 2018 г. Согласно им, у пациентов со злокачественными новообразованиями абсолютный дефицит железа диагностируется при КНТ менее 20 % и концентрации ферритина менее 100 мкг/л, а функциональный дефицит железа – при КНТ менее 20 % и концентрации ферритина более 100 мкг/л [232]. Однако в проспективном исследовании, выполненном Т. Steinmetz et al. в 2016 г., показано, что только трети пациентов со злокачественными новообразованиями и анемическим синдромом выполнялось скрининговое исследование обмена железа перед лечением анемии [73]. В настоящее время можно утверждать, что скрининговое исследование обмена железа у пациентов со злокачественными новообразованиями не является рутинным

мероприятием [73]. При другой терапевтической патологии определения функционального и абсолютного дефицита, а соответственно, и критериев дифференциальной диагностики АХЗ и ЖДА, менее четкие или вообще отсутствуют [39].

На сегодняшний день нет общепризнанного диагностического алгоритма, позволяющего четко отличить АХЗ от ЖДА при различной патологии [151]. В связи с этим актуальным остается дальнейших поиск маркеров и алгоритмов, позволяющих с высокой чувствительностью и специфичностью проводить дифференциальную диагностику АХЗ и ЖДА.

В связи с важным значением оси гепцидин-ферропортин в патогенезе AX3 исследования, В которых изучалась выполнены возможность использования этих показателей для дифференциальной диагностики АХЗ и ЖДА при различной патологии. В мета-анализ, выполненный J. Han и K. Wang в 2021 г. включены 10 исследований с общим числом больных 739, из них 402 пациента с АХЗ. Установлено, что определение концентрации гепцидина является ценным методом для диагностики АХЗ. Однако в это исследование не включались пациенты со злокачественными новообразованиями или системными воспалительными заболеваниями [151]. Исследования, в которых выполнялся сравнительный анализ диагностической ценности гепцидина в сравнении со стандартными показателями обмена железа, достаточно ограничены. Так, в исследовании Т. Shu et al. 2015 г. у пациентов со злокачественными новообразованиями показана большая чувствительность и специфичность гепцидина для диагностики AX3 в сравнении с концентрацией железа, КНТ и ОЖСС [161]. В исследовании S. van Santen et al. (2011 г.) показана диагностическая значимость гепцидина для дифференциальной диагностики AX3 и сочетания AX3/ЖДА у больных с PA. Значение AUC для гепцидина составило 0,88 [158]. Наоборот, в исследовании Huibers M.H.W. et al. 2020 г. в ходе изучения показателей ВИЧ-больных с тяжелой анемией (гемоглобин менее 70 г/л) имеются данные о низкой диагностической значимости гепцидина для диагностики дефицита железа (AUC – 0,767),

отмечена необходимость дальнейшего анализа этого показателя [43]. В исследовании A. Frosch et al. 2018 г. также не выявлено различий в концентрации гепцидина у пациентов с ВИЧ-инфекцией с анемией и без нее [214].

В течение последних лет большое внимание уделяется исследованию sTfR и оценке его эффективности для диагностики анемии хронических заболеваний. В работе G.A. Scholz et al. 2019 г. у пациентов с PA не выявлено различий в концентрации sTfR при развитии AX3, ЖДА, а также при их сочетании. Некоторыми авторами также отмечается негативный эфффект системного воспаления на возможность использования sTfR для диагностики АХЗ у пациентов с ревматической патологией [370]. Существует и диаметрально противоположное мнение, согласно которому на концентрацию sTfR воспаление не влияет и использование этого показателя рекомендовано для проведения дифференциальной диагностики АХЗ и ЖДА у пациентов с ревматической патологией [149,323]. По результатам некоторых исследований, сделан вывод о том, что повышение концентрации sTfR у пациентов с ревматической патологией и АХЗ может свидетельствовать о присоединении абсолютного дефицита железа [135, 320]. Одно из последних исследований, посвященное использованию sTfR для дифференциальной диагностики АХЗ и ЖДА у пациентов с ревматической патологией, выполнено F. Günther et al. в 2022 г. По его результатам установлено, что использование sTfR возможно для диагностики абсолютного дефицита железа только при концентрации СРБ более 24,1 мг/л, то есть высоком уровне воспаления [360]. Схожие результаты в этом исследовании получены и в отношении ферритина, диагностическая значимость этого показателя в отношении абсолютного дефицита железа снижалась при концентрации СРБ более 24,1 мг/л. С другой стороны, в нескольких исследованиях не выявлено высокой диагностической значимости sTfR в сравнении с ферритином. В исследовании Т. Pettersson et al. (1994 г.) для sTfR не выявлено более высокой чувтвительности и специфичности в сравнении с ферритином [266]. Схожие результаты в

отношении sTfR получены в исследовании A. E. Mast et al. (1998 г). В ходе исследования пациентов с гематологической и не гематологической патологией не выявлено более высокой диагностической значимости sTfR в сравнении с ферритином для дифференциальной диагностики АХЗ и ЖДА [96]. В исследовании Е. J. Lee et al. (2002 г.) на 120 пациентах с анемией вследствие хронического воспаления, хронической инфекции или при не гематологических злокачественных новообразованиях продемонстрированы преимущества sTfR перед ферритином в отношении диагностики абсолютного дефицита железа [322]. Исследовался sTfR для диагностики анемии и у пациентов с ВИЧ-инфекцией. В исследовании А. Frosch et al. 2018 г. показана высокая информационная способность sTfR для диагностики дефицита железа у пациентов с анемией и ВИЧ-инфекцией [214]. В этом исследовании информационная способность sTfR в отношении диагностики дефицита железа выше в сравнении с ферритином и гепцидином.

Также активно исследуются альтернативные маркеры для диагностики АХЗ, например, содержание гемоглобина в ретикулоцитах, процент гипохромных эритроцитов, ширина распределения эритроцитов. Хотя в некоторых работах показана диагностическая значимость этих показателей, результаты в значительной степени зависели от наличия соответствующего лабораторного оборудования и правильности выполнения методики их определения [4]. Большая часть исследований, в которых изучалась диагностика АХЗ, посвящена изучению гепцидина, sTfR и других показателей обмена железа. Необходимо отметить, что крайне мало исследований, в которых сравнивалась диагностическая значимость гепцидина и sTfR для диагностики АХЗ с другими параметрами обмена железа или воспаления.

Из выше представленных данных можно сделать вывод о неоднозначности полученных результатов и необходимости дальнейших исследований с целью поиска оптимальных параметров для проведения дифференциальной диагностики АХЗ и ЖДА у пациентов с различной терапевтической патологией.

Все это обусловливает актуальность дальнейшей работы в этом направлении.

ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1. Объект, материалы и методы исследования

Основной базой исследования являлось Федеральное государственное казенное учреждение «1586 Военный клинический госпиталь» Министерства обороны Российской Федерации.

В описательное исследование одномоментного среза включены 394 пациента (326 – с анемией, 68 – контрольная группа) из трех выборок больных со следующими патологическими состояниями:

- солидные злокачественные новообразования;
- воспалительные заболевания суставов;
- ВИЧ-инфекция.

Набор пациентов осуществлялся на базе отделения гематологии и химиотерапии, отделения ревматологии, отделений терапевтического профиля, отделения для лечения больных с ВИЧ-инфекцией Федерального государственного казенного учреждения «1586 Военный клинический госпиталь» Министерства обороны Российской Федерации.

В каждой выборке пациентов формировалось четыре группы: пациенты с АХЗ, пациенты с ЖДА, пациенты с сочетанием АХЗ и ЖДА и контрольная группа пациентов без анемии.

Разделение на группы больных с анемией проводилось с использованием критериев, предложенных Van Santen and M. Worwood [158, 376]:

- диагноз АХЗ устанавливался при КНТ >16 %, ферритине \geq 100 нг/мл, СРБ \geq 10 мг/л;
- диагноз ЖДА устанавливался при КНТ <1 %, ферритине < 30 нг/мл, СРБ <10 мг/л;
- диагноз АХЗ/ЖДА устанавливался при КНТ <16 %, ферритине < 100 нг/мл, СРБ \geq 10 мг/л.

2.1.1. Пациенты со злокачественными новообразованиями

В исследование включены 143 пациента с солидными злокачественными новообразованиями различной локализации, в том числе 121 пациент с солидными злокачественными новообразованиями различной локализации с анемией. В качестве контрольной группы осуществлялся набор пациентов с солидными злокачественными новообразованиями без анемии (22 пациента). После определения КНТ, СРБ и ферритина (критерии Van Santen and M. Worwood) все пациенты разделялись на три группы в зависимости от типа анемии. Подробная характеристика пациентов представлена в Таблице 1.

Таблица 1 – Характеристика пациентов со злокачественными новообразованиями

Показатель	Группа					
	1-я	2-я	3-я	Контрольная		
	AX3	АХЗ/ЖДА	ЖДА	группа		
Число больных	42	53	26	22		
Пол (м/ж)	31/11	35/18	18/8	17/5		
Возраст, лет	60 [56–65]	61 [56–67]	61 [55–68]	63 [53–65]		
Локализация опухоли, число пациентов (%)						
Желудок	7 (16,7)	10 (18,5)	6 (23)	3 (16,6)		
Стадия, число (%):						
I						
II	-	-	-	-		
III	2 (33)	2 (20)	1 (16,7)	1 (33,3)		
IV	-	4 (40)	1 (16,7)	1 (33,3)		
	5 (67)	4 (40)	4 (66,6)	1 (33,3)		
Пищевод	3 (7,3)	-	2 (7,8)	2 (11,1)		
Стадия, число (%):						
I						
II	-	-	-	-		
III	3 (100)	-	1 (50)	1 (50)		
IV	-	-	1 (50)	1 (50)		
	-	-	-	-		
Толстая кишка	7 (16,7)	12 (22,2)	12 (46,1)	6 (27,7)		
Стадия, число (%):						

_	ī		T	T I
I				
II	-	-	-	-
III	-	4 (33,3)	4 (33,3)	5 (83,3)
IV	2 (33)	4 (33,3)	6 (50)	1 (16,7)
	5 (67)	4 (33,3)	2 (16,7)	-
Прямая кишка	2 (4,7)	10 (18,5)	4 (15,3)	3 (16,6)
Стадия, число (%):				
I				
II	-	-	-	-
III	-	2 (20)	2 (50)	1 (33,3)
IV	2 (100)	6 (60)	1 (25)	1 (33,3)
	_	2 (20)	1 (25)	1 (33,3)
Легкие	19(45)	14 (26)	2 (7,8)	3 (16,6)
Стадия, число (%):	, ,		\ , , ,	
I				
II	4 (21,3)	4 (28)	-	-
III	6 (31,5)	2 (14,2)	1 (50)	1 (33,3)
IV	3 (15,7)	-	1 (50)	1 (33,3)
	6 (31,5)	8 (57,8)	_	1 (33,3)
Молочная железа	4 (9,6)	8 (14,8)	-	3 (16,6)
Стадия, число (%):	() /			
I				
II				
III	_	_	_	_
IV	_	4 (50)	_	2 (66,6)
	_	4 (50)	_	1 (33,4)
	4 (100)	-	_	-
Проведенное	. (100)			
лечение:				
- заболевание	22 (52,4%)	36 (68%)	23 (88%)	17 (77%)
впервые выявлено		23 (30/0)	25 (5070)	[[
- комбинированное	6 (15,7%)	5 (9%)	1 (4%)	1 (4,8%)
лечение			1 (1/0)	(1,070)
- комплексное	3 (5,4%)	6 (12%)	1 (4%)	3 (13,4%)
лечение		3 (12/0)	1 (1/0)	
- химиотерапия	11 (26,5%)	6 (12%)	1 (4%)	1 (4,8%)
линотеранил	11 (20,5/0)	0 (12/0)	I (T/U)	I (7,070)

Стадирование заболевания осуществлялось на основании классификации TNM [9]. С целью морфологической верификации опухоли всем пациентам выполнялось гистологическое исследование.

Критерии включения:

- возраст более 18 лет;
- наличие солидного злокачественного новообразования.

Критерии исключения:

- специализированное лечение по поводу злокачественного новообразования в предшествующий месяц (химиотерапия или лучевая терапия);
 - большие оперативные вмешательства в предшествующий месяц;
 - лабораторные или клинические признаки кровотечения;
- прием препаратов железа или витамина D, B_{12} или фолиевой кислоты в предшествующий месяц.

Среди пациентов с анемией большую часть – 66,4 % (81 пациент из 121) составили больные c впервые выявленным злокачественным новообразованием; пациенты с рецидивом основного заболевания после проведенного комбинированного лечения – 9,9 % (12 пациентов из 121); пациенты рецидивом основного заболевания после проведенного комплексного лечения – 8,2 % (10 пациентов из 121); пациенты с рецидивом основного заболевания после проведенной химиотерапии – 14,8 % (18 пациентов из 121).

После уточнения генеза анемии только у 26 пациентов из 121 (21,5 %) диагностирована классическая ЖДА, тогда как у 42 (34,7 %) диагностирована АХЗ, а у 53 пациентов (43,8 %) выявлены лабораторные критерии сочетания АХЗ и ЖДА.

2.1.2. Пациенты с воспалительными заболеваниями суставов

С целью исследования патогенеза АХЗ при ревматической патологии в исследование включены 104 пациента с воспалительными заболеваниями суставов и анемическим синдромом, в том числе 54 пациента с РА, 27 пациентов с ПсА и 23 пациента с АС. После определения КНТ, СРБ и ферритина (критерии Van Santen and M. Worwood) все пациенты разделялись

на три группы в зависимости от типа анемии. В контрольную группу включены 22 пациента с воспалительными заболеваниями суставов (PA, ПсA, AC) без анемии. Подробная характеристика пациентов представлена в Таблице 2.

Таблица 2 — Характеристика пациентов с воспалительными заболеваниями суставов

Показатель	Группа				
	1-я	2-я	3-я	Контрольная	
	AX3	ЖДА	АХЗ/ЖДА	группа	
Число больных, %	41 (39,5%)	29 (27,9)	34 (32,6)	22 (17,4)	
Пол (м/ж)	17/24	10/19	10/24	10/12	
1. Ревматоидный					
артрит:					
— м/ж	22 - 5/17	18 - 3/15	14 - 2/12	7 - 3/4	
– возраст, лет	$55,9 \pm 5,44$	$51,6 \pm 3,6$	$44,4 \pm 4,1$	$53,5 \pm 2,74$	
– DAS-28, балл	$4,52 \pm 0,72$	$5,7 \pm 0,3$	$4,4 \pm 0,7$	$4,2 \pm 0,2$	
– ФНС, балл	$2,5 \pm 0,16$	$2,5 \pm 0,24$	$2,3 \pm 0,2$	$2,6 \pm 0,2$	
– активность, балл	$2,27 \pm 0,3$	$2,6 \pm 0,2$	2 ± 0.5	$2,8 \pm 0,1$	
2. Псориатический					
артрит					
— м/ж	8 - 4/4	6 - 2/4	13 - 6/7	10 - 6/4	
– возраст, лет	$51,5 \pm 0,5$	$56,5 \pm 10,5$	$63 \pm 5,6$	$46,3 \pm 4,65$	
– DAS-28, балл	$5,4 \pm 0,3$	$5,2 \pm 0,4$	$4,9 \pm 0,2$	$4,7 \pm 0,1$	
– ФНС, балл	$2,5 \pm 0,5$	$2,5 \pm 0,5$	$2,5 \pm 0,5$	$2,4 \pm 0,24$	
– активность, балл	$2,5 \pm 0,5$	$2,4 \pm 0,3$	$2,5 \pm 0,5$	$2,6 \pm 0,24$	
3. Анкилозирующий					
спондилоартрит					
— м/ж	11 - 8/3	5 – 5/0	7 - 2/5	5 - 3/2	
– возраст, лет	$44,6 \pm 11,1$	39 ± 6	30 ± 2	$43,5 \pm 3,27$	

– BASDAI, балл	$6,6 \pm 0,76$	$5,3 \pm 0,8$	$6,3 \pm 0,5$	$4,92 \pm 0,73$
– ФНС, балл	$2,66 \pm 0,33$	$2,5 \pm 0,5$	2 ± 0.3	$2,25 \pm 0,25$
– активность, балл	$2,66 \pm 0,33$	$2,5 \pm 0,5$	$1,75 \pm 0,4$	$2,25 \pm 0,25$

Диагноз PA устанавливали на основании классификационных критериев American College of Rheumatology (ACR) / European League Against Rheumatism criteria (EULAR) 2010 г. [26] ПсА диагностировали на основании критериев CASPAR (Classification criteria for Psoriatic ARthritis), 2006 г. [23]. АС устанавливали на основании классификационных критериев ASAS (Assesment Ankylosing Spondylitis Work Group), 2009 г. [5]. У всех пациентов оценивали активность заболевания. Функциональную недостаточность суставов (ФНС) определяли у больных с РА, ПсА и АС. При РА и ПсА рассчитывался индекс активности заболевания (DAS28), а при АС также рассчитывался индекс активности BASDAS.

Критерии включения:

- возраст более 18 лет;
- наличие у пациента одного из трех воспалительных заболеваний суставов (PA, ПсA, AC).

Критерии исключения:

- генно-инженерная биологическая терапия в предшествующие 6 месяцев;
 - цитостатическая терапия в предшествующий месяц;
 - большие оперативные вмешательства в предшествующий месяц;
 - лабораторные или клинические признаки кровотечения;
- прием препаратов железа или витамина $D,\,B_{12}$ или фолиевой кислоты в предшествующий месяц.

После уточнения генеза анемии у 41 пациента (39,4 %) диагностирована АХЗ, у 29 пациентов (27,8 %) выявлено сочетание АХЗ и ЖДА, у 34 пациентов (32,6 %) диагностирована ЖДА.

Согласно дизайну в исследование включены как пациенты с анемическим синдромом с впервые выявленными воспалительными заболеваниями суставов (75 пациентов – 72,1 %), так и пациенты с ранее установленным диагнозом, по различным причинам не получавшие специализированную терапию и поступившие в госпиталь с обострением течения воспалительного заболевания суставов (29 пациентов – 27,9 %).

2.1.3. Пациенты с ВИЧ-инфекцией

Для выявления особенностей патогенеза анемии хронических заболеваний у пациентов с ВИЧ-инфекцией в исследование включен 101 пациент с диагностированной ВИЧ-инфекцией и анемическим синдромом. После определения КНТ, СРБ и ферритина (критерии Van Santen and M. Worwood) все пациенты разделялись на три группы в зависимости от типа анемии. В контрольную группу включено 24 пациента с подтвержденной ВИЧ-инфекцией с нормальной концентрацией гемоглобина и числом эритроцитов. Подробная характеристика пациентов представлена в Таблице 3.

Таблица 3 – Характеристика пациентов с ВИЧ-инфекцией

Показатель	Группа				
	1-я	2-я	3-я	КГ	
	AX3	ЖДА	АХЗ/ЖДА		
Число больных, %	36 (28,8 %)	35 (28 %)	30 (24 %)	24 (19,2 %)	
Пол (м/ж)	19/17	16/24	18/12	14/10	
Возраст, лет	41,7±11,8	35,4±7,1	41,2±10	37,6±7,37	
Стадия заболевания:					
2Б стадия	3 (8,3%)	-	-	3 (12,5%)	
3 стадия	-	9 (25,7 %)	3 (10 %)	18 (75 %)	
4А стадия	21 (58,3 %)	21 (59 %)	21 (70 %)	3 (12,5 %)	
4Б стадия	-	5 (14,2 %)	6 (20 %)	-	
4В стадия	12 (33,6 %)	-	-	-	

Проводимое лечение:				
- ВИЧ впервые выявлен	3 (8,3 %)	-	-	10 (41,5 %)
- АРВТ не проводилась	12 (33,3 %)	20 (57 %)	12 (40 %)	7 (29,5 %)
- АРВТ проводилась	21 (58,3 %)	15 (43 %)	18 (60 %)	5 (20,7 %)
- Бисептол	-	-	-	2 (8,3 %)
CD4, кл. в 1 мкл, всего	37,2	406,5	295,8	608
	[6–61]	[176–542]	[51–491]	[369–836]
CD4>500 кл. в 1 мкл	-	9 (25,8 %)	7 (23,3 %)	15 (62,5 %)
CD4 350-499 кл. в 1 мкл	-	11 (31,4 %)	7 (23,3 %)	3 (12,5 %)
CD4 200-349 кл. в 1 мкл	-	5 (14,2 %)	4 (13,4 %)	5 (20,8 %)
CD4<200 кл. в 1 мкл	36 (100 %)	10 (28,6 %)	12 (40 %)	1 (4,2 %)

Диагноз ВИЧ-инфекции устанавливался в соответствии с методическими рекомендациями Минздрава России от 2020 г. [10].

Скрининговая диагностика осуществлялась с помощью иммуноферментного анализа с использованием наборов реагентов КомбиБест ВИЧ-1, 2 АГ/АТ компании ЗАО «Вектор Бест – Европа» (Россия).

Референсная диагностика выполнялась методом иммуноферментного анализа с использованием наборов реагентов Genscreen ULTRA HIVAg-Ab компании «ВІО-RAD» (США), наборов реагентов «ВичИФА-HIV-Ag/Ab» группы компании ООО АлькорБио (Россия) и АГАТ-ВИЧ-1, 2 компании ЗАО «ЭКОлаб» (Россия).

Экспертная диагностика проводилась методом иммуноблоттинга с использованием тест-системы компании ЗАО «Вектор Бест — Европа» ЛИО-Блот ВИЧ-1, 2 БЕСТ (Россия) и наборов реагентов, выявляющих антиген ВИЧ-1 р24-антиген-ИФА-БЕСТ компании ЗАО «Вектор Бест» (Россия).

Иммуноферментный анализ выполнялся на комплекте оборудования для проведения ИФА, в том числе с использованием фотометра ВБ-55 «Реал Р» «Вектор Бест-Балтика» (Россия).

Иммунодефицит оценивали по числу CD4-лимфоцитов стандартным методом (проточная цитофлуорометрия) с помощью проточного

цитофлюориметра «FC-500» BeckmanCoulter (США). Использованы реагенты для проведения проточной цитофлюориметрии: моноклональные антитела CD8-FITC/CD4-PE/CD3-ECD IOTest 3 BeckmanCoulter (США) и моноклональные антитела CD45-PC7 IOTest 3 BeckmanCoulter (США).

Для характеристики течения ВИЧ-инфекции оценивали клиническую стадию заболевания (на основании Российской клинической классификации), число CD4-лимфоцитов в крови, статус APBT [10].

Группы с анемией и без анемии оказались сопоставимы по возрасту и полу, а также по соотношению получавших и не получавших антиретровирусную терапию.

После уточнения генеза анемии у 36 пациентов (35,6 %) с ВИЧ-инфекцией диагностирована АХЗ, у 35 (34,6 %) сочетание АХЗ и ЖДА, у 30 (29,7 %) пациентов выявлена ЖДА. У пациентов с анемией преимущественно диагностировалась 4-я стадия ВИЧ-инфекции, тогда как у пациентов без анемии — 3-я стадия. В группе пациентов с АХЗ 4-я стадия ВИЧ-инфекции диагностирована у 91,6 % пациентов, 2Б стадия у 8,3 %, в группе сочетания АХЗ+ЖДА 4-я стадия заболевания диагностирована у 74,2 % пациентов, 3А стадия — у 25,7 % пациентов, в группе пациентов с железодефицитной анемией 4-я стадия диагностировалась у 90 % пациентов, 3А стадия — у 10 % пациентов.

Также у пациентов с анемией показана большая распространенность иммунодефицита на основании определения числа CD4 клеток (CD4<200 клеток). Максимальная частота встречаемости иммунодефицита в группе пациентов с АХЗ (100%), минимальная – в группе сочетания АХЗ и ЖДА.

Установление стадии заболевания осуществлялось согласно Клиническим рекомендациям по лечению ВИЧ-инфекции у взрослых, Минздрава России от 2020 г. [10].

Критерии включения:

- возраст более 18 лет;
- наличие у пациента ВИЧ-инфекции, подтвержденной лабораторно (иммуноферментный анализ и имунный блоттинг).

Критерии исключения:

- большие оперативные вмешательства в предшествующий месяц;
- лабораторные или клинические признаки кровотечения;
- прием препаратов железа или витамина $D,\,B_{12}$ или фолиевой кислоты в предшествующий месяц;
- наличие у пациента злокачественного новообразования или ревматического заболевания;
 - вирусные гепатиты В и С;
 - легочный или внелегочный туберкулез легких;
- прием антиретровирусных препаратов, влияющих на эритропоэз (зидовудин).

В исследование не включались пациенты с туберкулезом легких. Он исключался на основании физикального обследования и результатов рентгенологического исследования органов грудной клетки.

2.2. Лабораторные методы исследования

2.2.1. Исследование гемограммы

периферической Всем пациентам определяли В крови эритроцитов, лейкоцитов, тромбоцитов, концентрацию гемоглобина, уровень гематокрита, а также рассчитывали эритроцитарные индексы. Исследование проводилось на гематологическом анализаторе Sysmex XS-500i (Япония) [14]. Референтные значения (р.зн.) составляли: для MCV (mean corpuscular volume – средний объем эритроцита) – 80–100 фл, для MCH (mean corpuscular hemoglobin – среднее содержание гемоглобина в эритроците) – 27–31 пг, для MCHC (mean corpuscular hemoglobin concentration – средняя концентрация гемоглобина в эритроците) -30-38 г/дл (или 300-380 г/л), для HCT (гематокрит) – для мужчин 44–48 %, для женщин 36–42 %. Изучение морфологического состава клеток периферической крови проводили согласно

общепринятым методикам с использованием окраски мазков по Паппенгейму [19].

2.2.2. Исследование биохимических показателей сыворотки крови

Определение уровня сывороточного железа (р.зн. – 8–32 мкмоль/л; далее – железа), ОЖСС (р.зн. – 44–76 мкмоль/л), ферритина (р.зн. – 20–250 мкг/л), СРБ (р.зн. – 0–35 мг/л) проводили на автоматическом биохимическом анализаторе «Оlympus Au 480», (производитель Beckman Coulter, США) в соответствии с инструкцией. Коэффициент насыщения трансферрина железом (феррозиновым методом) вычисляли по формуле: сывороточное железо, деленное на ОЖСС и умноженное на 100 % (р.зн. – 20–50 %).

2.2.3. Определение концентрации гепцидина сыворотки крови

Концентрация гепцидина исследовалась на фотометре «Charity» производства «Пробанаучприбор» (Россия) в соответствии с инструкцией.

2.2.4. Определение концентрации трансферрина и растворимого рецептора трансферрина сыворотки крови

Определение уровня трансферрина (р.зн. -2,15–3,8 г/л) выполнялось на автоматическом анализаторе Siemens Admia 1200 (производитель Diamond Diagnostics, США) на основании инструкции.

Концентрация растворимого рецептора трансферрина (Soluble Transferrin Receptor – sTfR) изучалась на анализаторе ACCESS (BeckmanCoulter, США) в соответствии с инструкцией.

2.2.5. Определение концентрации цитокинов сыворотки крови

Исследование уровня провоспалительных (ИЛ-6, ФНО- α , ИЛ-1 β , ИНФ- γ), и противовоспалительного (ИЛ-10) цитокинов выполнялось методом

иммуноферментного анализа на полуавтоматическом анализаторе Stat Fax 2100 (производитель Awareness Technology Inc., США).

2.2.6. Определение концентрации эритропоэтина сыворотки крови

Концентрация эритропоэтина определялась методом иммуноферментного анализа на анализаторе «ACCESS» фирмы «BeckmanCoulter» (США).

2.3. Статистическая обработка данных

Описательная статистика представлена в виде абсолютных (n) величин относительных величин (%) количественных признаков И ДЛЯ качественных признаков. У каждого показателя рассчитывали медиану (Ме) и интервал (LQ-UQ). Достоверность различий между межквартильный исследуемыми выборками определяли с помощью U-критерия Манна – Уитни. Критерий считали достоверным при статистической значимости (р) различий в рассматриваемых выборках менее 0,05. Достоверность различий между несколькими несвязанными группами определяли с помощью критерия Краскела – Уоллиса. Различия считали достоверными при уровне статистической значимости (р) менее 0,05. Для оценки взаимосвязи между двумя переменными использовали корреляционный анализ с вычислением коэффициента корреляции Спирмена (r). Статистически значимым отличием коэффициента r от 0 признавали уровень p<0,05.

Качественная характеристика корреляционной связи давалась на основе коэффициента корреляции по шкале Р. Чеддока, Таблица 4 [21, 33].

Таблица 4 – Значения коэффициента корреляции по шкале Р. Чеддока

Абсолютное значение коэффициента	а Сила корреляционной зависимости		
корреляции			
0-0,1	практически отсутствует		
Менее 0,3	слабая		
0,3-0,5	умеренная		
0,5-0,7	заметная		
0,7-0,9	сильная		
0,9-0,99	очень сильная		
0,99-1	практически функциональная		

С целью создания диагностической модели, позволяющей с высокой чувствительностью и специфичностью проводить дифференциальную диагностику анемии хронических заболеваний от железодефицитной анемии, использовался дискриминантный анализ.

Дискриминантный анализ проводился в три этапа:

- 1) формирование обучающей выборки, то есть отбор пациентов с точно установленным диагнозом «анемия хронических заболеваний» или «железодефицитная анемия»;
- 2) разработка решающих правил диагностики в виде канонической линейной дискриминантной функций (КЛДФ) и оценка ее информативности;
- 3) классификация на основе выработанных решающих правил.

Для оценки статистической значимости полученной модели рассчитывались F-критерий Фишера и р-критерий. Для возможности проведения дифференциальной диагностики с помощью канонического анализа рассчитывались коэффициенты канонической корреляции R, также называемые центроидами. Оценка точности прогнозирования полученной модели выполнялась методом кросс-проверки на кросс-проверочной выборке.

Для оценки диагностической значимости полученных моделей, а также других диагностических лабораторных маркеров для дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии использован ROC-анализ с расчетом показателя AUC (Area Under Curve – площадь под кривой). Значение AUC<0,7 свидетельствовало о низкой диагностической точности параметра, показатель AUC в диапазоне 0,7-0,9 отражал умеренную параметра, AUC>0,9 диагностическую точность означал высокую Чувствительность и специфичность диагностическую точность [330]. параметров в отноношении дифференциальной диагностики АХЗ и ЖДА определялись посредством расчета точки отсечения (cut-off), в которой параметры обладали наибольшими исследуемые показателями чувствительности и специфичности. Анализ полученных данных проводили с учетом рекомендаций по статистической обработке данных клинических и лабораторных исследований [21, 33].

Для статистической обработки результатов исследований была создана база данных в программе MS Excel из пакета прикладных программ MS Office 2013 с последующей статистической обработкой в программе StatSoft Statistica 10 и SPSS 21.

ГЛАВА 3. ОСОБЕННОСТИ ПАТОГЕНЕЗА АНЕМИИ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ У ПАЦИЕНТОВ С СОЛИДНЫМИ ЗЛОКАЧЕСТВЕННЫМИ НОВООБРАЗОВАНИЯМИ

3.1. Сравнительный анализ основных лабораторных показателей, важных в патогенетическом отношении в развитии анемии хронических заболеваний

3.1.1. Показатели красной крови у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем пациентам выполнялось исследование показателей клинического анализа крови, в том числе и эритроцитарных индексов. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 5.

Таблица 5 — Сравнительный анализ показателей клинического анализа крови у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я	2-я	3-я	4-я группа	p
	группа	группа	группа		
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Лейкоциты	9,5	9,9	8,6	7,1	n1.2.3 \ 0.05
$(10^9/\pi)$	(7,3-10,9)	(5,2-13,6)	(6,7-9,2)	(5,4-8,6)	$p^{1,2,3}>0,05$
Эритроциты	3,5	4,02	4,1	4,5	p ¹ =0,0005
$(10^{12}/\pi)$	(3,1-3,9)	(3,4-4,6)	(3,7-4,5)	(3,9-4,9)	$p^2=0.02$
					p>0,05
Гемоглобин	99,3	111	107	135,3	p1=0,00002
(г/л)	(87-118)	(91-128)	(96,5-121,5)	(125-150)	$p^2=0,003$

					$p^3=0,0001$
Тромбоциты	333	343,1	363,5	288,6	p ^{1,2,3} >0,05
$(10^9/\pi)$	(263-377)	(215-467)	(290-473)	(207,5-326)	
HCT (%)	30,5	33,4	33,1	40	p1=0,001
	(27-33)	(28,5-39,2)	(28,2-36,9)	(36,5-44,5)	p ² =0,008
					$p^3=0,001$
МСV (фл)	84,5	86	81,6	86,6	p ¹ >0,05
	(75,6-91,7)	(82,2-92,2)	(75,1-89,7)	(81,6-91,3)	$p^2 > 0.05$
					$p^3=0,007$
МСН (пг)	27,2	28,1	26	29,3	p ¹ >0,05
	(25,3-29,6)	(25,8-31,3)	(24,7-28,1)	(27,1-31,6)	p ² >0,05
					$p^3=0,009$
МСНС (г/л)	321,4	325,5	319,1	338	p1=0,03
	(302-343)	(313-348,5)	(303-330)	(327,5-350)	$p^2=0.03$
				122	$p^3=0.01$

Примечание: Me(LQ-UQ); р – уровень значимости; $p^{1,2,3}$ – уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

У пациентов трех групп с анемией в сравнении с контрольной группой выявлены более низкие концентрации гемоглобина, НСТ, МСНС (p<0,05). Только у пациентов из группы АХЗ и АХЗ/ЖДА в сравнении с контрольной группой установлено более низкое число эритроцитов (p<0,05) и не выявлено межгрупповых различий в отношении МСV, МСН. В группе пациентов с ЖДА число эритроцитов не отличалось от пациентов без анемии (p>0,05), тогда как значения МСV, МСН значимо ниже в сравнении с контрольной группой.

3.1.2. Параметры обмена железа, С-реактивный белок у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

У всех пациентов исследовались концентрации показатели обмена железа и СРБ. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 6.

Таблица 6 – Результаты сравнительного анализа показателей обмена железа, СРБ у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я группа	2-я	3-я	4-я	p
		группа	группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Железо	8,1	7,8	5	10,1	p1=0,03
(мкмоль/л)	(6,2-10,3)	(4,1-9,9)	(2,8-8,7)	(7,2-14,6)	$p^2=0.03$
					$p^3=0,001$
ОЖСС	55,2	57,5	73,6	65,6	p ¹ =0,01
(мкмоль/л)	(44,1-69,7)	(51-61,8)	(67,5-81)	(57-75)	$p^2 > 0.05$
					$p^3=0,04$
KHT (%)	19,9	15,2	7,3	16,1	p ¹ >0,05
	ŕ	(7,4-21,6)	(4,2-12,5)	·	$p^2 > 0.05$
	(12,6-22)			(9,1-21,6)	$p^3=0,003$
Ферритин	443,4	309	19,3	158,1	p1=0,0005
(мкг/л)	(361,9-	(128,7-	(10-24,1)	(25,7-	$p^2 > 0.05$
	574,9)	520,4)		236,1)	$p^3=0,0003$
Трансферрин	1,81	2,03	2,62	2,47	p1=0,02
(г/л)	(1,44-2,13)	(1,59-2,42)	(2,28-	(2,35-2,65)	p ² >0,05
			3,16)		$p^3 > 0.05$

СРБ (мг/л)	163,4	53,4	17,6	27	p1=0,0001
	(137,3-	(14,5-64,5)	(6,6-29,3)	(4,3-34,9)	p ² =0,03
	169,4)				$p^3 > 0.05$

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

У пациентов с АХЗ выявлена наибольшая концентрация ферритина и СРБ в сравнении с пациентами трех остальных групп (p<0,05). У пациентов с АХЗ/ЖДА концентрация СРБ больше в сравнении с группой больных с ЖДА и контрольной группой (p<0,05), тогда как концентрация ферритина больше в сравнении с пациентами с ЖДА, но не отличалась от контрольной группы. В группе пациентов с ЖДА в сравнении с тремя другими группами выявлены наименьшие концентрации ферритина (p<0,05), что полностью соответствует особенностям патогенеза этой анемии. Для концентрации СРБ между пациентами с ЖДА и контрольной группой не установлено межгрупповых различий (p>0,05).

У пациентов из группы ЖДА в сравнении с контрольной группой и пациентами с АХЗ и АХЗ/ЖДА выявлена наибольшая концентрация ОЖСС и, соответственно, наименьшая концентрация железа, КНТ (p<0,05). В группе пациентов с АХЗ концентрация железа и ОЖСС ниже, чем в контрольной группе, тогда как для пациентов с АХЗ/ЖДА не установлено различий по этим показателям с контрольной группой. Как у пациентов с АХЗ, так и с АХЗ/ЖДА не имеется различий с контрольной группой и между собой в отношении концентрации КНТ (p>0,05). У пациентов в группе АХЗ и АХЗ ЖДА концентрация трансферрина ниже в сравнении с пациентами из группы больных с ЖДА. У пациентов из группы АХЗ концентрация трансферрина ниже в сравнении с контрольной группой, тогда как у групп пациентов с АХЗ/ЖДА и ЖДА не выявлено различий с контрольной группой (p>0,05).

3.1.3. Секреция противоспалительных и провоспалительных цитокинов у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем включенным в исследование пациентам определялись концентрации противоспалительных (ИЛ-10) и провоспалительных (ИЛ-6, ИЛ-1 β , ИН Φ - γ , Φ HO- α) цитокинов в сыворотке крови. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 7.

Таблица 7 — Результаты сравнительного анализа концентраций цитокинов у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я группа	2-я группа	3-я	4-я	p
			группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
ИЛ-6	73,3	9,3	3,4	3,9	p ¹ =0,00001
	(6,2-51)	(4,4-13,2)	(1,4-5,9)	(0,0-5,8)	p ² =0,0001
					$p^3 > 0.05$
ФНО-альфа	24,4	7,2	4,6	4,2	p1=0,008
	(15,3-60,7)	(4,5-9,6)	(3,7-6)	(0,4-6)	$p^2 > 0.02$
					$p^3 > 0.05$
	8,7	6,7	2,5	6,3	p1=0,02
ИЛ-10	ŕ	(4,1-11,4)	(0-5)	ŕ	$p^2 > 0.05$
	(4,7-12,1)			(4,3-10,7)	$p^3 > 0.05$
ИЛ-1бета,	3,65	3,8	3,4	2,8	p ¹ >0,05
пг/мл	,		ŕ		$p^2 > 0.05$
	(2,6-3,9)	(3,7-4,2)	(3,1-3,4)	(2,9-3,5)	p ³ >0,05

ИНФ-					p ¹ =0,01
E014140	22,2	7,75	4,9	5,3	$p^2 = 0.02$
гамма,	(6,6-35,2)	(6,3-9,8)	(3,7-6,1)	(5,3-6,4)	,
пг/мл	, , ,	, , , ,	, , , ,	·	$p^3 > 0.05$

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

У пациентов с АХЗ выявлены максимальные концентрации ИЛ-6, ФНО-α, ИНФ-γ и ИЛ-10 в сравнении с пациентами двух групп с анемией и контрольной группой (р<0,05). В группе пациентов с АХЗ/ЖДА также выявлены более высокие концентрации ИЛ-6, ИНФ-γ и ФНО-α в сравнении с пациентами с ЖДА и группой контроля (р<0,05). Концентрация ИЛ-10 в группе пациентов с АХЗ/ЖДА не отличалась от концентрации этого цитокина в группе пациентов с ЖДА и контрольной группе. У пациентов с ЖДА концентрации ИЛ-6, ФНО-а, ИНФ-γ и ИЛ-10 не отличались от контрольной группы и были значимо ниже в сравнении с пациентами из группы АХЗ. В отношении ИЛ-1β не выявлено значимых межгрупповых различий, во всех четырех группах определены сопоставимые концентрации этого цитокина.

3.1.4. Синтез гепцидина и растворимого рецептора трансферрина у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем пациентам также выполнялось исследование концентрации гепцидина и sTfR. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 8.

Таблица 8 — Результаты сравнительного анализа концентраций гепцидина и растворимого рецептора трансферрина у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я	2-я группа	3-я	4-я	р
	группа		группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Гепцидин,	47,3	34,6	6,1	23,5	p1=0,005
нг/мл	(29,7-60,5)	(26,6-50)	(1,8-10)	(4,7-45,4)	$p^2=0,005$
					$p^3=0,003$
sTfR,	23,9	25,8	28,4	16,8	p1=0,001
нмоль/л	,	,	ŕ	,	$p^2=0.02$
	(19,8-27,4)	(15,7-26,9)	(16,1-34,4)	(13,7-18,8)	$p^3=0,01$

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

В группе пациентов с АХЗ выявлена наибольшая концентрация гепцидина в сравнении с пациентами трех остальных групп (p<0,05). У пациентов в группе АХЗ/ЖДА концентрация гепцидина также превышала значения этих параметров в группе больных с ЖДА и контрольной группе (p<0,05). В группе пациентов с ЖДА в сравнении с тремя другими группами выявлена наименьшая концентрация гепцидина (p<0,05).

Во всех трех группах пациентов с анемией концентрация sTfR превышала значение этого параметра в контрольной группе (p<0,05). У пациентов трех групп с анемией не выявлено межгрупповых различий в концентрации sTfR (p>0,05).

3.1.5. Секреция эритропоэтина у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

У всех пациентов выполнялось определение в сыворотке крови концентрации ЭПО. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 9.

Таблица 9 — Результаты сравнительного анализа концентрации эритропоэтина у пациентов трех групп с анемией и контрольной группы больных без анемии,

Показатель	1-я группа	2-я группа	3-я группа	4-я	P
				группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Эритропоэ	16,8	39,5	48,3	26,2	p ¹ =0,001
тин, Ед/мл	(12,2-21,4)	(26,2-36,1)	(22,4-94,8)	(20,1-	p ² =0,004
				35,3)	$p^3=0,0001$

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

По результатам сравнительного анализа в группе пациентов с АХЗ выявлена наименьшая концентрация ЭПО, значимо меньшая в сравнении с группами АХЗ/ЖДА, ЖДА и контрольной группой. Наибольшей концентрация ЭПО оказалась в группе больных с ЖДА. Концентрация ЭПО в этой группе больше в сравнении с группой пациентов с АХЗ, контрольной группой и не отличалась от группы АХЗ/ЖДА. В группе пациентов с АХЗ/ЖДА концентрация ЭПО также больше в сравнении с группами АХЗ и контрольной группой.

3.2. Оценка влияния основных патогенетических факторов на развитие анемии хронических заболеваний

3.2.1. Влияние про- и противовоспалительных цитокинов на показатели красной крови и обмена железа, а также секрецию эритропоэтина

Результаты корреляционного анализа между ИЛ-6, ФНО- α , ИЛ-10, ИНФ- γ , ИЛ-1 β числом эритроцитов и концентрацией гемоглобина представлены в Таблице 10.

Таблица 10 – Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ- γ, ИЛ-1β, числом эритроцитов и концентрацией гемоглобина (r – коэффициент корреляции Спирмена)

Показатель	Эритроциты $(10^{12}/\pi)$	Гемоглобин (г/л)					
	Пациенты с AX	3					
ИЛ-6, пг/мл	-0,74	-0,88					
ФНО-α, пг/мл	-0,66	-0,77					
ИЛ-10, пг/мл	-0,36	-0,63					
ИНФ- ү, пг/мл	-0,28	-0,26					
ИЛ-1β, пг/мл	-0,25	-0,21					
	Пациенты с АХЗ/Я	КДА					
ИЛ-6, пг/мл	- 0,64	- 0,6					
ФНО-α, пг/мл	- 0,64	- 0,35					
ИЛ-10, пг/мл	-0,28	- 0,39					
ИНФ- ү, пг/мл	-0,23	-0,22					
ИЛ-1β, пг/мл	-0,21	-0,22					
	Пациенты с ЖДА						
ИЛ-6, пг/мл	- 0,05	- 0,1					

ФНО-α, пг/мл	- 0,1	- 0,3
ИЛ-10, пг/мл	- 0,1	- 0,1
ИНФ- ү, пг/мл	-0,12	-0,14
ИЛ-1β, пг/мл	-0,14	-0,16

Примечание: все приведенные коэффициенты корреляции статистически значимы (p<0,05).

В группе пациентов с АХЗ выявлены максимальные значения коэффициентов корреляции между ИЛ-6, ИЛ-10 и ФНО- α и числом эритроцитов и концентрацией гемоглобина. Установлено, что на число эритроцитов оказывает сильное негативное влияние ИЛ-6 (r=-0,74), заметное негативное влияние – ФНО- α (r=-0,66) и умеренное негативное влияние – ИЛ-10 (r=-0,36). Доказано, что концентрация гемоглобина имеет сильную негативную взаимосвязь с ИЛ-6 (r=-0,88), ФНО- α (r=-0,77), заметную негативную взаимосвязь с ИЛ-10 (r=-0,63).

В группе пациентов с АХЗ/ЖДА также выявлены значимые корреляционные связи между ИЛ-6, ИЛ-10 и ФНО-а, числом эритроцитов и концентрацией гемоглобина. Сила корреляционных связей в этой группе преимущественно меньше в сравнении с группой больных с АХЗ. Установлено наличие заметной отрицательной корреляционной связи между числом эритроцитов и концентрациями ИЛ-6 (r=-0,64) и ФНО-а (r=-0,64), слабая взаимосвязь с ИЛ-10 (r=-0,28). Также в группе АХЗ/ЖДА определено, что концентрация гемоглобина имеет заметную отрицательную взаимосвязь с ИЛ-6 (r=-0,6) и умеренную отрицательную взаимосвязь с ИЛ-10 (г=-0,39) и ФНО-а (r=-0,35). В группах больных с АХЗ и АХЗ/ЖДА установлены слабые взаимосвязи между ИЛ-6, ИЛ-10 и ФНО-а, числом эритроцитов и концентрацией гемоглобина.

В группе пациентов с изолированной ЖДА выявлено слабое или очень слабое влияние исследуемых цитокинов на число эритроцитов и концентрацию гемоглобина.

Результаты корреляционного анализа между исследуемыми цитокинами и эритропоэтином представлены в Таблице 11.

Таблица 11 – Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ- γ, ИЛ-1β и концентрацией эритропоэтина (r – коэффициент корреляции Спирмена)

Показатель	Эритропоэтин, Ед/мл			
	Пациенты с AX3			
ИЛ-6, пг/мл	-0,71			
ФНО-α, пг/мл	-0,67			
ИЛ-10, пг/мл	0,52			
ИНФ- ү, пг/мл	0,43			
ИЛ-1β, пг/мл	0,3			
	Пациенты c AX3/ЖДА			
ИЛ-6, пг/мл	-0,61			
ФНО-α, пг/мл	-0,56			
ИЛ-10, пг/мл	0,41			
ИНФ- ү, пг/мл	0,43			
ИЛ-1β, пг/мл	0,25			
	Пациенты с ЖДА			
ИЛ-6, пг/мл	- 0,1			
ФНО-α, пг/мл	- 0,11			
ИЛ-10, пг/мл	0,05			
ИНФ- ү, пг/мл	- 0,01			
ИЛ-1β, пг/мл	0,03			
Примечание: все приведенные коэффициенты корреляции статистически				
значимы $(p<0,05)$.				

В группе пациентов с АХЗ выявлены наиболее высокие коэффициенты корреляции между цитокинами и ЭПО. Установлено, что на концентрацию ЭПО оказывают сильное отрицательное влияние ИЛ-6 (r=-0,71), заметное

отрицательное влияние — Φ HO- α (r=-0,67), заметное положительное влияние — ИЛ-10 (r=0,52), умеренное положительное влияние — ИН Φ - γ (r=0,43) и слабое положительное влияние — ИЛ-1 β (r=0,3).

В группе пациентов с АХЗ/ЖДА для ЭПО выявлена заметная отрицательная взаимосвязь с ИЛ-6 (r=-0,61) и ФНО- α (r=-0,56), умеренная положительная взаимосвязь — с ИЛ-10 (r=0,41), ИНФ- γ (r=0,43), слабая положительная взаимосвязь — с ИЛ-1 β (r=0,25).

В группе пациентов с изолированной ЖДА выявлено слабое или очень слабое влияние исследуемых цитокинов на концентрацию ЭПО.

Результаты корреляционного анализа между исследуемыми цитокинами и показателями обмена железа представлены в Таблице 12.

Таблица 12 – Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ- γ, ИЛ-1β и показателями обмена железа (r – коэффициент корреляции Спирмена)

Показтель	СРБ,	Железо,	ОЖСС,	Ферритин	Трансфер			
	мг/мл	мкмоль/л	мкмоль/л	(мкг/л)	рин, г/л			
	Пациенты с АХЗ							
ИЛ-6, пг/мл	0,7	-0,64	-0,77	0,67	-0,78			
ФНО-α, пг/мл	0,71	-0,6	-0,8	0,8	-0,6			
ИЛ-10, пг/мл	0,85	-0,54	-0,8	0,6	-0,71			
ИНФ- ү, пг/мл	0,51	-0,51	-0,61	0,52	-0,67			
ИЛ-1β, пг/мл	0,45	-0,47	-0,48	0,5	-0,54			
	I	Тациенты с	АХЗ/ЖДА					
ИЛ-6, пг/мл	0,63	-0,74	-0,55	0,57	-0,57			
ФНО-α, пг/мл	0,6	-0,7	-0,5	0,6	-0,54			
ИЛ-10, пг/мл	0,75	-0,67	-0,6	0,54	-0,57			
ИНФ- ү, пг/мл	0,5	-0,52	-0,5	0,51	-0,59			
ИЛ-1β, пг/мл	0,43	-0,46	-0,43	0,44	-0,55			

Пациенты с ЖДА						
ИЛ-6, пг/мл	0,23	-0,29	-0,27	0,1	-0,13	
ФНО-α, пг/мл	0,26	-0,12	-0,1	0,21	-0,2	
ИЛ-10, пг/мл	0,11	-0,26	-0,1	0,2	-0,29	
ИНФ- ү, пг/мл	0,21	-0,2	-0,29	0,21	-0,2	
ИЛ-1β, пг/мл	0,19	-0,21	-0,1	0,23	-0,28	

Примечание: все приведенные коэффициенты корреляции статистически значимы (p<0,05).

По результатам корреляционного анализа максимальные коэффициенты корреляции между цитокинами и параметрами обмена железа выявлены в группах больных с АХЗ и АХЗ/ЖДА, тогда как в группе пациентов с ЖДА значения коэффициентов корреляции оказались минимальными.

В группе пациентов с АХЗ установлено, что ИЛ-6 имеет сильную положительную взаимосвязь с СРБ (r=0,7), сильную отрицательную взаимосвязь – с ОЖСС (r=-0.77) и трансферрином (r=-0.78), заметную отрицательную взаимосвязь — с железом (r=-0.64), заметную положительную взаимосвязь – с ферритином (r=0,67). Также показано, что ФНО-α имеет сильную положительную взаимосвязь с СРБ (r=0,71), ферритином (r=0,8), сильную отрицательную взаимосвязь – с ОЖСС (r=-0,8), заметную отрицательную взаимосвязь – с концентрациями железа (r=-0,6) и трансферрина (r=-0,6). Для ИЛ-10 установлена сильная положительная взаимосвязь с СРБ (r=0,85), сильная отрицательная взаимосвязь – с ОЖСС (r=-0,8) и трансферрином (r=-0,71), заметная отрицательная взаимосвязь – с железом (r=-0,54), заметная положительная взаимосвязь – с ферритином (r=0,6). Для ИНФ-у установлена заметная отрицательная взаимосвязь с железом (r=-0.51), ОЖСС (r=-0.61) и трансферрином (r=-0.67), заметная положительная взаимосвязь – с СРБ (r=0.51), ферритином (r=0.52). В отношении ИЛ-1β выявлена заметная положительная взаимосвязь

ферритином (r=0,5), заметная отрицательная взаимосвязь – с трансферрином (r=-0,54), умеренная отрицательная взаимосвязь – с железом (r=-0,47) и ОЖСС (r=-0,48), умеренная положительная взаимосвязь – с СРБ (r=0,45).

В группе пациентов с сочетанием АХЗ/ЖДА коэффициенты корреляции между цитокинами и показателями обмена железа меньше или в некоторых случаях сопоставимы с группой АХЗ. По результатам проведенного корреляционного анализа в этой группе пациентов установлено, что ИЛ-6 имеет сильную отрицательную взаимосвязь с железом (r=-0,74), заметную отрицательную взаимосвязь с ОЖСС (r=-0,55), трансферрином (r=-0,57), заметную положительную взаимосвязь с СРБ (r=0,63) и ферритином (r=0,57). Для ФНО-а доказано наличие сильной отрицательной взаимосвязи с железом отрицательной взаимосвязи c ОЖСС (r=-0.48)заметной (r=-0.5), трансферрином (r=-0,54), заметной положительной взаимосвязи с СРБ (r=0,6), ферритином (r=0,6). Для ИЛ-10 выявлено наличие сильной положительной взаимосвязи с СРБ (r=0,75), заметной положительной взаимосвязи с ферритином (r=0,54), заметной отрицательной взаимосвязи с железом (r=-(0.67), ОЖСС (r=-0.6), трансферрином (r=-0.57). Также в ходе анализа установлено, что ИНФ-у имеет заметную положительную взаимосвязь с СРБ (r=0.5), ферритином (r=0.51), заметную отрицательную взаимосвязь с железом (r=-0.52), ОЖСС (r=-0.5), трансферрином (r=-0.59). Для ИЛ-1 β выявлена заметная отрицательная взаимосвязь с трансферрином (r=-0,55), умеренная отрицательная взаимосвязь с железом (r= -0,46), ОЖСС (r=-0,43), умеренная положительная взаимосвязь с ферритином (r=0,43) и СРБ (r=0,44).

В группе пациентов с ЖДА между всеми исследуемыми цитокинами, показателями обмена железа и СРБ выявлены слабые корреляционные связи.

Результаты корреляционного анализа между исследуемыми цитокинами, концентрациями гепцидина и sTfR представлены в Таблице 13.

Таблица 13 – Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ- γ, ИЛ-1β, концентрациями гепцидина и растворимого рецептора трансферрина (r – коэффициент корреляции Спирмена)

Показатель	Гепцидин, нг/мл	sTfR, нмоль/л			
	Пациенты с АХЗ				
ИЛ-6, пг/мл	0,71	0,6			
ФНО-α, пг/мл	-0,75	-0,47			
ИЛ-10, пг/мл	0,7	-0,6			
ИНФ- ү, пг/мл	-0,4	-0,48			
ИЛ-1β, пг/мл	-0,32	-0,4			
	Пациенты с АХЗ/Ж	ДА			
ИЛ-6, пг/мл	0,53	0,54			
ФНО-α, пг/мл	-0,82	-0,59			
ИЛ-10, пг/мл	0,52	-0,7			
ИНФ- ү, пг/мл	-0,3	-0,45			
ИЛ-1β, пг/мл	-0,29	-0,36			
	Пациенты с ЖДА	Å			
ИЛ-6, пг/мл	-0,49	-0,35			
ФНО-α, пг/мл	-0,34	-0,4			
ИЛ-10, пг/мл	-0,28	-0,2			
ИНФ- ү, пг/мл	-0,23	-0,22			
ИЛ-1β, пг/мл	-0,18	-0,25			
Примечание: все приведенные коэффициенты корреляции статистически значимы (p<0,05).					

По результатам корреляционного анализа наибольшие коэффициенты выявлены в группе пациентов с АХЗ. Установлено, что гепцидин имеет сильную положительную взаимосвязь с ИЛ-6 (r=0,71) и ИЛ-10 (r=0,7), сильную отрицательную взаимосвязь с ФНО- α (r=-0,75), умеренную

отрицательную взаимосвязь с ИНФ- γ (r=-0,4) и ИЛ-1 β (r=-0,32). Для sTfR выявлена заметная положительная взаимосвязь с ИЛ-6 (r=0,6), заметная отрицательная взаимосвязь с ИЛ-10 (r=-0,6), умеренная отрицательная взаимосвязь с ФНО- α (r=-0,47), ИНФ- γ (r=-0,48) и ИЛ-1 β (r=-0,4).

В группе пациентов с АХЗ/ЖДА также выявлены значимые корреляционные связи между цитокинами, гепцидином и sTfR. Значения коэффициентов корреляции преимущественно меньше в сравнении с коэффициентами корреляции в группе с АХЗ. В этой группе больных установлено, что гепцидин имеет сильную отрицательную взаимосвязь с ФНО- α (r=-0,82), заметную положительную взаимосвязь с ИЛ-6 (r=0,53) и ИЛ-10 (r=0,52), слабую отрицательную взаимосвязь с ИНФ- γ (r=-0,3) и ИЛ-1 β (r=-0,29). Для sTfR показано наличие сильной отрицательной взаимосвязи с ИЛ-10 (r=-0,7), заметной отрицательной взаимосвязи с ФНО- α (r=-0,59), заметной положительной взаимосвязи с ИЛ-6 (r=0,54), умеренной отрицательной взаимосвязи ИНФ- γ (r=-0,45), ИЛ-1 β (r=-0,36).

В группе пациентов с ЖДА в сравнении с остальными группами пациентов с анемиями выявлены наименьшие коэффициенты корреляции между цитокинами, гепцидином и sTfR. Для гепцидина выявлены умеренные отрицательные взаимосвязи с ИЛ-6 (r=-0,49) и ФНО- α (r=-0,34), слабые отрицательные взаимосвязи с ИЛ-10 (r=-0,28), ИНФ- γ (r=-0,23), ИЛ-1 β (r=-0,18). Для sTfR выявлены умеренные отрицательные взаимосвязи с ИЛ-6 (r=-0,35) и ФНО- α (r=-0,4), слабые отрицательные взаимосвязи с ИЛ-10 (r=-0,2), ИНФ- γ (r=-0,22), ИЛ-1 β (r=-0,25).

3.2.2. Взаимосвязь между гепцидином, растворимым рецептором трансферрина и показателями красной крови

Результаты корреляционного анализа между концентрациями гепцидина и sTfR, числом эритроцитов и концентрацией гемоглобина представлены в Таблице 14.

Таблица 14 — Корреляционный анализ между концентрациями гепцидина и растворимого рецептора трансферрина, числом эритроцитов и концентрацией гемоглобина (r – коэффициент корреляции Спирмена)

Показатель	Эритроциты $(10^{12}/\pi)$	Гемоглобин (г/л)						
	Пациенты с АХЗ							
Гепцидин, нг/мл	- 0,55	-0,66						
sTfR, нмоль/л	-0,68	-0,76						
	Пациенты с АХЗ/ЖДА							
Гепцидин, нг/мл	-0,53	-0,63						
sTfR, нмоль/л	-0,61	-0,68						
	Пациенты с ЖД	Ā						
Гепцидин, нг/мл	-0,36	-0,26						
sTfR, нмоль/л	-0,17	-0,23						
Примечание: все приведенные коэффициенты корреляции статистически								
значимы (p<0,05).								

По результатам проведенного корреляционного анализа в группе пациентов с АХЗ выявлены максимальные значения коэффициентов корреляции. В группе АХЗ/ЖДА значения коэффициентов корреляции менее выражены в сравнении с АХЗ, а в группе пациентов с ЖДА значения коэффициентов корреляции наименьшие.

В группе пациентов с АХЗ для гепцидина показана заметная отрицательная взаимосвязь с числом эритроцитов (r=-0,55) и концентрацией гемоглобина (r=-0,66). В этой же группе больных для sTfR выявлена заметная отрицательная взаимосвязь с числом эритроцитов (r=-0,68) и сильная отрицательная взаимосвязь с концентрацией гемоглобина (r=-0,76).

В группе АХЗ/ЖДА для гепцидина установлена заметная отрицательная взаимосвязь с числом эритроцитов (r=-0,53) и заметная отрицательная

взаимосвязь с концентрацией гемоглобина (r=-0,63). В этой группе больных для sTfR показана заметная отрицательная взаимосвязь с числом эритроцитов (r=-0,61) и концентрацией гемоглобина (r=-0,68).

В группе пациентов с ЖДА установлена умеренная отрицательная взаимосвязь между гепцидином и числом эритроцитов (r=-0,36) и слабая отрицательная взаимосвязь между гепцидином и концентрацией гемоглобина (r=-0,26). В этой группе пациентов для sTfR установлена слабая отрицательная взаимосвязь как с числом эритроцитов, так и с концентрацией гемоглобина.

В ходе проведенного исследования установлено, что у пациентов с солидными злокачественными новообразованиями возможно развитие АХЗ, ЖДА, а также сочетание этих двух типов анемий. АХЗ у этой категории больных характеризуется нормоцитарностью, нормохромностью и преимущественно легкой степенью тяжести.

В группе пациентов с АХЗ выявлено меньшее число эритроцитов в сравнении с пациентами с ЖДА. Полученные данные возможно расценивать как следствие угнетения эритропоэза на фоне имеющегося воспаления. Высокие концентрации СРБ и ферритина в группе АХЗ также свидетельствуют об активации воспаления.

Активация воспаления в группе АХЗ подтверждается высокими концентрациями ИЛ-6, ФНО-α, ИНФ-γ и ИЛ-10. Не выявлено значимых межгрупповых различий в отношении концентраций ИЛ-1β.

Наиболее выраженные корреляционные связи между ИЛ-6, ФНО-α, ИЛ-10, числом эритроцитов и концентрацией гемоглобина отражает их ключевое значение в подавлении эритропоэза и синтеза гемоглобина.

Влияние цитокинов на развитие АХЗ у пациентов с солидными злокачественными новообразованиями опосредуется за счет негативного влияния преимущественно ИЛ-6, ФНО-α, ИЛ-10 на обмен железа. Указанный эффект доказан наличием отрицательных корреляционных связей с концентрацией железа, ОЖСС, трансферрина и положительных корреляционных связей с ферритином. Для ИЛ-1β и ИНФ-γ показано наличие

слабых или умеренных взаимосвязей с показателями эритропоэза и обмена железа.

В формировании дефицита железа у пациентов с АХЗ также важное значение имеет повышенная секреция гепцидина. Высокая концентрация гепцидина ассоциирована со снижением числа эритроцитов и концентрацией гемоглобина, что подтверждается выявленными значимыми корреляционными связями между этими показателями. Несмотря на то, что во всех трех группах пациентов с анемиями не выявлено различий в концентрациях sTfR, у всех пациентов с анемией значение этого показателя больше в сравнении с контрольной группой. У больных раком использование этого показателя для дифференциальной диагностики АХЗ от ЖДА нецелесообразно. Повышенные значения этого показателя у пациентов с АХЗ и ЖДА свидетельствуют о его компенсаторном увеличении в ответ на недостаток железа.

Показана не соответствующая тяжести анемии секреция ЭПО в группе пациентов с АХЗ. Недостаточная секреция ЭПО преимущественно обусловлена влиянием ИЛ-6 и ФНО-α, что подтверждается наибольшими коэффициентами корреляции.

Таким образом, у пациентов с солидными злокачественными новообразованиями в развитии АХЗ имеют важное значение повышение секреции ИЛ-6, ФНО-α и гепцидина, развивающийся на этом фоне функциональный дефицит железа, а также не соответствующая тяжести анемии секреция ЭПО.

ГЛАВА 4. ОСОБЕННОСТИ ПАТОГЕНЕЗА АНЕМИИ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ У ПАЦИЕНТОВ С ВОСПАЛИТЕЛЬНЫМИ ЗАБОЛЕВАНИЯМИ СУСТАВОВ

С целью выявления особенностей патогенеза АХЗ на первом этапе исследования проводился сравнительный анализ между тремя группами пациентов с ревматической патологией и различными типами анемий и контрольной группой пациентов без анемии. Выполнялся сравнительный анализ показателей гемограммы, параметров обмена железа, СРБ, эритропоэтина, противоспалительных и провоспалительных цитокинов, гепцидина и sTfR.

На втором этапе исследования с целью выявления факторов, оказывающих наибольшее влияние на развитие АХЗ, АХЗ/ЖДА и ЖДА, выполнялся корреляционный анализ с расчетом коэффициентов корреляции. Исследовалось влияние провоспалительных, противовоспалительных цитокинов на число эритроцитов, концентрацию гемоглобина, параметры обмена железа, ЭПО, гепцидин и sTfR. Также исследовалось влияние гепцидина, sTfR на число эритроцитов, концентрацию гемоглобина.

4.1. Сравнительный анализ основных лабораторных показателей, важных в патогенетическом отношении в развитии анемии хронических заболеваний

4.1.1. Показатели красной крови у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем пациентам выполнялось исследование показателей клинического анализа крови, в том числе и эритроцитарных индексов. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 15.

Таблица 15 — Сравнительный анализ показателей клинического анализа крови у пациентов трех групп с анемией и контрольной группой больных без анемии

Показатель	1-я группа	2-я	3-я	4-я	p
		группа	группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	-
Лейкоциты	8,6	6,6	6,1	6,6	n> 0.05
$(10^9/\pi)$	(5,3-10,5)	(5,6-8,3)	(4,9-6,8)	(3,6-8,7)	p>0,05
Эритроциты	3,8	4,2	4,4	4,6	p1=0,0001
$(10^{12}/\pi)$	(3,6-4,1)	(3,9-4,4)	(4,1-4,6)	(4,3-4,9)	$p^2=0.01$
					$p^3=0,04$
Гемоглобин	104,2	101,2	109	141,4	p1=0,0001
(г/л)	(99-114)	(101-17)	(106-114)	(133-147)	$p^2=0,0001$
					$p^3=0,0001$
Тромбоциты	334,3	313,1	320,8	262,6	p>0,05
$(10^9/\pi)$	(213,5-404)	(259-384)	(262-435)	(218-300)	
HCT (%)	32,5	34,2	34,6	43,3	p1=0,0001
	(31,9-34,4)	(31,8-37)	(33,2-35,3)	(40-45,3)	p ² =0,0001
					$p^3=0,0001$
МСV (фл)	83	81,7	76,8	92,5	p1=0,007
	(78,9-87,7)	(77-86)	(75,8-80,2)	(93-96)	$p^2=0,003$
					$p^3=0,001$
МСН (пг)	24,9	24,7	24,7	32,3	p1=0,002
	(23,2-27,2)	(20,1-8,6)	(23,4-25,6)	(31,6-33)	$p^2=0,003$
					$p^3=0,0008$
МСНС (г/л)	301,6	320	261,8	335	p>0,05
	(301,5-323,5)	(297-333)	(310-319)	(329-341)	
Примечание: $Me(LO-LIO)$: p — уровень достоверности: $p^{1, 2, 3}$ — уровень					

Примечание: Me(LQ-UQ); р – уровень достоверности; $p^{1, 2, 3}$ – уровень значимости различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

У пациентов трех групп с анемией в сравнении с контрольной группой выявлены более низкие значения эритроцитов, гемоглобина и НСТ (p<0,05). Также определено, что у пациентов с АХЗ число эритроцитов значимо меньше в сравнении с пациентами из группы ЖДА, что может свидетельствовать об угнетении эритропоэза у пациентов с АХЗ. В отношении числа лейкоцитов и тромбоцитов не выявлено межгрупповых различий (p>0,05). В группе АХЗ, АХЗ/ЖДА и ЖДА, а также группе контроля не выявлено межгрупповых различий в значениях МСV, МСН. В трех группах пациентов с анемией значения МСV, МСН меньше в сравнении с контрольной группой. Значения МСНС в трех группах с анемией также меньше в сравнении с группой контроля (p<0,05).

4.1.2. Параметры обмена железа, С-реактивный белок у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

У всех пациентов исследовались конентрации показателей обмена железа и СРБ. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 16.

Таблица 16 – Результаты сравнительного анализа показателей обмена железа, СРБ у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я группа	2-я	3-я	4-я	p
		группа	группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Железо	8,6	8,9	6,6	13,9	p1=0,04
(мкмоль/л)	(6,3-10,1)	(4,6-11,3)	(3,4-9,2)	(10,3-16,9)	$p^2=0,04$
					p ³ =0,003

ОЖСС	53,2	63,5	76,7	61,2	p ¹ >0,05
(мкмоль/л)	(45,5-57,5)	(56,7-70)	(74-83)	(50,7-67,5)	$p^2 > 0.05$
					$p^3=0,001$
KHT (%)	24,1 (12,8-	13,9	8,6	23,1	p ¹ >0,05
	•	(7,7-17,2)	(4,6-12)		$p^2=0.02$
	26,2)			(16,6-27,8)	$p^3=0,002$
Ферритин	292,7	59	14	78,5	p ¹ =0,0001
(мкг/л)	(146,1-	(12-92,3)	(6,2-	(36-90,7)	$p^2 > 0.05$
	335,1)		15,1)		$p^3 > 0.05$
Трансферрин	2,2	2,5	3,1	2,4	p ¹ >0,05
(г/л)	(1,9-2,5)	(2,3-2,8)	(2,9-3,3)	(2-2,7)	$p^2 > 0.05$
					$p^3=0,001$
СРБ (мг/л)	59,4	36,2	7,7	4,6	p1=0,00001
	(10,9-100,2)	(11,7-48,9)	(1,7-8,6)	(1,2-5,8)	p ² =0,003
				1 2 3	p ³ >0,05

Примечание: Me(LQ-UQ); р – уровень достоверности; $p^{1, 2, 3}$ – уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

В группе пациентов с АХЗ, АХЗ/ЖДА и ЖДА не выявлено межгрупповых различий в концентрации железа. Во всех трех группах пациентов с анемией концентрация железа меньше в сравнении с контрольной группой (p<0,05). КНТ в группе АХЗ больше в сравнении с группами АХЗ/ЖДА и ЖДА и не отличался от контрольной группы. Между группами пациентов с АХЗ/ЖДА и ЖДА не выявлено межгрупповых различий в значениях КНТ. Только в отношении пациентов с ЖДА определено статистически значимое различие в концентрации ОЖСС с группой пациентов без анемии (p<0,05). Пациенты из группы АХЗ имели более низкую концентрацию ОЖСС в сравнении с пациентами с АХЗ/ЖДА и ЖДА (p<0,05).

Для пациентов группы с АХЗ выявлена наибольшая концентрация ферритина в сравнении с пациентами трех остальных групп (p<0,05). У пациентов с АХЗ/ЖДА концентрация ферритина не отличалась от контрольной группы (p>0,05). В группе пациентов с ЖДА концентрация ферритина минимальная, значимо меньше в сравнении с остальными группами (p<0,05).

По результатам сравнительного анализа в группе пациентов с АХЗ установлены максимальные значения СРБ, превышающие значения этого показателя в сравнении с группами больных с АХЗ/ЖДА, ЖДА и контрольной группой. В группе пациентов с АХЗ/ЖДА концентрация СРБ выше в сравнении с пациентами с ЖДА и без анемии (p<0,05). У пациентов из группы с ЖДА значения СРБ не отличались от контрольной группы (p>0,05) и меньше в сравнении с группами с АХЗ и АХЗ/ЖДА.

У пациентов с ЖДА показана наиболее высокая концентрация трасферрина в сравнении с пациентами с АХЗ, АХЗ/ЖДА и без анемии (p<0,05). Пациенты оставшихся трех групп не имели межгрупповых различий по этому показателю (p>0,05).

4.1.3. Секреция противоспалительных и провоспалительных цитокинов у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем включенным в исследование пациентам определялись концентрации противоспалительных (ИЛ-10) и провоспалительных (ИЛ-6, ИЛ-1β, ИНФ-γ, ФНО-α) цитокинов в сыворотке крови. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 17.

Таблица 17 — Результаты сравнительного анализа концентраций цитокинов у пациентов трех групп с анемией и контрольной группы больных без анемии,

Показатель	1-я группа	2-я группа	3-я	4-я	p
			группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
ИЛ-6, пг/мл	52,8	22	4,75	2,7	p ¹ =0,001
	(22,9-66,9)	(8,5-20,5)	(1,5-2,5)	(1,5-3)	$p^2=0.01$ $p^3>0.05$
ФНО- альфа, пг/мл	10 (4-6)	5 (4-5)	3,46 (3-4)	3(2-3)	p ¹ =0,002 p ² >0,05 p ³ >0,05
ИЛ-10, пг/мл	7,1 (4-6)	3,76 (3-4)	4,7 (3-5)	4 (3-4)	p ¹ =0,009 p ² >0,05 p ³ >0,05
ИЛ-1бета, пг/мл	2,4 (2-3)	2,21 (2-3)	2,2 (2-2,5)	2,5 (2-3)	p ¹ >0,05 p ² >0,05 p ³ >0,05
ИНФ- гамма, пг/мл	9,8 (8-10)	9,28 (8-10)	9,6 (8-10,5)	8,6 (8-10)	p ¹ >0,05 p ² >0,05 p ³ >0,05

Примечание: Me(LQ-UQ); р – уровень достоверности; $p^{1, 2, 3}$ – уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

У пациентов с АХЗ выявлены максимальные концентрации ИЛ-6, ФНО- α , ИЛ-10 в сравнении с пациентами остальных групп. В группе пациентов с АХЗ/ЖДА концентрация ИЛ-6, ФНО- α больше в сравнении с пациентами из группы ЖДА и группой контроля. В отношении концентраций ИЛ-10 не выявлено межгрупповых различий в группах АХЗ/ЖДА, ЖДА и пациентов без анемии. Концентрации ИЛ-1 β , ИНФ- γ во всех четырех группах оказались сопоставимы, межгрупповых различий не выявлено.

4.1.4. Синтез гепцидина и растворимого рецептора трансферрина у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем пациентам также выполнялось исследование концентрации гепцидина и sTfR. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 18.

Таблица 18 — Результаты сравнительного анализа концентраций гепцидина и растворимого рецептора трансферрина у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я	2-я группа	3-я	4-я	p
	группа		группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Гепцидин,	504,9	215,7	3,4	232	p ¹ =0,002
нг/мл	(150–800)	(8–51,8)	(2–5)	(50,0–300)	$p^2 > 0.05$
					$p^3=0,003$
sTfR,	8,6	6,6	7	2,2	p1=0,001
нмоль/л	(3,9-7,1)	(3,5-6,9)	(5,2-8,3)	(1,5-3,1)	p ² =0,01 p ³ =0,01

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

В группе пациентов с АХЗ выявлена максимальная концентрация гепцидина, превышающая значения этого показателя в других группах. В группе АХЗ/ЖДА концентрация гепцидина больше в сравнении с группой пациентов с ЖДА и не отличалась от контрольной группы. В группе больных

с ЖДА концентрация гепцидина меньше в сравнении с остальными тремя группами. У пациентов с АХЗ, АХЗ/ЖДА и ЖДА выявлена более высокая концентрация sTfR в сравнении с пациентами без анемии (p<0,05). У пациентов трех групп с анемией не выявлено межгрупповых различий в концентрации sTfR (p>0,05).

4.1.5. Секреция эритропоэтина у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

У всех пациентов выполнялось определение в сыворотке крови концентрации ЭПО. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 19.

Таблица 19 — Результаты сравнительного анализа концентрации эритропоэтина у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я	2-я группа	3-я	4-я	р
	группа		группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Эритропоэтин,	15,5	21,4	28,1	9,5	p1=0,008
Ед/мл	(11,3–20,5)	(17,4–25,4)	(14,5–36,7)	(7,5–12)	p ² =0,0004
			1 2 2		$p^3=0,0001$

Примечание: Me(LQ-UQ); р – уровень достоверности; р^{1, 2, 3} – уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

По результатам проведённого анализа обнаружилось, что концентрация ЭПО во всех группах пациентов, страдающих анемией, выше в сравнении с контрольной группой. В группе пациентов с АХЗ концентрация эритропоэтина ниже в сравнении с группами больных с АХЗ/ЖДА и ЖДА (p<0,05). В группе пациентов с ЖДА выявлена наибольшая концентрация

ЭПОа, значимо превышающая значения этого показателя в остальных группах (p<0,05).

4.2. Оценка влияния основных патогенетических факторов на развитие анемии хронических заболеваний

4.2.1. Влияние про- и противовоспалительными цитокинов на показатели красной крови и обмена железа, а также секрецию эритропоэтина

Результаты корреляционного анализа между ИЛ-6, ФНО- α , ИЛ-10, ИНФ- γ , ИЛ-1 β числом эритроцитов и концентрацией гемоглобина представлены в Таблице 20.

Таблица 20 — Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ- γ, ИЛ-1β, числом эритроцитов и концентрацией гемоглобина (r — коэффициент корреляции Спирмена)

Показатель	Эритроциты $(10^{12}/\pi)$	Гемоглобин (г/л)						
	Пациенты с АХЗ							
ИЛ-6, пг/мл	-0,75	-0,63						
ФНО-α, пг/мл	-0,58	-0,7						
ИЛ-10, пг/мл	-0,54	-0,64						
ИНФ- ү, пг/мл	-0,51	-0,52						
ИЛ-1β, пг/мл	-0,51	-0,48						
Пациенты с АХЗ/ЖДА								
ИЛ-6, пг/мл	-0,57	-0,68						
ФНО-α, пг/мл	-0,45	-0,56						
ИЛ-10, пг/мл	-0,53	-0,61						
ИНФ- ү, пг/мл	-0,34	-0,5						

ИЛ-1β, пг/мл	-0,38	-0,35
	Пациенты с ЖДА	
ИЛ-6, пг/мл	-0,28	-0,35
ФНО-α, пг/мл	-0,26	-0,2
ИЛ-10, пг/мл	-0,1	-0,2
ИНФ- ү, пг/мл	-0,21	-0,27
ИЛ-1β, пг/мл	-0,12	-0,31

Примечание: все приведенные коэффициенты корреляции статистически значимы (p<0,05).

В группе пациентов с АХЗ выявлено статистически значимое отрицательное влияние всех исследуемых цитокинов на число эритроцитов и концентрацию гемоглобина. Установлено, что на число эритроцитов оказывает сильное негативное влияние ИЛ-6 (r=-0,75), заметное негативное влияние ФНО- α (r=-0,58), ИЛ-10 (r=-0,54), ИНФ- γ (r=-0,51), ИЛ-1 β (r=-0,51). Доказано, что на концентрацию гемоглобина оказывает сильное негативное влияние ФНО- α (r=-0,7), заметное негативное влияние ИЛ-6 (r=-0,63), ИЛ-10 (r=-0,64), ИНФ- γ (r=-0,52) и умеренное негативное влияние ИЛ-1 β (r=-0,48).

В группе пациентов с сочетанием АХЗ/ЖДА также выявлены корреляционные связи между исследуемыми цитокинами, числом эритроцитов и концентрацией гемоглобина. Сила корреляционных связей в этой группе преимущественно меньше в сравнении с группой больных с АХЗ. Установлено наличие заметной отрицательной корреляционной связи между числом эритроцитов и концентрациями ИЛ-6 (r=-0,57), ИЛ-10 (r=-0,53) и умеренной отрицательной корреляционной связи между числом эритроцитов и концентрациями ФНО-α (r=-0,45), ИНФ-γ (r=-0,34) и ИЛ-1β (r=-0,38). Также в группе АХЗ/ЖДА обнаружено, что на концентрацию гемоглобина оказывают заметное отрицательное влияние ИЛ-6 (r=-0,68), ИЛ-10 (r=-0,61),

ФНО- α (r=-0,56) и умеренное отрицательное влияние – ИЛ-1 β (r=- 0,35) и ИНФ- γ (r=-0,5).

В группе пациентов с изолированной ЖДА выявлено слабое или очень слабое влияние исследуемых цитокинов на число эритроцитов и концентрацию гемоглобина.

Результаты корреляционного анализа между исследуемыми цитокинами и эритропоэтином представлены в Таблице 21.

Таблица 21 — Корреляционный анализ между концентрациями ИЛ-6, ФНО- α , ИЛ-10, ИНФ- γ , ИЛ-1 β и концентрацией эритропоэтина (r — коэффициент корреляции Спирмена)

Показатель	Эритропоэтин, Ед/мл			
Пациенты с АХЗ				
ИЛ-6, пг/мл	-0,85			
ФНО-α, пг/мл	-0,52			
ИЛ-10, пг/мл	0,72			
ИНФ- ү, пг/мл	0,67			
ИЛ-1β, пг/мл	-0,28			
	Пациенты с АХЗ/ЖДА			
ИЛ-6, пг/мл	-0,57			
ФНО-α, пг/мл	-0,45			
ИЛ-10, пг/мл	0,42			
ИНФ- ү, пг/мл	0,54			
ИЛ-1β, пг/мл	-0,15			
Пациенты с ЖДА				
ИЛ-6, пг/мл	-0,15			
ФНО-α, пг/мл	-0,09			
ИЛ-10, пг/мл	0,2			
ИНФ- γ, пг/мл	0,3			

ИЛ-1β, пг/мл			0,1				
Примечание: в	все г	приведенные	коэффициенты	корреляции	статистически		
вначимы (р<0,0	5).						

По результатам проведённого анализа в группе пациентов с АХЗ выявлены наиболее высокие коэффициенты корреляции между цитокинами и эритропоэтином. Установлено, что на концентрацию эритропоэтина оказывают сильное отрицательное влияние ИЛ-6 (r=-0,85), сильное положительное влияние ИЛ-10 (r=0,72), заметное отрицательное влияние ФНО- α (r=-0,52), заметное положительное влияние ИНФ- γ (r=0,67) и слабое отрицательное влияние ИЛ-1 β (r=-0,28).

В группе пациентов с сочетанием АХЗ/ЖДА для ЭПО выявлена заметная отрицательная взаимосвязь с ИЛ-6 (r=-0,57), заметная положительная взаимосвязь с ИНФ- γ (r=0,54), умеренная отрицательная взаимосвязь с ФНО- α (r=-0,45), умеренная положительная взаимосвязь с ИЛ-10 (r=0,42).

В группе пациентов с изолированной ЖДА определено слабое или очень слабое влияние исследуемых цитокинов на концентрацию ЭПО.

Результаты корреляционного анализа между исследуемыми цитокинами и показателями обмена железа представлены в Таблице 22.

Таблица 22 — Корреляционный анализ между концентрациями ИЛ-6, ФНО- α , ИЛ-10, ИНФ- γ , ИЛ-1 β и показателями обмена железа (r — коэффициент корреляции Спирмена)

Показа	СРБ,	Железо,	ОЖСС,	Ферритин	Трансфер
тель	мг/мл	мкмоль/л	мкмоль/л	(мкг/л)	рин, г/л
		Пап	циенты с AX3		
ИЛ-6, пг/мл	0,74	-0,85	-0,53	0,63	-0,57

ΦΗΟ-α,					
пг/мл	0,65	-0,55	-0,55	0,77	-0,55
ИЛ-10,	0,58	-0,6	-0,58	0,56	-0,67
пг/мл	0,50	0,0	0,50	0,00	0,07
ИНФ- ү,	0,43	-0,32	-0,55	0,52	-0,55
пг/мл					
ИЛ-1β,	0,39	-0,29	-0,46	0,56	-0,4
пг/мл					
		Пациен	нты с АХЗ/ЖДА	\	
ИЛ-6,	0,71	-0,6	-0,48	0,53	-0,52
пг/мл					
ФНО-α,	0,51	-0,48	-0,37	0,59	-0,39
пг/мл					
ИЛ-10,	0,47	-0,46	-0,51	0,54	-0,51
пг/мл					
ИНФ- ү,	0,32	-0,4	-0,5	0,37	-0,34
пг/мл					
ИЛ-1β,	0,29	-0,39	-0,41	0,42	-0,4
пг/мл					
		Пац	иенты с ЖДА		
ИЛ-6,	0,36	-0,2	-0,34	0,1	-0,3
пг/мл					
ФНО-α,	0,08	-0,1	-0,29	0,23	0,2
пг/мл					
ИЛ-10,	0,3	-0,34	-0,31	0,3	-0,17
пг/мл					
ИНФ-ү,	0,29	-0,23	-0,38	0,29	-0,2
пг/мл					

пг/мл	ИЛ-1β,	0,24	-0,25	-0,26	0,15	-0,23
	пг/мл					

Примечание: все приведенные коэффициенты корреляции статистически значимы (p<0,05).

По результатам корреляционного анализа максимальные коэффициенты корреляции между цитокинами и параметрами обмена железа выявлены в группах больных с АХЗ и АХЗ/ЖДА, тогда как в группе с ЖДА, наоборот, значения коэффициентов корреляции оказались минимальными.

В группе пациентов с АХЗ установлено, что ИЛ-6 имеет сильную положительную взаимосвязь с СРБ (r=0,74), сильную отрицательную взаимосвязь с железом (r=-0,85), заметную отрицательную взаимосвязь с ОЖСС (r=-0.53) и трансферрином (r=-0.57), заметную положительную взаимосвязь с ферритином (r=0,63). Также показано, что ФНО-α имеет сильную положительную взаимосвязь с ферритином (r=0,77), заметную положительную взаимосвязь с СРБ (r=0,65) и заметную отрицательную взаимосвязь с концентрациями железа (r=-0,55) и ОЖСС (r=-0,55) и трансферрина (r=-0,55). Выявлена заметная положительная взаимосвязь между ИЛ-10, СРБ (r=0.58) и ферритином (r=0.56), заметная отрицательная взаимосвязь между ИЛ-10 и трансферрином (r=-0.67), железом (r=-0.6) и ОЖСС (r=-0,58). Для ИНФ-у установлена заметная отрицательная взаимосвязь с ОЖСС (r=-0.55) и трансферрином (r=-0.55), заметная положительная взаимосвязь с ферритином (r=0,52), умеренная положительная взаимосвязь с СРБ (r=0,43), умеренная отрицательная взаимосвязь с железом (r=-0,32). В отношении ИЛ-1в выявлена заметная положительная взаимосвязь ферритином (r=0,56), умеренная отрицательная взаимосвязь с ОЖСС (r=-0,46), трансферрином (r=-0,4), умеренная положительная взаимосвязь с СРБ (r=0,39) и слабая отрицательная взаимосвязь с железом (r=-0,29).

В группе пациентов с сочетанием АХЗ/ЖДА коэффициенты корреляции между цитокинами и показателями обмена железа были меньше или в группой АХЗ. По некоторых случаях сопоставимы c результатам проведенного корреляционного анализа в этой группе пациентов установлено, что ИЛ-6 имеет сильную положительную взаимосвязь с СРБ (r=0,71), заметную отрицательную взаимосвязь с железом (r=-0,6), трансферрином (r=-0,52), заметную положительную взаимосвязь с ферритином (r=0,53), умеренную отрицательную взаимосвязь с ОЖСС (r=-0,48). Для ФНО-а доказано наличие заметной положительной взаимосвязи с CPБ (r=0,51), ферритином (r=0.59), заметной умеренной взаимосвязи с железом (r=-0.48), ОЖСС (r=-0,37), трансферрином (r=-0,39). Для ИЛ-10 выявлено наличие заметной отрицательной взаимосвязи с ОЖСС (r=-0,51), трансферрином (r=-0.51). заметной положительной взаимосвязи с ферритином (r=0,54), положительной взаимосвязи с СРБ (r=0,47), умеренной умеренной отрицательной взаимосвязи с железом (r=-0,46). Также в ходе анализа установлено, что ИНФ-у имеет умеренную положительную взаимосвязь с СРБ (r=0.32), ферритином (r=0.37), умеренную отрицательную взаимосвязь с железом (r=-0.4), ОЖСС (r=-0.5), трансферрином (r=-0.34). Для ИЛ-1 β выявлено наличие умеренной отрицательной взаимосвязи с железом (r= -0,39), ОЖСС (r=-0,41), трансферрином (r=-0,4), умеренной положительной взаимосвязи с ферритином (r=0,42), слабой положительной взаимосвязи с СРБ (r=0,29).

В группе пациентов с ЖДА выявлены наименьшие коэффициенты корреляции между исследуемыми цитокинами и показателями обмена железа. Выявлена слабая корреляционная связь между ИЛ-6 и железом (r=-0,21), ферритином (r=0,1), трансферрином (r=-0,3) и умеренная корреляционная связь между ИЛ-6 и СРБ (r=0,36), ОЖСС (r=-0,34). Для ФНО-α установлена слабая взаимосвязь с СРБ (r=0,08), железом (r=-0,1), ОЖСС (r=-0,29), ферритином (r=0,23), трансферрином (r=-0,12). В отношении ИЛ-10 установлено наличие умеренной отрицательной взаимосвязи между ним и

железом (r=-0,34), ОЖСС (r=-0,31) и слабая взаимосвязь с ферритином (r=0,3), трансферрином (r=-0,17), СРБ (r=0,3). Для ИНФ- γ доказано наличие умеренной отрицательной взаимосвязи с ОЖСС (r= -0,38) и слабой взаимосвязи с СРБ (r= 0,29), железом (r=-0,23), ферритином (r=0,29) и трансферрином (r=-0,2). Для ИЛ-1 β доказано наличие слабой взаимосвязи с СРБ (r=0,24), железом (r=-0,25), ОЖСС (r=-0,26), ферритином (r=0,15), трансферрином (r= -0,23).

Результаты корреляционного анализа между исследуемыми цитокинами и концентрациями гепцидина и sTfR представлены в Таблице 23.

Таблица 23 — Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ-γ, ИЛ-1β и концентрациями гепцидина и растворимого рецептора трансферрина (r — коэффициент корреляции Спирмена)

Показатель	Гепцидин, нг/мл	sTfR, нмоль/л				
Пациенты с АХЗ						
ИЛ-6, пг/мл	0,67	0,62				
ФНО-α, пг/мл	-0,53	-0,65				
ИЛ-10, пг/мл	0,51	0,67				
ИНФ- ү, пг/мл	-0,32	0,64				
ИЛ-1β, пг/мл	0,2	0,49				
Пациенты с АХЗ/ЖДА						
ИЛ-6, пг/мл	0,56	0,58				
ФНО-α, пг/мл	-0,34	0,34				
ИЛ-10, пг/мл	0,45	0,27				
ИНФ- ү, пг/мл	-0,17	0,38				
ИЛ-1β, пг/мл	-0,24	0,33				
Пациенты с ЖДА						
ИЛ-6, пг/мл	0,29	0,38				
ФНО-α, пг/мл	-0,13	-0,1				

ИЛ-10, пг/мл	0,25	0,17
ИНФ- ү, пг/мл	-0,11	0,26
ИЛ-1β, пг/мл	-0,17	0,21

Примечание: все приведенные коэффициенты корреляции статистически значимы (p<0,05).

По результатам корреляционного анализа наибольшие коэффициенты выявлены в группе пациентов с АХЗ. Установлено, что гепцидин имеет заметную положительную взаимосвязь с ИЛ-6 (r=0,67) и ИЛ-10 (r=0,51), заметную отрицательную взаимосвязь с ФНО- α (r=-0,53), умеренную отрицательную взаимосвязь с ИНФ- γ (r=-0,32) и слабую взаимосвязь с ИЛ-1 β (r=0,2). Для sTfR выявлены заметные положительные взаимосвязи с ИЛ-6 (r=0,62), ИЛ-10 (r=0,67), ИНФ- γ (r=0,64), заметная отрицательная взаимосвязь с ФНО- α (r=-0,65), умеренная положительная взаимосвязь с ИЛ-1 β (r=0,49).

В группе пациентов с сочетанием АХЗ/ЖДА также выявлены значимые корреляционные связи между цитокинами, гепцидином и sTfR. Значения коэффициентов корреляции преимущественно меньше в сравнении с коэффициентами корреляции в группе больных с АХЗ. В этой группе больных установлено, что гепцидин имеет заметную положительную взаимосвязь с ИЛ-6 (r=0,56), умеренную положительную взаимосвязь с ИЛ-10 (r=0,45), умеренную отрицательную взаимосвязь с ФНО- α (r=-0,34), слабую взаимосвязь с ИНФ- γ (r=-0,17) и ИЛ-1 β (r=-0,24). Для sTfR показано наличие заметной положительной взаимосвязи с ИЛ-6 (r=0,58), умеренной положительной взаимосвязи с ФНО- α (r=0,34), ИНФ- γ (r=0,38), ИЛ-1 β (r=0,33) и слабой взаимосвязи с ИЛ-10 (r=0,27).

В группе пациентов с ЖДА в сравнении с остальными группами пациентов с анемиями выявлены наименьшие, преимущественно слабые и очень слабые, коэффициенты корреляции между цитокинами, гепцидином и sTfR. Для гепцидина выявлены слабые взаимосвязи с ИЛ-6 (r=0,29), ФНО-а

(r=-0,13), ИЛ-10 (r=0,25), ИНФ- γ (r=-0,11), ИЛ-1 β (r=-0,17). Для sTfR выявлена прямая умеренная взаимосвязь с ИЛ-6 (r=0,38) и слабые взаимосвязи с ФНО- α (r=-0,1), ИЛ-10 (r=0,17), ИНФ- γ (r=0,26), ИЛ-1 β (r=0,21).

4.2.2. Взаимосвязь между гепцидином, растворимым рецептором трансферрина и показателями красной крови

Результаты корреляционного анализа между концентрациями гепцидина, sTfR, числом эритроцитов и концентрацией гемоглобина представлены в Таблице 24.

Таблица 24 — Корреляционный анализ между концентрациями гепцидина, растворимого рецептора трансферрина, числом эритроцитов и концентрацией гемоглобина (r – коэффициент корреляции Спирмена)

Показатель	Эритроциты $(10^{12}/\pi)$	Гемоглобин (г/л)					
	Пациенты с AX3						
Гепцидин, нг/мл	- 0,52	-0,6					
sTfR, нмоль/л	-0,5	-0,64					
	Пациенты с АХЗ/ЖД	ĮA					
Гепцидин, нг/мл	-0,51	-0,51					
sTfR, нмоль/л -0,52 -0,58							
Пациенты с ЖДА							
Гепцидин, нг/мл	0,1	0,46					
sTfR, нмоль/л -0,1 -0,33							
Примечание: все приведенные коэффициенты корреляции статистически							
значимы (p <0,05).							

По результатам проведенного корреляционного анализа в группах пациентов с АХЗ и АХЗ/ЖДА выявлены сопоставимые по значениям

коэффициенты корреляции. В группе пациентов с ЖДА значения коэффициентов корреляции менее выражены в сравнении с группами больных с АХЗ и АХЗ/ЖДА.

В группе пациентов с АХЗ для гепцидина показана заметная отрицательная взаимосвязь с числом эритроцитов (r=-0,52) и заметная отрицательная взаимосвязь с концентрацией гемоглобина (r=-0,6). В группе АХЗ/ЖДА для гепцидина установлена заметная отрицательная взаимосвязь с числом эритроцитов (r=-0,51) и заметная отрицательная взаимосвязь с концентрацией гемоглобина (r=-0,51).

В группе пациентов с ЖДА установлена слабая положительная взаимосвязь между гепцидином и числом эритроцитов (r=0,1) и умеренная положительная взаимосвязь между гепцидином и концентрацией гемоглобина (r=0,46).

Для sTfR в группах АХЗ и АХЗ/ЖДА показаны заметные отрицательные взаимосвязи между ним, числом эритроцитов и концентрацией гемоглобина. В группе пациентов с ЖДА установлена слабая взаимосвязь между sTfR и числом эритроцитов, и умеренная отрицательная взаимосвязь между sTfR и концентрацией гемоглобина (r=-0,33).

В ходе проведенного обследования установлено, что у пациентов с ревматической патологией возможно развитие АХЗ, ЖДА, а также сочетание этих двух типов анемий. АХЗ у этой категории больных характеризуется нормоцитарностью, нормохромностью и преимущественно легкой степенью тяжести.

Для пациентов с АХЗ выявлено более низкое число эритроцитов в сравнении с пациентами с ЖДА. Полученные данные возможно расценивать как проявление угнетения эритропоэза на фоне имеющегося воспаления, что подтверждается высокими концентрациями ферритина и СРБ в группе больных с АХЗ.

Повышенные концентрации ИЛ-6, ФНО-α, ИЛ-10 у пациентов в группе с АХЗ также служит доказательством активации воспаления. При этом не

выявлено значимых межгрупповых различий в отношении концентраций ИЛ-1β и ИНФ-у. Взаимосвязь цитокинов с числом эритроцитов и концентрацией гемоглобина свидетельствует об их важном значении В нарушении эритропоэза и нарушении синтеза гемоглобина. Влияние цитокинов на развитие АХЗ у пациентов с ревматической патологией также опосредуется за счет их негативного влияния на обмен железа, следствием чего является формирование функционального дефицита железа и накопление железа в депо организма без возможности его доставки в ткани и органы, нуждающиеся в нем. Указанный эффект доказан наличием негативного влияния цитокинов на концентрацию железа, ОЖСС, трансферрина и положительного влияния на концентрацию ферритина. В развитии функционального дефицита железа также важное значение имеет чрезмерная секреция гепцидина у пациентов с АХЗ. Высокая концентрация гепцидина способствует снижению числа эритроцитов и уменьшению синтеза гепцидина, что подтверждается выявленными значимыми корреляционными связями между ЭТИМИ показателями. Несмотря на то, что во всех трех группах пациентов с анемиями не выявлено различий в концентрациях sTfR, у всех пациентов с анемией значение этого показателя больше в сравнении с контрольной группой. У пациентов с ревматической патологией использование этого показателя для дифференциальной диагностики АХЗ от ЖДА нецелесообразно. Повышенные значения этого показателя у пациентов с АХЗ и ЖДА свидетельствуют о его компенсаторном увеличении в ответ на сформировавшийся дефицит железа. Не соответствующая тяжести анемии секреция ЭПО – еще один важный фактор развития АХЗ у пациентов с ревматической патологией и АХЗ. Недостаточная секреция ЭПО обусловлена влиянием ИЛ-6 и ФНО-α.

Таким образом, у пациентов с ревматической патологией в развитии АХЗ имеют важное значение повышение секреции ИЛ-6, ФНО-α, ИЛ-10, чрезмерная секреция гепцидина, развивающийся на этом фоне функциональный дефицит железа, а также не соответствующая тяжести анемии секреция ЭПО.

ГЛАВА 5. ОСОБЕННОСТИ ПАТОГЕНЕЗА АНЕМИИ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ У ПАЦИЕНТОВ С ВИЧ-ИНФЕКЦИЕЙ

С целью выявления особенностей патогенеза АХЗ на первом этапе исследования проводился сравнительный анализ между тремя группами пациентов с ВИЧ-инфекцией и различными типами анемий и контрольной группой пациентов без анемии. Выполнялся сравнительный анализ показателей гемограммы, параметров обмена железа, СРБ, ЭПО, противоспалительных и провоспалительных цитокинов, гепцидина и sTfR.

На втором этапе исследования с целью выявления факторов, оказывающих наибольшее влияние на развитие АХЗ, АХЗ/ЖДА и ЖДА, выполнялся корреляционный анализ с расчетом коэффициентов корреляции. Исследовалось влияние провоспалительных, противовоспалительных цитокинов на число эритроцитов, концентрацию гемоглобина, параметры обмена железа, эритропоэтин, гепцидин и sTfR. Также исследовалось влияние гепцидина, sTfR на число эритроцитов, концентрацию гемоглобина.

5.1. Сравнительный анализ основных лабораторных показателей, важных в патогенетическом отношении в развитии анемии хронических заболеваний

5.1.1. Показатели красной крови у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем пациентам выполнялось исследование показателей клинического анализа крови, в том числе и эритроцитарных индексов. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 25.

Таблица 25 — Сравнительный анализ показателей клинического анализа крови у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я	2-я	3-я	4-я	p
	группа	группа	группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Без	
				анемии	
Лейкоциты	5,1	4,8	4,7	6,9	p ^{1, 2, 3} >0,05
$(10^9/\pi)$	(3,4-6,9)	(3,6-5,4)	(3,2-5,9)	(5,8-7,7)	p > >0,03
Эритроциты	3,3	3,7	3,8	5	p1=0,000002
$(10^{12}/\pi)$	(2,7-3,8)	(3,5-4,1)	(3,7-4,1)	(4,5-5,5)	p ² =0,000002
					p=0,000007
Гемоглобин	103,8	105,6	102	151,3	p1=0,000002
(г/л)	(91-117)	(103-113)	(98-110)	(138-160)	$p^2=0,000003$
					$p^3=0,000002$
Тромбоциты	213	198,8	179	276,9	p ¹ =0,02
$(10^9/\pi)$	(146-191)	(154-254)	(123-233)	(206-321)	$p^2=0.04$
					p=0,001
HCT (%)	29,7	30,2	29,7	44,5	p1=0,001
	(27-32,1)	(28,4-32,2)	(27-31,4)	(40-46,9)	$p^2=0,008$
					$p^3=0,001$
МСV (фл)	89,5	83,7	77,4	89,2	p ¹ >0,05
	(82,3-92,3)	(78,2-86,8)	(71,7-83,4)	(86-91,5)	$p^2 > 0.05$
					$p^3=0,007$
МСН (пг)	31,2	29,1	26,3	30,3	p ¹ >0,05
	(29,3-33,1)	(26,2-30,1)	(24,7-29,2)	(29-31,6)	$p^2 > 0.05$
					$p^3=0,009$
МСНС (г/л)	351,4	347,8	339,9	340	p ¹ >0,05
	(336-367)	(329-362)	(329-358)	(331-349)	$p^2 > 0.05$
					$p^3 > 0.05$
Примононию	Ma(LO LIO)	r n trooper		пости р1, 2,	3 1/2000111

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

У пациентов трех групп с анемией в сравнении с контрольной группой выявлены более низкие значения эритроцитов, гемоглобина и НСТ (p<0,05). Также у пациентов с АХЗ число эритроцитов оказалось значимо меньшим в

сравнении с пациентами из группы больных с ЖДА, что отражает более выраженное подавление эритропоэза в этой группе больных. В группе АХЗ, АХЗ/ЖДА и контроля не выявлено межгрупповых различий в значениях МСV, МСН. В группе ЖДА значения МСV, МСН значимо ниже в сравнении с остальными группами. Для МСНС не выявлено межгрупповых различий (р>0,05).

5.1.2. Параметры обмена железа, С-реактивный белок у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

У всех пациентов исследовался обмен железа и концентрация СРБ. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 26.

Таблица 26 – Результаты сравнительного анализа показателей обмена железа, СРБ у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я группа	2-я	3-я	4-я	р
		группа	группа	группа	
	AX3	АХЗ/ЖД	ЖДА	Б/А	
		A			
Железо	6,5	5,1	4,5	21,3	p ¹ =0,001
(мкмоль/л)	ŕ	,	•	(15-27,3)	p ² =0,001
	(3,2-8,5)	(3,6-6,8)	(2,6-6)		p ³ =0,001
ОЖСС	35,4	44,9	46,4	65,3	p1=0,01
(мкмоль/л)	(27-42,5)	(34-61)	(36-56)	(56,9-74)	$p^2 > 0.05$
	(21-42,3)	(34-01)	(30-30)	(30,9-74)	$p^3=0,04$
КНТ (%)	16,9	13,2	11,1	17,2	p ¹ >0,05

	(10,2-23,1)	(9,8-14)	(4,7-13,7)	(10,1- 21,1)	p ² >0,006 p ³ =0,003
Ферритин (мкг/л)	638,7 (326-861)	156,2 (123- 235)	29 (4,2-38,9)	134,2 (66-157,5)	$p^1=0,0005$ $p^2>0,05$ $p^3=0,0003$
Трансферрин, г/л	1,3 (1,1-1,7)	1,8 (1,4-2,4)	1,8 (1,4-2,2)	2,6 (2,3-2,7)	p ¹ =0,000002 p ² =0,007 p ³ =0,0001
СРБ (мг/л)	54,5 (4,8-103,3)	5,9 (0,5-8,2)	2,9 (0,4-1,6)	4,2 (3-5,4)	$p^{1}=0,0001$ $p^{2}>0,05$ $p^{3}=0,01$

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

В трех группах пациентов с анемией концентрации железа, ОЖСС и трансферрина не имели различий между собой (р>0,05) и были ниже в сравнении с контрольной группой (р<0,05). У пациентов с АХЗ выявлена наибольшая концентрация ферритина и СРБ в сравнении с пациентами трех остальных групп (р<0,05). В группе с ЖДА диагностированная концентрация СРБ и ферритина значимо ниже в сравнении с остальными группами, тогда как у пациентов с АХЗ/ЖДА значения этих показателей не отличались от контрольной группы. Наименьшие в сравнении с остальными группами значения КНТ найдены в группе ЖДА (р<0,05). У пациентов с АХЗ/ЖДА значение КНТ оказалось также значимо ниже в сравнении с группой пациентов с АХЗ и контрольной группой и не отличалось от значений этого показателя в группе ЖДА. У пациентов с АХЗ значение КНТ не отличалось от контрольной группы и было значимо выше в сравнении с пациентами с АХЗ/ЖДА и ЖДА. Концентрации трансферрина в трех группах пациентов с

анемией оказалась ниже в сравнении с контрольной группой. В группе больных с АХЗ концентрация трансферрина была меньше в сравнении с группой пациентов с АХЗ/ЖДА и ЖДА (p<0,05). Между группами пациентов с АХЗ/ЖДА и ЖДА не выявлено межгрупповых различий в концентрациях трансферрина.

5.1.3. Секреция противоспалительных и провоспалительных цитокинов у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем включенным в исследование пациентам определялись концентрации противоспалительных (ИЛ-10) и провоспалительных (ИЛ-6, ИЛ-1β, ИНФ-γ, ФНО-α) цитокинов в сыворотке крови. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 27.

Таблица 27 — Результаты сравнительного анализа концентраций цитокинов у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я группа	2-я группа	3-я	4-я	р
			группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
ИЛ-6, пг/мл	36,6	9,1	6,2	1,8	p ¹ =0,00001
	(11,5-51,1)	(5,1-11,4)	(1,6-7,2)	(1,5-2,2)	$p^2=0,0001$ $p^3=0,01$
ФНО- альфа, пг/мл	15,2 (6,1-24,1)	17,3 (7,9-17,3)	6,3 (3,9-8,4)	5,7 (4,2-8)	p ¹ =0,009 p ² >0,007 p ³ >0,05
	21,6 (11,4-28,8)	15,5 (7,1-21,6)	8,6 (3,9-9,3)	7,8 (4,8-10,2)	p ¹ =0,003 p ² =0,01

ИЛ-10,					$p^3 > 0.05$
пг/мл					
ИЛ-1бета,	16,7	19,2	6,1	3,7	p ¹ =0,0003
пг/мл	ŕ	ŕ		ŕ	$p^2=0,0002$
	(4,7-28,9)	(3,9-28,8)	(3,7-4,4)	(3,6-3,8)	$p^3 > 0.05$
					p*>0,03
ИНФ-	62.6	50.2	8	67	$p^1=0,0002$
гамма,	62,6	58,3	0	6,7	$p^2=0.0002$
	(4,6-85,3)	(8,5-37,5)	(2,9-7,4)	(6,4-6,8)	$p^2=0,0002$ $p^3>0,05$
пг/мл					p°>0,05

Примечание: Me(LQ-UQ); р – уровень достоверности; $p^{1, 2, 3}$ – уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

У пациентов с АХЗ выявлены максимальные концентрации ИЛ-6, ИЛ-10 в сравнении с пациентами остальных групп. В группе пациентов с АХЗ/ЖДА концентрации ИЛ-6 и ИЛ-10 оказались больше в сравнении с пациентами с ЖДА и группой контроля. В группе пациентов с ЖДА концентрация ИЛ-6 больше в сравнении с контрольной группой, тогда как концентрация ИЛ-10 не отличалась от контрольной группы. В группах пациентов с АХЗ и АХЗ/ЖДА выявлены максимальные и практически равные концентрации ФНО-альфа, ИЛ-1бета и ИНФ-гамма, которые статистически значимо превышали концентрации этих цитокинов в группах пациентов с ЖДА и без анемии. Между пациентами из группы ЖДА и контрольной группой не выявлено значимых различий в концентрациях ФНО-альфа, ИЛ-1бета и ИНФ-гамма.

5.1.4. Синтез гепцидина и растворимого рецептора трансферрина у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

Всем пациентам также выполнялось исследование концентрации гепцидина и sTfR. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 28.

Таблица 28 — Результаты сравнительного анализа концентраций гепцидина и растворимого рецептора трансферрина у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я	2-я	3-я	4-я	p
	группа	группа	группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Гепцидин,	22,2	25,1	11,4	24,3	p ¹ =0,003
нг/мл	(20,8-22,5)	(23,4-28,1)	(1,7-20,8)	(24,3-29,1)	$p^2 > 0.05$
					$p^3=0,006$
sTfR,	2,4	3,5	5,34	3	p ¹ >0,05
нмоль/л	(1,8-3,5)	(2,6-4)	(3,3-6,27)	(2,6-3,1)	$p^2 > 0.05$
					$p^3=0,006$

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

Минимальная концентрация гепцидина выявлена в группе пациентов с ЖДА. В этой группе концентрация этого параметра значимо ниже в сравнении с пациентами из групп с АХЗ, АХЗ/ЖДА и группой контроля. В группе пациентов с АХЗ концентрация гепцидина ниже в сравнении с контрольной группой и группой АХЗ/ЖДА и больше в сравнении с пациентами из группы

с ЖДА (p<0,05). Между группой пациентов с АХЗ/ЖДА и контрольной группой различий в концентрации гепцидина не выявлено.

В группе пациентов с ЖДА концентрация sTfR больше в сравнении с пациентами остальных групп (p<0,05). Между пациентами из групп с АХЗ, АХЗ/ЖДА и контрольной группой не выявлено межгрупповых различий в отношении концентрации sTfR.

5.1.5. Секреция эритропоэтина у пациентов с анемией хронических заболеваний, железодефицитной анемией и их сочетанием

У всех пациентов выполнялось определение в сыворотке крови концентрации эритропоэтина. Результаты сравнительного анализа между пациентами трех групп с анемией и контрольной группой представлены в Таблице 29.

Таблица 29 — Результаты сравнительного анализа концентрации эритропоэтина у пациентов трех групп с анемией и контрольной группы больных без анемии

Показатель	1-я	2-я	3-я	4-я	p
	группа	группа	группа	группа	
	AX3	АХЗ/ЖДА	ЖДА	Б/А	
Эритропоэтин,	28,5	14	15,8	6,3	p1=0,0003
Ед/мл	(11,2-28,5)	(8,1-16,3)	(6,2-27,4)	(4,9-7,8)	$p^2=0.02$
					$p^3=0,01$

Примечание: Me(LQ-UQ); р — уровень достоверности; $p^{1, 2, 3}$ — уровень достоверности различий показателей между группой контроля и 1-й, 2-й, 3-й группами соответственно.

В группе АХЗ выявлена максимальная концентрация ЭПО, значимо превышающая концентрации этого показателя в группах АХЗ/ЖДА, ЖДА и пациентов без анемии. У пациентов из группы АХЗ/ЖДА и ЖДА не выявлено

межгрупповых различий в отношении концентрации ЭПО (p>0,05). Также в группах АХЗ/ЖДА и ЖДА концентрация ЭПО больше в сравнении с контрольной группой.

5.2. Оценка влияния основных патогенетических факторов на развитие анемии хронических заболеваний

5.2.1. Влияние про- и противовоспалительных цитокинов на показатели красной крови и обмена железа, а также секрецию эритропоэтина

Результаты корреляционного анализа между ИЛ-6, ФНО- α , ИЛ-10, ИНФ- γ , ИЛ-1 β числом эритроцитов и концентрацией гемоглобина представлены в Таблице 30.

Таблица 30 — Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ-γ, ИЛ-1β, числом эритроцитов и концентрацией гемоглобина (r — коэффициент корреляции Спирмена)

Показатель	Эритроциты (10 ¹² /л)	Гемоглобин (г/л)					
	Пациенты с AX3						
ИЛ-6, пг/мл	-0,73	-0,62					
ФНО-α, пг/мл	-0,42	-0,88					
ИЛ-10, пг/мл	-0,45	-0,75					
ИНФ-ү, пг/мл	-0,6	-0,5					
ИЛ-1β, пг/мл	-0,32	-0,43					
	Пациенты с АХЗ/Ж	КДА					
ИЛ-6, пг/мл	-0,42	-0,32					
ФНО-α, пг/мл	-0,58	-0,64					
ИЛ-10, пг/мл	-0,42	-0,4					

ИНФ- ү, пг/мл	-0,55	-0,66		
ИЛ-1β, пг/мл	- 0,37	-0,8		
	Пациенты с ЖД	A		
ИЛ-6, пг/мл	-0,1	-0,16		
ФНО-α, пг/мл	-0,1	-0,15		
ИЛ-10, пг/мл	-0,17	-0,2		
ИНФ- ү, пг/мл	-0,2	-0,03		
ИЛ-1β, пг/мл	-0,14	-0,15		
Примечание: все приведенные коэффициенты корреляции статистически				

значимы (р<0,05).

В группе пациентов с АХЗ выявлено статистически значимое отрицательное влияние всех исследуемых цитокинов на число эритроцитов и концентрацию гемоглобина. Установлено, что на число эритроцитов оказывает сильное негативное влияние ИЛ-6 (r=-0,7), заметное негативное влияние — ФНО- α (r=-0,42), ИЛ-10 (r=-0,45) и ИЛ-1 β (r=-0,32). Доказано, что на концентрацию гемоглобина оказывает сильное негативное влияние ФНО- α (r=-0,88), заметное негативное влияние — ИЛ-6 (r=-0,62) и умеренное негативное влияние — ИНФ- γ (r=-0,5) и ИЛ-1 β (r=-0,43). Также выявлена сильная отрицательная корреляционная связь между концентрацией гемоглобина и ИЛ-10 (r=-0,75). С учетом противовоспалительной функции ИЛ-10 наличие подобной взаимосвязи между ним и гемоглобином наиболее вероятно следует расценивать как компенсаторную реакцию.

В группе пациентов с сочетанием АХЗ/ЖДА также выявлены корреляционные связи между исследуемыми цитокинами, числом эритроцитов и концентрацией гемоглобина. Сила корреляционных связей в этой группе преимущественно меньше в сравнении с группой с АХЗ. Установлено наличие заметной отрицательной корреляционной связи между

числом эритроцитов и концентрациями ФНО- α (r=-0,58) и ИНФ- γ (r=-0,55) и умеренной отрицательной корреляционной связи между числом эритроцитов и концентрациями ИЛ-6 (r=-0,42), ИЛ-10 (r=-0,42) и ИЛ-1 β (r=-0,37). Также в группе с АХЗ/ЖДА обнаружено, что на концентрацию гемоглобина оказывает сильное отрицательное влияние ИЛ-1 β (r=- 0,8), заметное отрицательное влияние — ФНО- α (r=-0,64) и ИНФ- γ (r=-0,66) и умеренное отрицательное влияние — ИЛ-6 (r=-0,32) и ИЛ-10 (r=-0,4).

В группе пациентов с изолированной ЖДА выявлено слабое или очень слабое влияние исследуемых цитокинов на число эритроцитов и концентрацию гемоглобина.

Результаты корреляционного анализа между исследуемыми цитокинами и эритропоэтином представлены в Таблице 31.

Таблица 31 – Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ-γ, ИЛ-1β и концентрацией эритропоэтина (r – коэффициент корреляции Спирмена)

Показатель	Эритропоэтин, Ед/мл		
Пациенты с AX3			
ИЛ-6, пг/мл	-0,71		
ФНО-α, пг/мл	-0,6		
ИЛ-10, пг/мл	0,7		
ИНФ-ү, пг/мл	0,83		
ИЛ-1β, пг/мл	-0,82		
	Пациенты с AX3/ЖДА		
ИЛ-6, пг/мл	- 0,48		
ФНО-α, пг/мл	-0,6		
ИЛ-10, пг/мл	0,6		
ИНФ-ү, пг/мл	0,8		
ИЛ-1β, пг/мл	-0,5		

Пациенты с ЖДА				
ИЛ-6, пг/мл	-0,05			
ФНО-α, пг/мл	-0,08			
ИЛ-10, пг/мл	0,09			
ИНФ-ү, пг/мл	-0,15			
ИЛ-1β, пг/мл	0,05			
Примечание: все пр	оиведенные коэффициенты корреляции статистически			
значимы (р<0,05).				

В группе пациентов с АХЗ выявлены наиболее высокие коэффициенты корреляции между цитокинами и ЭПО. Установлено, что на концентрацию ЭПО оказывают сильное отрицательное влияние ИЛ-6 (r=-0,71) и ИЛ-1 β (r=-0,82) и заметное отрицательное влияние — ФНО- α (r=-0,6). Также показано, что концентрация ЭПО имеет сильную положительную корреляционную связь с концентрациями ИНФ- γ (r=0,83) и ИЛ-10 (r=0,7).

В группе пациентов с сочетанием АХЗ/ЖДА выявлена сильная положительная корреляционная связь между ЭПО и ИНФ- γ (r=0,8), а также ИЛ-10 (r=0,6). Также в этой группе показано заметное отрицательное влияние на концентрацию ЭПО со стороны ФНО- α (r=-0,6) и ИЛ-1 β (r=-0,5) и умеренное отрицательное влияние со стороны ИЛ-6 (r=-0,48).

В группе пациентов с изолированной ЖДА выявлено слабое или очень слабое влияние исследуемых цитокинов на концентрацию ЭПО.

Результаты корреляционного анализа между исследуемыми цитокинами и показателями обмена железа представлены в Таблице 32.

Таблица 32 — Корреляционный анализ между концентрациями ИЛ-6, ФНО- α , ИЛ-10, ИНФ- γ , ИЛ-1 β и показателями обмена железа (r — коэффициент корреляции Спирмена)

Показа	СРБ,	Железо,	ОЖСС,	Ферритин,	Трансфер
тель	мг/мл	мкмоль/л	мкмоль/л	мкг/л	рин, г/л
		Па	циенты с АХЗ		1
ИЛ-6,	0,76	- 0,8	-0,8	0,74	-0,88
пг/мл					
ΦΗΟ-α,	0,69	-0,65	-0,64	0,76	-0,81
пг/мл					
ИЛ-10,	0,61	-0,42	-0,47	0,68	-0,55
пг/мл					
ИНФ-ү,	0,7	0,53	-0,7	0,85	-0,52
пг/мл					
ИЛ-1β,	0,51	-0,78	-0,73	0,66	-0,75
пг/мл					
		Пациє	енты с АХЗ/Ж	ДА	-
ИЛ-6,	0,7	- 0,57	-0,62	0,56	-0,8
пг/мл					
ΦΗΟ-α,	0,65	- 0,57	-0,53	0,68	-0,54
пг/мл					
ИЛ-10,	0,53	-0,37	-0,5	0,62	-0,51
пг/мл					
ИНФ-ү,	0,68	0,64	-0,68	0,8	-0,49
пг/мл					
ИЛ-1β,	0,44	-0,42	-0,54	0,61	-0,63
пг/мл					
		Паг	циенты с ЖДА	1	

ИЛ-6,	0,26	- 0,21	-0,26	0,34	0,4
пг/мл					
ΦΗΟ-α,	0,44	- 0,1	-0,32	0,4	-0,32
пг/мл					
ИЛ-10,	0,39	- 0,17	-0,2	0,42	-0,2
пг/мл					
ИНФ-ү,	0,41	0,14	0,4	0,23	-0,34
пг/мл					
ИЛ-1β,	0,1	- 0,29	-0,26	0,24	-0,4
пг/мл					

Примечание: все приведенные коэффициенты корреляции статистически значимы (p<0,05).

По результатам проведённого анализа максимальные коэффициенты корреляции между цитокинами и параметрами обмена железа выявлены в группах с АХЗ и АХЗ/ЖДА, тогда как в группе с ЖДА, наоборот, значения коэффициентов корреляции оказались минимальными.

В группе пациентов с АХЗ установлено, что ИЛ-6 имеет сильную положительную взаимосвязь с СРБ (r=0.76) и ферритином (r=0.74) и сильную отрицательную взаимосвязь с концентрациями железа (r=-0.8), ОЖСС (r=-0.8) и трансферрина (r=-0,88). Также показано, что ФНО-а имеет сильную положительную взаимосвязь c ферритином (r=0.76), заметную взаимосвязь с СРБ (r=0,69), сильную отрицательную положительную трансферрина (r=-0.81)взаимосвязь концентрацией заметную отрицательную взаимосвязь с концентрациями железа (r=-0,65) и ОЖСС (r=-0,64). Выявлена заметная положительная взаимосвязь между ИЛ-10, СРБ (r=0,61) и ферритином (r=0,68), заметная отрицательная взаимосвязь между ИЛ-10 и трансферрином (r=-0,55) и умеренная отрицательная взаимосвязь между ИЛ-10 железом (r=-0,42) и ОЖСС (r=-0,47). Для ИНФ- γ установлена сильная положительная взаимосвязь с СРБ (r=0,7) и ферритином (r=0,85), положительная взаимосвязь c железом (r=0.53), заметная заметная трансферрином (r=-0.52)отрицательная взаимосвязь c сильная отрицательная взаимосвязь с ОЖСС (r=-0,7). В отношении ИЛ-1β также выявлены сильные отрицательные взаимосвязи с концентрацией железа (r=-0,78), концентрацией трансферрина (r=-0,75), ОЖСС (r=-0,73) и заметная положительная взаимосвязь с СРБ (r=0,51) и ферритином (r=0,66).

В группе пациентов с сочетанием АХЗ/ЖДА коэффициенты корреляции между цитокинами и показателями обмена железа оказались меньше или в некоторых случаях были сопоставимы с группой АХЗ. По результатам проведенного корреляционного анализа в этой группе пациентов установлено, что ИЛ-6 имеет сильную положительную взаимосвязь с СРБ (r=0,7), сильную отрицательную взаимосвязь c трансферрином (r=-0.8)заметную отрицательную взаимосвязь с железом (r=-0,57) и ОЖСС (r=-0,62) и заметную прямую взаимосвязь с ферритином (r=0,56). Для ФНО-а доказано наличие заметной отрицательной взаимосвязи с железом (r=-0,57), ОЖСС (r=-0,53), трансферрином (r=-0,54), заметной положительной взаимосвязи с СРБ (r=0,65) ферритином (r=0,68). Для ИЛ-10 выявлено наличие умеренной отрицательной взаимосвязи с железом (r=-0,37), ОЖСС (r=-0,5), заметной взаимосвязи трансферрином (r=-0.51)отрицательной \mathbf{c} положительной взаимосвязи с СРБ (r=0,53) и ферритином (r=0,62). Также в ходе анализа установлено, что ИНФ-у имеет заметную положительную взаимосвязь с СРБ (r=0,68), железом (r=0,64), сильную положительную взаимосвязь с ферритином (r=0,8), умеренную отрицательную взаимосвязь с трансферрином (r=-0,49) и заметную отрицательную взаимосвязь с ОЖСС (r=-0,68). Для ИЛ-1β выявлено наличие умеренной отрицательной взаимосвязи с железом (r=-0.42), заметной отрицательной взаимосвязи с ОЖСС (r=-0.54), трансферрином (r= -0,63), умеренной положительной взаимосвязи с СРБ (r=0,44) и заметной положительной взаимосвязи с ферритином (r=0,61).

В группе пациентов с ЖДА выявлены наименьшие коэффициенты корреляции между исследуемыми цитокинами и показателями обмена железа. Выявлена слабая корреляционная связь между ИЛ-6 и железом (r=-0,21), ОЖСС (r=-0,26), СРБ (r=0,26) и умеренная корреляционная связь между ИЛ-6 и ферритином (r=0,56), трансферрином (r=0,4). Для ФНО-α установлена умеренная взаимосвязь с СРБ (r=0,4), ОЖСС (r=-0,32), ферритином (r=0,4), трансферрином (r=-0,32) и слабая взаимосвязь с железом (r=-0,1). В отношении ИЛ-10 установлено наличие умеренной взаимосвязи между ним и СРБ (r=0,39), ферритином (r=0,42) и слабая взаимосвязь с железом (r=-0,17), ОЖСС (r=-0,2) и трансферрином (r=-0,2). Для ИНФ-γ доказано наличие умеренной взаимосвязи с СРБ (r= 0,41), ОЖСС (r= 0,4), трансферрином (r=-0,34) и слабой взаимосвязи железом (r=0,14) и ферритином (r=0,23). Для ИЛ-1β доказано наличие умеренной взаимосвязи с трансферрином (r=-0,4), и слабой взаимосвязи с железом (r=- 0,29), ОЖСС (r=-0,26), СРБ (r=0,1), ферритином (r=0,24).

Результаты корреляционного анализа между исследуемыми цитокинами и концентрациями гепцидина и sTfR в трех группах пациентов с анемией представлены в Таблице 33.

Таблица 33 — Корреляционный анализ между концентрациями ИЛ-6, ФНО-α, ИЛ-10, ИНФ-γ, ИЛ-1β и концентрациями гепцидина и растворимого рецептора трансферрина (r — коэффициент корреляции Спирмена)

Показатель	Гепцидин, нг/мл	sTfR, нмоль/л	
Пациенты с AX3			
ИЛ-6, пг/мл	-0,55	0,77	
ФНО-α, пг/мл	-0,47	-0,84	
ИЛ-10, пг/мл	-0,8	-0,89	
ИНФ-ү, пг/мл	-0,88	-0,65	
ИЛ-1β, пг/мл	-0,45	-0,71	

Пациенты с АХЗ/ЖДА		
ИЛ-6, пг/мл	-0,45	0,63
ФНО-α, пг/мл	-0,42	-0,6
ИЛ-10, пг/мл	-0,74	-0,6
ИНФ-ү, пг/мл	-0,68	-0,5
ИЛ-1β, пг/мл	-0,5	-0,52
Пациенты с ЖДА		
ИЛ-6, пг/мл	-0,31	-0,24
ФНО-α, пг/мл	-0,05	-0,21
ИЛ-10, пг/мл	-0,29	-0,19
ИНФ-ү, пг/мл	-0,27	-0,14
ИЛ-1β, пг/мл	-0,29	-0,33
Примечание: все приведенные коэффициенты корреляции статистически		

По результатам корреляционного анализа наибольшие коэффициенты выявлены в группе пациентов с АХЗ. Установлено, что гепцидин имеет сильные отрицательные взаимосвязи с ИЛ-10 (r=-0,8), ИНФ- γ (r=-0,88), заметную отрицательную взаимосвязь с ИЛ-6 (r=-0,55) и умеренные отрицательные взаимосвязи с ФНО- α (r=-0,47) и ИЛ-1 β (r=-0,45). Для sTfR выявлены сильные отрицательные взаимосвязи с ФНО- α (r=-0,84), ИЛ-10 (r=-0,89), ИЛ-1 β (r=-0,71), заметная отрицательная взаимосвязь с ИНФ- γ (r=-0,65) и сильная положительная взаимосвязь с ИЛ-6 (r=0,77).

значимы (р<0,05).

В группе пациентов с сочетанием АХЗ/ЖДА также выявлены значимые корреляционные связи между цитокинами, гепцидином и sTfR. Значения коэффициентов корреляции преимущественно меньше или в некоторых случаях сопоставимы с таковыми в группе с АХЗ. В этой группе больных установлено, что гепцидин имеет сильную отрицательную взаимосвязь с ИЛ-10 (r=-0,74), заметную отрицательную взаимосвязь с ИНФ-у (r=-0,68) и

умеренные отрицательные взаимосвязи с ИЛ-6 (r=-0,45), ФНО- α (r=-0,42) и ИЛ-1 β (r=-0,5). Для sTfR показано наличие сильных отрицательных взаимосвязей с ФНО- α (r= -0,6), ИЛ-10 (r= - 0,6), ИЛ-1 β (r=-0,2), заметной отрицательной взаимосвязи с ИНФ- γ (r=- 0,5) и сильной положительной взаимосвязи с ИЛ-6 (r=0,63).

В группе пациентов с ЖДА в сравнении с остальными группами пациентов с анемиями выявлены наименьшие коэффициенты корреляции между цитокинами, гепцидином и sTfR. Для гепцидина выявлена отрицательная умеренная взаимосвязь с ИЛ-6 (r=-0,31) и слабые взаимосвязи с ФНО- α (r=-0,05), ИЛ-10 (r=-0,29), ИНФ- γ (r=-0,27), ИЛ-1 β (r=-0,29). Для sTfR выявлена отрицательная умеренная взаимосвязь с ИЛ-6 (r=-0,33) и слабые взаимосвязи с ФНО- α (r=-0,05), ИЛ-10 (r=-0,29), ИНФ- γ (r=-0,27), ИЛ-1 β (r=-0,29).

5.2.2. Взаимосвязь между гепцидином, растворимым рецептором трансферрина и показателями красной крови

Результаты корреляционного анализа между концентрациями гепцидина, sTfR, числом эритроцитов и концентрацией гемоглобина представлены в Таблице 34.

Таблица 34 — Корреляционный анализ между концентрациями гепцидина, растворимого рецептора трансферрина, числом эритроцитов и концентрацией гемоглобина (r — коэффициент корреляции Спирмена)

Показатель	Эритроциты $(10^{12}/\pi)$	Гемоглобин (г/л)
Пациенты с АХЗ		
Гепцидин, нг/мл	-0,4	0,4
sTfR, нмоль/л	-0,5	-0,54
Пациенты с АХЗ/ЖДА		

Гепцидин, нг/мл	-0,32	0,24	
sTfR, нмоль/л	-0,51	-0,58	
Пациенты с ЖДА			
Гепцидин, нг/мл	-0,55	-0,63	
sTfR, нмоль/л	-0,53	-0,62	
Примечание: все приведенные коэффициенты корреляции статистически			

Примечание: все приведенные коэффициенты корреляции статистически значимы (p<0,05).

По результатам проведенного корреляционного анализа в группах пациентов с АХЗ и АХЗ/ЖДА не выявлено заметных и сильных взаимосвязей между гепцидином и числом эритроцитов, концентрацией гемоглобина. В группе пациентов с ЖДА выявлены наибольшие коэффициенты корреляции между гепцидином, числом эритроцитов и концентрацией гемоглобина. В группе пациентов с АХЗ для гепцидина показана умеренная отрицательная корреляция с числом эритроцитов (r=-0,4) и умеренная положительная корреляция с концентрацией гемоглобина (r=0,4). В группе с АХЗ/ЖДА для гепцидина установлена умеренная отрицательная взаимосвязь с числом эритроцитов (r=-0,32) и слабая взаимосвязь с концентрацией гемоглобина (r=0,24).

По результатам корреляционного анализа во всех группах пациентов с анемией выявлена заметная отрицательная взаимосвязь между sTfR и числом эритроцитов и между sTfR и концентрацией гемоглобина.

В ходе проведенного обследования установлено, что у пациентов с ВИЧ-инфекцией может развиваться АХЗ, ЖДА, а также возможно сочетание этих двух типов анемий. АХЗ у пациентов с ВИЧ-инфекцией – это нормоцитарная, нормохромная анемия преимущественно легкой степени тяжести. Для пациентов с этим типом анемии характерно статистически значимое более низкое число эритроцитов в сравнении с пациентами с ЖДА. Это является следствием угнетения эритропоэза под действием различных факторов.

Максимальные концентрации ИЛ-6, ФНО-α в группе пациентов с АХЗ, а также высокие концентрации ФНО-альфа, ИЛ-1бета и ИНФ-гамма в группах пациентов с АХЗ и АХЗ/ЖДА свидетельствуют о важном значении этих цитокинов в развитии АХЗ. Это также подтверждается выявленными корреляционными максимальными СВЯЗЯМИ между исследуемыми цитокинами, числом эритроцитов и концентрацией гемоглобина. Влияние цитокинов на развитие АХЗ опосредуется также и через их действие на обмен железа. Этот факт подтверждается выявленными максимальными коэффициентами корреляции между цитокинами, параметрами обмена железа в группах больных с АХЗ и АХЗ/ЖДА. Установлена повышенная секреция ЭПО в группе больных с АХЗ, что может рассматриваться как компенсаторная реакция на подавление эритропоэза. В то же время не выявлено значимых различий в концентрациях гепцидина у пациентов из групп с АХЗ и АХЗ/ЖДА в сравнении с контрольной группой.

Таким образом, в развитии АХЗ у пациентов с ВИЧ-инфекцией важное значение играют повышенные секреции ИЛ-6, ИЛ-10, ФНО-α, ИНФ-γ, ИЛ-1β, развивающееся вследствие этого нарушение обмена железа с развитием функционального дефицита железа, а также угнетением эритропоэза и компенсаторным усилением секреции ЭПО.

ГЛАВА 6. СОЗДАНИЕ МОДЕЛЕЙ ДЛЯ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ АНЕМИИ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ И ЖЕЛЕЗОДЕФИЦИТНОЙ АНЕМИИ

С целью создания диагностической модели, позволяющей с высокой чувствительностью и специфичностью проводить дифференциальную диагностику анемии хронических заболеваний от железодефицитной анемии, использовался дискриминантный анализ.

Дискриминантный анализ проводился в три этапа:

- 1) формирование обучающей выборки, то есть отбор пациентов с точно установленным диагнозом «анемия хронических заболеваний» или «железодефицитная анемия»;
- 2) разработка решающих правил диагностики в виде набора линейных классификационных функций (ЛКФ) и канонических линейных дискриминантных функций (КЛДФ) и оценка их информативности;
- 3) классификация на основе выработанных решающих правил.

6.1.1. Создание модели для дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с солидными злокачественными новообразованиями

Ha первом сформирована группа наиболее этапе анализа информативных для модели переменных. Переменных (концентрация ферритина и гепцидина), лямбда Уилкса: 0,22611 прибл. F (2,19) = 32,514, p<0,00001. По результатам дискриминации рассчитывались значения λ-Уилкса для всей модели, частные λ-Уилкса, характеризующие единичный вклад каждой переменной в разделительную силу модели, и критерии Фишера с соответствующими уровнями значимости. Результаты представлены в Таблице 35.

F-Лямбда Частная 1-толер. исключ. р-уров. Толер. Уилкса - (R-кв.) лямбда - (1,19) Гепцидин 0,422152 0,535619 16,47297 0,000670 0,983244 0,016756

13,17200

0,001785

0,983244

0,016756

Таблица 35 – Результаты анализа дискриминантной функции

0,590576

Критерий F=32,514 и p<0,00001 свидетельствуют о статистической значимости модели. Ее чувствительность составила 90,9 %, специфичность 100 %, а информационная способность (общая доля верно классифицированных исходов) – 95,45 %.

Для оценки качества классификации модели дополнительно рассчитывались квадраты Махаланобиса. Результаты расчета представлены в Таблице 36.

Таблица 36 – Квадраты расстояний Махаланобиса

0,382869

Ферритин

	G_1:1	G_2:2
G_1:1	0,00000	12,54943
G_2:2	12,54943	0,00000

Из таблицы можно сделать вывод о том, что включение в модель концентрации ферритина и гепцидина увеличивает уровень дискриминации с 0 до 12,54943.

На следующем этапе проводился канонический анализ с расчетом канонических линейных дискриминантных функций. Вначале рассчитывались коэффициенты для канонических переменных (Таблица 37).

Таблица 37 – Исходные коэффициенты для канонических переменных

	Kop. 1
Гепцидин	-0,058628
Ферритин	-0,003146
Конст-та	2,563405
Соб. зн.	3,422571
Кумулятивная доля	1,000000

Для решения задачи дифференциальной диагностики следует применять одну каноническую линейную дискриминантную функцию (КЛДФ) с суммарным (кумулятивным) вкладом в дисперсию лабораторных показателей 100 %:

КЛДФ= 2,563405 - 0,058628× гепцидин -0,003146× ферритин

Для проведения дифференциальной диагностики также рассчитывались координаты центроидов, для АХЗ это -1,6102351, а для ЖДА 1,93228212. Пациента, у которого по данным концентраций ферритина и гепцидина определено значение КЛДФ, следует отнести к группе с АХЗ или ЖДА по минимальному расстоянию к соответствующему центроиду.

Ниже приводятся два клинических примера использования полученной КЛДФ для дифференциальной диагностики АХЗ и ЖДА у пациентов со злокачественными новообразованиями.

Клинический пример № 1.

Пациентка А., 72 года, поступила в отделение колопроктологии с жалобами на общую слабость, отсутствие аппетита, периодическое вздутие живота и задержку стула до 4 дней. По данным колоноскопии на высоте 20 см выявлена стенозирующая опухоль сигмовидной кишки. Пациентке выполнено оперативное лечение — операция Гартмана, резекция правого мочеточника, шов правого мочеточника на стенте. По результатам проведенного гистологического исследования установлен диагноз: умеренно

дифференцированная аденокарцинома прямой кишки с врастанием в мышечный слой.

При поступлении у пациентки диагностирована гипохромная, микроцитарная анемия: эритроциты — $3,69\times10^{12}$ /л, гемоглобин — 91 г/л, тромбоциты — 364×10^9 /л, MCV — 75,1 фл, MCH — 24,7 пг, HCT — 27,7.

С целью уточнения генеза анемии назначены дополнительные обследования: СРБ – 10,7 мг/л, сывороточное железо – 1,5 нмоль/л, КНТ – 2,1, ОЖСС – 81 мкмоль/л, трансферрин – 3,756 г/л, ферритин – 19,7 мкг/л, гепцидин – 2,4 нг/мл.

У пациентки были исследованы концентрации цитокинов, их значения оказались в пределах нормальных значений: ИНФ- γ – 5,7 пг/мл, ИЛ-6 – 7,24 пг/мл, ФНО- α – 3,7 пг/мл, ИЛ-10 – 5 пг/мл, ИЛ-1 β – 3,5 пг/мл.

Концентрация эритропоэтина у пациентки составила 33,85 Ед/мл.

Определяем тип анемии с помощью предложенной формулы, вставляя в нее концентрации гепцидина и ферритина:

КЛДФ= $2,563405 - 0,058628 \times$ гепцидин $-0,003146 \times$ ферритин = $2,563405 - 0,058628 \times 2,4 - 0,003146 \times 19,7 = 2,563405 - 0,14 - 0,06 = 2,36$.

Итоговое значение уравнения, равное 2,36, ближе к центроиду ЖДА 1,93228212. Таким образом, по результатам дискриминации у пациентки диагностирована ЖДА. Это подтверждается концентрациями трансферрина, ОЖСС, КНТ, значениями эритроцитарных индексов и нормальными концентрациями цитокинов.

Окончательный диагноз пациентки.

Основное заболевание: рак (низкодифференцированная аденокарцинома прямой кишки) Т4bN1M0, 2С стадия. Операция Гартмана, резекция правого мочеточника, шов правого мочеточника на стенте.

Сопутствующее заболевание: хроническая железодефицитная анемия средней степени тяжести.

Клинический пример № 2.

Пациент С., 76 лет, поступил в неврологическое отделение в связи с общей слабостью, периодическим головокружением, шаткостью при ходьбе.

В ходе обследования обращено внимание на наличие у пациента гипохромной, микроцитарной анемии средней степени тяжести: эритроциты — $3,52\times1012/\pi$, гемоглобин — 89 г/ π , тромбоциты — $239\times109/\pi$, MCV — 78,9 ф π , MCH — 25,3 пг, HCT — 27,7.

В процессе проводимого диагностического поиска у пациента впервые установлен диагноз: рак (плоскоклеточный) верхней доли правого легкого с централизацией процесса, IV стадия (рТ2a cN2 cM1b HEP, OSS). Множественное метастатическое поражение позвоночника, крестца, печени.

С целью уточнения генеза анемии назначены дополнительные обследования: СРБ – 310,5 мг/л, сывороточное железо – 7 нмоль/л, ОЖСС – 27 мкмоль/л, КНТ – 29,1, трансферрин – 0,91 г/л, ферритин – 614,6 мкг/л, гепцидин – 62,012 нг/мл.

У пациента исследованы концентрации цитокинов: ИНФ- γ – 1,3 пг/мл, ИЛ-6 – 517,9 пг/мл, ФНО- α – 15,3 пг/мл, ИЛ-10 – 102 пг/мл, ИЛ-1 β – 2,05 пг/мл. Концентрации ИЛ-6, ИЛ-10 значимо повышены, концентрация ФНО- α превышала средние значения, полученные для групп пациентов с железодефицитной анемией и группы контроля.

Концентрация эритропоэтина у пациента составила 16,3 Ед/мл.

Определяем тип анемии с помощью предложенной формулы, вставляя в нее концентрации гепцидина и ферритина:

КЛДФ= $2,563405 - 0,058628 \times$ гепцидин $-0,003146 \times$ ферритин = $2,563405 - 0,058628 \times 62 - 0,003146 \times 614 = 2,563405 - 3,63 - 1,93 = -2,99$.

Итоговое значение уравнения, равное -2,99, ближе к центроиду АХЗ - 1,6102351. Таким образом, по результатам дискриминации у пациента диагностирована АХЗ. Это подтверждается высокой концентрацией СРБ, провоспалительных (ИЛ-6, ФНО-α) и противовоспалительных (ИЛ-10)

цитокинов, высоким значением КНТ, сниженным числом эритроцитов. При этом значения MCV, MCH больше характерны для железодефицитной анемии.

Окончательный диагноз пациента.

Основное заболевание: рак (плоскоклеточный) верхней доли правого легкого с централизацией процесса, IV стадия (рТ2а сN2 сМ1b HEP, OSS). Множественное метастатическое поражение позвоночника, крестца, печени.

Осложнение основного заболевания: анемия хронического заболевания с нарушением обмена железа и регуляторных процессов эритропоэза.

6.1.2. Оценка чувствительности, специфичности и диагностической значимости полученной модели, а также некоторых лабораторных показателей для дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов со злокачественными новообразованиями

С целью оценки диагностической значимости полученной модели использовался ROC-анализ с расчетом показателя AUC, а также чувствительности, специфичности и доверительного интервала. Подобные показатели также рассчитывались для некоторых показателей обмена железа, СРБ, цитокинов и количества эритроцитов. Результаты представлены в Таблице 38.

Таблица 38 — Результаты ROC-анализа для диагностической модели, а также некоторых показателей обмена железа, СРБ, цитокинов и количества эритроцитов

Показатель	AUC	Стандартная	Асимптомат.	Чувстви	Специфич	95 % ДИ	
		ошибка	значения	тельность,	ность, %	Нижняя	Верхняя
				%		граница	граница

Итоговая	0,947	0,038	0,00001	90,9	100	0,872	1,000
модель							
Ферритин	0,892	0,053	0,002	81,9	90	0,792	1,000
Трансферрин	0,807	0,091	0,012	70	78,5	0,628	0,986
Гепцидин	0,889	0,056	0,003	89	88,7	0,790	1,000
Железо	0,625	0,109	0,265	44,4	57,8	0,412	0,838
sTfR	0,595	0,114	0,411	57,1	57,8	0,371	0,820
ОЖСС	0,823	0,07	0,006	81,8	85,7	0,690	0,955
КНТ	0,724	0,104	0,059	70	73,3	0,52	0,928
СРБ	0,839	0,065	0,003	71,4	87,2	0,701	0,974
ИЛ-6	0,829	0,069	0,005	61,7	70,5	0,694	0,964
ΦΗΟ-α	0,515	0,150	0,92	43	63,7	0,222	0,808
ИНФ-ү	0,682	0,134	0,228	53	61,5	0,420	0,944
ИЛ-10	0,766	0,103	0,060	80	85,7	0,564	0,967
ИЛ-1β	0,694	0,128	0,190	66,6	75	0,444	0,945
Эритроциты	0,739	0,092	0,024	70	72,7	0,559	0,919
Примечание: АС	C – area und	er curve (площ	адь под кривой)	, ДИ – довери	гельный инте	ервал.	I

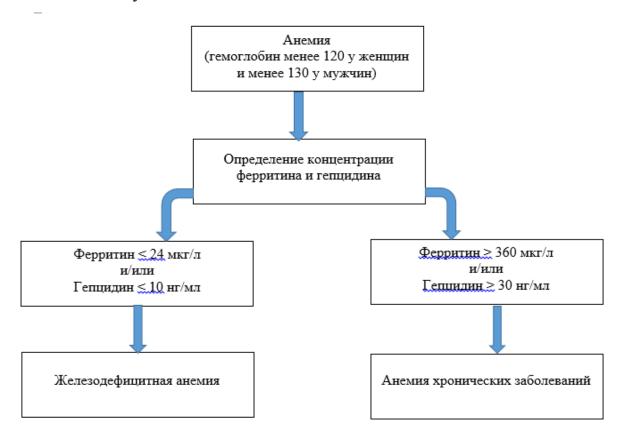
По результатам ROC-анализа установлено, что полученная модель, в которую входит концентрация гепцидина и ферритина, обладает наибольшей диагностической значимостью (AUC – 0,947), а также чувствительностью и специфичностью тэжом быть использована проведения И ДЛЯ дифференциальной диагностики анемии хронических заболеваний железодефицитной анемии.

По результатам оценки остальных лабораторных показателей выявлено, что гепцидин и ферритин также обладают высокой диагностической значимостью, чувствительностью и специфичностью, хотя и меньшими, чем у итоговой диагностической модели. Гепцидин в сравнении с ферритином обладает большей чувствительностью, а ферритин — большей специфичностью. Высокие значения АUC, а также специфичность и чувствительность гепцидина и ферритина позволяют использовать эти лабораторные показатели для дифференциальной диагностики АХЗ и ЖДА у пациентов со злокачественными новообразованиями.

С учетом результатов описательной статистики, сравнительного анализа возможно определение границ в концентрациях этих показателей для проведения дифференциальной диагностики двух типов анемий на практике. Концентрация гепцидина более 30 нг/мл и/или ферритина более 360 мкг/л свидетельствует о развитии АХЗ. Концентрация гепцидина менее 10 нг/мл и/или ферритина менее 24 мкг/л свидетельствует о развитии у пациента ЖДА. Получение указанных концентраций выполнялось после проведения ROC-анализа и расчета точки отсечения (cut-off), в которой гепцидин и ферритин обладали наибольшими показателями чувствительности и специфичности для диагностики АХЗ и ЖДА.

В следующую группу лабораторных показателей возможно отнести трансферрин, ОЖСС, СРБ и ИЛ-6. Значения АUС у всех более 0,8, но чувствительность и специфичность меньше. чем у ферритина и трансферрина. Более низкие чувствительность и специфичность делают эти показатели менее пригодными для проведения дифференциальной диагностики АХЗ и ЖДА у пациентов со злокачественными новообразованиями.

Оставшиеся лабораторные показатели обладают еще меньшим AUC, чувствительностью и специфичностью и не могут быть использованы для проведения дифференциальной диагностики AX3 и ЖДА у пациентов со злокачественными новообразованиями.


6.1.3. Разработка алгоритма дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с солидными злокачественными новообразованиями на основании показателей, обладающих наибольшей чувствительностью и специфичностью

В связи с высокими значениями чувствительности и специфичности гепцидина и ферритина в отношении диагностики АХЗ и ЖДА у пациентов со

злокачественными новообразованиями ниже предлагается схема для проведения дифференциальной диагностики этих двух типов анемий.

обращении первичном пациента c вывленным солидным злокачественным новообразованием в случае диагностики анемии с целью уточнения типа анемии необходимо определение двух показателей – ферритина и гепцидина. После получения результатов определения их концентрации возможно использование довольно простого диагностического алгоритма, который позволит c высокой чувствительностью и специфичностью определить, какой тип анемии развился у пациента: АХЗ или ЖДА. С целью улучшения качества диагностики необходимо определение концентрации этих двух показателей. Но в случае невозможности определения концентрации одного из них возможно использовать один, так как определение по отдельности концентрации как ферритина, так и гепцидина также позволит с высокой вероятностью провести диагностику типа анемии. В дальнейшем это позволит выбрать оптимальную стратегию лечения анемии. В случае диагностики ЖДА необходимо назначение препаратов железа. В случае же выявления АХЗ назначение препаратов железа, в том числе и с помощью внутривенного введения, может оказаться неэффективным, необходимо добавление к терапии препаратов ЭПО. Указанный диагностический алгоритм представлен на Схеме 1.

Схема 1 – Алгоритм дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с воспалительными заболеваниями суставов

Диагностика сочетания АХЗ с ЖДА до сих пор остается более сложной проблемой и не являлась целью настоящего исследования. С учетом полученных результатов диагностика сочетания двух типов анемий возможна при получении концентраций ферритина и гепцидина, которые находятся в промежутках между 24—360 мкг/л и 10—30 нг/мл соответственно. Необходимы дальнейшие исследования в этом направлении.

Таким образом, для дифференциальной диагностики АХЗ и ЖДА нами предлагаются два способа. Первый способ основан на использовании уравнения полученным методом дискриминантного анализа. Второй способ представляет из себя диагностический алгоритм, основанный на рассчитанных с помощью точки отсечения концентрациях гепцидина и ферритина, которые позволяют отнести анемию у конкретного пациента к АХЗ или ЖДА. Первый

способ более трудоемкий И математически сложный, НО обладает максимальной чувствительностью и специфичностью, а второй способ более прост в использовании, может проводиться с помощью определения одного обладает меньшей показателя, НО при ЭТОМ чувствительностью И специфичностью.

Необходимо отметить, что с учетом дизайна исследования, критериев включения и исключения предлагаемая схема дифференциальной диагностики двух типов анемий применима к пациентам с впервые выявленным опухолевым заболеванием или у пациентов с рецидивом злокачественного новообразования после длительной ремиссии.

6.2.1. Создание модели для дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с воспалительными заболеваниями суставов

Ha наиболее первом этапе анализа сформирована группа информативных для модели переменных. Переменных в модели 2 (концентрация ферритина и гепцидина), лямбда Уилкса: 0,29 прибл. F (2,32) = 37,373, p<0,0001. По результатам дискриминации рассчитывались значения λ-Уилкса для всей модели, частные λ-Уилкса, характеризующие единичный вклад каждой переменной в разделительную силу модели, и критерии Фишера с соответствующими уровнями значимости. Результаты представлены в Таблице 39.

Таблица 39 – Результаты анализа дискриминантной функции

	Лямбда Уилкса	Частная лямбда	F- исключ. - (1,19)	р-уров.	Толер.	1-толер (R-кв.)
Гепцидин	0,565702	0,529918	28,38668	0,000008	0,889933	0,110067
Ферритин	0,557655	0,537564	27,52776	0,000010	0,889933	0,110067

Критерий F=37,373 и p<0,00001 свидетельствуют о статистической значимости модели. Ее чувствительность составила 100 %, специфичность 80 %, а информационная способность (общая доля правильно классифицированных исходов) -88,88 %.

Для оценки качества классификации модели дополнительно рассчитывались квадраты Махаланобиса. Результаты расчета представлены в Таблице 40.

Таблица 40 – Квадраты расстояний Махаланобиса

	G_1:1	G_2:2
G_1:1	0	8,816603
G_2:2	8,816603	0

Из таблицы можно сделать вывод о том, что включение в модель концентрации ферритина и гепцидина увеличивает уровень дискриминации с 0 до 8,816603.

На следующем этапе проводился канонический анализ с расчетом КЛДФ. Вначале рассчитывались коэффициенты для канонических переменных (Таблица 41).

Таблица 41 – Исходные коэффициенты для канонических переменных

Показатели	Кор. 1
Гепцидин	-0,002725
Ферритин	-0,005429
Конст-та	1,612171
Соб. зн.	2,335827
Кумулятивная доля	1,000000

Для решения задачи дифференциальной диагностики следует применять одну КЛДФ с суммарным (кумулятивным) вкладом в дисперсию лабораторных показателей 100%.

КЛДФ= 1,612171-0,002725× гепцидин -0,005429× ферритин

Для проведения дифференциальной диагностики также рассчитывались координаты центроидов, для АХЗ это -1,44222008, а для ЖДА 1,52705656. Пациента, у которого по данным концентраций ферритина и гепцидина определено значение КЛДФ, следует отнести к группе АХЗ или ЖДА, расположенной на минимальном расстоянии к соответствующему центроиду.

Ниже приводятся два клинических примера использования полученной КЛДФ для дифференциальной диагностики АХЗ и ЖДА у пациентов с воспалительными заболеваниями суставов.

Клинический пример № 1.

Пациентка П., 28 лет, поступила в отделение ревматологии в июле 2019 года с жалобами на боль в височно-нижнечелюстных, плечевых, локтевых, голеностопных суставах, утреннюю скованность в суставах около 1,5 часов.

Анамнез заболевания: болеет с 2011 года, когда впервые отметила припухание и болезненность в височно-нижнечелюстных суставах, затем появление артритов мелких суставов кистей и стоп, плечевых суставах. По этому поводу эпизодически принимала нестероидные противовоспалительные препараты с незначительным положительным эффектом. В 2018 году произошло ухудшение состояния с появлением выраженного суставного синдрома с поражением суставов кистей, стоп, плечевых, локтевых, коленных суставов. Самостоятельно принимала нестероидные противовоспалительные препараты с умеренным эффектом. Поступила в ревматологическое отделение для уточнения диагноза, подбора терапии.

В ходе проведенного обследования у пациентки установлен диагноз «ревматоидный артрит», исключен диагноз АС.

При поступлении у пациентки диагностирована гипохромная, микроцитарная анемия: эритроциты — $4,08\times10^{12}$ /л, гемоглобин — 103 г/л, тромбоциты — 270×10^9 /л, MCV — 78,7 фл, MCH — 25,7 пг, HCT — 34.

С целью уточнения генеза анемии назначены дополнительные обследования: СРБ -30,5 мг/л, сывороточное железо -4,59 нмоль/л, КНТ -7,5, ОЖСС -61 мкмоль/л, трансферрин -2,44 г/л, ферритин -11,9 мкг/л, гепцидин -6 нг/мл.

У пациентки были исследованы концентрации цитокинов, их значения оказались в пределах нормальных значений: ИНФ- γ – 5 пг/мл, ИЛ-6 – 20,48 пг/мл, ФНО- α – 2 пг/мл, ИЛ-10 – 4 пг/мл, ИЛ-1 β – 2 пг/мл.

Концентрация эритропоэтина у пациентки составила 22,2 Ед/мл.

Определяем тип анемии с помощью предложенной формулы, вставляя в нее концентрации гепцидина и ферритина:

КЛДФ= $1,612171-0,002725 \times$ гепцидин $-0,005429 \times$ ферритин= $1,612171-0,002725 \times 6 -0,005429 \times 11,9=1,612171-0,01635-0,064=1,53.$

Итоговое значение уравнения, равное 1,53, ближе к центроиду ЖДА 1,52705656. Таким образом, по результатам дискриминации у пациентки диагностирована ЖДА. Это подтверждается концентрациями трансферрина, ОЖСС, КНТ, значениями эритроцитарных индексов и нормальными концентрациями цитокинов. Несмотря на увеличение концентрации СРБ, параметры обмена железа укладываются в структуру диагноза ЖДА.

Окончательный диагноз пациентки.

Основное заболевание: ревматоидный артрит, серопозитивный, АЦЦП – позитивный, развернутая стадия, эрозивный. Рентгенологическая стадия 2Б, активность 3 (DAS 28 - 5,87). ФК 2.

Сопутствующее заболевание: хроническая железодефицитная анемия легкой степени тяжести.

Клинический пример № 2.

Пациентка О., 60 лет, поступила в ревматологическое отделение в июле 2019 г. в связи с болями в лучезапястных, плюсневых, плюснефаланговых,

коленных и левом голеностопном суставах, утреннюю скованность в суставах до 1,5 часов.

В анамнезе ревматоидный артрит с 2007 г. С 2007 по 2019 гг. периодически принимала базисную терапию метотрексатом. В декабре 2018 г. произошёл закрытый перелом правой бедренной кости, было назначено оперативное лечение по этому поводу. В связи с этим базисная терапия ревматоидного артрита отменена. Поступила на лечение в ревматологическое отделение в июле 2019 г. в связи с очередным ухудшением течения ревматоидного артрита.

В ходе обследования обращено внимание на наличие у пациентки гипохромной, нормоцитарной анемии легкой степени тяжести: эритроциты – 3.8×10^{12} /л, гемоглобин – 112 г/л, тромбоциты – 534×10^{9} /л, MCV – 82 фл, MCH – 26.2 пг, HCT – 35.1.

В ходе настоящей госпитализации у пациентки установлен диагноз: ревматоидный артрит, серопозитивный, развернутая стадия, эрозивный (рентгенологическая стадия IV), активность III (DAS 28 – 6,1), функциональный класс III.

С целью уточнения генеза анемии назначены дополнительные обследования: СРБ – 62,3 мг/л, сывороточное железо – 7,2 нмоль/л, ОЖСС – 42 мкмоль/л, КНТ – 29,1, трансферрин – 2,25 г/л, ферритин – 335 мкг/л, гепцидин – 800 нг/мл, sTfR – 15,43 нмоль/л.

У пациентки исследованы концентрации цитокинов: ИНФ- γ – 8,1 пг/мл, ИЛ-6 – 62,9 пг/мл, ФНО- α – 8,9 пг/мл, ИЛ-10 – 19 пг/мл, ИЛ-1 β – 2,1 пг/мл. Концентрации ИЛ-6, ИЛ-10 повышены, концентрация ФНО- α превышала средние значения, полученные для групп пациентов с железодефицитной анемией и группой контроля. Концентрации ИНФ- γ и ИЛ-1 β соответствовали средним концентрациям этих цитокинов в группе с АХЗ.

Концентрация эритропоэтина у пациентки составила 8,87 Ед/мл.

Определяем тип анемии с помощью предложенной формулы, вставляя в нее концентрации гепцидина и ферритина:

КЛДФ= 1,612171-0,002725×800 -0,005429×335=1,612171- 2,18-1,81=-2,37.

Итоговое значение уравнения, равное -2,37, ближе к центроиду АХЗ - 1,44222008. Таким образом, по результатам дискриминации у пациента диагностирована АХЗ. Это подтверждается высокой концентрацией СРБ, провоспалительных (ИЛ-6, ФНО-α) и противовоспалительных (ИЛ-10) цитокинов, высоким значением КНТ, сниженным числом эритроцитов. МСV соответствовал норме, а МСН был меньше нижней границы нормы.

Окончательный диагноз пациентки.

Основное заболевание: ревматоидный артрит, серопозитивный, развернутая стадия, эрозивный (рентгенологическая стадия IV), активность III (DAS 28 – 6,1), функциональный класс III.

Осложнение основного заболевания: анемия хронического заболевания с нарушением обмена железа, регуляторных процессов эритропоэза и недостаточной продукцией эритропоэтина.

6.2.2. Оценка чувствительности, специфичности и диагностической значимости полученной модели, а также некоторых лабораторных показателей для дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с воспалительными заболеваниями суставов

С целью оценки диагностической значимости полученной модели использовался ROC-анализ с расчетом показателя AUC, а также чувствительности, специфичности и доверительного интервала. Подобные показатели также рассчитывались для некоторых показателей обмена железа, СРБ, цитокинов и количества эритроцитов. Результаты представлены в Таблице 42.

Таблица 42 — Результаты ROC-анализа для диагностической модели, а также некоторых показателей обмена железа, СРБ, цитокинов и количества эритроцитов

Показатель	AUC	Стандартная	Асимптомат.	Чувстви	Специфич	95 %	6 ДИ
		ошибка	значения	тельность	ность	Нижняя	Верхняя
						граница	граница
Итоговая модель	0,925	0,053	0,00001	100	80	0,821	1,000
Ферритин	0,897	0,054	0,0002	91,2	79	0,791	1,000
Трансферрин	0,811	0,071	0,003	76,4	77	0,689	0,951
Гепцидин	0,894	0,052	0,0003	90,2	78	0,792	0,995
Железо	0,268	0,083	0,015	57,8	68,4	0,104	0,431
sTfR	0,524	0,096	0,806	57,4	56,7	0,335	0,712
ОЖСС	0,821	0,063	0,002	86,6	77,2	0,689	0,954
KHT	0,815	0,071	0,003	77,7	77,1	0,685	0,941
СРБ	0,843	0,068	0,001	66,6	79,2	0,709	0,977
ИЛ-6	0,83	0,071	0,001	63,6	79,1	0,691	0,969
ΦΗΟ-α	0,533	0,1	0,743	52,6	60	0,336	0,73
ИНФ-ү	0,488	0,102	0,904	51,7	52,9	0,288	0,688
ИЛ-10	0,542	0,102	0,679	51,7	52,9	0,343	0,741
ИЛ-1β	0,576	0,099	0,448	52,1	63,6	0,383	0,77
Эритроциты	0,794	0,073	0,02	73,3	72,7	0,65	0,938
Примечание: AUC	– area unde	er curve (площад	ь под кривой), ,	ДИ – доверит	гельный инте	ервал.	

По результатам ROC-анализа установлено, что полученная модель, в которую входит концентрация гепцидина и ферритина, обладает наибольшей (AUC 0.925), 100 % диагностической значимостью также чувствительностью и специфичностью 80 % и может быть использована для дифференциальной проведения диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с воспалительным заболеваниями суставов.

По результатам оценки остальных лабораторных показателей выявлено, что гепцидин и ферритин также обладают высокой диагностической значимостью, чувствительностью и специфичностью, хотя и меньшими, чем у итоговой диагностической модели. Высокие значения АUC, а также

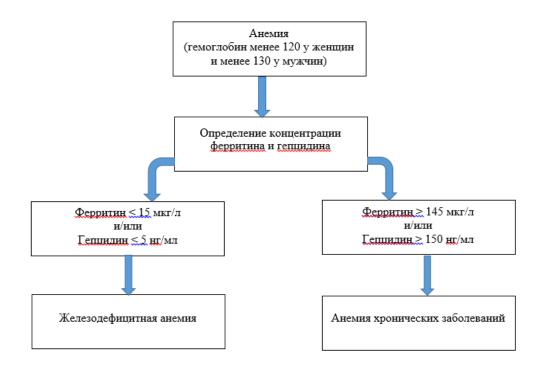
специфичность и чувствительность гепцидина и ферритина позволяют использовать эти лабораторные показатели для дифференциальной диагностики АХЗ и ЖДА у пациентов с воспалительными заболеваниями суставов.

С учетом результатов описательной статистики и сравнительного анализа возможно определение границ в концентрациях этих показателей для проведения дифференциальной диагностики двух типов анемий на практике. Концентрация гепцидина более 150 нг/мл и/или ферритина более 145 мкг/л свидетельствует о развитии АХЗ. Концентрация гепцидина менее 5 нг/мл и/или ферритина менее 15 мкг/л свидетельствует о развитии ЖДА.

Получение указанных концентраций выполнялось после проведения ROC-анализа и расчета точки отсечения (cut-off), в которой гепцидин и ферритин обладали наибольшими показателями чувствительности и специфичности для диагностики АХЗ и ЖДА.

В следующую группу лабораторных показателей возможно отнести трансферрин, ОЖСС, КНТ, СРБ и ИЛ-6. Значения АUС у всех более 0,8, но чувствительность и специфичность меньше, чем у ферритина и трансферрина. Более низкие чувствительность и специфичность делают эти показатели менее пригодными для проведения дифференциальной диагностики АХЗ и ЖДА у пациентов с воспалительными заболеваниями суставов.

Оставшиеся лабораторные показатели обладают еще меньшим AUC, чувствительностью и специфичностью и не могут быть использованы для проведения дифференциальной диагностики AX3 и ЖДА у пациентов с воспалительными заболеваниями суставов.


6.2.3. Разработка алгоритма дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с воспалительными заболеваниями суставов на основании показателей, обладающих наибольшей чувствительностью и специфичностью

В связи с высокими значениями чувствительности и специфичности гепцидина и ферритина в отношении диагностики АХЗ и ЖДА у пациентов с воспалительными заболеваниями суставов ниже предлагается схема для проведения дифференциальной диагностики этих двух типов анемий.

При первичном обращении пациента с вывленным воспалительным заболеванием суставов (РА, ПсА, АС) в случае диагностики анемии с целью уточнения ее типа необходимо определение двух показателей – ферритина и гепцидина.

После получения результатов определения их концентрации возможно использование довольно простого диагностического алгоритма, который позволит с высокой чувствительностью и специфичностью определить, какой тип анемии развился у пациента: АХЗ или ЖДА. С целью улучшения качества диагностики необходимо определение концентрации этих двух показателей. Но в случае невозможности определения концентрации одного из них использовать один, так как определение по отдельности возможно концентрации как ферритина, так и гепцидина также позволит с высокой вероятностью провести диагностику типа анемии. В дальнейшем это позволит выбрать оптимальную стратегию лечения анемии. В случае диагностики железодефицитной анемии необходимо назначение препаратов железа. В случае же выявления АХЗ назначение препаратов железа, в том числе и с введения, может оказаться неэффективным, помощью внутривенного необходимо препаратов ЭПО. Указанный добавление терапии диагностический алгоритм представлен на Схеме 2.

Схема 2 – Алгоритм для проведения дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов воспалительными заболеваниями суставов

Диагностика сочетания АХЗ/ЖДА у пациентов с воспалительными заболеваниями суставов до сих пор остается более сложной проблемой и не было целью настоящего исследования. С учетом полученных результатов, диагностика сочетания двух типов анемий возможна с при получении концентраций ферритина 15–145 мкг/л и гепцидина 5–150. Необходимы дальнейшие исследования в этом направлении.

Таким образом, для дифференциальной диагностики АХЗ и ЖДА у пациентов с воспалительными заболеваниями суставов нами предлагается два способа. Первый способ основан на использовании уравнения, полученного методом дискриминантного анализа. Второй способ представляет из себя диагностический алгоритм, основанный на рассчитанных с помощью точки отсечения концентрациях гепцидина и ферритина. Первый способ более трудоемкий и математически сложный, но обладает максимальной чувствительностью и специфичностью, а второй способ более прост в

проводиться с помощью определения использовании, может одного обладает показателя, при ЭТОМ меньшей чувствительностью НО специфичностью сравнении \mathbf{c} уравнением, полученным методом дискриминантного анализа.

Необходимо отметить, что с учетом дизайна исследования предлагаемая схема дифференциальной диагностики применима к пациентам с впервые выявленными воспалительными заболеваниями суставов и пациентам с ранее установленным диагнозом, не получавшим специализированную терапию по различным причинам, обратившимся к врачу с обострением течения воспалительного заболевания суставов. У пациентов, получивших генно-инженерную биологическую терапию в предшествующие 6 месяцев, предложенные методы дифференциальной диагностики АХЗ и ЖДА согласно дизайну исследования применять некорректно.

6.3.1. Создание модели для дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с ВИЧ-инфекцией

Ha первом этапе анализа сформирована наиболее группа модели переменных. Переменных информативных ДЛЯ В модели (концентрация ферритина, ФНО-α, ИЛ-6, СРБ и число эритроцитов), лямбда Уилкса: 0,1 прибл. F(5,11) = 18,25, p<0,0001. По результатам дискриминации рассчитывались значения λ -Уилкса для всей модели, частные λ -Уилкса, характеризующие единичный вклад каждой переменной в разделительную силу модели, и критерии Фишера с соответствующими уровнями значимости. Результаты представлены в Таблице 43.

	Лямбда Уилкса	Частная лямбда Уилкса	F- исключ - (1,6)	р-уров.	Толер.	1-толер. - (R-кв.)
Ферритин	0,113601	0,947703	0,60702	0,452349	0,723200	0,276801
ФНО-α	0,309493	0,347858	20,62211	0,000842	0,360799	0,639201
ИЛ-6	0,311307	0,345831	20,80742	0,000815	0,118869	0,881131
Эритроциты	0,211814	0,508274	10,64185	0,007570	0,411688	0,588312

Таблица 43 – Результаты анализа дискриминантной функции

0,532323

Критерий F=18,235 и p<0,0001 свидетельствуют о статистической значимости модели. Ее информационная способность (общая доля верно классифицированных исходов) – 94,1 %.

9,66415

0.009948

0,174410

0,825590

Для оценки качества классификации модели дополнительно рассчитывались квадраты Махаланобиса. Результаты расчета представлены в Таблице 44.

Таблица 44 – Квадраты расстояний Махаланобиса

0,202245

СРБ

	G_1:1	G_2:2
G_1:1	0,00000	29,35524
G_2:2	29,35524	0,00000

Из таблицы можно сделать вывод о том, что включение в модель концентраций ферритина, ФНО-α, ИЛ-6, СРБ и числа эритроцитов увеличивает уровень дискриминации с 0 до 29,35524.

На следующем этапе проводился канонический анализ с расчетом КЛДФ. Вначале рассчитывались коэффициенты для канонических переменных (Таблица 45).

Таблица 45 – Исходные коэффициенты для канонических переменных

Показатели	Кор. 1
Ферритин	-0,3
ФНО-α	-1,4
ИЛ-6	-2,5
Эритроциты	1,2
СРБ	1,7
Соб. зн.	8,3
Кум. доля	1,00000

Для решения задачи дифференциальной диагностики следует применять одну КЛДФ с суммарным (кумулятивным) вкладом в дисперсию лабораторных показателей 100 %:

КЛДФ=8,3ферритин $\times 0,3$ -ФНО- $\alpha \times 1,4$ -ИЛ- $6 \times 2,5$ +эритроциты $\times 1,2$ +СРБ $\times 1,7$

Для проведения дифференциальной диагностики также рассчитывались координаты центроидов, для АХЗ это -2,86, а для ЖДА 2,54. Пациент, у которого по данным концентраций ферритина, ФНО-а, ИЛ-6, СРБ и числа эритроцитов определено значение КЛДФ, следует отнести к группе с АХЗ или ЖДА по минимальному расстоянию к соответствующему центроиду.

Ниже приводятся два клинических примера использования полученной канонической линейной дискриминантной функции для дифференциальной диагностики АХЗ и ЖДА у пациентов с ВИЧ-инфекцией.

Клинический пример № 1.

Пациентка Д., 41 год, поступила в инфекционное отделение ФГКУ «1586 ВКГ» в июне 2020 года с жалобами на умеренную общую слабость, эпизоды головокружения, периодические ознобы, увеличение подмышечных лимфоузлов слева, снижение массы тела на 6 кг за последние 8 месяцев.

Анамнез заболевания: со слов пациентки, ВИЧ диагностирован в 2017 г. Постоянной антиретровирусной терапии не получала, у инфекциониста наблюдалась нерегулярно. Гетеросексуалка с периодической сменой половых

партнеров. Употребление инъекционных наркотиков отрицает. В связи с особенностями анамнеза заболевания и с учетом жалоб пациентки для определения дальнейшей тактики и лечения направлена на обследование и лечение в инфекционное отделение ФГКУ «1586 ВКГ» Минобороны РФ.

Результаты лабораторных исследований на вирус иммунодефицита человека: иммуноферментный анализ по обнаружению антител к ВИЧ – положительный. Иммунный блоттинг по обнаружению антител к отдельным белкам ВИЧ: gp160, gp120, gp41, p51/66, p31, gag 24, gag 17 – результат положительный.

Иммунологический анализ: Т-лимфоциты хелперы, CD4, % - 44,5~% (норма 31-48 %). Т-лимфоциты хелперы, CD4, абс. в 1 мкл - 1029,3 (норма 400-600 в 1 мкл). В ходе обследования у пациентки установлен диагноз «ВИЧ-инфекция 3-й стадии».

При поступлении у пациентки диагностирована гипохромная, микроцитарная анемия: эритроциты — $4,09\times10^{12}$ /л, гемоглобин — 110 г/л, тромбоциты — 256×10^9 /л, MCV — 76,3 фл, MCH — 26,4 пг, HCT — 30,8.

С целью уточнения генеза анемии назначены дополнительные обследования: СРБ - 2,1 мг/л, сывороточное железо - 4,3 нмоль/л, КНТ - 13,1, ОЖСС - 42 мкмоль/л, трансферрин - 1,6 г/л, ферритин - 4,1 мкг/л, гепцидин - 0,9 нг/мл.

У пациентки исследованы концентрации цитокинов, их значения оказались в пределах нормальных: ИНФ- γ – 6,9 пг/мл, ИЛ-6 – 1,5 пг/мл, ФНО- α – 4,2 пг/мл, ИЛ-10 – 4,8 пг/мл, ИЛ-1 β – 3,9 пг/мл.

Концентрация эритропоэтина у пациентки составила 6,2 Ед/мл.

Определяем тип анемии с помощью предложенной формулы, вставляя в нее концентрации ферритина, ФНО-а, ИЛ-6, СРБ и число эритроцитов:

КЛДФ=8,3-ферритин \times 0,3-ФНО- α \times 1,4-ИЛ-6 \times 2,5+эритроциты \times 1,2+СРБ \times 1,7=8,3-4,1 \times 0,3-4,2 \times 1,4-1,5 \times 2,5+4,09 \times 1,2+2,1 \times 1,7=8,3-1,23-5,88-3,75+4,908+3,57= 5,918

Итоговое значение уравнения, равное 5,918, ближе к центроиду ЖДА 2,54. Таким образом, по результатам дискриминации у пациентки диагностирована ЖДА. Это подтверждается концентрациями трансферрина, ОЖСС, КНТ, значениями эритроцитарных индексов и нормальными концентрациями цитокинов.

Окончательный диагноз пациента.

Основное заболевание: ВИЧ-инфекция, стадия 3.

Сопутствующее заболевание: хроническая железодефицитная анемия легкой степени тяжести.

Клинический пример № 2.

Пациентка И., 36 лет, поступила в инфекционное отделение ФГКУ «1586 ВКГ» в декабре 2018 года с жалобами на периодическую общую слабость, уменьшение массы тела на 4 кг за последние 5 месяцев.

Анамнез заболевания: со слов пациентки, ВИЧ диагностирован в 2013 г. В 2014 г. диагностирован вирусный гепатит С. Постоянной антиретровирусной терапии не получает, у инфекциониста наблюдается нерегулярно. Гетеросексуальна с периодической сменой половых партнеров. Употребление инъекционных наркотиков отрицает. В связи с особенностями анамнеза заболевания и с учетом жалоб пациента для определения дальнейшей тактики направлена на обследование и лечение в инфекционное отделение ФГКУ «1586 ВКГ» Минобороны РФ.

Результаты лабораторных исследований на вирус иммунодефицита человека: иммуноферментный анализ по обнаружению антител к ВИЧ – положительный. Иммунный блоттинг по обнаружению антител к отдельным белкам ВИЧ: gp160, gp120, gp41, p51/66, p31, gag 24, gag 17 – результат положительный.

Иммунологичекий анализ: Т-лимфоциты хелперы, CD4, % – 1 % (норма 31-48%). Т-лимфоциты хелперы, CD4, абс. в 1 мкл – 27 (норма 400-600 в 1 мкл). В ходе обследования у пациента установлен диагноз «ВИЧ-инфекция, стадия 4А».

При поступлении у пациентки диагностирована нормохромная, нормоцитарная анемия: эритроциты — $3,99\times10^{12}$ /л, гемоглобин — 117 г/л, тромбоциты — 142×10^9 /л, MCV — 80,5 фл, MCH — 29,3 пг, HCT — 32,1.

С целью уточнения генеза анемии назначены дополнительные обследования: СРБ - 12,1 мг/л, сывороточное железо - 8,54 нмоль/л, КНТ - 28,4, ОЖСС - 30 мкмоль/л, трансферрин - 1,68 г/л, ферритин - 345,8 мкг/л, гепцидин - 22,12 нг/мл.

У пациентки были исследованы концентрации цитокинов, их значения оказались выше нормальных: ИНФ- γ – 50,1 пг/мл, ИЛ-6 – 56,14 пг/мл, ФНО- α – 25,9 пг/мл, ИЛ-10 – 30,1 пг/мл, ИЛ-1 β – 44,8 пг/мл.

Концентрация эритропоэтина у пациентки составила 30,5 Ед/мл.

Определяем тип анемии с помощью предложенной формулы, вставляя в нее концентрации ферритина, ФНО-а, ИЛ-6, СРБ и число эритроцитов:

КЛДФ=8,3-ферритин $\times 0,3$ -ФНО- $\alpha \times 1,4$ -ИЛ-

 $6 \times 2,5 +$ эритроциты $\times 1,2 +$ СРБ $\times 1,7 = 8,3 - 345,8 \times 0,3 - 25,9 \times 1,4 -$

$$56,14 \times 2,5 + 3,99 \times 1,2 + 12,1 \times 1,7 = 8,3 - 103,74 - 36,26 - 140 + 4,788 + 20,57 = -246,342$$

Итоговое значение уравнения, равное -246,342, ближе к центроиду АХЗ -2,86. Таким образом, по результатам дискриминационного анализа у пациентки диагностирована АХЗ. Это подтверждается высокой концентрацией СРБ, ферритина, провоспалительных (ИЛ-6, ФНО-α, ИЛ-1β, ИНФ-γ) и противовоспалительных (ИЛ-10) цитокинов, высоким значением КНТ, сниженным числом эритроцитов. МСV и МСН соответствовали норме.

Окончательный диагноз пациентки.

Основное заболевание: ВИЧ-инфекция, стадия 4A в фазе прогрессирования на фоне отсутствия антиретровирусной терапии.

Вторичные заболевания: кандидозный стоматит.

Осложнения основного заболевания: анемия хронического заболевания с нарушением обмена железа и регуляторных процессов эритропоэза.

6.3.2. Оценка чувствительности, специфичности и диагностической значимости полученной модели, а также некоторых лабораторных показателей для дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с ВИЧ-инфекцией

С целью оценки диагностической значимости полученной модели использовался ROC-анализ с расчетом показателя AUC, а также чувствительности, специфичности и доверительного интервала. Подобные показатели также рассчитывались для некоторых показателей обмена железа, СРБ, цитокинов и количества эритроцитов. Результаты представлены в Таблице 46.

Таблица 46 — Результаты ROC-анализа для диагностической модели, а также некоторых показателей обмена железа, СРБ, цитокинов и количества эритроцитов

Показатель	AUC	Стандартная	Асимптомат.	Чувстви	Специфич	95 %	6 ДИ
		ошибка	значения	тельность	ность	Нижняя	Верхняя
						граница	граница
Итоговая модель	0,917	0,074	0,004	88,8	100	0,772	1,000
Ферритин	0,83	0,081	0,02	87,1	92,1	0,687	1,000
Трансферрин	0,665	0,145	0,32	68,5	70,3	0,34	0,92
Гепцидин	0,563	0,147	0,665	76,4	52,3	0,274	0,851
Железо	0,557	0,145	0,68	64,5	62,1	0,272	0,842
sTfR	0,653	0,136	0,290	66,6	62,5	0,290	0,919
ОЖСС	0,767	0,109	0,052	63,6	66,6	0,553	0,982
КНТ	0,705	0,129	0,137	70	71,4	0,451	0,958
СРБ	0,795	0,123	0,032	86	91	0,554	1,000
ИЛ-6	0,818	0,101	0,021	87,1	87,5	0,621	1,000
ΦΗΟ-α	0,716	0,121	0,117	71,2	74,9	0,478	0,953
ИНФ-ү	0,705	0,121	0,137	70,2	72,3	0,467	0,942
ИЛ-10	0,702	0,12	0,139	70	71,4	0,463	0,942
ИЛ-1β	0,613	0,14	0,424	60	66,6	0,338	0,887
Эритроциты	0,727	0,117	0,099	66,6	80	0,497	0,957
Примечание: AUC	– area unde	er curve (площад	ь под кривой), ,	ДИ – доверит	гельный инте	рвал.	

По результатам ROC-анализа установлено, что полученная модель, в которую входит концентрация ферритина, ИЛ-6, ФНО-α, СРБ и число эритроцитов, обладает наибольшей диагностической значимостью (AUC – 0,917), а также чувствительностью 88,8 % и специфичностью 100 % и может быть использована для проведения дифференциальной диагностики АХЗ и ЖДА у пациентов с ВИЧ-инфекцией.

В ходе оценки остальных лабораторных показателей выявлено, что ферритин и ИЛ-6 обладают набольшей диагностической значимостью, чувствительностью и специфичностью, хотя и меньшими, чем у итоговой диагностической модели. Высокие значения АUС, а также специфичность и чувствительность ферритина и ИЛ-6 позволяют использовать эти показатели для дифференциальной диагностики АХЗ и ЖДА у пациентов с ВИЧ-инфекцией.

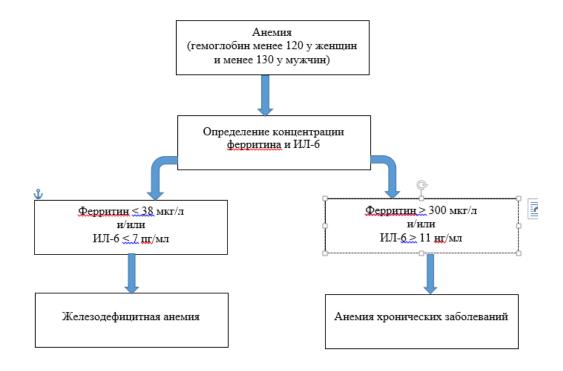
С учетом результатов описательной статистики и сравнительного анализа возможно определение границ в концентрациях этих показателей для проведения дифференциальной диагностики двух типов анемий на практике. Концентрация ферритина более 300 мкг/л и/или ИЛ-6 более 11 пг/мл свидетельствует о развитии АХЗ. Концентрация ферритина менее 38 мкг/л и/или ИЛ-6 менее 7 пг/мл свидетельствует о развитии ЖДА.

Получение указанных концентраций выполнялось после проведения ROC-анализа и расчета точки отсечения (cut-off), в которой ферритин и ИЛ-6 обладали наибольшими показателями чувствительности и специфичности для диагностики АХЗ и ЖДА.

В следующую группу лабораторных показателей возможно отнести СРБ, ФНО-альфа, число эритроцитов. Эти показатели вошли в итоговую диагностическую модель, увеличив ее диагностическую значимость, чувствительность и специфичность. Использование этих показателей по отдельности для проведения дифференциальной диагностики АХЗ и ЖДА у пациентов с ВИЧ-инфекцией нецелесообразно из-за относительно невысокой чувствительности и специфичности в сравнении с итоговой моделью. Для

ОЖСС также рассчитан высокий AUC, но из-за невысокой чувствительности и специфичности этот показатель не вошел в итоговую модель.

Оставшиеся лабораторные показатели обладают еще меньшим AUC, чувствительностью и специфичностью и не могут быть использованы для проведения дифференциальной диагностики AX3 и ЖДА у пациентов с ВИЧ-инфекцией.


6.3.3. Разработка алгоритма дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с ВИЧ-инфекцией на основании показателей, обладающих наибольшей чувствительностью и специфичностью

В связи с высокими значениями чувствительности и специфичности ферритина и ИЛ-6 в отношении диагностики АХЗ и ЖДА у пациентов с ВИЧ-инфекцией ниже предлагается схема для проведения дифференциальной диагностики этих двух типов анемий (схема 3).

При первичном обращении пациента с подтвержденной ВИЧинфекцией в случае диагностики анемии с целью уточнения ее типа необходимо определение двух показателей – ферритина и ИЛ-6.

После получения результатов определения их концентрации возможно использование довольно простого диагностического алгоритма, который позволит с высокой чувствительностью и специфичностью определить, какой тип анемии развился у пациента: АХЗ или ЖДА (Схема 3).

Схема 3 – Алгоритм для проведения дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии у пациентов с ВИЧ-инфекцией

С целью улучшения качества диагностики необходимо определение концентрации этих двух показателей. Но в случае невозможности определения концентрации одного из них возможно использовать один, так как определение по отдельности концентрации как ферритина, так и ИЛ-6 также позволит с высокой вероятностью провести диагностику типа анемии. В дальнейшем это позволит выбрать оптимальную стратегию лечения анемии. В случае диагностики ЖДА необходимо назначение препаратов железа. В случае же выявления АХЗ назначение препаратов железа, в том числе и с помощью внутривенного введения, может оказаться неэффективным, необходимо добавление к терапии препаратов эритропоэтина.

Диагностика сочетания АХЗ с ЖДА у пациентов с ВИЧ-инфекцией до сих пор остается более сложной проблемой и не являлась целью настоящего исследования. С учетом полученных результатов диагностика сочетания двух типов анемий возможна при получении концентраций ферритина более 38 и

менее 300 мкг/л и ИЛ-6 более 7 и менее 11 пг/мл. Необходимы дальнейшие исследования в этом направлении.

Таким образом, для дифференциальной диагностики АХЗ и ЖДА у пациентов с ВИЧ-инфекцией нами предлагается два способа. Первый способ использовании уравнения, полученного основан на методом дискриминантного анализа. Второй способ представляет собой диагностический алгоритм, основанный на рассчитанных с помощью точки отсечения концентрациях ферритина и ИЛ-6. Первый способ более трудоемкий И математически сложный, НО обладает максимальной чувствительностью и специфичностью, а второй способ более простой в может проводиться с помощью использовании, определения одного ЭТОМ обладает меньшей чувствительснотью показателя, HO при специфичностью сравнении уравнением, полученным В \mathbf{c} методом дискриминантного анализа.

Предложенные методы дифференциальной диагностики могут использоваться как у пациентов с впервые выявленной ВИЧ-инфекцией, так и пациентов, получающих антиретровирусную терапию.

По результатам проведенного анализа получены диагностические модели и предложены диагностические алгоритмы, позволяющие проводить дифференциальную диагностику АХЗ и ЖДА в группах пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией. Эти модели могут быть использованы при первичном контакте врача с пациентом. Диагностика типа анемии у этих пациентов важна, так как позволяет выработать дальнейшую наиболее эффективную терапевтическую стратегию коррекции анемии.

Интересным представляется тот факт, что в группе больных с ВИЧинфекцией в отличие от пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов выявлена низкая диагностическая значимость гепцидина для проведения дифференциальной диагностики АХЗ и ЖДА. Это может быть обусловлено отсутствием различий в концентрации этого показателя у пациентов с разными типами анемий.

Также ни в одной из исследуемых групп не продемонстрировано высокой диагностической значимости sTfR как лабораторного маркера, с помощью которого возможно проведение дифференциальной диагностики АХЗ и ЖДА.

ГЛАВА 7. НОВАЯ КЛАССИФИКАЦИЯ АНЕМИИ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ НА ОСНОВАНИИ ВЕДУЩИХ ПАТОГЕНЕТИЧЕСКИХ ФАКТОРОВ ЕЕ РАЗВИТИЯ

В ходе проведенного исследования для каждой из исследуемых групп больных возможно выделение специфического лабораторного профиля, проявляющегося в увеличении или снижении тех или иных факторов развития АХЗ. У пациентов с солидными злокачественными новообразованиями и АХЗ показана увеличенная секреция ИЛ-6, ФНО-α и гепцидина, развивающийся на этом фоне функциональный дефицит железа, не соответствующая тяжести анемии секреция ЭПО. Для пациентов с ревматической патологией и АХЗ установлена гиперэкспрессия гепцидина, повышенная секреция ИЛ-6, ФНО-а, ИЛ-10, развивающийся на этом фоне функциональный дефицит железа, а также не соответствующая тяжести анемии секреция ЭПО. У пациентов с ВИЧ-инфекцией и АХЗ на фоне нормальной концентрации гепцидина выявлена повышенная секреция ИЛ-6, ИЛ-10, ФНО-а, ИНФ-γ, ИЛ-1β, развивающееся вследствие этого нарушение обмена железа с развитием функционального дефицита железа, угнетение эритропоэза с компенсаторным усилением секреции ЭПО.

Таким образом, в развитии АХЗ могут иметь важное значение изменения обмена железа, нарушение созревания эритроцитов (как вследствие действия гепцидина, так и по причине влияния различных цитокинов), недостаточная секреция или низкая биологическая активность ЭПО. Выявленные различия в ведущих причинах патогенеза АХЗ будут причиной в различии терапевтических подходов ее коррекции.

Предложенные разными авторами классификации анемий с практической точки зрения неудобны и предполагают использование сразу нескольких классификаций для определения характера анемического процесса. Для принятия максимально быстрого, клинически значимого решения

Рукавицыным О.А. с соавт. ранее предложена следующая классификация анемий [2]:

- 1) «дефицитные» анемии: связанные с недостаточностью железа (включая постгеморрагические) или витамина B_{12} (иногда фолиевой кислоты);
- 2) анемии хронических заболеваний (сопровождают длительно текущие опухолевые, инфекционно-воспалительные и аутоиммунные заболевания);
- 3) «гематологические» анемии (включая анемии у больных гемобластозами, гемолитические и другие анемии, связанные с нарушением эритропоэтической функции костного мозга).

Такое деление помогает правильно выбрать тактику и место лечения пациента. Больные первой группы обычно являются пациентами врача общей практики, второй — специалиста, лечащего основное заболевание, третьей — врача-гематолога.

С целью оптимизации лечебных подходов к коррекции АХЗ предлагается классификация этой анемии на основании ведущих патогенетических факторов ее развития:

- АХЗ с преимущественным дефицитом железа;
- AX3 с нарушениями регуляторных механизмов эритропоэза;
- AX3 с уменьшением синтеза и/или биологической активности эндогенного эритропоэтина.

АХЗ с преимущественным дефицитом железа диагностируется на основании высокой концентрации ферритина и гепцидина и сниженной концентрации железа. АХЗ с нарушениями регуляторных механизмов эритропоэза диагностируется на основании увеличения концентраций ИЛ-6, ФНО-α и ↑ИЛ-10. АХЗ с уменьшением синтеза и/или биологической активности эндогенного эритропоэтина диагностируется на основании увеличенной или сниженной концентрации эритропоэтина.

Важно уточнить, что у одного пациента возможно наличие нескольких факторов развития АХЗ. Внедрение этой классификации позволит

оптимизировать лечение данного типа анемии, выбрать патогенетически обоснованную терапию. В настоящее время для коррекции АХЗ используется три терапевтическх подхода: гемотрансфузии, терапия препаратами железа, терапия эритропоэзстимулирующими агентами [2]. Не всегда имеющиеся терапевтические подходы позволяют проводить эффективное лечение анемии хронических заболеваний.

Актуальность данной классификации обусловлена также и тем, что в течение последних лет идет активная разработка новых направлений лечения этого типа анемии.

В настоящее время активно исследуется возможность таргетной терапии АХЗ. Большая часть исследований посвящена поиску лекарственных агентов, влияющих на активность или синтез гепцидина. Проводится первая фаза исследования на животных моделях, а также здоровых добровольцах гепцидин-связывающих белков, таких как антикалин PRS-080 [137, 329]. Также изучаются антитела к гепцидину, такие как Ab 12B9m и LY2787106 [40, 267]. Активно исследуется возможность использования шпигельмеров синтетических зеркальных последовательностей **L**-энантиомерных олигонуклеотидов, которые связываются с другими молекулами, блокируя их активность. Проводится 2б фаза клинического исследования шпигельмера NOX-H94, связывающего человеческий гепцидин [268].

Также исследуется возможность ингибирования ИЛ-6 и ИЛ-1β с целью коррекции АХЗ [122, 140]. На здоровых добровольцах и животных моделях анализируется возможность блокирования сигнального пути STAТЗ, участвующего в синтезе гепцидина, с целью коррекции АХЗ. В качестве лекарственных агентов, влияющих на этот сигнальный путь, изучаются куркумин, молекула АG490, аспирин, полисахаридный экстракт из растения Angelica sinensis [54, 76, 102, 272].

Изучается возможность связывания ферропортина конкурирующими с гепцидином молекулами, которая предотвратила бы гепцидинопосредованную деградацию и интернализацию ферропортина.

Перспективными выглядят такие молекулы, как LY2928057 и фурсултиамин (синтетическое производное витамина В1) [171, 305].

Проводится исследование других лекарственных препаратов для коррекции АХЗ, таких как роксадустат (ингибитор фактора, индуцируемого гипоксией), докозагексаеновая кислота (цервоновая кислота) [118, 229].

Показанные различия в ведущих механизмах развития АХЗ у пациентов с разной патологией легли в основу предлагаемой патогенетической классификации этой анемии. Разработанная классификация направлена на улучшение диагностики и лечения АХЗ с учетом механизмов ее развития у конкретного больного. Данная классификация возможна к применению с учетом как имеющихся, так и перспективных (таргетных) терапевтических подходов к лечению АХЗ. Необходимы дальнейшие исследования для внедрения этой классификации в работу с пациентами с другой патологией, приводящей к развитию АХЗ, не включенной в это исследование.

ГЛАВА 8. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ

АХЗ в изолированном виде или в сочетании с ЖДА – частое осложнение у пациентов с такими заболеваниями, как злокачественные новообразования, воспалительные заболевания суставов и ВИЧ-инфекция [70, 340, 367]. Развитие АХЗ сопровождается значительным снижением качества жизни пациентов, их физической и когнитивной активности и даже выживаемости [44, 223, 233]. Доказанное влияние анемии хронических заболеваний на течение и прогноз основного заболевания обусловливает актуальность ее исследования.

AX3 особенность сложный Важная ключевая ЭТО ee многокомпонентный В патогенез. настоящее время большинством исследователей АХЗ выделяется три основных механизма ее развития: нарушения обмена железа, нарушение не только синтеза, но и биологической активности (доступности) эритропоэтина, угнетение эритропоэза [4, 105, 270, 370]. Несмотря на активные исследования в последние два десятилетия, до сих пор не все компоненты патогенеза изучены [248, 370]. Часто результаты исследований носят противоречивый характер. Так, остаются открытыми вопросы, за счет чего и какие цитокины изменяют обмен железа, подавляется или активируется синтез ЭПО, какие факторы регулируют синтез гепцидина в условиях хронического воспаления.

Большая часть исследований АХЗ выполнена у пациентов со злокачественными новообразованиями, тогда как у пациентов с ревматической патологией и тем более с ВИЧ-инфекцией число исследований достаточно ограничено или они посвящены отдельным компонентам патогенеза.

Исследование патогенеза AX3 актуально прежде всего в связи с тем, что позволит в дальнейшем выработать более эффективную стратегию ее коррекции. На сегодняшний день для лечения AX3 используются три подхода:

трансфузия эритроцитарной взвеси, терапия препаратами железа и применение эритропоэзстимулирующих препаратов [137, 329]. Имеющиеся методы коррекции АХЗ не всегда позволяют нормализовать концентрацию гемоглобина и число эритроцитов или эффект от лечения непродолжительный по времени. В связи с этим активно ведется поиск новых способов лечения АХЗ, в том числе и методами «таргетной» терапии. Исследования преимущественно направлены на оценку воздействия на ось гепцидинферропортин, различные провоспалительные цитокины, а также различные молекулы, участвующие в эритропоэзе или синтезе эритропоэтина [40, 140, 268, 122]. Большая часть работ в настоящее время проходит 1-ю или 2-ю клинические фазы.

Таким образом, дальнейшее исследование патогенеза АХЗ при такой патологии, как злокачественные новообразования, воспалительные заболевания суставов, ВИЧ-инфекция, а также выявление особенностей и ведущих механизмов развития этой анемии при каждой нозологии или группе заболеваний в дальнейшем лягут в основу для разработки эффективной терапевтической коррекции анемии, в том числе и методами «таргетной» терапии. Это обусловливает теоретическую и практическую значимость этой работы в области гематологии и внутренних болезней, а также определило ее цели и задачи.

На первом этапе исследования все пациенты со злокачественными новообразованиями, воспалительными заболеваниями суставов, ВИЧ-инфекцией с диагностированным анемическим синдромом разделены на три группы — АХЗ, ЖДА и сочетание двух типов анемий. Для разделения использовались три показателя: концентрация КНТ, СРБ, ферритина — согласно критериям, предложенным Van Santen and M. Worwood [158, 376]. По результатам разделения на группы установлено, что при каждой исследуемой нозологической патологии довольно высока частота встречаемости АХЗ. У пациентов со злокачественными новообразованиями АХЗ выявлена у 43,8 % больных, с воспалительными заболеваниями суставов — у 39,4 %, у больных

ВИЧ – у 35,6 %. Частота встречаемости железодефицитной анемии при каждой исследуемой патологии меньше в сравнении с АХЗ. При злокачественных новообразованиях ЖДА диагностирована у 21,5 % пациентов, при воспалительных заболеваниях суставов – у 32,6 % пациентов, в группе больных с ВИЧ – у 29,7%. В остальных случаях диагностировалось сочетание АХЗ и ЖДА. Таким образом, примерно у 65-70 % пациентов при каждом из исследуемых патологических состояний в развитии анемического синдрома участвует АХЗ или сочетание ее с ЖДА.

Исследования, в которых изучалась частота развития именно АХЗ, немногочисленны. Так, в исследовании К. Neoh et al. 2016 г. на основании анализа данных 1797 пациентов со злокачественными новообразованиями у 63 % анемия, 66 % пациентов диагностирована причём диагностировался функциональный дефицит железа, то есть АХЗ [130]. В исследовании L. Nicoli et al. 2012 г. в ходе исследования 106 пациентов с АС анемия, соответствующая критериям АХЗ, диагностирована у 16 человек (15 %) [139]. В исследовании М. Ватутина с соавт. 2014 г. в ходе обследования 90 пациентов с РА у 29 человек (32,2 %) диагностирована анемия, соответствующая критериям AX3 [3]. В исследование Singh B.G. et al. 2019 г. включены 94 пациента с различной ревматической патологией и анемическим PA синдромом. Большую часть составили пациенты c (36 спондилоартритом (13 %), системной красной волчанкой (13,8 %). Также в исследовании были представлены пациенты с ПсА, васкулитом, реактивными артритами, синдромом Шегрена [133]. В зависимости от типа анемии все пациенты разделены на три группы: АХЗ, ЖДА, сочетание двух типов анемий. Разделение на группы производилось на основании концентрации ферритина, sTfR и CPБ. По результатам исследования АХЗ диагностирована у 33 пациентов (35,1 %), ЖДА – у 30 пациентов (31,9 %), сочетание двух типов анемии – у 31 пациента (32,9 %). Таким образом, в ходе этого исследования у 68 % обследованных больных выявлена АХЗ или ее сочетание с ЖДА, то есть данные, сопоставимые с результатами нашего исследования [133]. В

исследовании А. D. Kerkhoff et al. 2016 г. по результатам исследования 104 пациентов с ВИЧ-инфекцией и туберкулезом анемия диагностирована более чем у 80 % пациентов. Среди пациентов с анемией, по данным авторов, более 95 % имели АХЗ [55]. В исследование N. Glatt et al. 2019 г. включены 104 пациента с ВИЧ-инфекцией и анемией. Авторами установлено, АХЗ развивалась у 85,3 % пациентов [146].

Результаты ранее выполненных исследований, в которых оценивалась частота развития АХЗ, немногочисленны и противоречивы. Частота развития АХЗ составляла от 15 % до 95 %.

Высокая частота наличия АХЗ, полученная по данным нашего исследования, а также результаты ранее выполненных исследований отражают необходимость дальнейшего исследования АХЗ у пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов, ВИЧ-инфекцией.

Для оценки выраженности секреции провоспалительных и противовоспалительных цитокинов при разных типах анемии проводился сравнительный анализ их концентрации у пациентов с АХЗ, ЖДА и их сочетанием.

По результатам сравнительного анализа у пациентов с солидными злокачественными новообразованиями и АХЗ выявлены максимальные концентрации ИЛ-6, ФНО-α, ИНФ-γ и ИЛ-10 в сравнении с пациентами двух групп с анемией, а также с контрольной группой (р<0,05). В то же время не выявлено различий в концентрации ИЛ-1β между пациентами с различными типами анемий.

У пациентов с воспалительными заболеваниями суставов и АХЗ по результатам сравнительного анализа определены высокие концентрации ИЛ-6, ФНО- α , ИЛ-10 в сравнении с пациентами остальных групп (p<0,05). Концентрации ИЛ-1 β , ИНФ- γ во всех четырех группах оказались сопоставимы, межгрупповых различий не выявлено.

У пациентов с ВИЧ-инфекцией и АХЗ обнаружены максимальные концентрации ИЛ-6, ИЛ-10 в сравнении с пациентами остальных групп (р<0,05). Также в группах больных с АХЗ, а также ее сочетанием с ЖДА выявлены максимальные и практически равные концентрации ФНО-альфа, ИЛ-1бета и ИНФ-гамма, которые статистически значимо превышали концентрации этих цитокинов в группах пациентов с ЖДА и без анемии.

На сегодняшний день ограничено число исследований, в которых сравнивалась концентрация цитокинов у пациентов с одной нозологической формой и разными типами анемий. В крупном проспективном исследовании, выполненном А. Macciò et al. в 2015 г. на более чем 800 пациентах с различными злокачественными новообразованиями, выявлены повышенные концентрации ИЛ-6, ФНО-α, ИЛ-1β у пациентов с анемическим синдромом в сравнении с пациентами без анемии. Однако в отличие от нашего исследования в работе A. Macciò et al. 2015 г. не проводилось разделения пациентов по типам анемии [346]. У пациентов с почечноклеточным раком концентрация ИЛ-6 более 10 пг/мл ассоциировалась с повышенным риском развития анемии [101]. В работе Р. V. Voulgari et al. 1999 г. сравнивалась концентрация ИЛ-6, ФНО-α, ИЛ-1β и ИЛ-10 у пациентов с РА с анемией и без. По результатам исследования у пациентов с анемией в сравнении с пациентами без анемии выявлены более высокие концентрации ИЛ-6, ФНО-α, ИЛ-1В и не обнаружено межгрупповых различий в отношении ИЛ-10 [301]. Результаты этого исследования схожи с нашими данными в отношении ИЛ-6, ФНО-а и различаются в отношении ИЛ-10, ИЛ-1β. Необходимо отметить, что в этом исследовании также не проводилось разделения пациентов в зависимости от типа анемии. В исследовании M. Araújo-Pereira et al. 2023 г. у пациентов, живущих с ВИЧ-инфекцией, осложненной туберкулезом, в случае развития анемии выявлено увеличение концентрации ИЛ-1, ИЛ-6, ИЛ-8. Разделения на типы анемий в этом исследовании также не выполнялось [206].

По результатам выполненного сравнительного анализа у пациентов с солидными злокачественными новообразованиями, воспалительными

заболеваниями суставов и ВИЧ-инфекцией развитие АХЗ ассоциировалось с концентрациями различных высокими провоспалительных И противовоспалительных цитокинов. В то же время в группах пациентов с ЖДА концентрации провоспалительных цитокинов практически отличались от контрольной группы пациентов без анемии. Высокие концентрации провоспалительных цитокинов у пациентов с АХЗ наиболее вероятно отражают повышенную воспалительную активность у этих групп пациентов.

В связи с полученными результатами на следующем этапе исследования с целью оценки влияния на эритропоэз выполнялся корреляционный анализ между цитокинами, концентрацией гемоглобина и числом эритроцитов.

У пациентов со злокачественными новообразованиями и АХЗ по результатам корреляционного анализа выявлены максимальные значения коэффициентов корреляции между цитокинами, числом эритроцитов и концентрацией гемоглобина. Установлено, что на число эритроцитов оказывает сильное негативное воздействие ИЛ-6 (r=-0,74), ФНО-α (r=-0,66), ИЛ-10 (r=-0,36). Установлена взаимосвязь между гемоглобином и ИЛ-6 (r=-0,88), ФНО-α (r=-0,77), ИЛ-10 (r=-0,63).

У пациентов с воспалительными заболеваниями суставов и АХЗ также выявлена взаимосвязь между цитокинами, эритроцитами и гемоглобином. Установлено, что на число эритроцитов оказывает влияние ИЛ-6 (r=-0,75), ФНО- α (r=-0,58), ИЛ-10 (r=-0,54), ИНФ- γ (r=-0,51), ИЛ-1 β (r=-0,51). Доказано, что на концентрацию гемоглобина влияют ФНО- α (r=-0,7), ИЛ-6 (r=-0,63), ИЛ-10 (r=-0,64), ИНФ- γ (r=-0,52), ИЛ-1 β (r=-0,48).

У пациентов с ВИЧ-инфекцией и АХЗ также показано влияние всех исследуемых цитокинов на число эритроцитов и концентрацию гемоглобина. На число эритроцитов влияют ИЛ-6 (r=-0,7), ИНФ- γ (r=-0,6), ФНО- α (r=-0,42), ИЛ-10 (r=-0,45) и ИЛ-1 β (r=-0,32). На концентрацию гемоглобина действуют ФНО- α (r=-0,88), ИЛ-6 (r=-0,62), ИНФ- γ (r=-0,5), ИЛ-1 β (r=-0,43), ИЛ-10 (r=-0,75).

Высокие концентрации исследуемых цитокинов у пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов, ВИЧ-инфекцией, осложненными развитием АХЗ, а также доказанные значимые корреляционные связи между цитокинами, эритроцитами и гемоглобином отражают важное значение цитокинов в развитии этого типа анемии.

Доказанное исследования ПО результатам негативное влияние цитокинов на синтез гемоглобина и эритропоэз может реализовываться за счет различных механизмов. Для ИЛ-1β, ІL-6, ІL-10, ИНФ-γ по результатам экспериментальных исследований доказано их стимулирующее влияние на поглощение железа макрофагами за счет усиления опосредованного радикалами повреждения эритроцитов с дальнейшим эритрофагоцитозом и скоплением железа в макрофагах [31, 38]. Подобный механизм опосредуется за счет эндоцитоза, опосредованного рецептором трансферрина, через переносчика двухвалентных металлов DMT1, а также, возможно, за счет повышенного усвоения железа белками лактоферрином и липокалином-2 [215]. Кроме того, ИЛ-6 подавляет экспрессию гена SLC4a1 в поздних эритроидных предшественниках, что приводит к уменьшению синтеза гемоглобина [30, 205]. ИЛ-1β и ФНО-а подавляют опосредованную гипоксией стимуляцию синтеза ЭПО, в том числе за счет радикально-опосредованного повреждения эпителия почек, синтезирующего ЭПО [36, 194]. Также для ФНО-а доказана его способность напрямую блокировать эритропоэз посредством влияния на митоген-активируемую протеинкиназу р38 [304]. Для ИНФ-у доказана его способность ингибировать экспрессию рецепторов ЭПО эритроидных предшественниках и нарушать их дифференцировку, стимулируя экспрессию фактора транскрипции PU.1.

Таким образом, у пациентов с развившейся АХЗ исследуемые цитокины оказывают плейотропное влияние на эритропоэз и синтез гемоглобина. Все перечисленные выше эффекты цитокинов приводят к уменьшению

продолжительность жизни эритроцитов и уменьшению синтеза гемоглобина [31, 94].

Полученные данные особенно актуальны в связи с ограниченным числом научных работ, в которых изучались цитокины и их значение в патогенезе АХЗ у пациентов с воспалительными заболеваниями суставов или пациентов с ВИЧ-инфекцией. Ранее выполненные исследования преимущественно посвящены изучению ИЛ-6, тогда как по остальным цитокинам данные ограничены [31, 168].

Характерно, что при всех исследуемых патологических состояниях в случае развития сочетания АХЗ с ЖДА также выявлены взаимосвязи между отдельными цитокинами, эритроцитами и гемоглобином, но сила корреляционных связей всегда меньше, чем в группе пациентов с изолированной АХЗ. У больных раком, воспалительными заболеваниями суставов, ВИЧ-инфекцией в случае развития изолированной ЖДА показано слабое или очень слабое влияние исследуемых цитокинов на число эритроцитов и концентрацию гемоглобина.

Кроме исследования цитокинов, важной целью исследования было изучение гепцидина и растворимого рецептора трансферрина в патогенезе АХЗ.

По результатам сравнительного анализа пациентов У co злокачественными новообразованиями и развившейся АХЗ выявлена самая высокая концентрация гепцидина в сравнении с пациентами остальных групп с анемией и контрольной группой (p<0,05). В группе пациентов с сочетанием АХЗ/ЖДА также выявлена высокая концентрация гепцидина, превышающая значения этого параметра в группе больных с ЖДА и контрольной группе (p<0.05). Также трех группах пациентов co злокачественными новообразованиями и анемией не выявлено межгрупповых различий в отношении концентрации sTfR. Во всех группах больных с анемией концентрация sTfR больше в сравнении с контрольной группой (p<0,05).

У пациентов с воспалительными заболеваниями суставов и АХЗ также выявлена максимальная концентрация гепцидина, превышающая значения этого показателя в других группах (p<0,05). Также в трех группах пациентов с этой патологией и анемией не выявлено межгрупповых различий в отношении концентрации sTfR. Во всех группах больных с анемией концентрация sTfR больше в сравнении с контрольной группой (p<0,05).

По результатам сравнительного анализа не выявлено различий в концентрации sTfR у пациентов с АХЗ, АХЗ/ЖДА и ЖДА, и при этом во всех трех группах его концентрация выше в сравнении с контрольной группой. На основании результатов ранее выполненных исследований sTfR считается маркером дефицита железа и сниженной эритропоэтической активности, хотя его точная биологическая функция не установлена [287]. В группе пациентов с АХЗ и с ЖДА развивается состояние, которое приводит к стимуляции эритропоэза. У пациентов с ЖДА это происходит вследствие дефицита железа, а у пациентов с АХЗ в результате действия провоспалительных цитокинов на синтез эритроцитов. Таким образом, во всех трех группах больных с анемией увеличение sTfR отражает компенсаторную активацию эритропоэза в ответ на различные причины его угнетения. Полученные результаты согласуются с результатами ранее выполненных исследований [82].

У пациентов с ВИЧ-инфекцией в отношении гепцидина и sTfR получены иные результаты в сравнении с пациентами со злокачественными новообразованиями и воспалительными заболеваниями суставов. В группе пациентов с АХЗ концентрация гепцидина ниже, чем в контрольной группе и группе АХЗ/ЖДА, и несколько больше в сравнении с пациентами из группы ЖДА (р<0,05). Самая низкая концентрация гепцидина выявлена в группе пациентов с ЖДА. В группе пациентов с ЖДА концентрация sTfR больше в сравнении с пациентами остальных групп (р<0,05). Между пациентами из групп АХЗ, АХЗ/ЖДА и контрольной группой не выявлено межгрупповых различий в отношении концентрации sTfR. Полученные результаты в

отношении гепцидина и sTfR у пациентов с AX3 и ВИЧ-инфекцией могут свидетельствовать о низком их влиянии на развитие этой анемии.

Как уже неоднократно указывалось выше, АХЗ — это состояние, имеющее многокомпонентный патогенез, который может иметь различия при каждой патологии. У пациентов с ВИЧ-инфекцией в отличие от пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов гепцидин не имеет решающего значения в развитии этой анемии, так как ведущее значение может иметь усиление синтеза одного или нескольких цитокинов или уменьшение синтеза и биологической активности ЭПО.

В связи с выявленными различиями в концентрации гепцидина у пациентов с разными типами анемий и разной патологией на следующем этапе исследования оценивалась взаимосвязь между гепцидином, числом эритроцитов и концентрацией гемоглобина. Также выполнялся корреляционный анализ между sTfR и показателями эритропоэза.

У пациентов со злокачественными новообразованиями и АХЗ выявлено эритроцитов (r=-0,55) негативное влияние гепцидина на число концентрацию гемоглобина (r=-0,66). Также установлена отрицательная взаимосвязь между sTfR и числом эритроцитов (r=-0,68), концентрацией (r=-0.76). Значения коэффициентов гемоглобина корреляции гепцидином, sTfR и показателями эритропоэза максимальные в сравнении с группой больных с ЖДА и сочетанием АХЗ+ЖДА. Наиболее вероятно, что это обусловлено максимальной концентрацией гепцидина в группе пациентов с АХЗ и его доказанным негативным влиянием на созревание клеток эритрона [114]. Выявленная максимальная концентрация гепцидина у пациентов с АХЗ, а также доказанная значимая отрицательная взаимосвязь между ним, эритроцитами и гемоглобином подтверждают его супрессорное влияние на выработку клеток эритрона и согласуется с результатам ранее выполненных действия гепцидина [142].исследований механизме Выявленная отрицательная корреляция между концентрацией sTfR, эритроцитами и гемоглобином и повышенные концентрации sTfR в трех группах больных с

анемией свидетельствуют о компенсаторном характере выявленных изменений и являются следствием развивающегося дефицита железа, абсолютного или функционального.

У пациентов заболеваниями c воспалительными суставов результатам проведенного корреляционного анализа в группах пациентов с АХЗ и АХЗ/ЖДА выявлены значимые и сопоставимые по значениям коэффициенты корреляции. В группе пациентов c ЖДА значения коэффициентов корреляции меньше в сравнении с группами с АХЗ и АХЗ/ЖДА. В группе пациентов с АХЗ установлено негативное влияние гепцидина на число эритроцитов (r=-0,52), концентрацию гемоглобина (r=-0,6). В группе АХЗ/ЖДА доказано негативное влияние гепцидина на число эритроцитов (r=-0,51) и концентрацию гемоглобина (r=-0,51). Выявленные корреляционные связи отражают негативное влияние гепцидина на созревание эритроцитов у пациентов с воспалительными заболеваниями суставов и наличием АХЗ в изолированной форме или при сочетании с ЖДА.

Выявленная слабая взаимосвязь между гепцидином, числом эритроцитов и концентрацией гемоглобина у пациентов с ЖДА отражает другой механизм развития анемии, обусловленный развитием абсолютного дефицита железа, а не влиянием гепцидина.

Для растворимого рецептора трансферрина в группах АХЗ и АХЗ/ЖДА показаны заметные отрицательные взаимосвязи между ним, числом эритроцитов и концентрацией гемоглобина. В группе пациентов с ЖДА установлена слабая или умеренная взаимосвязь между sTfR, числом эритроцитов (r=-0,1), концентрацией гемоглобина (r=-0,33). Как у пациентов со злокачественными новообразованиями, выявленные корреляционные взаимосвязи отражают компенсаторное увеличение концентрации sTfR вследствие развивающегося дефицита железа, абсолютного или функционального.

У пациентов с ВИЧ-инфекцией по результатам корреляционного анализа в группах пациентов с АХЗ и АХЗ/ЖДА в отношении гепцидина

выявлены только умеренные корреляции с числом эритроцитов (r=-0,4), концентрацией гемоглобина (r=0,4). Низкая концентрация гепцидина в этой группе пациентов, а также корреляционные связи умеренной силы свидетельствуют о небольшом вкладе гепцидина в развитие АХЗ у пациентов с ВИЧ-инфекцией. Во всех группах пациентов с анемией выявленная заметная отрицательная взаимосвязь между sTfR, числом эритроцитов и концентрацией гемоглобина в сочетании с отсутствием межгрупповых различий для sTfR у пациентов трех групп с анемией свидетельствует о компенсаторном увеличении этого показателя на фоне развивающегося дефицита железа, абсолютного или функционального.

По результатам исследования гепцидина и sTfR у пациентов с различной патологией и АХЗ выявлены некоторые особенности. У пациентов с воспалительными заболеваниями суставов и АХЗ установлена чрезмерная среднем 504,9 $H\Gamma/MЛ$), экспрессия гепцидина (B пациентов злокачественными новообразованиями – повышенная (в среднем 47,3 нг/мл), а у пациентов с ВИЧ-инфекцией концентрация гепцидина не отличалась от показателей контрольной группы без анемии (в среднем 22,2 нг/мл). Результаты нашего исследования согласуются с результатами некоторых ранее выполненных работ [43, 214]. Полученные результаты возможно использовать как для составления программы терапии анемии, так и для дифференциальной проведения диагностики анемии. Использование гепцидина как маркера для диагностики АХЗ возможно только у пациентов со злокачественными новообразваниями и воспалительными заболеваниями суставов, но не у больных ВИЧ-инфекцией. Отсутствие различий в отношении sTfR между пациентами трех групп с анемией также не позволяет использовать этот показатель для проведения дифференциальной диагностики АХЗ и ЖДА. Полученные результаты в отношении sTfR свидетельствуют об отсутствии влияния воспаления на концентрацию этого показателя и его повышение вследствие развивающегося дефицита железа. Полученные

результаты согласуются с некоторыми ранее выполненными исследованиями [214, 322].

В связи с литературными данными о множественном влиянии цитокинов нами также выполнен корреляционный анализ между цитокинами, гепцидином и sTfR.

У пациентов со злокачественными новообразованиями и АХЗ доказано, что на концентрацию гепцидина оказывает положительное влияние ИЛ-6 (r=0,71) и ИЛ-10 (r=0,7), негативное влияние — ФНО- α (r=-0,75), ИНФ- γ (r=-0,4), ИЛ-1 β (r=-0,32). В отношении sTfR установлено положительное влияние ИЛ-6 (r=0,6) и отрицательное влияние ИЛ-10 (r=-0,6), ФНО- α (r=-0,47), ИНФ- γ (r=-0,48) и ИЛ-1 β (r=-0,4). В группе пациентов с АХЗ коэффициенты корреляции преимущественно больше в сравнении с пациентами с сочетанием АХЗ/ЖДА и изолированной ЖДА, что обусловлено более выраженной секреций исследуемых цитокинов в этой группе.

У пациентов с воспалительными заболеваниями суставов и АХЗ по итогам корреляционного анализа выявлены наиболее выраженные положительные взаимосвязи между гепцидином и ИЛ-6 (r=0,67) и ИЛ-10 (r=0,51) и негативные взаимосвязи с ФНО- α (r=-0,53), ИНФ- γ (r=-0,32), ИЛ-1 β (r=0,2). Для sTfR выявлена положительная корреляция с ИЛ-6 (r=0,62), ИЛ-10 (r=0,67), ИНФ- γ (r=0,64), ФНО- α (r=-0,65), ИЛ-1 β (r=0,49). В группе пациентов с АХЗ коэффициенты корреляции преимущественно больше в сравнении с данными пациентов с сочетанием АХЗ/ЖДА и изолированной ЖДА, что обусловлено более выраженной секреций исследуемых цитокинов в этой группе.

У пациентов с ВИЧ-инфекцией и АХЗ также установлены максимальные значения коэффициентов корреляции между гепцидином и ИЛ-10 (r=-0,8), ИНФ- γ (r=-0,88), ИЛ-6 (r=-0,55), ФНО- α (r=-0,47) и ИЛ-1 β (r=-0,45). Для sTfR выявлена сильная взаимосвязь с ФНО- α (r=-0,84), ИЛ-10 (r=-0,89), ИЛ-1 β (r=-0,71), заметная взаимосвязь с ИНФ- γ (r=-0,65) и ИЛ-6 (r=0,77). В группе пациентов с АХЗ коэффициенты корреляции преимущественно больше в

сравнении с пациентами с сочетанием АХЗ/ЖДА и изолированной ЖДА, что обусловлено более выраженной секреций исследуемых цитокинов в этой группе.

Положительная корреляционная связь между ИЛ-6 и гепцидином, выявленная у пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов с АХЗ, отражает стимулирующее влияние ИЛ-6 на синтез гепцидина. Это согласуется с результатами ранее выполненных исследований, в которых доказан подобный эффект ИЛ-6 [374]. Отрицательная корреляция между ИЛ-6 и гепцидином, а также низкая концентрация гепцидина у пациентов с ВИЧ-инфекцией и АХЗ свидетельствует о подавлении стимулирующего влияния ИЛ-6 на синтез гепцидина.

Положительная корреляционная связь между ИЛ-10 и гепцидином у пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов \mathbf{c} АХЗ свидетельствует о компенсаторном увеличении концентрации этого противовоспалительного цитокина в ответ на увеличение воспалительных маркеров, к которым возможно отнести и гепцидин [121]. Интересными представляются результаты корреляционного анализа между ИЛ-10 и гепцидином у пациентов с ВИЧ-инфекцией и АХЗ. В этой группе пациентов повышенная концентрация ИЛ-10 приводит к подавлению синтеза гепцидина, что подтверждается сильной отрицательной корреляционной связью (r=-0,8). Влияние ИЛ-10 на синтез гепцидина обусловлено его ингибирующим действием на сигнальный путь STAT3, что приводит к снижению синтеза гепцидина [121].

При трех патологических состояниях в случае развития АХЗ установлена отрицательная взаимосвязь между ΦНО-α и гепцидином. Несмотря на то, что ΦНО-α – провоспалительный цитокин, доказан его антагонизм с ИЛ-6, то есть подавляющее действие на синтез гепцидина, что также подтверждено в нашем исследовании и согласуется с результатами ранее выполненных исследований [357]. Низкие коэффициенты корреляции

между ИЛ-1В и гепцидином свидетельствуют о небольшом влиянии этого цитокина на синтез гепцидина у пациентов с исследуемой патологией. Полученный результат может быть как следствием низкой концентрации этого злокачественными новообразованиями цитокина y пациентов co воспалительными заболеваниями суставов, так и результатом высокого ингибирующего действия ИЛ-10 на синтез гепцидина у пациентов с ВИЧинфекцией. Низкие значения коэффициентов корреляции между ИНФ-у и гепцидином у пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов наиболее вероятно обусловлены низкой концентрацией этого цитокина у пациентов с АХЗ. У пациентов с ВИЧинфекцией, несмотря на повышенную концентрацию ИЛ-1В, установлена умеренная корреляция между ним и гепцидином (r=-0,45). Полученное значение коэффициента корреляции свидетельствует о небольшом вкладе этого цитокина в регуляцию синтеза гепцидина у пациентов с ВИЧ-инфекцией и АХЗ.

В ходе исследования также выполнялся анализ влияния цитокинов на концентрацию sTfR.

У пациентов со злокачественными новообразованиями и ВИЧинфекцией с АХЗ выявлена повышенная концентрация ИЛ-10, которая негативно влияла на концентрацию sTfR (r=-0,6, r=- 0,89 соответственно). У пациентов с воспалительными заболеваниями суставов и АХЗ между ИЛ-10 и sTfR выявлена положительная корреляционная связь (r=0,67). Полученные результаты могут свидетельствовать об увеличении концентрации sTfR на фоне сформировавшегося функционального дефицита железа И одновременном компенсаторном увеличении ИЛ-10 с целью уменьшить концентрацию этого регулятора обмена железа. Негативное влияние ИЛ-10 на концентрацию sTfR соответствует результатам исследования P. Huang et al. 2019 г., в котором получены аналогичные результаты [121].

У пациентов со злокачественными новообразованиями, ВИЧ-инфекцией и АХЗ выявленные отрицательные корреляционные связи между sTfR с ФНО-

α, ИЛ-1β, ИНФ-γ отражают негативное влияние этих цитокинов на его концентрацию. Выявленная положительная взаимосвязь между sTfR и ИЛ-6 с учетом значения ИЛ-6 в воспалении может отражать компенсаторное увеличение sTfR в ответ на увеличение этого цитокина и развивающийся функциональный дефицит железа.

В то же время у пациентов с воспалительными заболеваниями суставов и AX3 установлено, что sTfR имеет положительную взаимосвязь с ИЛ-6, ИНФ-γ, ИЛ-1β и отрицательную взаимосвязь с ФНО-α.

Полученные результаты корреляционного анализа между цитокинами и sTfR отражают сложный патогенез AX3 при каждом из исследуемых патологических состояний и не до конца понятное значение sTfR в развитии этой анемии. С учетом практически полного отсутствия различий в концентрации sTfR у пациентов с AX3 и ЖДА в сочетании выявленными различиями в отношении цитокинов наиболее вероятно, что полученные корреляционные связи отражают не прямое влияние цитокинов на sTfR, а компенсаторное увеличение или снижение sTfR на фоне развивающегося функционального дефицита железа, обусловленного в том числе и действием цитокинов. До сих пор не до конца определено, повышается ли sTfR вследствие воспаления или дефицита железа [215, 360]. Ранее выполнены исследования, в которых показано влияние изменений эритропоэза или нарушения функционирования эритровитов на концентрацию sTfR [53, 316]. Необходимы дальнейшие исследования в этом направлении.

Нами также оценивалось влияние цитокинов на основные показатели обмена железа и СРБ.

При всех трех патологических состояниях при развитии анемии хронических заболеваний установлена положительная взаимосвязь между СРБ ферритином. Это исследуемыми цитокинами, И обусловлено стимулирующим влиянием как провоспалительных, так И противовоспалительных цитокинов на синтез ферритина, что согласуется с результатами некоторых ранее выполненных исследований [219, 302, 371]. В

отношении СРБ также доказано стимулирующее влияние ИЛ-6 и ИЛ-1β на его синтез в гепатоцитах через STAТ-3 сигнальный механизм [246]. В нескольких экспериментальных исследованиях показано, что ФНО-α, ИНФ-γ также стимулируют синтез СРБ в гепатоцитах [89]. Положительная взаимосвязь между СРБ и ИЛ-10 отражает компенсаторное увеличение этого цитокина в ответ на повышенный уровень воспаления и согласуется с результатами ранее выполненных исследований [270].

Также по результатам корреляционного анализа у пациентов со злокачественными новообразованиями, воспалительными заболеваниями ВИЧ-инфекцией AX3 суставов, И установлены отрицательные корреляционные взаимосвязи c концентрацией железа, ОЖСС. трансферрином. Полученные результаты свидетельствуют о негативном влиянии исследуемых цитокинов на обмен железа. Подобное воздействие может реализовываться одновременно посредством нескольких механизмов. В нескольких исследованиях показано стимулирующее влияние ИЛ-6, а также ИЛ-1β на синтез гепцидина [203, 324]. ИНФ-у и ФНО-а негативно влияют на обмен железа посредством стимуляции синтеза переносчика двухвалентных металлов (DMT1) и одновременного ингибирования ферропортина. Подобное действие приводит к накоплению железа в макрофагах и уменьшению поступления железа в ткани [103, 113]. В отношении ИЛ-10 доказана его способность ингибировать синтез рецепторов трансферрина [121]. На сегодняшний день не до конца изучены и известны механизмы, за счет которых цитокины влияют на обмен железа. Необходимы дальнейшие исследования в этом направлении.

В результатах некоторых ранее выполненных исследований показано важное значение нарушения синтеза и биологической активности ЭПО в развитии АХЗ при различной патологии. В связи с этим важную часть нашего исследования заняло изучение ЭПО при разных типах анемии.

По данным сравнительного анализа у пациентов со злокачественными новообразованиями в группе пациентов с AX3 выявлена концентрация ЭПО,

значимо меньшая в сравнении с группами АХЗ/ЖДА, ЖДА и контрольной группой (p<0,05). У пациентов с ревматической патологией концентрация ЭПО во всех группах с анемией выше в сравнении с контрольной группой. При этом у пациентов с АХЗ концентрация ЭПО ниже в сравнении с группами больных с АХЗ/ЖДА и ЖДА (p<0,05). В группе пациентов с ЖДА выявлена максимальная концентрация эритропоэтина (p<0,05).

У пациентов с ВИЧ-инфекцией в группе с АХЗ выявлена максимальная концентрация ЭПО, значимо превышающая показатели в группах с АХЗ/ЖДА, ЖДА и пациентов без анемии (p<0,05).

По итогам сравнительного анализа при разных патологических состояниях и развитии АХЗ выявлен разный профиль секреции ЭПО. У пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов концентрация ЭПО снижена в сравнении с остальными группами больных с анемией и не соответствует тяжести анемии. Это может объясняться подавлением синтеза ЭПО под воздействием различных факторов, прежде всего цитокинов. Подавление синтеза ЭПО при АХЗ более выражено у пациентов со злокачественными новообразованиями, так как в этой группе концентрация этого показателя меньше, чем у пациентов с АХЗ/ЖДА, ЖДА и в контрольной группе. У пациентов с воспалительными заболеваниями суставов в группе с АХЗ концентрация ЭПО меньше, чем в группе АХЗ и АХЗ/ЖДА, но превышает показатели контрольной группы.

Напротив, у пациентов с ВИЧ-инфекцией в группе с АХЗ выявлены активация синтеза ЭПО и, как следствие, максимальные значения этого показателя в сравнении с остальными группами. Полученные результаты могут рассматриваться как компенсаторное увеличение секреции ЭПО в ответ на развитие АХЗ на фоне отсутствия не известного пока фактора, подавляющего синтез ЭПО.

С целью уточнения причин выявленных особенностей по данным сравнительного анализа в синтезе ЭПО далее выполнялся корреляционный анализ для оценки влияния цитокинов на его концентрацию.

У пациентов со злокачественными новообразованиями в группе пациентов с АХЗ выявлены самые высокие значения коэффициентов корреляции между цитокинами и эритропоэтином. Установлено, что на ЭПО оказывает сильное отрицательное влияние ИЛ-6 (r=-0,71), заметное отрицательное влияние – ФНО-α (r=-0,67), заметное положительное влияние – ИЛ-10 (r=0,52), умеренное положительное влияние – ИНФ-γ (r=0,43) и слабое положительное влияние – ИЛ-1β (r=0,3). Также значимые коэффициенты корреляции получены и в группе пациентов с сочетанием АХЗ/ЖДА, хотя их значения меньше, чем в группе с АХЗ. Выявленная слабая или очень слабая взаимосвязь между цитокинами и ЭПО у больных с ЖЛА объясняется низкой активностью воспаления, низкой концентрацией исследуемых цитокинов и, как следствие, их слабым влиянием на синтез эритропоэтина.

У пациентов с воспалительными заболеваниями суставов с АХЗ также выявлены самые большие значения коэффициентов корреляции между цитокинами и ЭПО. Доказано, что на концентрацию ЭПО оказывают сильное отрицательное влияние ИЛ-6 (r=-0,85), сильное положительное влияние – ИЛ-10 (r=0,72), заметное отрицательное влияние – ФНО-α (r=-0,52), заметное положительное влияние – ИНФ-γ (r=0,67) и слабое отрицательное влияние – ИЛ-1β (r=-0,28). Также значимые коэффициенты корреляции получены и в группе пациентов с сочетанием АХЗ/ЖДА, хотя их значения меньше, чем в группе с АХЗ. Выявленная слабая или очень слабая взаимосвязь между цитокинами и ЭПО у больных с ЖДА объясняется низкой активностью воспаления, низкой концентрацией исследуемых цитокинов и, как следствие, их слабым влиянием на синтез ЭПО.

У пациентов с ВИЧ-инфекцией в группе АХЗ выявлены максимальные значения коэффициентов корреляции между цитокинами и ЭПО. Установлено, что на концентрацию ЭПО оказывают сильное отрицательное влияние ИЛ-6 (r=-0,71) и ИЛ-1 β (r=-0,82), заметное отрицательное влияние — ФНО- α (r=-0,6) и сильное положительное воздействие — ИНФ- γ (r=0,83) и ИЛ-10 (r=0,7). Значимые коэффициенты корреляции получены и в группе

пациентов с сочетанием АХЗ/ЖДА, хотя их значения меньше, чем в группе АХЗ. Выявленная слабая или очень слабая взаимосвязь между цитокинами и ЭПО у больных с ЖДА объясняется низкой активностью воспаления, низкой концентрацией исследуемых цитокинов и, как следствие, их слабым влиянием на синтез ЭПО.

При наличии всех трех исследуемых патологических состояний доказано негативное влияние ИЛ-6, ФНО-α на концентрацию ЭПО у пациентов с АХЗ. Полученные результаты отражают важное значение этих цитокинов в развитии АХЗ, в том числе за счет подавления синтеза ЭПО. Также в случае наличия всех трех исследуемых патологических состояний определена положительная корреляционная взаимосвязь между ЭПО, ИЛ-10, ИНФ-γ. Установлено, что ИЛ-10 — антагонист таких провоспалительных цитокинов, как ИЛ-6, ФНО-α. Концентрация ИЛ-10 увеличивается в ответ на увеличение концентрации провоспалительных цитокинов [121].

Наиболее вероятно, что выявленная значимая взаимосвязь между ИНФу и ЭПО отражает попытку компенсаторного увеличения ЭПО в ответ на повышенную концентрацию ИНФ-у и его негативное влияние на эритропоэз. Максимальная концентрация ИНФ-ү и максимальное значение коэффициента корреляции между ним и ЭПО (r=0,83) выявлены у пациентов с АХЗ и ВИЧинфекцией. Такие результаты обусловлены особенностями патогенеза ВИЧинфекции, для которой характерна активация моноцитов и Т-лимфоцитов, продуцирующих несколько цитокинов, в том числе ИНФ-у. В нескольких исследованиях способность ИНФ-у экспериментальных доказана стимулировать экспрессию фактора транскрипции PU.1, что приводит к угнетению эритропоэза посредством ингибирования экспрессии рецепторов ЭПО в эритроидных предшественниках и нарушению их дифференцировки [94]. С другой стороны, в исследовании W. Wang et al. 2019 г. установлено, что в некоторых условиях ИНФ-у посредством связывания с регулирующим фактором интерферона 1 может приводить не к подавлению, а, наоборот, ускорению дифференцировки и созревания эритроидных предшественников

[200]. Требуются дальнейшие исследования для уточнения механизма действия ИНФ-у на развитие АХЗ. Небольшое значение коэффициента корреляции между ИЛ-1В и ЭПО у пациентов со злокачественными новообразованиями и воспалительным заболеваниями суставов с АХЗ обусловлены низкой концентрацией этого цитокина. Напротив, у пациентов с ВИЧ-инфекцией и АХЗ и сочетанием АХЗ/ЖДА выявлены высокие концентрации ИЛ-1 в сравнении с пациентами с ЖДА и без анемии. В этой же группе больных установлена сильная взаимосвязь между ЭПО и ИЛ-1β (r=-0,82). Выявленная взаимосвязь обусловлена тем, что ИЛ-1β стимулирует опосредованное радикалами повреждение эритроцитов с их последующим эритрофагоцитозом [38]. Также в нескольких исследованиях показано, что ИЛ-1β может ингибировать опосредованную гипоксией стимуляцию синтеза ЭПО [190]. При разных патологических состояниях выявлен разный вклад цитокинов на синтез ЭПО. Выявленные различия обусловлены как разным профилем секреции цитокинов, так и особенностями патогенеза основного заболевания.

Вторым большим и важным разделом исследования стало изучение возможности улучшения диагностики AX3 и ее дифференциальной диагностики с ЖДА.

На первом этапе при каждой нозологической патологии с помощью дискриминантного анализа выполнялся поиск сочетания параметров, обладающих чувствительностью, специфичностью максимальной дифференциальной диагностики AX3 и ЖДА Итогом отношении дискриминантного анализа был расчет КЛДФ и кооординат центроидов, на основании которых возможно проводить дифференциальную диагностику двух типов анемий. У пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов в итоговую КЛДФ вошли два параметра – гепцидин и ферритин. КЛДФ на основании этих параметров позволяет с высокой чувствительностью и специфичностью проводить дифференциальную диагностику АХЗ и ЖДА. У пациентов с ВИЧ-инфекцией в итоговую КЛДФ вошли ферритин, ФНО-а, ИЛ-6, эритроциты и СРБ. КЛДФ на основании этих параметров также позволяет с высокой чувствительностью и специфичностью проводить дифференциальную диагностику АХЗ и ЖДА у пациентов с ВИЧ-инфекцией.

После составления КЛДФ с целью проверки чувствительности, специфичности полученных моделей, а также ее сравнения с другими лабораторными показателями проводился ROC-анализ с расчетом AUC, специфичности, чувствительности, доверительного интервала. По результатам ROC-анализа полученные КЛДФ обладали максимальной информационной способностью дифференциальной ДЛЯ проведения диагностики АХЗ и ЖДА.

У пашиентов злокачественными новообразованиями co И воспалительными заболеваниями суставов также получены высокие значения AUC, специфичности и чувствительности для гепцидина и ферритина. Полученные результаты позволяют использовать ЭТИ лабораторные показатели для дифференциальной диагностики АХЗ и ЖДА в этих группах больных. В связи с этим предложена схема проведения дифференциальной диагностики двух типов анемий у пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов на основании всего двух параметров – концентраций гепцидина и ферритина.

У пациентов с ВИЧ-инфекцией высокие значения АUС, специфичность и чувствительность ферритина и ИЛ-6 позволяют использовать эти показатели для дифференциальной диагностики АХЗ и ЖДА. В связи с этим предложена схема проведения дифференциальной диагностики двух типов анемий у пациентов с ВИЧ-инфекцией на основании концентраций ферритина и ИЛ-6.

Таким образом, для проведения дифференциальной диагностики АХЗ и ЖДА возможно использовать предложенные уравнения, обладающие максимальной чувствительностью и специфичностью, или отдельные лабораторные параметры.

На основании выполненного сравнительного и корреляционного анализов у пациентов с тремя патологическими состояниями выявлены особенности развития АХЗ. Эти особенности заключаются в различных профилях секреции цитокинов, чрезмерной, повышенной или нормальной концентрации гепцидина, а также повышенной или сниженной секреции ЭПО. В связи с этим предложена классификация АХЗ на основании ведущих патогенетических факторов её развития. Классификация позволит выбрать оптимальную стратегию лечения анемии у каждого конкретного пациента, в том числе в ближайшей перспективе и с использованием методов таргетной терапии.

Необходимо дальнейшее исследование патогенеза анемии хронических заболеваний, а также подходов к ее коррекции при различной терапевтической патологии.

ЗАКЛЮЧЕНИЕ

Анемия хронических заболеваний – крайне актуальная проблема для современного здравоохранения, способствующая ухудшению течения и прогноза основного заболевания, снижающая качество жизни пациентов, их физическую и когнитивную функции. Для этой анемии доказан сложный, многокомпонентный патогенез, который невозможно описать влиянием одного механизма или молекулы. Исследования последних лет посвящены изучению патогенеза AX3, а также возможностям применения таргетной терапии для ее коррекции. Исследователям все более очевиден тот факт, что АХЗ может развиваться не только при инфекционных и воспалительных заболеваниях, но и при таких заболеваниях, как хроническая сердечная недостаточность, хроническая обструктивная болезнь легких и даже ожирение. В связи с этим крайне актуален вопрос дальнейшего исследования патогенеза и диагностики этой анемии при различных патологических состояниях. В данное исследование включены пациенты со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧинфекцией. В ходе обследования у каждого больного диагностирована АХЗ, ЖДА или сочетание этих двух типов анемий, и в соответствии с этим все обследуемые разделены на три группы. По результатам разделения на разные группы анемий установлено, что примерно у 65-70 % пациентов развивается АХЗ или ее сочетание с ЖДА. Большая частота развития АХЗ при исследованных патологических состояниях подтверждает высокую актуальность дальнейшего ее исследования.

В рамках первого этапа диссертационного исследования выполнялся сравнительный анализ показателей клинического анализа крови, параметров обмена железа, включая гепцидин и sTfR, цитокинов и ЭПО у пациентов трех групп с разными типами анемий. Также выполнялся корреляционный анализ между этими показателями с целью выявления факторов с более выраженным влиянием на эритропоэз, обмен железа, синтез гепцидина и sTfR, ЭПО. По

результатам первого этапа исследования выявлены особенности развития АХЗ в каждом включенном патологическом состоянии:

- у пациентов с солидными злокачественными новообразованиями в развитии АХЗ важное значение имеют повышение секреции ИЛ-6, ФНО-α и гепцидина, что приводит к развитию функционального дефицита железа и угнетению эритропоэза. Для этой группы больных характерно подавление секреции ЭПО под действием ИЛ-6 и ФНО-α;
- у пациентов с воспалительными заболеваниями суставов в развитии АХЗ имеют важное значение повышение секреции ИЛ-6, ФНО-α, ИЛ-10, чрезмерная секреция гепцидина, что приводит к развитию функционального дефицита железа и угнетению эритропоэза. Для этой группы больных характерна не соответствующая тяжести анемии секреция ЭПО под действием ИЛ-6, ФНО-α, ИЛ-10, ИНФ-γ;
- у пациентов с ВИЧ-инфекцией в развитии АХЗ важное значение имеют повышенные секреции ИЛ-6, ИЛ-10, ФНО-α, ИНФ-γ, ИЛ-1β на фоне нормальной концентрации гепцидина, развивающийся вследствие этого функциональный дефицит железа и угнетение эритропоэза. Для этой группы больных характерно компенсаторное увеличение секреции ЭПО как следствие влияния ИЛ-10.

Таким образом, по результатам первой части исследования определены ведущие причины развития АХЗ в каждом из трех исследуемых патологических состояний. Полученные результаты имеют практическое применение, так как способствуют выработке оптимальной тактики лечения АХЗ у каждого конкретного пациента.

Вторым разделом исследования стала разработка диагностической модели И алгоритма, позволяющих проводить дифференциальную AX3ЖДА диагностику y пациентов злокачественными co новообразованиями, воспалительными заболеваниями суставов и ВИЧинфекцией. Разработка диагностической модели производилась методом дискриминантного анализа. По результатам дискриминантного анализа для каждого патологического состояния разработана формула, обладающая чувствительностью специфичностью высокой И И позволяющая АХЗ и ЖДА. У пациентов диагностировать co злокачественными новообразованиями и воспалительными заболеваниями суставов в итоговое уравнение вошли два показателя – гепцидин и ферритин. У пациентов с ВИЧинфекцией в итоговое уравнение вошли ферритин, ФНО-α, ИЛ-6, эритроциты и СРБ.

Также с помощью ROC-анализа определялись чувствительность, специфичность, диагностическая значимость для каждого компонента уравнения. У пациентов со злокачественными новообразованиями и воспалительными заболеваниями суставов получены высокие значения AUC, специфичности и чувствительности для гепцидина и ферритина, а также рассчитаны границы этих показателей для двух типов анемии. Результаты проведенных вычислений позволяют использовать гепцидин и ферритин совместно или в качестве изолированных лабораторных маркеров для проведения дифференциальной диагностики АХЗ и ЖДА, в связи с чем предложен соответствующий диагностический алгоритм.

У пациентов с ВИЧ-инфекцией высокие значения AUC, специфичности и чувствительности ферритина и ИЛ-6 позволяют использовать эти показатели для дифференциальной диагностики анемии хронических заболеваний и железодефицитной анемии. Рассчитаны границы этих показателей для двух типов анемии. Предложен диагностический алгоритм дифференциальной диагностики двух типов анемий у пациентов с ВИЧ-инфекцией на основании концентраций ферритина и/или ИЛ-6.

Таким образом, результатами второй части исследования стали разработка уравнений и диагностических алгоритмов для проведения дифференциальной диагностики АХЗ и ЖДА. Полученные уравнения обладают максимальной чувствительностью, специфичностью и информационной способностью, но в случае отсутствия в лечебном учреждении материальной базы для определения всех указанных параметров

возможно использование одного лабораторного показателя, обладающего чуть меньшей чувствительностью и специфичностью в сравнении с итоговым уравнением.

На основании выполненного исследования у пациентов с тремя разными группами заболеваний выявлены особенности развития анемии хронических заболеваний. Эти особенности заключаются в различных профилях секреции цитокинов, чрезмерной, повышенной или нормальной концентрации гепцидина, а также повышенной, недостаточной или сниженной секреции эритропоэтина. В связи с этим предложена классификация АХЗ на основании ведущих патогенетических факторов ее развития.

Основная цель разработки классификации — это оптимизация стратегии лечения анемии у каждого конкретного пациента, в том числе в ближайшей перспективе с использованием методов таргетной терапии.

Результаты этого исследования расширяют представления о патогенезе АХЗ у пациентов со злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией. Выделены ведущие причины развития этой анемии при каждом из исследуемых патологических состояний. Предложены диагностические алгоритмы, позволяющие на основании относительно небольшого числа лабораторных показателей эффективно проводить дифференциальную диагностику АХЗ и ЖДА. Разработанная классификация анемии хронических заболеваний нацелена на выбор оптимальной лечебной тактики анемии хронических заболеваний у каждого конкретного больного.

Перспективы дальнейших исследований:

- продолжение исследования патогенеза AX3 и выявление новых факторов ее развития, в том числе изучение влияния регулятора синтеза гепцидина эритроферрона и регулятора обмена железа транскрипционного фактора Nrf2 в развитии AX3;
- поиск новых лабораторных маркеров для диагностики анемии хронических заболеваний;

- изучение препаратов для таргетной терапии анемии хронических заболеваний и внедрение их в клиническую практику;
- дальнейшая разработка наиболее оптимальных лечебных алгоритмов коррекции анемии хронических заболеваний у пациентов с различными патологическими состояниями.

Полученные результаты следует рассматривать как научно доказанное основание для открытия и разработки в дальнейшем новых направлений лечения АХЗ, направленных на коррекцию ведущих патогенетических механизмов, приводящих к ее развитию. Возможности для реализации указанных научных направлений открывают результаты данного исследования.

ВЫВОДЫ

- 1. При солидных злокачественных новообразованиях, воспалительных заболеваниях суставов и ВИЧ-инфекции на основании анализа показателей обмена железа и маркера активности воспаления (СРБ) возможно выделение нескольких типов анемий: АХЗ, ассоциированная с функциональным дефицитом железа, ЖДА вследствие абсолютного дефицита железа и сочетание этих двух типов анемий у одного больного.
- В развитии АХЗ у больных с солидными злокачественными 2. новообразованиями, воспалительными заболеваниями суставов и ВИЧинфекцией ключевое значение имеют такие факторы, как гиперпродукция провоспалительных (ИЛ-6, ФНО-α, ИЛ-1β, ИНФ-γ) и противовоспалительных (ИЛ-10) цитокинов, угнетение эритропоэза нарушением эритропоэтина, нарушение обмена железа вследствие неадекватной продукции его ключевого регулятора – гепцидина. Ведущие патогенетические механизмы, приводящие к АХЗ при злокачественных новообразованиях, ВИЧ-инфекции, воспалительных заболеваниях суставов И значимо различаются.
- 3. При солидных злокачественных новообразованиях на развитие АХЗ наибольшее влияние оказывает повышенная секреция ИЛ-6 (r=-0,88), ФНО-α (r=-0,77) и гепцидина (r=-0,66) в сочетании с подавленной секрецией эритропоэтина и угнетением эритропоэза.
- 4. Для пациентов с воспалительными заболеваниями суставов в патогенезе АХЗ наибольшее значение имеют увеличение секреции ΦНО-α (r=-0,7), ИЛ-10 (r=-0,64), ИЛ-6 (r=-0,63), гиперпродукция гепцидина (r=-0,6) в сочетании с нарушением эритропоэза на фоне не соответствующего тяжести анемии синтеза эритропоэтина.
- 5. В развитии АХЗ у ВИЧ-инфицированных ведущую роль играют повышение синтеза ФНО- α (r=-0,88), ИЛ-10 (r=-0,75), ИЛ-6 (r=-0,62) в сочетании со сниженной биологической активностью эритропоэтина,

проявляющейся в нарушении эритропоэза на фоне его повышенного образования.

- 6. При солидных злокачественных новообразованиях определение концентрации гепцидина (чувствительность 89 %, специфичность 88,7 %) и/или ферритина (чувствительность 81,9 %, специфичность 90 %) позволяет проводить дифференциальную диагностику АХЗ и ЖДА. Полученная на основе гепцидина и ферритина диагностическая модель обладает чувствительностью 90,9 %, специфичностью 100 % и позволяет проводить дифференциальную диагностику АХЗ и ЖДА у этой категории больных.
- пациентов с воспалительными заболеваниями суставов определение концентрации гепцидина (чувствительность 90.2 %. специфичность 78 %) и/или ферритина (чувствительность 91,2 %. специфичность 79 %) позволяет проводить дифференциальную диагностику АХЗ и ЖДА. Полученная на основе гепцидина и ферритина диагностическая модель обладает чувствительностью 100 %, специфичностью 80 % и позволяет проводить дифференциальную диагностику АХЗ и ЖДА у этой категории больных.
- 8. Для ВИЧ-инфицированных определение концентрации ферритина (чувствительность 87,1 %, специфичность 92,1 %) и/или ИЛ-6 (чувствительность 87,1 %, специфичность 87,5 %) позволяет проводить дифференциальную диагностику АХЗ и ЖДА. Полученная на основе ферритина, ИЛ-6, ФНО-α, СРБ и числа эритроцитов диагностическая модель имеет чувствительность 88,8 %, специфичность 100 % и позволяет проводить дифференциальную диагностику АХЗ и ЖДА при этой инфекционной патологии.
- 9. Разработана новая классификация АХЗ, основанная на выявлении ведущих механизмов ее патогенеза. К ним относятся нарушения обмена железа, изменения регуляторных механизмов эритропоэза, уменьшение секреции и/или биологической активности эндогенного эритропоэтина.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Больным злокачественными новообразованиями и анемическим синдромом до начала лечения основного заболевания (хирургического, химиотерапевтического или лучевого) с целью уточнения генеза анемии, помимо развернутого клинического анализа крови, определения концентрации железа и ОЖСС, необходимо исследование гепцидина и ферритина.
- 2. У пациентов со злокачественными новообразованиями и анемическим синдромом концентрация гепцидина более 30 нг/мл и/или ферритина более 360 мкг/л свидетельствует о наличии АХЗ. Концентрация гепцидина менее 10 нг/мл и/или ферритина менее 24 мкг/л подтверждает наличие у пациента ЖДА.
- 3. При воспалительных заболеваниях суставов с анемическим синдромом до начала биологической терапии основного заболевания с целью уточнения генеза анемии, помимо развернутого клинического анализа крови, определения концентрации железа и ОЖСС, необходимо исследование гепцидина и ферритина.
- 4. Для больных с воспалительными заболеваниями суставов и анемическим синдромом концентрация гепцидина более 150 нг/мл и/или ферритина более 145 мкг/л свидетельствует о наличии АХЗ. Концентрация гепцидина менее 5 нг/мл и/или ферритина менее 15 мкг/л свидетельствует о наличии у пациента ЖДА.
- 5. ВИЧ-инфицированным пациентам до начала или на фоне антиретровирусной терапии с целью уточнения генеза анемии, помимо развернутого клинического анализа крови, определения концентрации железа и ОЖСС, необходимо исследование концентрации ферритина, СРБ, ИЛ-6, ФНО-α, числа эритроцитов.
- 6. Для пациента с ВИЧ-инфекцией и анемическим синдромом концентрация ферритина более 300 мкг/л и/или ИЛ-6 более 11 пг/мл

свидетельствует о развитии АХЗ. Концентрация ферритина менее 38 мкг/л и/или ИЛ-6 менее 7 пг/мл свидетельствует о наличии ЖДА.

7. Больным со злокачественными новообразованиями до начала лечения основного заболевания (хирургического, химиотерапевтического или лучевого) с целью проведения дифференциальной диагностики АХЗ и ЖДА рекомендуется использование следующей формулы:

КЛДФ=
$$2,563405 - 0,058628 \times A - 0,003146 \times B$$
,

где КЛДФ – каноническая линейная дискриминантная функция;

А – уровень гепцидина в сыворотке крови пациента (нг/мл);

В – уровень ферритина в сыворотке крови пациента (мкг/л).

Для проведения дифференциальной диагностики необходимо рассчитать расстояние от КЛДФ до центроидов, для АХЗ значение центроида -1,6102351, а для ЖДА 1,93228212. Пациента, у которого по данным концентраций ферритина и гепцидина определено значение КЛДФ, следует отнести к группе АХЗ или ЖДА по минимальному расстоянию к соответствующему центроиду.

8. Пациентам с воспалительными заболеваниями суставов и анемическим синдромом до начала биологической терапии основного заболевания с целью проведения дифференциальной диагностики АХЗ и ЖДА рекомендуется использование следующей формулы:

КЛДФ=
$$1,612171-0,002725 \times A -0,005429 \times B$$
,

где КЛДФ – каноническая линейная дискриминантная функция;

А – уровень гепцидина в сыворотке крови пациента (нг/мл);

В – уровень ферритина в сыворотке крови пациента (мкг/л).

Для возможности проведения дифференциальной диагностики с помощью канонического анализа рассчитывались коэффициенты канонической корреляции R, также называемые центроидами. Для АХЗ значение центроида составляет -1,44222008, а для ЖДА 1,52705656. Пациента, у которого по данным концентраций ферритина и гепцидина определено значение КЛДФ, следует отнести к группе АХЗ или ЖДА на основании того, к какому центроиду ближе полученная цифра.

9. У ВИЧ-инфицированных и анемическим синдромом до начала антиретровирусной терапии с целью проведения дифференциальной диагностики АХЗ и ЖДА рекомендуется использование следующей формулы:

КЛД Φ =8,3-A×0,3-Б×1,4-В×2,5+Г×1,2+Д×1,7,

где КЛДФ – каноническая линейная дискриминантная функция;

А – уровень ферритина в сыворотке крови пациента (мкг/л);

Б – уровень ФНО-а в сыворотке крови пациента (пг/мл);

В – уровень ИЛ-6 в сыворотке крови пациента (пг/мл);

 Γ – число эритроцитов в сыворотке крови пациента (×10¹²/л);

Д – уровень СРБ в сыворотке крови пациента (мг/л).

Для проведения дифференциальной диагностики необходимо рассчитать расстояние от КЛДФ до центроидов, для АХЗ значение центроида составляет -2,86, а для ЖДА 2,54. Пациента, у которого по данным концентраций ферритина, ФНО-а, ИЛ-6, СРБ и числа эритроцитов определено значение КЛДФ, следует отнести к группе АХЗ или ЖДА по минимальному расстоянию к соответствующему центроиду.

- 10. С целью оптимизации лечебных подходов к коррекции АХЗ предлагается классификация этой анемии на основании ведущего патогенетического фактора ее развития:
 - АХЗ с преимущественным дефицитом железа;
 - AX3 с нарушениями регуляторных механизмов эритропоэза;
- AX3 с уменьшением синтеза и/или биологической активности эндогенного эритропоэтина.
- 11. АХЗ с преимущественным дефицитом железа диагностируется на основании высокой концентрации ферритина и гепцидина и сниженной концентрации железа. АХЗ с нарушениями регуляторных механизмов эритропоэза выявляется на основании увеличения концентраций ИЛ-6, ФНО-α и ↑ИЛ-10. АХЗ с уменьшением синтеза и/или биологической активности эндогенного эритропоэтина определяется на основании патологически измененной концентрации эритропоэтина.

12. У пациентов с солидными злокачественными новообразованиями, воспалительными заболеваниями суставов и ВИЧ-инфекцией при развитии АХЗ необходимо уточнение ее типа согласно предложенной классификации с целью выбора оптимальной лечебной тактики этой анемии.

СПИСОК СОКРАЩЕНИЙ

АРВТ – антиретровирусная терапия

АС — анкилозирующий спондилит

AX3 – анемия хронических заболеваний

ЖДА – железодефицитная анемия

ИЛ-1β – интерлейкин-1 бета

ИЛ-6 – интерлейкин-6

ИЛ-10 – интерлейкин-10

ИНФ-у – интерферон-гамма

КЛДФ – каноническая линейная дискриминантная функция

КНТ – коэффициент насыщения трансферрина железом

ОЖСС – общая железосвязывающая способность сыворотки

ПсА – псориатический артрит

РА – ревматоидный артрит

СРБ – С-реактивный белок

ФНО-α – фактор некроза опухоли-альфа

ФНС – функциональная недостаточность суставов

 $\Theta = \Theta = \Theta$

ALK3 – activin receptor-like kinase 3

BASDAS – the Bath AS Disease Activity Index (Батский индекс активности анкилозирующего спондилита)

BMP 2/6 – Bone morphogenetic protein 2/6 (костный морфогенетический белок 2/6)

BMPR1 – BMP receptor type 1

DAS28 – Disease Activity Score-28 (индекс воспалительной активности 28)

DMT1 – divalent metal transporter 1 (переносчик двухвалентных металлов 1)

FPN1 – ferroportin 1 (ферропортин 1)

GDF-15 – growth differentiation factor-15

HIF – hypoxia inducible factor

HRE – hypoxia responsive elements

IRE – Iron response element

IRP – iron regulatory protein

KEAP1 – kelch-like erythroid cell-derived protein with CNC homology-associated protein 1

MCH - mean corpuscular hemoglobin (среднее содержание гемоглобина в эритроците)

MCHC - mean corpuscular hemoglobin concentration (средняя концентрация гемоглобина в эритроците)

MCV - mean corpuscular volume (средний объем эритроцита)

NRF2 – nuclear factor erythroid 2-related factor 2

TfR1/2 – transferrin receptor 1/2

TMPRSS6 – transmembrane protease, serine 6

VEGF – vascular endothelial growth factor

sTfR – soluble transferrin receptor (растворимый рецептор трансферрина)

СПИСОК ЛИТЕРАТУРЫ

- **1.** Анемии: краткое руководство для практических врачей всех специальностей / под ред. О. А. Рукавицына. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2021. 352 с. ISBN 978-5-9704-6293-5. DOI 10.33029/9704-6293-5-ANM-2021-1-352.
- 2. Анемия при хронических заболеваниях: ключевые механизмы патогенеза у пациентов со злокачественными новообразованиями и возможные подходы к классификации / В. Т. Сахин, Е. Р. Маджанова, Е. В. Крюков [и др.]. DOI 10.21320/2500-2139-2019-12-3-344-349 // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2019. Т. 12, № 3. С. 344-349.
- **3.** Анемия у больных ревматоидным артритом: особенности патогенеза, диагностики и лечения / Н. Т. Ватутин, А. С. Смирнова, Н. В. Калинкина, А. Н. Шевелек // Российский медицинский журнал. 2013. Т. 21, № 21. С. 1069-1072.
- **4.** Анемия хронических заболеваний / В. Т. Сахин, Е. В. Крюков, О. А. Рукавицын; под общ. ред. Е. В. Крюкова. Москва : ГЭОТАР-Медиа, 2020. 160 с. ISBN 978-5-9704-5923-2.
- **5.** Анкилозирующий спондилит : клинические рекомендации 2018 : утв. Минздравом РФ / Ассоциация ревматологов России. 2018. URL: https://library.mededtech.ru/rest/documents/cr_175/ (дата обращения: 07.03.2025).
- **6.** Бессмельцев, С. С. Анемии при опухолевых заболеваниях системы крови: руководство для врачей / С. С. Бессмельцев, Н. А. Романенко. Москва : СИМК, 2017. 228 с. ISBN 978-5-91894-058-7.
- **7.** Блиндарь, В. Н. Новая концепция диагностики анемии с нарушением метаболизма железа / В. Н. Блиндарь, Г. Н. Зубрихина, И. И. Матвеева. Текст: непосредственный // Вестник РОНЦ им. Н. Н. Блохина РАМН. 2015. Т. 26, № 4-1. С. 77-85.

- **8.** Блиндарь, В. Н. Основные метаболиты феррокинетики в дифференциальной диагностике анемического синдрома с микроцитарными, гипохромными характеристиками эритроцитов у больных колоректальным раком / В. Н. Блиндарь, Г. Н. Зубрихина, И. И. Матвеева. DOI 10.18821/0869-2084-2018-63-2-89-94 // Вестник гематологии. 2018. Т. 63, № 2. С. 89-94.
- **9.** Брайерли, Дж. Д. TNМ. Классификация злокачественных опухолей: пер. с англ. / Дж. Д. Брайерли, М. К. Господарович, К. Виттекинд. 2-е изд. Москва: Логосфера, 2018. 325 с. ISBN 978-5-98657-063-1.
- **10.** ВИЧ-инфекция у взрослых : клинические рекомендации 2020 : утв. Минздравом РФ / Национальная вирусологическая ассоциация. − 21.06.2020. − URL: http://rushiv.ru/klinicheskie-rekomendatsii-vich-infektsiya-u-vzroslyh-2020/ (дата обращения: 07.03.2025).
- **11.** Галушко, Е. А. Клиническое значение определения гепсидина при анемии у больных ревматоидным артритом / Е. А. Галушко // Клиническая медицина. -2014. Т. 92, № 6. С. 21-27.
- **12.** Горыня, Л. А. Анемия у ВИЧ-инфицированных пациентов. Патогенез и современная терапевтическая тактика / Л. А. Горыня, В. И. Мазуров, В. Б. Мусатов // Вестник Санкт-Петербургского университета. Медицина. -2014. № 2. С. 54-65.
- 13. Гринштейн, Ю. И. Анемический синдром при ревматоидном артрите: подходы к диагностике и возможности терапии / Ю. И. Гринштейн, В. В. Шабалин, В. В. Кусаев. DOI 10.17116/terarkh2016885107-112 // Терапевтический архив. 2016. Т. 88, № 5. С. 107-112.
- **14.** Зенина, М. Н. Современные гематологические анализаторы возможности и ограничения / М. Н. Зенина, Е. Р. Шилова, Н. Ю. Черныш // Вестник гематологии. 2021. Т. 17, № 4. С. 24-31.
- **15.** Значение обмена железа, цитокинов в патогенезе анемии у больных ревматологического профиля / В. Т. Сахин, Е. В. Крюков, М. А. Григорьев [и др.]. DOI 10.30629/0023-2149-2020-98-9-10-691-698 // Клиническая медицина. 2020. Т. 98, № 9-10. С. 691-698.

- **16.** Значение эритропоэтина в патогенезе анемии хронических заболеваний у ревматических больных / В. Т. Сахин, Е. В. Крюков, М. А. Григорьев [и др.]. DOI 10.17816/brmma71556 // Вестник Российской Военномедицинской академии. 2021. Т. 23, № 4. С. 55-62.
- **17.** Каратеев, Д. Е. Современные принципы ведения больных с ревматоидным артритом / Д. Е. Каратеев, Е. Л. Лучихина. DOI 10.21518/2079-701X-2017-17-92-100 // Медицинский совет. 2017. № 17. С. 92-100.
- **18.** Качество жизни у больных злокачественными заболеваниями лимфатической системы и его динамика на фоне коррекции анемии / Н. А. Романенко, М. Н. Зенина, Е. Р. Шилова, С. С. Бессмельцев // Вестник гематологии. 2022. Т. 18, № 2. С. 80.
- **19.** Клиническая лабораторная диагностика : учебник / под ред. В. В. Долгова. Москва : РМАНПО, 2016. 668 с. ISBN 978-5-7249-2608-9.
- **20.** Особенности секреции гепцидина и растворимого рецептора трансферрина в зависимости от типа анемии у пациентов со злокачественными новообразованиями / В. Т. Сахин, Е. В. Крюков, С. П. Казаков [и др.]. DOI 10.34883/PI.2022.8.4.003 // Гематология. Трансфузиология. Восточная Европа. 2022. Т. 8, No 4. С. 399-410.
- **21.** Пакет прикладных программ Statgraphics на персональном компьютере / С. Г. Григорьев, В. В. Левандовский, А. М. Перфилов, В. И. Юнкеров. Санкт-Петербург, 1992. 105 с.
- **22.** Патогенетическая и заместительная коррекция анемии у пациентов со злокачественными новообразованиями / Н. А. Романенко, А. Э. Алборов, С. С. Бессмельцев [и др.]. DOI 10.17650/1818-8346-2020-15-3-95-106 // Онкогематология. 2020. Т. 15, № 3. С. 95-106.
- **23.** Псориатический артрит. Клинические рекомендации по диагностике и лечению / Т. В. Коротаева, Ю. Л. Корсакова, Е. Ю. Логинова [и др.]. DOI 10.14412/1996-7012-2018-2-22-35 // Современная ревматология. 2018. Т. 12, № 2. С. 22-35.

- **24.** Разработка стратегических подходов к современной диагностике анемического синдрома у больных раком молочной железы / В. Н. Блиндарь, Г. Н. Зубрихина, Т. В. Давыдова [и др.]. DOI 10.18821/0869-2084-2019-64-4-210-215 // Клиническая лабораторная диагностика. 2019. Т. 64, \mathbb{N} 4. С. 210-215.
- **25.** Распространенность коморбидных и сопутствующих заболеваний при псориатическом артрите по данным Общероссийского регистра больных псориатическим артритом / Ю. Л. Корсакова, Т. В. Коротаева, Е. Ю. Логинова [и др.]. DOI 10.47360/1995-4484-2021-275-281 // Научно-практическая ревматология. 2021. Т. 59, № 3. С. 275-281.
- **26.** Ревматоидный артрит: клинические рекомендации 2021 : утв. Минздравом РФ / Ассоциация ревматологов России. 18.10.2021. URL: https://www.garant.ru/products/ipo/prime/doc/402775973/ (дата обращения: 07.03.2025).
- **27.** Роль гепцидина при основных железодефицитных синдромах у беременных / М. Аиари, В. Г. Демихов, И. Г. Миров [и др.]. DOI 10.23888/PAVLOVJ2016496-103 // Российский медико-биологический вестник имени академика И. П. Павлова. 2016. Т. 24, № 4. С. 96-103.
- **28.** Романенко, Н. А. Исследование влияния провоспалительных цитокинов и развитие анемического синдрома при лимфопролиферативных заболеваниях / Н. А. Романенко, О. Е. Розанова, А. В. Чечеткин // Вестник гематологии. 2017. Т. 13, № 3. С. 67.
- **29.** Современные представления о механизмах всасывания железа, активаторы, ингибиторы, регуляция, новые возможности оптимизации / Н. И. Стуклов, А. А. Гуркина, М. С. Ковальчук, Н. Д. Кислый. DOI 10.18565/therapy.2023.4.119-129 // Терапия. 2023. Т. 9, № 4(66). С. 119-129.
- **30.** Сравнение секреции цитокинов, а также исследование их влияния на эритропоэз у пациентов со злокачественными новообразованиями с анемией хронических заболеваний, железодефицитной анемией и их

- сочетанием / В. Т. Сахин, Е. В. Крюков, С. П. Казаков [и др.] DOI 10.17650/1818-8346-2023-18-2-45-52 // Онкогематология. 2023. Т. 18, № 2. С. 45-52.
- **31.** Сравнительный анализ секреции интерлейкина-6, интерлейкина-1бета, интерлейкина-10, фактора некроза опухоли-альфа, интерферона-гамма при различных типах анемии у пациентов с ВИЧ-инфекцией / В. Т. Сахин, Е. В. Крюков, С. П. Казаков [и др.]. DOI 10.26787/nydha-2686-6838-2023-25-2-112-123 // Медико-фармацевтический журнал Пульс. 2023. Т. 25, № 2. С. 112-123.
- **32.** Стуклов, Н. И. Учебник по гематологии / Н. И. Стуклов, Г. И. Козинец, Н. Г. Тюрина. Москва : Практическая медицина, 2018. 336 с. ISBN 978-5-98811-492-5.
- **33.** Трухачева, Н. В. Математическая статистика в медикобиологических исследованиях с применением пакета Statistica / Н. В. Трухачева. – Москва : ГЭОТАР-Медиа, 2013. – 384 с. – ISBN 978-5-9704-2567-1.
- **34.** Хасанова, Г. Р. Анемия хронического заболевания у больных ВИЧ-инфекцией: клинико-лабораторная характеристика / Г. Р. Хасанова, И. Г. Мустафин // Казанский медицинский журнал. 2014. Т. 95, № 5. С. 769-775.
- **35.** Хасанова, Г. Р. Эритропоэтин и анемия хронического заболевания у больных ВИЧ-инфекцией / Г. Р. Хасанова, Е. Ю. Степанова, И. Г. Мустафин // Практическая медицина. -2014. № 1 (77). С. 116-120.
- **36.** Эпидемиология дефицита железа в России: показатели ферритина сыворотки в зависимости от пола и возраста / Н. И. Стуклов, М. С. Ковальчук, А. А. Гуркина, Н. Д. Кислый. DOI 10.30629/0023-2149-2023-101-6-308-314 // Клиническая медицина. 2023. Т. 101, № 6. С. 308-314.
- **37.** Ягода, А. В. Анемия при ревматоидном артрите: взаимосвязь с гепсидином и молекулами адгезии / А. В. Ягода, В. Д. Саритхала, П. В. Корой.

- DOI 10.14300/mnnc.2018.13044 // Медицинский вестник Северного Кавказа.
 2018. Т. 13, № 2. С. 338-342.
- **38.** "Pumping iron" how macrophages handle iron at the systemic, microenvironmental, and cellular levels / M. Nairz, I. Theurl, F. K. Swirski, G. Weiss. DOI 10.1007/s00424-017-1944-8 // Pflugers Arch. 2017. Vol. 469, № 3–4. P. 397-418.
- **39.** 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure / T. A. McDonagh, M. Metra, M. Adamo [et al.]. DOI 10.1093/eurheartj/ehab368 // Eur. Heart J. 2021. Vol. 42, № 36. P. 3599-3726.
- **40.** A first-in-human phase 1 study of a hepcidin monoclonal antibody, LY2787106, in cancer-associated anemia / S. Vadhan-Raj, R. Abonour, J. W. Goldman [et al.]. DOI 10.1186/s13045-017-0427-x // J Hematol Oncol. 2017. Vol. 10, N1. P. 73.
- **41.** A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload / C. Pigeon, G. Ilyin, B. Courselaud [et al.]. DOI 10.1074/jbc.M008923200 // J. Biol. Chem. 2001. Vol. 276, № 11. P. 7811-7819.
- **42.** A novel composite endpoint to evaluate the gastrointestinal (GI) effects of nonsteroidal antiinflammatory drugs through the entire GI tract / F. K. Chan, B. Cryer, J. L. Goldstein [et al.]. DOI 10.3899/jrheum.090168 // J. Rheumatol. 2010. Vol. 37, No 1. P. 167-174.
- **43.** A possible role for hepcidin in the detection of iron deficiency in severely anaemic HIV-infected patients in Malawi / M. H. Huibers, J. C. Calis, T. J. Allain [et al.]. DOI 10.1371/journal.pone.0218694 // PLoS ONE. 2020. Vol. 15, № 2. Article e0218694.
- **44.** A prospective observational study of anaemia management in cancer patients Results from the German Cancer Anaemia Registry / T. Steinmetz, U. Totzke, M. Schweigert [et al.]. DOI 10.1111/j.1365-2354.2010.01230.x // Eur. J. Cancer Care. 2011. Vol. 20, № 4. P. 493-502.

- **45.** A red carpet for iron metabolism / M. U. Muckenthaler, S. Rivella, M. W. Hentze, B. Galy. DOI 10.1016/j.cell.2016.12.034 // Cell. 2017. Vol. 168, № 3. P. 344-361.
- **46.** A systematic analysis of global anemia burden from 1990 to 2010 / N. J. Kassebaum, R. Jasrasaria, M. Naghavi [et al.]. DOI 10.1182/blood-2013-06-508325 // Blood. 2014. Vol. 123, № 5. P. 615-624.
- **47.** A vitamin E-coated polysulfone membrane reduces serum levels of inflammatory markers and resistance to erythropoietin-stimulating agents in hemodialysis patients: Results of a randomized cross-over multicenter trial / V. Panichi, A. Rosati, S. Paoletti [et al.]. DOI 10.1159/000321369 // Blood Purif. 2011. Vol. 32, $Nolethood{0}1. P. 7-14$.
- **48.** Ablation of Hepatocyte Smad1, Smad5, and Smad8 Causes Severe Tissue Iron Loading and Liver Fibrosis in Mice / C. Y. Wang, X. Xiao, A. Bayer [et al.]. DOI 10.1002/hep.30780 // Hepatology. 2019. Vol. 70, № 6. P. 1986-2002.
- **49.** Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1 / J. A. Forsythe, B. H. Jiang, N. V. Iyer, [et al.]. DOI 10.1128/MCB.16.9.4604 // Mol. Cell Biol. 1996. Vol. 16, No 9. P. 4604-4613.
- **50.** Activin B induces noncanonical SMAD1/5/8 signaling via BMP type I receptors in hepatocytes: evidence for a role in hepcidin induction by inflammation in male mice / S. Canali, A. B. Core, K. B. Zumbrennen-Bullough [et al.]. DOI 10.1210/en.2015-1747 // Endocrinology. 2016. Vol. 157, № 3. P. 1146-1162.
- **51.** Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice / C. Bing, S. Russell, E. Becket [et al.]. DOI 10.1038/sj.bjc.6603360 // Br. J. Cancer. 2006. Vol. 95, № 8. P. 1028-1037.
- **52.** Alexaki, A. HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination / A. Alexaki, B. Wigdahl. DOI 10.1371/journal.ppat.1000215 // PLoS Pathog. 2008. Vol. 4, № 12. Article e1000215.

- **53.** Alpha thalassemia is associated with increased soluble transferrin receptor levels / D. C. Rees, T. N. Williams, K. Maitland [et al.]. DOI 10.1046/j.1365-2141.1998.00971.x // Br. J. Haematol. 1998. Vol. 103, № 2. P. 365-369.
- **54.** An investigation of the effects of curcumin on iron overload, hepcidin level, and liver function in β-thalassemia major patients: A double-blind randomized controlled clinical trial / E. Mohammadi, A. Tamaddoni, D. Qujeq [et al.]. DOI 10.1002/ptr.6118 // Phytother. Res. 2018. Vol. 32, № 9. P. 1828-1835.
- **55.** Anaemia in patients with HIV-associated TB: relative contributions of anaemia of chronic disease and iron deficiency / A. D. Kerkhoff, G. Meintjes, J. Opie [et al.]. DOI 10.5588/ijtld.15.0558 // Int. J. Tuberc. Lung. Dis. 2016. Vol. 20, № 2. P. 193-201.
- **56.** Anaemia in rheumatoid arthritis: can we afford to ignore it? / E. Bloxham, V. Vagadia, K. Scott [et al.]. DOI 10.1136/pgmj.2011.117507 // Postgrad. Med. J. 2011. Vol. 87 (1031). P. 596-600.
- **57.** Anaemia is associated with higher disease activity in axial spondyloarthritis but is not an independent predictor of spinal radiographic progression: Data from the Swiss Clinical Quality Management Registry / R. Micheroli, S. Kissling, K. Bürki [et al.]. DOI 10.1007/s10067-023-06662-0 // Clin. Rheumatol. 2023. Vol. 42, № 9. P. 2377-2385.
- **58.** Anaemia may add information to standardised disease activity assessment to predict radiographic damage in rheumatoid arthritis: A prospective cohort study / B. Möller, A. Scherer, F. Förger [et al.]. DOI 10.1136/annrheumdis-2012-202709 // Ann. Rheum. Dis. 2014. Vol. 73, № 4. P. 691-696.
- **59.** Anaemia, iron status, and gender predict the outcome in patients with chronic heart failure / K. Kurz, L. Lanser, M. Seifert [et al.]. DOI 10.1002/ehf2.12755 // ESC Heart Failure. 2020. Vol. 7, № 4. P. 1880-1890.
- **60.** Anemia and iron biomarkers in patients with early breast cancer. Diagnostic value of hepcidin and soluble transferrin receptor quantification / A.

- Durigova, P. J. Lamy, S. Thezenas [et al.]. DOI 10.1515/cclm-2013-0031 // Clin. Chem. Lab. Med. 2013. Vol. 51, № 9. P. 1833-1841.
- **61.** Anemia and iron deficiency in cancer patients: role of iron replacement therapy / F. Busti, G. Marchi, S. Ugolini [et al.]. DOI 10.3390/ph11040094 // Pharmaceuticals (Basel). 2018. Vol. 11, № 4. Article 94.
- **62.** Anemia and iron homeostasis in a cohort of HIV-infected patients in Indonesia / R. Wisaksana, R. Sumantri, A. R. Indrati [et al.]. DOI 10.1186/1471-2334-11-213 // BMC Infect. Dis. 2011. Vol. 11. Article 213.
- **63.** Anemia and red blood cell indices predict HIV-associated neurocognitive impairment in the highly active antiretroviral therapy era / A. R. Kallianpur, Q. Wang, P. Jia [et al.]. DOI 10.1093/infdis/jiv754 // J. Infect. Dis. 2016. Vol. 213, № 7. P. 1065-1073.
- **64.** Anemia as an independent prognostic factor for survival in patients with cancer: a systemic, quantitative review / J. J. Caro, M. Salas, A. Ward, G. Goss // Cancer. 2001. Vol. 91, № 12. P. 2214-2221.
- **65.** Anemia is an independent predictor of mortality and immunologic progression of disease among women with HIV in Tanzania / M. E. O'Brien, R. Kupka, G. I. Msamanga [et al.]. DOI 10.1097/01.qai.0000166374.16222.a2 // J. Acquir. Immune Defic. Syndr. 2005. Vol. 40, № 2. P. 219-225.
- **66.** Anemia of chronic disease in patients with cardiovascular disease / L. Lanser, D. Fuchs, H. Scharnagl [et al.]. DOI 10.3389/fcvm.2021.666638 // Front. Cardiovasc. Med. 2021. Vol. 8. Article 666638.
- **67.** Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: Improvement following antitumor necrosis factor-α antibody therapy / H. A. Papadaki, H. D. Kritikos, V. Valatas [et al.]. DOI 10.1182/blood-2002-01-0136 // Blood. 2002. Vol. 100, № 2. P. 474-482.
- **68.** Anemia of chronic disease in rheumatoid arthritis: Effect of the blunted response to erythropoietin and of interleukin 1 production by marrow macrophages

- / M. A. Smith, S. M. Knight, P. J. Maddison, J. G. Smith. DOI 10.1136/ard.51.6.753 // Ann. Rheum. Dis. 1992. Vol. 51, № 6. P. 753-757.
- **69.** Anemia of inflammation in patients with colorectal cancer: Correlation with interleukin-1, interleukin-33 and galectin-1 / M. Jocić, N. Arsenijević, N. Gajović [et al.]. DOI 10.5937/jomb0-30135 // J. Med. Biochem. 2022. Vol. 41, № 1. P. 79-90.
- **70.** Anemia, iron deficiency, and iron supplementation in relation to mortality among HIV-infected patients receiving highly active antiretroviral therapy in Tanzania / B. A. Haider, D. Spiegelman, E. Hertzmark [et al.]. DOI 10.4269/ajtmh.18-0096 // Am. J. Trop. Med. Hyg. 2019. Vol. 100, № 6. Article 15121520.
- **71.** Anemia, serum vitamin B12, and folic acid in patients with rheumatoid arthritis, psoriatic arthritis, and systemic lupus erythematosus / R. Segal, Y. Baumoehl, O. Elkayam [et al.]. DOI 10.1007/s00296-003-0323-2 // Rheumatol. Int. 2004. Vol. 24, N 1. P. 14-19.
- **72.** Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis / P.-S. Koch, V. Olsavszky, F. Ulbrich [et al.]. DOI 10.1182/blood-2016-07-729822 // Blood. 2017. Vol. 129, № 4. P. 415-419.
- **73.** Antianemic treatment of cancer patients in German routine practice: Data from a prospective cohort study the tumor anemia registry / T. Steinmetz, J. Schreder, M. Plath [et al.]. DOI 10.1155/2016/8057650 // Anemia. 2016. Vol. 2016. Article 8057650.
- **74.** Anti-TNF-α effects on anemia in rheumatoid and psoriatic arthritis / A. Corrado, V. D. Bello, F. d'Onofrio [et al.]. DOI 10.1177/0394632017714695 // Int. J. Immunopathol. Pharmacol. 2017. Vol. 30, No 3. P. 302-307.
- **75.** Anti-tumour necrosis factor-alpha treatment interferes with changes in lipid metabolism in a tumour cachexia model / N. Carbó, P. Costelli, L. Tessitore [et al.]. DOI 10.1042/cs0870349 // Clin. Sci. (Lond). 1994. Vol. 87, № 3. P. 349-355.

- **76.** Aspirin increases ferroportin 1 expression by inhibiting hepcidin via the JAK/STAT3 pathway in interleukin 6-treated PC-12 cells / S.-N. Huang, H.-Z. Ruan, M. Y.-J. Chen [et al.]. DOI 10.1016/j.neulet.2017.10.001 // Neurosci. Lett. 2018. Vol. 662. P. 1-5.
- 77. Association between immune activation, changes of iron metabolism and anaemia in patients with HIV infection / D. Fuchs, R. Zangerle, E. Artner-Dworzak [et al.]. DOI 10.1111/j.1600-0609.1993.tb00147.x // Eur. J. Haematol. 1993. Vol. 50, Nole 2. P. 90-94.
- **78.** Associations between serum soluble transferrin receptor and the prevalence of cancers / Y. Zhang, N. Xue, W. Jia [et al.]. DOI 10.3389/fonc.2022.1039930 // Front. Oncol. 2022. Vol. 12. Article 1039930.
- **79.** Autocrine formation of hepcidin induces iron retention in human monocytes / I. Theurl, M. Theurl, M. Seifert [et al.]. DOI 10.1182/blood-2007-05-090019 // Blood. 2008. Vol. 111, N 4. P. 2392-2399.
- **80.** Babitt, J. L. Mechanisms of anemia in CKD / J. L. Babitt, H. Y. Lin. DOI 10.1681/ASN.2011111078 // J. Am. Soc. Nephrol. 2012. Vol. 23, № 10. P. 1631-1634.
- **81.** Baseline anemia and anemia grade are independent prognostic factors for stage IV non-small cell lung cancer / C. Chen, Z. Song, W. Wang, J. Zhou. DOI 10.3892/mco.2021.2221 // Mol. Clin. Oncol. 2021. Vol. 14, № 3. P. 59.
- **82.** Beguin, Y. Soluble transferrin receptor for the evaluation of erythropoiesis and iron status / Y. Beguin. DOI 10.1016/s0009-8981(03)00005-6 // Clin. Chim. Acta. 2003. Vol. 329, N_2 1-2. P. 9-22.
- **83.** Belperio, P. S. Prevalence and outcomes of anemia in individuals with human immunodeficiency virus: a systematic review of the literature / P. S. Belperio, D. C. Rhew. DOI 10.1016/j.amjmed.2003.12.010 // Am. J. Med. 2004. Vol. 116, Suppl. 7A. P. 27S-43S.
- **84.** Bomford, A. B. Transferrin and its receptor: their roles in cell function / A. B. Bomford, H. N. Munro. DOI 10.1002/hep.1840050528 // Hepatology. 1985. Vol. 5, № 5. P. 870-875.

- **85.** Bone morphogenetic protein 2 controls iron homeostasis in mice independent of BMP6 / S. Canali, C.-Y. Wang, K. B. Zumbrennen-Bullough [et al.]. DOI 10.1002/ajh.24888 // Am. J. Hematol. 2017. Vol. 92, № 11. P. 1204-1213.
- **86.** Brock, J. H. The physiology of lactoferrin / J. H. Brock. DOI 10.1139/o01-212 // Biochem. Cell Biol. 2002. Vol. 80, № 1. P. 1-6.
- **87.** Cachectin/tumor necrosis factor-alpha alters red blood cell kinetics and induces anemia in vivo / L. L. Moldawer, M. A. Marano, H. Wei [et al.]. DOI 10.1096/fasebj.3.5.2784116 // FASEB J. 1989. Vol. 3, № 5. P. 1637-1643.
- **88.** Caiado, F. Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection / F. Caiado, E. M. Pietras, M. G. Manz. DOI 10.1084/jem.20201541 // J. Exp. Med. 2021. Vol. 218, № 7. Article e20201541.
- **89.** Calabró, P. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells / P. Calabró, J. T. Willerson, E. T. Yeh. DOI 10.1161/01.CIR.0000096055.62724.C5 // Circulation. 2003. Vol. 108, № 16. P. 1930-1932.
- **90.** Cawthorn, W. P. TNF-alpha and adipocyte biology / W. P. Cawthorn, J. K. Sethi. DOI 10.1016/j.febslet.2007.11.051 // FEBS Lett. 2008. Vol. 582, N_2 1. P. 117-131.
- **91.** CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo / N. T. Sebastian, T. D. Zaikos, V. Terry [et al.]. DOI 10.1371/journal.ppat.1006509 // PLoS Pathog. 2017. Vol. 13, № 7. Article e1006509.
- **92.** Changes in hematologic parameters and efficacy of thymidine analogue-based, highly active antiretroviral therapy: A meta-analysis of six prospective, randomized, comparative studies / G. Moyle, W. Sawyer, M. Law [et al.]. DOI 10.1016/s0149-2918(04)90009-4 // Clin. Ther. 2004. Vol. 26, No. 1. P. 92-97.

- 93. Chepelev, N. L. Regulation of iron pathways in response to hypoxia / N. L. Chepelev, W. G. Willmore. DOI 10.1016/j.freeradbiomed.2010.12.023 // Free Radic. Biol. Med. 2011. Vol. 50, № 6. P. 645-666.
- **94.** Chronic IFN-g production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis / S. F. Libregts, L. Gutiérrez, A. M. de Bruin [et al.]. DOI 10.1182/blood-2010-10-315218 // Blood. 2011. Vol. 118, N = 9. P. 2578-2588.
- **95.** Circulating hepcidin in the crossroads of anemia and inflammation associated with rheumatoid arthritis / M. D. Demirag, S. Haznedaroglu, B. Sancak [et al.]. DOI 10.2169/internalmedicine.48.1578 // Intern. Med. 2009. Vol. 48, N_{\odot} 6. P. 421-426.
- **96.** Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations / A. E. Mast, M. A. Blinder, A. M. Gronowski [et al.] // Clin. Chem. 1998. Vol. 44, N0 1. P. 45-51.
- **97.** Coffey, R. Erythroferrone: An erythroid regulator of hepcidin and iron metabolism / R. Coffey, T. Ganz. DOI 10.1097/HS9.000000000000000055 // Hemasphere. 2018. Vol. 2, № 2. Article e35.
- **98.** Comparative evaluation of the effects of treatment with tocilizumab and TNF-α inhibitors on serum hepcidin, anemia response and disease activity in rheumatoid arthritis patients / S. N. J. Song, M. Iwahashi, N. Tomosugi [et al.]. DOI 10.1186/ar4323 // Arthritis Res. Ther. 2013. Vol. 15, № 5. Article R141.
- **99.** Coyne, D. W. New options for the anemia of chronic kidney disease / D. W. Coyne, D. Goldsmith, I. C. Macdougall. DOI 10.1016/j.kisu.2017.09.002 // Kidney Int. Suppl. 2017. Vol. 7, № 3. P. 157-163.
- **100.** C-reactive protein (CRP), interferon gamma-inducible protein 10 (IP-10), and lipopolysaccharide (LPS) are associated with risk of tuberculosis after initiation of antiretroviral therapy in resource-limited settings / M. W. Tenforde, N. Gupte, D. W. Dowdy [et al.]. DOI 10.1371/journal.pone.0117424 // PLoS One. 2015. Vol. 10, № 2. Article e0117424.

- **101.** C-reactive protein is a strong predictor for anaemia in renal cell carcinoma: role of IL-6 in overall survival / C. E. Falkensammer, M. Thurnher, N. Leonhartsberger, R. Ramoner. DOI 10.1111/j.1464-410X.2010.09817.x // BJU Int. 2011. Vol. 107, № 12. P. 1893-1898.
- **102.** Curcuma decreases serum hepcidin levels in healthy volunteers: A placebo-controlled, randomized, double-blind, cross-over study / F. Lainé, B. Laviolle, E. Bardou-Jacquet [et al.]. DOI 10.1111/fcp.12288 // Fundam. Clin. Pharmacol. 2017. Vol. 31, № 5. P. 567-573.
- **103.** Cytokine-mediated regulation of iron transport in human monocytic cells / S. Ludwiczek, E. Aigner, I. Theurl, G. Weiss. DOI 10.1182/blood-2002-08-2459 // Blood. 2003. Vol. 101, № 10. P. 4148-4154.
- **104.** D'Alessio, F. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation / F. D'Alessio, M. W. Hentze, M. U. Muckenthaler. DOI 10.1016/j.jhep.2012.06.015 // J. Hepatol. 2012. Vol. 57, № 5. P. 1052-1060.
- **105.** de las Cuevas Allende, R. Anemia de las enfermedades crónicas: fisiopatología, diagnóstico y tratamiento / R. de las Cuevas Allende, L. Díaz de Entresotos, S. Conde Díez. DOI 10.1016/j.medcli.2020.07.035 // Med. Clin. (Barc). 2021. Vol. 156, № 5. P. 235-242.
- **106.** Deletion of HIF-2 in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice / M. Mastrogiannaki, P. Matak, S. Delga [et al.]. DOI 10.1182/blood-2011-09-380337 // Blood. 2012. Vol. 119, № 2. P. 587-590.
- **107.** Dempke, W. Preclinical and clinical effects of erythropoietin in the management of anaemia in patients with non-small cell lung cancer / W. Dempke // Anticancer Res. -2007. Vol. 27, \mathbb{N} 4A. P. 1745-1757.
- **108.** Dev, S. Overview of iron metabolism in health and disease / S. Dev, J. L. Babitt. DOI 10.1111/hdi.12542 // Hemodial. Int. 2017. Vol. 21, Suppl. 1. P. S6-S20.

- **109.** Development of severe anemia and changes in hemoglobin in a cohort of HIV-infected Ugandan adults receiving zidovudine-, stavudine-, and tenofovir-containing antiretroviral regimens / R. Parkes-Ratanshi, D. Katende, J. Levin [et al.]. DOI 10.1177/2325957414557264 // J. Int. Assoc. Provid. AIDS Care. 2015. Vol. 14, № 5. P. 455-462.
- **110.** Diagnostic workup of cancer in patients with new-onset anaemia: a Danish cohort study in general practice / A. Boennelykke, H. Jensen, A. Z. Falborg [et al.]. DOI 10.1080/02813432.2021.1970934 // Scand. J. Prim. Health Care. 2021. Vol. 39, No 4. P. 391-402.
- **111.** Dicato, M. Anemia in cancer / M. Dicato, L. Plawny, M. Diederich. DOI 10.1093/annonc/mdq284 // Ann. Oncol. 2010. Vol. 21, Suppl. 7. P. vii167-vii172.
- **112.** Distinct patterns of hepcidin and iron regulation during HIV-1, HBV, and HCV infections / A. E. Armitage, A. R. Stacey, E. Giannoulatou [et al.]. DOI 10.1073/pnas.1402351111 // Proc. Natl. Acad. Sci. U S A. 2014. Vol. 111, № 33. P. 12187-12192.
- **113.** Drakesmith, H. Ironing out Ferroportin / H. Drakesmith, E. Nemeth, T. Ganz. DOI 10.1016/j.cmet.2015.09.006 // Cell Metab. 2015. Vol. 22, № 5. P. 777-787.
- **114.** Dynamics in anemia development and dysregulation of iron homeostasis in hospitalized patients with COVID-19 / L. Lanser, F. R. Burkert, R. Bellmann-Weiler [et al.]. DOI 10.3390/metabo11100653 // Metabolites. 2021. Vol. 11, № 10. Article 653.
- **115.** Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease / I. Theurl, V. Mattle, M. Seifert [et al.]. DOI 10.1182/blood-2005-08-3364 // Blood. 2006. Vol. 107, № 10. P. 4142-4148.
- **116.** Economic burden of comorbidities in patients with psoriasis is substantial / A. B. Kimball, A. Guérin, M. Tsaneva [et al.]. DOI 10.1111/j.1468-

- 3083.2010.03730.x // J. Eur. Acad. Dermatol. Venereol. 2011. Vol. 25, № 2. P. 157-163.
- **117.** Effect of anaemia on the response to preoperative chemoradiotherapy for rectal cancer / J.W. Bong, S.B. Lim, H. Ryu [et al.]. DOI 10.1111/ans.16547 // ANZ J. Surg. 2021. Vol. 91, № 5. P. E286-E291.
- **118.** Effect of oral administration of docohexanoic acid on anemia and inflammation in hemodialysis patients: A randomized controlled clinical trial / M. Ruperto, N. Rodríguez-Mendiola, M. Díaz-Domínguez [et al.]. DOI 10.1016/j.clnesp.2020.12.004 // Clin. Nutr. ESPEN. 2021. Vol. 41. P. 129-135.
- **119.** Effect of silymarin administration on TNF-alpha serum concentration in peritoneal dialysis patients / F. Nazemian, G. Karimi, M. Moatamedi [et al.]. DOI 10.1002/ptr.3175 // Phytother. Res. 2010. Vol. 24, № 11. P. 1654-1657.
- **120.** Effects of human immunodeficiency virus on the erythrocyte and megakaryocyte lineages / D. Gibellini, A. Clò, S. Morini [et al.]. DOI 10.5501/wjv.v2.i2.91 // World J. Virol. 2013. Vol. 2, № 2. P. 91-101.
- **121.** Effects of IL-10 on iron metabolism in LPS-induced inflammatory mice via modulating hepcidin expression / P. Huang, J. Wang, X. Lin [et al.] // Eur. Rev. Med. Pharmacol. Sci. 2017. Vol. 21, № 15. P. 3469-3475.
- **122.** Effects of interleukin-1β inhibition on incident anemia / M. Vallurupalli, J. G. MacFadyen, R. J. Glynn [et al.]. DOI 10.7326/M19-2945 // Ann. Intern. Med. 2020. Vol. 172, № 8. P. 523-532.
- **123.** Eisenstein, R. S. Novel roles for iron regulatory proteins in the adaptive response to iron deficiency / R. S. Eisenstein, K. L. Ross. DOI 10.1093/jn/133.5.1510S // J. Nutr. 2003. Vol. 133, № 5 Suppl 1. P. 1510S-1516S.
- **124.** Elevated hepcidin is part of a complex relation that links mortality with iron homeostasis and anemia in men and women with HIV infection / P. A. Minchella, A. E. Armitage, B. Darboe [et al.]. DOI 10.3945/jn.114.203158 // J. Nutr. 2015. Vol. 145, \mathbb{N}_2 6. P. 1194-1201.

- **125.** Elevated iron status strongly predicts mortality in West African adults with HIV infection / J. M. McDermid, A. Jaye, M. F. Schim van der Loeff [et al.]. DOI 10.1097/qai.0b013e31815b2d4b // J. Acquir. Immune Defic. Syndr. 2007. Vol. 46, № 4. P. 498-507.
- **126.** Elevated levels of inflammatory cytokines in bone marrow of patients with rheumatoid arthritis and anemia of chronic disease / M. Jongen-Lavrencic, H. R. Peeters, A. Wognum [et al.] // J. Rheumatol. 1997. Vol. 24, № 8. P. 1504-1509.
- **127.** Erythroferrone contributes to hepcidin repression in a mouse model of malarial anemia / C. Latour, M. F. Wlodarczyk, G. Jung [et al.]. DOI 10.3324/haematol.2016.150227 // Haematologica. 2017. Vol. 102, № 1. P. 60-68.
- **128.** Erythroferrone inhibits the induction of hepcidin by BMP6 / J. Arezes, N. Foy, K. McHugh [et al.]. DOI 10.1182/blood-2018-06-857995 // Blood. 2018. Vol. 132, № 14. P. 1473-1477.
- **129.** Erythroferrone lowers hepcidin by sequestering BMP2/6 heterodimer from binding to the BMP type I receptor ALK3 / C. Y. Wang, Y. Xu, L. Traeger [et al.]. DOI 10.1182/blood.2019002620 // Blood. 2020. Vol. 135, \mathbb{N} 6. P. 453-456.
- **130.** Estimating prevalence of functional iron deficiency anemia in advanced cancer / K. Neoh, S. Stanworth, S. Pasricha, M. I. Bennett. DOI 10.1007/s00520-016-3511-9 // Support. Care Cancer. 2017. Vol. 25, № 4. P. 1209-1214.
- **131.** Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site / Q. Yang, J. Jian, S. Katz [et al.]. DOI 10.1210/en.2011-2045 // Endocrinology. 2012. Vol. 153, № 7. P. 3170-3178.
- **132.** Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes / Y. Ikeda, S. Tajima, Y. Izawa-Ishizawa [et al.]. DOI 10.1371/journal.pone.0040465 // PLoS ONE. 2012. Vol. 7, № 7. Article e40465.

- **133.** Evaluation of reticulocyte hemoglobin for assessment of anemia in rheumatological disorders / B. G. Singh, L. Duggal, N. Jain [et al.]. DOI 10.1111/1756-185X.13567 // Int. J. Rheum. Dis. 2019. Vol. 22, № 5. P. 815-825.
- **134.** Expression of serum BMP6 and hepcidin in cancer-related anemia / Z. Cheng, M. Yan, Y. Lu, X.-T. Pan. DOI 10.1080/16078454.2020.1738098 // Hematology. 2020. Vol. 25, № 1. P. 134-138.
- **135.** Ferritin and serum transferrin receptor predict iron deficiency in anemic patients with rheumatoid arthritis / I. E. Bultink, W. F. Lems, R. J. van de Stadt [et al.]. DOI 10.1002/1529-0131(200104)44:4<979::AID-ANR157>3.0.CO;2-H // Arthritis Rheum. 2001. Vol. 44, <math>N = 4. P. 979-981.
- **136.** Ferritin excretion and iron balance in humans / B. S. Skikne, P. Whittaker, A. Cooke, J. D. Cook. DOI 10.1111/j.1365-2141.1995.tb05600.x // Br. J. Haematol. 1995. Vol. 90, № 3. P. 681-687.
- **137.** First-in-human phase I studies of PRS-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis / L. Renders, K. Budde, C. Rosenberger [et al.]. DOI 10.1371/journal.pone.0212023 // PLoS One. 2019. Vol. 14, № 3. Article e0212023.
- **138.** Fraenkel, P. G. Understanding anemia of chronic disease / P. G. Fraenkel. DOI 10.1182/asheducation-2015.1.14 // Hematology Am. Soc. Hematol. Educ. Program. 2015. Vol. 2015. P. 14-18.
- **139.** Frequency of anemia of inflammation in patients with ankylosing spondylitis requiring anti-TNFa drugs and therapy-induced changes / L. Nicoli, C. Nannini, E. Cassara [et al.]. DOI 10.1111/j.1756-185X.2011.01662.x // Int. J. Rheum. Dis. 2012. Vol. 15, N 1. P. 56-61.
- **140.** FRI0242 Association between clinical and radiographic responses, and physical function in a phase 3 study of sarilumab plus methotrexate in patients with active, moderate-to-severe rheumatoid arthritis / M. C. Genovese, H. V.

- Hoogstraten, W. Kampman [et al.]. DOI 10.1136/annrheumdis-2017-eular.3513 // Poster Presentations. 2017. Vol. 76, Suppl 2. P. 576-577.
- **141.** Gabay, C. Acute-phase proteins and other systemic responses to inflammation / C. Gabay, I. Kushner. DOI 10.1056/NEJM199902113400607 // N. Engl. J. Med. 1999. Vol. 340, N 6. P. 448-454.
- **142.** Ganz, T. Hepcidin and iron homeostasis / T. Ganz, E. Nemeth. DOI 10.1016/j.bbamcr.2012.01.014 // Biochim. Biophys. Acta. 2012. Vol. 1823, № 9. P. 1434-1443.
- **143.** Gilreath, J. A. Current quandaries in cancer-associated anemia / J. A. Gilreath, G. M. Rodgers. DOI 10.6004/jnccn.2014.0104 // J. Natl. Compr. Canc. Netw. 2014. Vol. 12, № 8. P. 1071-1075.
- **144.** Gilreath, J. A. Diagnosis and treatment of cancer-related anemia / J. A. Gilreath, D. Stenehjem, G. M. Rodgers. DOI 10.1002/ajh.23628 // Am. J. Hematol. 2014. Vol. 89, № 2. P. 203-212.
- **145.** Gilreath, J. A. How I treat cancer-associated anemia / J. A. Gilreath, G. M. Rodgers. DOI 10.1182/blood.2019004017 // Blood. 2020. Vol. 136, № 7. P. 801-813.
- **146.** Glatt, N. The multifactorial pathogenesis of severe central anemia in a cohort of HIV-positive patients / N. Glatt, E. Schapkaitz, J. Vaughan. DOI 10.1111/ijlh.12986 // Int. J. Lab. Hematol. 2019. Vol. 41, № 4. P. e92-e94.
- **147.** Goodnough, L. T. Evaluation and management of anemia in the elderly / L. T. Goodnough, S. L. Schrier. DOI 10.1002/ajh.23598 // Am. J. Hematol. 2014. Vol. 89, № 1. P. 88-96.
- **148.** Grotto, H. Z. Anaemia of cancer: an overview of mechanisms involved in its pathogenesis / H. Z. Grotto. DOI 10.1007/s12032-007-9000-8 // Med. Oncol. 2008. Vol. 25, N 1. P. 12-21.
- **149.** Growth differentiation factor 15 in anaemia of chronic disease, iron deficiency anaemia and mixed type anaemia / I. Theurl, A. Finkenstedt, A. Schroll [et al.]. DOI 10.1111/j.1365-2141.2009.07961.x // Br. J. Haematol. 2010. Vol. 148, N_2 3. P. 449-455.

- **150.** Haase, V. H. Regulation of erythropoiesis by hypoxia-inducible factors / V. H. Haase. DOI 10.1016/j.blre.2012.12.003 // Blood Rev. 2013. Vol. 27, N_{\odot} 1. P. 41-53.
- **151.** Han, J. Clinical significance of serum hepcidin in the diagnosis and treatment of patients with anemia of chronic disease: A meta-analysis / J. Han, K. Wang. DOI 10.1080/1354750X.2021.1893812 // Biomarkers. 2021. Vol. 26, Note 4. P. 296-301.
- **152.** Hanson, E. S. Oxygen and iron regulation of iron regulatory protein 2 / E. S. Hanson, M. L. Rawlins, E. A. Leibold. DOI 10.1074/jbc.M302798200 // J. Biol. Chem. 2003. Vol. 278, № 41. P. 40337-40342.
- **153.** Hematopoietic CD34+ progenitor cells are not infected by HIV-1 in vivo, but show impaired clonogenesis / A. De Luca, L. Teofili, A. Antinori [et al.]. DOI 10.1111/j.1365-2141.1993.tb08640.x // Br. J. Haematol. 1993. Vol. 85, № 1. P. 20-24.
- **154.** Hematopoietic precursor cells isolated from patients on long-term suppressive HIV therapy did not contain HIV-1 DNA / L. Josefsson, S. Eriksson, E. Sinclair [et al.]. DOI 10.1093/infdis/jis301 // J. Infect. Dis. 2012. Vol. 206, № 1. P. 28-34.
- **155.** Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position 7007 of the FPN1 promoter / S. Marro, D. Chiabrando, E. Messana [et al.]. DOI 10.3324/haematol.2009.020123 // Haematologica. 2010. Vol. 95, № 8. P. 1261-1268.
- **156.** Heme in pathophysiology: A matter of scavenging, metabolism and trafficking across cell membranes / D. Chiabrando, F. Vinchi, V. Fiorito [et al.]. DOI 10.3389/fphar.2014.00061 // Front. Pharmacol. 2014. Vol. 5. P. 61.
- **157.** Hemoglobin levels correlate with interleukin-6 levels in patients with advanced untreated epithelial ovarian cancer: Role of inflammation in cancer-related anemia / A. Macciò, C. Madeddu, D. Massa [et al.]. DOI 10.1182/blood-2005-01-0160 // Blood. 2005. Vol. 106, № 1. P. 362-367.

- **158.** Hepcidin and hemoglobin content parameters in the diagnosis of iron deficiency in rheumatoid arthritis patients with anemia / S. van Santen, E. C. van Dongen-Lases, F. de Vegt [et al.]. DOI 10.1002/art.30623 // Arthritis Rheum. 2011. Vol. 63, № 12. P. 3672-3680.
- **159.** Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia / S. Rivera, L. Liu, E. Nemeth [et al.]. DOI 10.1182/blood-2004-08-3375 // Blood. 2005. Vol. 105, No. 4. P. 1797-1802.
- **160.** Hepcidin in iron metabolism / O. Loréal, C. Haziza-Pigeon, M. B. Troadec [et al.]. DOI 10.2174/1389203054065392 // Curr. Protein Pept. Sci. 2005. Vol. 6, № 3. P. 279-291.
- **161.** Hepcidin in tumor-related iron deficiency anemia and tumor-related anemia of chronic disease: Pathogenic mechanisms and diagnosis / T. Shu, C. Jing, Z. Lv [et al.]. DOI 10.1111/ejh.12402 // Eur. J. Haematol. 2015. Vol. 94, № 1. P. 67-73.
- **162.** Hepcidin regulation by innate immune and infectious stimuli / A. E. Armitage, L. A. Eddowes, U. Gileadi [et al.]. DOI 10.1182/blood-2011-04-351957 // Blood. 2011. Vol. 118, № 15. P. 4129-4139.
- **163.** Hepcidin, a urinary antimicrobial peptide synthesized in the liver / C. H. Park, E. V. Valore, A. J. Waring, T. Ganz. DOI 10.1074/jbc.M008922200 // J. Biol. Chem. 2001. Vol. 276, № 11. P. 7806-7810.
- **164.** Hepcidin-dependent and hepcidin-independent regulation of erythropoiesis in a mouse model of anemia of chronic inflammation / J. M. Langdon, S. C. Yates, L. K. Femnou [et al.]. DOI 10.1002/ajh.23670 // Am. J. Hematol. 2014. Vol. 89, № 5. P. 470-479.
- **165.** HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression / X. G. Wu, Y. Wang, Q. Wu [et al.]. DOI 10.1182/blood-2014-01-552281 // Blood. 2014. Vol. 124, N_2 8. P. 1335-1343.
- **166.** HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing / M. Ivan, K. Kondo, H. Yang [et al.]. DOI 10.1126/science.1059817 // Science. 2001. Vol. 292 (5516). P. 464-468.

- **167.** High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin / T. Tanno, N. V. Bhanu, P. A. Oneal [et al.]. DOI 10.1038/nm1629 // Nat. Med. 2007. Vol. 13, № 9. P. 1096-1101.
- **168.** High levels of serum IL-6 and serum hepcidin and low CD4 cell count were risk factors of anemia of chronic disease in HIV patients on the combination of antiretroviral therapy / K. A. Somia, T. P. Merati, M. B. Bagus [et al.]. DOI 10.2147/HIV.S195483 // HIV/AIDS (Auckl). 2019. Vol. 11. P. 133-139.
- **169.** High prevalence of iron deficiency across different tumors correlates with anemia, increases during cancer treatment and is associated with poor performance status / H. Ludwig, E. Müldür, G. Endler [et al.] // Haematologica. 2011. Vol. 96, Suppl 2. P. 409.
- **170.** High serum levels of TNF- α and IL-6 predict the clinical outcome of treatment with human recombinant erythropoietin in anaemic cancer patients / I. Pavese, F. Satta, F. Todi [et al.]. DOI 10.1093/annonc/mdp568 // Ann. Oncol. 2010. Vol. 21, No 7. P. 1523-1528.
- **171.** High-throughput screening of small molecules identifies hepcidin antagonists / E. Fung, P. Sugianto, J. Hsu [et al.]. DOI 10.1124/mol.112.083428 // Mol. Pharmacol. 2013. Vol. 83, № 3. P. 681-690.
- **172.** Hirano, T. Interleukin 6 and its receptor: Ten years later / T. Hira№ DOI 10.3109/08830189809042997 // Int. Rev. Immunol. 1998. Vol. 16, № 3-4. P. 249-284.
- **173.** HIV-1 DNA is detected in bone marrow populations containing CD4+ T cells but is not found in purified CD34+ hematopoietic progenitor cells in most patients on antiretroviral therapy / C. M. Durand, G. Ghiaur, J. D. Siliciano [et al.]. DOI 10.1093/infdis/jir884 // J. Infect. Dis. 2012. Vol. 205, № 6. P. 1014-1018.
- **174.** HIV-1 infection of hematopoietic progenitor cells in vivo in humanized mice / C. C. Nixon, D. N. Vatakis, S. N. Reichelderfer [et al.]. DOI 10.1182/blood-2013-04-496950 // Blood. 2013. Vol. 122, № 13. P. 2195-2204.

- **175.** HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells / C. C. Carter, L. A. McNamara, A. Onafuwa-Nuga [et al.]. DOI 10.1016/j.chom.2011.02.005 // Cell Host Microbe. 2011. Vol. 9, № 3. P. 223-234.
- **176.** Host iron redistribution as a risk factor for incident tuberculosis in HIV infection: An 11-year retrospective cohort study / J. M. McDermid, B. J. Hennig, M. van der Sande [et al.]. DOI 10.1186/1471-2334-13-48 // BMC Infect. Dis. 2013. Vol. 13. Article 48.
- **177.** Human immunodeficiency virus infection of bone marrow endothelium reduces induction of stromal hematopoietic growth factors / A. V. Moses, S. Williams, M. L. Heneveld [et al.] // Blood. 1996. Vol. 87, № 3. P. 919-925.
- **178.** Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells / M. Tabuchi, T. Yoshimori, K. Yamaguchi [et al.]. DOI 10.1074/jbc.M001478200 // J. Biol. Chem. 2000. Vol. 275, № 29. P. 22220-22228.
- **179.** Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB / T. Sonnweber, D. Nachbaur, A. Schroll [et al.]. DOI 10.1136/gutjnl-2013-305317 // Gut. 2014. Vol. 63, № 12. P. 1951-1959.
- **180.** Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension / G. L. Wang, B. H. Jiang, E. A. Rue, G. L. Semenza. DOI 10.1073/pnas.92.12.5510 // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, № 12. P. 5510-5514.
- **181.** Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development / D. Yoon, Y. D. Pastore, V. Divoky [et al.]. DOI 10.1074/jbc.M602329200 // J. Biol. Chem. 2006. Vol. 281, № 35. P. 25703-25711.
- **182.** Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia / P. J. Lee, B. H. Jiang, B. Y. Chin [et al.] // J. Biol. Chem. 1997. Vol. 272, N_2 9. P. 5375-5381.

- **183.** Hypoxia-inducible factor-1alpha protein expression is associated with poor survival in normal karyotype adult acute myeloid leukemia / G. Deeb, M. M. Vaughan, I. McInnis [et al.]. DOI 10.1016/j.leukres.2010.10.020 // Leuk. Res. 2011. Vol. 35, № 5. P. 579-584.
- **184.** Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo / E. B. Rankin, M. P. Biju, Q. Liu [et al.]. DOI 10.1172/JCI30117 // J. Clin. Investig. 2007. Vol. 117, № 4. P. 1068-1077.
- **185.** Iancu, T. C. Ferritin and hemosiderin in pathological tissues / T. C. Iancu. DOI 10.1016/0892-0354(92)90011-e // Electron. Microsc. Rev. 1992. Vol. 5, № 2. P. 209-229.
- **186.** Identification of a ferrireductase required for efficient transferrindependent iron uptake in erythroid cells / R. S. Ohgami, D. R. Campagna, E. L. Greer [et al.]. DOI 10.1038/ng1658 // Nat. Genet. 2005. Vol. 37, № 11. P. 1264-1269.
- **187.** Identification of erythroferrone as an erythroid regulator of iron metabolism / L. Kautz, G. Jung, E. V. Valore [et al.]. DOI 10.1038/ng.2996 // Nat. Genet. 2014. Vol. 46, № 7. P. 678-684.
- **188.** IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin / E. Nemeth, S. Rivera, V. Gabayan [et al.]. DOI 10.1172/JCI20945 // J. Clin. Invest. 2004. Vol. 113, № 9. P. 1271-1276.
- **189.** Immune activation and anemia are associated with decreased quality of life in patients with solid tumors / P. Kink, E. M. Egger, L. Lanser [et al.]. DOI 10.3390/jcm9103248 // J. Clin. Med. 2020. Vol. 9, № 10. Article 3248.
- **190.** Immunodysregulation of HIV disease at bone marrow level / A. Isgrò, A. Aiuti, W. Leti, [et al.]. DOI 10.1016/j.autrev.2005.04.014 // Autoimmun. Rev. 2005. Vol. 4, № 8. P. 486-490.
- **191.** Impact of tumor hypoxia and anemia on radiation therapy outcomes / L. B. Harrison, M. Chadha, R. J. Hill [et al.]. DOI 10.1634/theoncologist.7-6-492 // Oncologist. 2002. Vol. 7, № 6. P. 492-508.

- **192.** Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: A prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index / B. S. Skikne, K. Punnonen, P. H. Caldron [et al.]. DOI 10.1002/ajh.22108 // Am. J. Hematol. 2011. Vol. 86, № 11. P. 923-927.
- **193.** Inadequate erythropoietin response to anaemia in HIV patients: relationship to serum levels of tumour necrosis factor-alpha, interleukin-6 and their soluble receptors / K. A. Kreuzer, J. K. Rockstroh, W. Jelkmann [et al.]. DOI 10.1046/j.1365-2141.1997.d01-2031.x // Br. J. Haematol. 1997. Vol. 96, № 2. P. 235-239.
- **194.** Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling / C. Besson-Fournier, C. Latour, L. Kautz, [et al.]. DOI 10.1182/blood-2012-02-411470 // Blood. 2012. Vol. 120, N 2. P. 431-439.
- **195.** Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane / S. Dinkla, L. T. van Eijk, B. Fuchs [et al.]. DOI 10.1016/j.bbacli.2016.03.007 // BBA Clin. 2016. Vol. 5. P. 186-192.
- **196.** Influence of tumor necrosis factor-alpha and interferon-gamma on erythropoietin production and erythropoiesis in cancer patients with anemia / W. Wang, M. H. Zhang, Y. Yu, C. G. Xu // Zhonghua Xue Ye Xue Za Zhi. 2007. Vol. 28, № 10. P. 681-684. [Article in Chinese].
- **197.** Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation / A. U. Steinbicker, C. Sachidanandan, A. J. Vonner [et al.]. DOI 10.1182/blood-2010-10-313064 // Blood. 2011. Vol. 117, № 18. P. 4915-4923.
- **198.** Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA-2 and NF- κ B / K. La Ferla, C. Reimann, W. Jelkmann, T. Hellwig-Bürgel. DOI 10.1096/fj.02-0168fje // FASEB J. 2002. Vol. 16, № 13. P. 1811-1813.

- **199.** Interaction of the erythropoietin and stem-cell-factor receptors / H. Wu, U. Klingmüller, P. Besmer, H. F. Lodish. DOI 10.1038/377242a0 // Nature. 1995. Vol. 377 (6546). P. 242246.
- **200.** Interferon-g exerts dual functions on human erythropoiesis via interferon regulatory factor 1 signal pathway / W. Wang, H. Zhao, Y. Yanget [et al.]. DOI 10.1016/j.bbrc.2019.10.068 // Biochem. Biophys Res. Commun. 2020. Vol. 521, № 2. P. 326-332.
- **201.** Interferon-gamma induced nitric oxide-mediated apoptosis of anemia of chronic disease in rheumatoid arthritis / W. Kheansaard, S. Mas-oo-di, S. Nilganuwong, D. I. Tanyong. DOI 10.1007/s00296-011-2307-y // Rheumatol. Int. 2013. Vol. 33, Nole 1. P. 151-156.
- **202.** Interferon-gamma-mediated pathways are induced in human CD34+ haematopoietic stem cells / K. Kurz, Y. Gluhcheva, E. Zvetkova [et al.]. DOI 10.1016/j.imbio.2009.08.007 // Immunobiology. 2010. Vol. 215, № 6. P. 452-457.
- **203.** Interleukin-1 (IL-1) transcriptionally activates hepcidin by inducing CCAAT enhancer-binding protein σ (C/EBPσ) expression in hepatocytes / Y. Kanamori, M. Murakami, M. Sugiyama [et al.]. DOI 10.1074/jbc.M116.770974 // J. Biol. Chem. 2017. Vol. 292, № 24. P. 10275-10287.
- **204.** Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro / S. Sandler, K. Bendtzen, D. L. Eizirik, M. Welsh. DOI 10.1210/endo-126-2-1288 // Endocrinology. 1990. Vol. 126, № 2. P. 1288-1294.
- **205.** Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells / B. McCranor, M. Kim, N. Cruz [et al.]. DOI 10.1016/j.bcmd.2013.09.004 // Blood Cells Mol. Dis. 2014. Vol. 52, № 2–3. P. 126-133.
- **206.** Interplay between systemic inflammation, anemia, and mycobacterial dissemination and its impact on mortality in TB-associated HIV: a prospective cohort study / M. Araujo-Pereira, C. Schutz, B. Barreto-Duarte [et al.]. DOI

- 10.3389/fimmu.2023.1177432 // Front. Immunol. 2023. Vol. 14. Article 1177432.
- **207.** Intravenous iron optimizes the response to recombinant human erythropoietin in cancer patients with chemotherapy-related anemia: a multicenter, open-label, randomized trial / M. Auerbach, H. Ballard, J. R. Trout [et al.]. DOI 10.1200/JCO.2004.08.119 // J. Clin. Oncol. 2004. Vol. 22, № 7. P. 1301-1307.
- **208.** Inverse relationship of serum hepcidin levels with CD4 cell counts in HIV-infected patients selected from an Indonesian prospective cohort study / R. Wisaksana, Q. de Mast, B. Alisjahbana [et al.]. DOI 10.1371/journal.pone.0079904 // PLoS One. 2013. Vol. 8, № 11. Article e79904.
- **209.** Iron deficiency / S. R. Pasricha, J. Tye-Din, M. U. Muckenthaler, D. W. Swinkels. DOI 10.1016/S0140-6736(20)32594-0 // Lancet. 2021. Vol. 397 (10270). P. 233-248.
- **210.** Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management / M. D. Cappellini, J. Comin-Colet, A. de Francisco [et al.]. DOI 10.1002/ajh.24820 // Am. J. Hematol. 2017. Vol. 92, № 10. P. 1068-1078.
- **211.** Iron deficiency and anemia predict mortality in patients with tuberculosis / S. Isanaka, F. Mugusi, W. Urassa [et al.]. DOI 10.3945/jn.111.144287 // J. Nutr. 2012. Vol. 142, No 2. P. 350-357.
- **212.** Iron deficiency and heart failure: Diagnostic dilemmas and therapeutic perspectives / E. A. Jankowska, S. von Haehling, S. D. Anker [et al.]. DOI 10.1093/eurheartj/ehs224 // Eur. Heart J. 2013. Vol. 34, № 11. P. 816-829.
- 213. Iron deficiency anemia and anemia in chronic celiac disease in children / S. V. Bel'mer, E. V. Mitina, L. M. Karpina, N. S. Smetanina // Eksp. Klin. Gastroenterol. 2014. № 1. P. 23-29. [Article in Russian].
- **214.** Iron deficiency is prevalent among HIV-infected Kenyan adults and is better measured by soluble transferrin receptor than ferritin / A. Frosch, G. Ayodo,

- E. Odhiambo [et al.]. DOI 10.4269/ajtmh.18-0208 // Am. J. Trop. Med. Hyg. 2018. Vol. 99, № 2. P. 439-444.
- **215.** Iron deficiency or anemia of inflammation? Differential diagnosis and mechanisms of anemia of inflammation / M. Nairz, I. Theurl, D. Wolf, G. Weiss. DOI 10.1007/s10354-016-0505-7 // Wien Med. Wochenschr. 2016. Vol. 166, No 13-14. P. 411-423.
- **216.** Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor / S. Khalil, L. Delehanty, S. Grado [et al.]. DOI 10.1084/jem.20170396 // J. Exp. Med. 2018. Vol. 215, № 2. P. 661-679.
- **217.** Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver / L. Kautz, D. Meynard, A. Monnier [et al.]. DOI 10.1182/blood-2008-03-143354 // Blood. 2008. Vol. 112, \mathbb{N}_2 4. P. 1503-1509.
- **218.** Iron status is an important cause of anemia in HIV-infected Tanzanian women but is not related to accelerated HIV disease progression / R. Kupka, G. I. Msamanga, F. Mugusi [et al.]. DOI 10.1093/jn/137.10.2317 // J. Nutr. 2007. Vol. 137, № 10. P. 2317-2323.
- **219.** Iron-independent induction of ferritin H chain by tumor necrosis factor / L. L. Miller, S. C. Miller, S. V. Torti [et al.]. DOI 10.1073/pnas.88.11.4946 // Proc. Natl. Acad. Sci. USA. 1991. Vol. 88, № 11. P. 4946-4950.
- **220.** Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region / P. Moi, K. Chan, I. Asunis [et al.]. DOI 10.1073/pnas.91.21.9926 // Proc. Natl. Acad. Sci. USA. 1994. Vol. 91, № 21. P. 9926-9930.
- **221.** Jelkmann, W. Proinflammatory cytokines lowering erythropoietin production / W. Jelkmann. DOI 10.1089/jir.1998.18.555 // J. Interferon. Cytokine Res. 1998. Vol. 18, № 8. P. 555-559.

- **222.** Jelkmann, W. Regulation of erythropoietin production / W. Jelkmann. DOI 10.1113/jphysiol.2010.195057 // J. Physiol. 2011. Vol. 589, Pt 6. P. 1251-1258.
- **223.** Joosten, E. Iron deficiency anemia and anemia of chronic disease in geriatric hospitalized patients: How frequent are comorbidities as an additional explanation for the anemia? / E. Joosten, P. Lioen. DOI 10.1111/ggi.12371 // Geriatr. Gerontol. Int. 2015. Vol. 15, N_2 8. P. 931-935.
- **224.** Kalyani, P. A study on biochemical facet of anemia in cancers: A strong link between erythropoietin and tumor necrosis factor alpha in anemic cancer patients / P. Kalyani, K. Jamil. DOI 10.4103/0019-509X.175579 // Indian J. Cancer. 2015. Vol. 52, № 1. P. 127-132.
- **225.** Kerins, M. J. The roles of NRF2 in modulating cellular iron homeostasis / M. J. Kerins, A. Ooi. DOI 10.1089/ars.2017.7176 // Antioxid. Redox. Signal. 2018. Vol. 29, № 17. P. 1756-1773.
- **226.** Kleven, M. D. Transferrin receptors TfR1 and TfR2 bind transferrin through differing mechanisms / M. D. Kleven, S. Jue, C. A. Enns. DOI 10.1021/acs.biochem.8b00006 // Biochemistry. 2018. Vol. 57, № 9. P. 1552-1559.
- **227.** Koury, M. J. New insights into erythropoiesis: The roles of folate, vitamin B12, and iron / M. J. Koury, P. Ponka. DOI 10.1146/annurev.nutr.24.012003.132306 // Annu. Rev. Nutr. 2004. Vol. 24. P. 105-131.
- **228.** Kuhrt, D. Emerging EPO and EPO receptor regulators and signal transducers / D. Kuhrt, D. M. Wojchowski. DOI 10.1182/blood-2014-11-575357 // Blood. 2015. Vol. 125, № 23. P. 3536-3541.
- **229.** Li, Z. L. Treatment of renal anemia with roxadustat: Advantages and achievement / Z. L. Li, Y. Tu, B. C. Liu. DOI 10.1159/000504850 // Kidney Dis. (Basel). 2020. Vol. 6, \mathbb{N} 2. P. 65-73.
- **230.** Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice / A. Nai, A. Rubio, A.

- Campanella [et al.]. DOI 10.1182/blood-2015-11-681494 // Blood. 2016. Vol. 127, № 19. P. 2327-2336.
- **231.** Mackenzie, B. Iron imports. II. Iron uptake at the apical membrane in the intestine / B. Mackenzie, M. D. Garrick. DOI 10.1152/ajpgi.00363.2005 // Am. J. Physiol. Gastrointest. Liver Physiol. 2005. Vol. 289, № 6. P. G981-G986.
- **232.** Management of anaemia and iron deficiency in patients with cancer: ESMO Clinical Practice Guidelines / M. Aapro, Y. Beguin, C. Bokemeyer [et al.]. DOI 10.1093/annonc/mdx758 // Ann. Oncol. 2018. Vol. 29, № S4. P. iv96–iv110.
- **233.** Management of anemia in patients receiving chemotherapy / J. S. Waters, M. E. O'Brien, S. Ashley [et al.]. DOI 10.1200/JCO.2002.20.2.601 // J. Clin. Oncol. 2002. Vol. 20, \mathbb{N} 2. P. 601-603.
- **234.** Marković, M. Usefulness of soluble transferrin receptor and ferritin in iron deficiency and chronic disease / M. Marković, N. Majkić-Singh, V. Subota. − DOI 10.1080/00365510500206542 // Scand. J. Clin. Lab. Invest. − 2005. − Vol. 65, № 7. − P. 571-576.
- **235.** Masson, C. Rheumatoid anemia / C. Masson. DOI 10.1016/j.jbspin.2010.05.017 // Joint Bone Spine. 2011. Vol. 78, № 2. P. 131-137.
- **236.** Mast, A. E. Reticulocyte hemoglobin content / A. E. Mast, M. A. Blinder, D. J. Dietzen. DOI 10.1002/ajh.21090 // Am. J. Hematol. 2008. Vol. 83, № 4. P. 307-310.
- **237.** McNamara, L. Latent HIV-1 infection occurs in multiple subsets of hematopoietic progenitor cells and is reversed by NF-κB activation / L. McNamara, J. Ganesh, K. L. Collins. DOI 10.1128/JVI.00895-12 // J. Virol. 2012. Vol. 86, № 17. P. 9337-9350.
- **238.** Means, R. T. Jr. Recent developments in the anemia of chronic disease / R. T. Means Jr. // Curr. Hematol. Rep. 2003. Vol. 2, № 2. P. 116-121.
- **239.** Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation / L. Oburoglu, M. Romano, N. Taylor, S. Kinet. DOI

- 10.1097/MOH.0000000000000234 // Curr. Opin .Hematol. 2016. Vol. 23, № 3. P. 198-205.
- **240.** Microenvironmental M1 tumor-associated macrophage polarization influences cancer-related anemia in advanced ovarian cancer: key role of interleukin-6 / C. Madeddu, G. Gramignano, P. Kotsonis [et al.]. DOI 10.3324/haematol.2018.191551 // Haematologica. 2018. Vol. 103, № 9. P. e388-e391.
- **241.** Mitsuyasu, R. T. Hematopoietic growth hormones in HIV / R. T. Mitsuyasu // AIDS Clinical Review 1993/1994 / by ed. P. Volberding, M. A. Jacobson. New York: Marcel Dekker, 1994. P. 191-213.
- **242.** Muckenthaler, M. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F / M. Muckenthaler, N. K. Gray, M. W. Hentze. DOI 10.1016/s1097-2765(00)80282-8 // Mol. Cell. 1998. Vol. 2, Nole 3. P. 383-388.
- **243.** Mukhopadhyay, C. K. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency / C. K. Mukhopadhyay, B. Mazumder, P. L. Fox. DOI 10.1074/jbc.M000636200 // J. Biol. Chem. 2000. Vol. 275, № 28. P. 21048-21054.
- **244.** Muscle wasting as main evidence of energy impairment in cancer cachexia: Future therapeutic approaches / C. Madeddu, G. Mantovani, G. Gramignano [et al.]. DOI 10.2217/fon.15.195 // Future Oncol. 2015. Vol.11, Nolemode 19. P. 2697-2710.
- **245.** Nakanishi, T. Potential hazards of recent trends in liberal iron use for renal anemia / T. Nakanishi, T. Kuraga№ DOI 10.1093/ckj/sfaa117 // Clin. Kidney J. 2020. Vol. 14, № 1. P. 59-69.
- **246.** Nandakumar, S. K. Advances in understanding erythropoiesis: Evolving perspectives / S. K. Nandakumar, J. C. Ulirsch, V. G. Sankaran. DOI 10.1111/bjh.13938 // Br. J. Haematol. 2016. Vol. 173, № 2. P. 206-218.
- **247.** Nathan, D. G. Amino acid uptake in erythropoiesis / D. G. Nathan. DOI 10.1126/scisignal.aab1203 // Sci. Signal. 2015. Vol. 8 (372). Article fs9.

- **248.** Nemeth, E. Anemia of inflammation / E. Nemeth, T. Ganz. DOI 10.1016/j.hoc.2014.04.005 // Hematol Oncol Clin North Am. 2014. Vol. 28, № 4. P. 671-681.
- **249.** Ngwa, D. N. IL-6 regulates induction of C-reactive protein gene expression by activating STAT3 isoforms / D. N. Ngwa, A. Pathak, A. Agrawal. DOI 10.1016/j.molimm.2022.04.003 // Mol. Immunol. 2022. Vol. 146. P. 50-56.
- **250.** Niederkofler, V. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload / V. Niederkofler, R. Salie, S. Arber. DOI 10.1172/JCI25683 // J. Clin. Invest. 2005. Vol. 115, № 8. P. 2180-2186.
- **251.** Novel models of cancer-related anemia in mice inoculated with IL-6-producing tumor cells / K. Mori, K. Fujimoto-Ouchi, E. Onuma [et al.]. DOI 10.2220/biomedres.30.47 // Biomed. Res. 2009. Vol. 30, № 1. P. 47-51.
- **252.** Nramp1 equips macrophages for efficient iron recycling / S. Soe-Lin, A. D. Sheftel, B. Wasyluk, P. Ponka. DOI 10.1016/j.exphem.2008.02.013 // Exp. Hematol. 2008. Vol. 36, № 8. P. 929-937.
- **253.** Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin / P. J. Lim, T. L. Duarte, J. Arezes [et al.]. DOI 10.1038/s42255-019-0063-6 // Nat. Metab. 2019. Vol. 1, No 5. P. 519-531.
- **254.** Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones / E. C. Pietsch, J. Y. Chan, F. M. Torti, S. V. Torti. DOI 10.1074/jbc.M210664200 // J. Biol. Chem. 2003. Vol. 278, № 4. P. 2361-2369.
- **255.** On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver / I. Theurl, I. Hilgendorf, M. Nairz [et al.]. DOI 10.1038/nm.4146 // Nat. Med. 2016. Vol. 22, № 8. P. 945-951.
- **256.** Opie, J. Haematological complications of HIV infection / J. Opie. DOI 10.7196/samj.5595 // S. Afr. Med. J. 2012. Vol. 102, № 6. P. 465-468.
- **257.** Padula A. S. The effect of targeted rheumatoid arthritis therapeutics on systemic inflammation and anemia: Analysis of data from the CorEvitas RA registry

- / A. S. Padula, D. A. Pappas, S. Fiore. DOI 10.1186/s13075-022-02955-y // Arthritis Res. Ther. 2022. Vol. 24, № 1. Article 276.
- **258.** Pantopoulos, K. Rapid responses to oxidative stress mediated by iron regulatory protein / K. Pantopoulos, M. W. Hentze. DOI 10.1002/j.1460-2075.1995.tb07291.x // EMBO J. 1995. Vol. 14, № 12. P. 2917-2924.
- **259.** Pantopoulos, K. TfR2 links iron metabolism and erythropoiesis / K. Pantopoulos. DOI 10.1182/blood-2014-12-617571 // Blood. 2015. Vol. 125, \mathbb{N}_{2} 7. P. 1055-1056.
- **260.** Parinitha, S. Haematological changes in HIV infection with correlation to CD4 cell count / S. Parinitha, M. Kulkarni. DOI 10.4066/AMJ.20121008 // Australas. Med. J. 2012. Vol. 5, № 3. P. 157-162.
- **261.** Patel, H. J. TNF-α and cancer cachexia: Molecular insights and clinical implications / H. J. Patel, B. M. Patel. DOI 10.1016/j.lfs.2016.11.033 // Life Sci. 2017. Vol. 170. P. 56-63.
- **262.** Pathogenesis and treatment options of cancer-related anemia: Perspective for a targeted mechanism-based approach / C. Madeddu, G. Gramignano, G. Astara [et al.]. DOI 10.3389/fphys.2018.01294 // Front. Physiol. 2018. Vol. 9. Article 1294.
- **263.** Patients with rheumatic diseases share similar patterns of healthcare resource utilization / N. J. Mars, A. M. Kerola, M. J. Kauppi [et al.]. DOI 10.1080/03009742.2018.1559878 // Scand. J. Rheumatol. 2019. Vol. 48, No. 4. P. 300-307.
- **264.** Patients with stable long-standing rheumatoid arthritis continue to deteriorate despite intensified treatment with traditional disease modifying antirheumatic drugs: Results of the British Rheumatoid Outcome Study Group randomized controlled clinical trial / D. Symmons, K. Tricker, M. Harrison [et al.]. DOI 10.1093/rheumatology/kei169 // Rheumatology (Oxford). 2006. Vol. 45, № 5. P. 558-565.
- **265.** Patra, S. K. Integrative role of neuropeptides and cytokines in cancer anorexia-cachexia syndrome / S. K. Patra, S. Arora. DOI

- 10.1016/j.cca.2011.12.008 // Clin. Chim. Acta. 2012. Vol. 413, № 13-14. P. 1025-1034.
- **266.** Pettersson, T. Is serum transferrin receptor useful for detecting iron-deficiency in anaemic patients with chronic inflammatory diseases? / T. Pettersson, S. M. Kivivuori, M. A. Siimes. DOI 10.1093/rheumatology/33.8.740 // Br. J. Rheumatol. 1994. Vol. 33, № 8. P. 740-744.
- **267.** Pharmacodynamic model of hepcidin regulation of iron homeostasis in cynomolgus monkeys / W. Krzyzanski, J. J. Xiao, B. Sasu [et al.]. DOI 10.1208/s12248-016-9886-1 // AAPS J. 2016. Vol. 18, № 3. P. 713-727.
- **268.** Pharmacokinetics and pharmacodynamics of lexaptepid, a novel antihepcidin molecule, in ESA-resistant haemodialysis patients / I. C. Macdougall, A. Rumjon, J. Cinco [et al.]. DOI 10.1093/ndt/gfv182.08 // Nephrol. Dial. Transplant. 2015. Vol. 30, Suppl. 3. P. iii294–iii295.
- **269.** Phase I study of recombinant tumor necrosis factor in cancer patients / M. Blick, S. A. Sherwin, M. Rosenblum, J. Gutterman // Cancer Res. 1987. Vol. 47, № 11. P. 2986-2989.
- **270.** Physiology and inflammation-driven pathophysiology of iron homeostasis: Mechanistic insights into anemia of inflammation and its treatment / L. Lanser, D. Fuchs, K. Kurz, G. Weiss. DOI 10.3390/nu13113732 // Nutrients. 2021. Vol. 13, № 11. Article 3732.
- **271.** Pivotal role of peroxisome proliferator-activated receptor gamma (PPARgamma) in regulation of erythroid progenitor cell proliferation and differentiation / E. Nagasawa, Y. Abe, J. Nishimura [et al.]. DOI 10.1016/j.exphem.2005.05.003 // Exp. Hematol. 2005. Vol. 33, № 8. P. 857-864.
- **272.** Polysaccharide isolated from Angelica sinensis inhibits hepcidin expression in rats with iron deficiency anemia / J.-Y. Liu, Y. Zhang, R.-X. You [et al.]. DOI 10.1089/jmf.2012.2231 // J. Med. Food. 2012. Vol. 15, № 10. P. 923-929.

- **273.** Prevalence and correlates of anemia in a large cohort of HIV-infected women: Women's interagency HIV study / A. M. Levine, K. Berhane, L. Masri-Lavine [et al.]. DOI 10.1097/00126334-200101010-00004 // J. Acquir. Immune. Defic. Syndr. 2001. Vol. 26, № 1. P. 28-35.
- **274.** Prevalence and outcomes of anemia in rheumatoid arthritis: a systematic review of the literature / A. Wilson, H. T. Yu, L. T. Goodnough, A. R. Nissenson. DOI 10.1016/j.amjmed.2003.12.012 // Am. J. Med. 2004. Vol. 116, Suppl. 7A. P. 50S-57S.
- **275.** Prevalence and outcomes of anemia in surgery: A systematic review of the literature / A. Shander, K. Knight, R. Thurer [et al.]. DOI 10.1016/j.amjmed.2003.12.013 // Am. J. Med. 2004. Vol. 116, Suppl. 7A. P. 58S-69S.
- **276.** Prevalence and predictive value of anemia and dysregulated iron homeostasis in patients with COVID-19 infection / R. Bellmann-Weiler, L. Lanser, R. Barket [et al.]. DOI 10.3390/jcm9082429 // J. Clin. Med. 2020. Vol. 9, № 8. Article 2429.
- **277.** Prevalence and significance of anaemia in patients receiving long-course neoadjuvant chemoradiotherapy for rectal carcinoma / C. J. Walter, L. T. Bell, S. R. Parsons [et al.]. DOI 10.1111/j.1463-1318.2012.03112.x // Colorectal. Dis. 2013. Vol. 15, Noleta 1. P. 52-56.
- **278.** Prevalence of cytopenias in both HAART and HAART-naïve HIV infected adult patients in Ethiopia: A cross-sectional study / T. E. Fekene, L. H. Juhar, C. H. Mengesha, D. K. Worku. DOI 10.1186/s12878-018-0102-7 // BMC Hematol. 2018. Vol. 18. Article 8.
- **279.** Prevalence of iron deficiency across different tumors and its association with poor performance status, disease status and anemia / H. Ludwig, E. Muldur, G. Endler, W. Hubl. DOI 10.1093/annonc/mdt118 // Ann. Oncol. 2013. Vol. 24, N_{2} 7. P. 1886-1892.
- **280.** Prevalence of low hemoglobin levels and associations with other disease parameters in rheumatoid arthritis patients: evidence from the CORRONA

- registry / D. E. Furst, H. Chang, J. D. Greenberg [et al.] // Clin. Exp. Rheumatol. 2009. Vol. 27, № 4. P. 560-566.
- **281.** Progesterone receptor membrane component-1 regulates hepcidin biosynthesis / X. Li, D. K. Rhee, R. Malhotra [et al.]. DOI 10.1172/JCI83831 // J. Clin. Investig. 2016. Vol. 126, № 1. P. 389-401.
- **282.** Radiographic benefit without clinical improvement in infliximabtreated patients with rheumatoid arthritis: Comment on the article by Smolen et al. / T. Pincus, Y. Yazici, F. Wolfe [et al.]. DOI 10.1002/art.21430 // Arthritis Rheum. 2005. Vol. 52, № 12. P. 4044-4045.
- **283.** Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls / A. B. Bruner, A. Joffe, A. K. Duggan [et al.]. DOI 10.1016/S0140-6736(96)02341-0 // Lancet. 1996. Vol. 348 (9033). P. 992-996.
- **284.** Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: Role of the iron-sulfur cluster / D. J. Haile, T. A. Rouault, C. K. Tang, [et al.]. DOI 10.1073/pnas.89.16.7536 // Proc. Natl. Acad. Sci. U S A. 1992. Vol. 89, № 16. P. 7536-7540.
- **285.** Redd, A. D. Infection of hematopoietic progenitor cells by HIV-1 subtype C, and its association with anemia in Southern Africa / A. D. Redd, A. Avalos, M. Essex. DOI 10.1182/blood-2007-04-086314 // Blood. 2007. Vol. 110, N_2 9. P. 3143-3149.
- **286.** Redig, A. J. Pathogenesis and clinical implications of HIV-related anemia in 2013 / A. J. Redig, N. Berliner. DOI 10.1182/asheducation-2013.1.377 // Hematol. Am. Soc. Hematol. Educ. Program. 2013. Vol. 2013. P. 377-381.
- **287.** Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form / A. Pagani, M. Vieillevoye, A. Nai [et al.]. DOI 10.3324/haematol.2014.118521 // Haematologica. 2015. Vol. 100, № 4. P. 458-465.

- **288.** Regulation of cellular iron metabolism by erythropoietin: Activation of iron-regulatory protein and upregulation of transferrin receptor expression in erythroid cells / G. Weiss, T. Houston, S. Kastner [et al.] // Blood. 1997. Vol. 89, N_2 2. P. 680-687.
- **289.** Regulation of hepcidin expression by inflammation-induced activin B / Y. Kanamori, M. Sugiyama, O. Hashimoto [et al.]. DOI 10.1038/srep38702 // Sci. Rep. 2016. Vol. 6. Article 38702.
- **290.** Regulation of human erythropoiesis by activin A, BMP2, and BMP4, members of the TGF family / V. E. Maguer-Satta, L. Bartholin, S. Jeanpierre [et al.]. DOI 10.1016/s0014-4827(02)00013-7 // Exp. Cell Res. 2003. Vol. 282, N 2. P. 110-120.
- **291.** Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: Diagnostic and therapeutic implications / I. Theurl, E. Aigner, M. Theurl [et al.]. DOI 10.1182/blood-2008-12-195651 // Blood. 2009. Vol. 113, № 21. P. 5277-5286.
- **292.** Regulation of iron metabolism through GDF15 and hepcidin in pyruvate kinase deficiency / A. Finkenstedt, P. Bianchi, I. Theurl [et al.]. DOI 10.1111/j.1365-2141.2008.07535.x // Br. J. Haematol. 2009. Vol. 144, No. 5. P. 789-793.
- **293.** Relationship Between Anemia and Systemic Inflammation in People Living With HIV and Tuberculosis: A Sub-Analysis of the CADIRIS Clinical Trial / M. Arau'jo-Pereira, B. Barreto-Duarte, M. B. Arriaga [et al.]. DOI 10.3389/fimmu.2022.916216 // Front. Immunol. 2022. Vol. 13. Article 916216.
- **294.** Relationship between changes in hemoglobin level and quality of life during chemotherapy in anemic cancer patients receiving epoetin alfa therapy / J. Crawford, D. Cella, C. S. Cleeland [et al.]. DOI 10.1002/cncr.10763 // Cancer. 2002. Vol. 95, № 4. P. 888-895.
- **295.** Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: The potential role of inflammation / A. Icardi, E. Paoletti, L. De Nicola

- [et al.]. DOI 10.1093/ndt/gft021 // Nephrol. Dial. Transplant. 2013. Vol. 28, № 7. P. 1672-1679.
- **296.** Renal anemia and iron metabolism / C. Ogawa, K. Tsuchiya, K. Maeda, K. Nitta. DOI 10.1159/000486936 // Contrib. Nephrol. 2018. Vol. 195. P. 62-73.
- **297.** Richard, C. Transferrin receptors in erythropoiesis / C. Richard, F. Verdier. DOI 10.3390/ijms21249713 // Int. J. Mol. Sci. 2020. Vol. 21, № 24. Article 9713.
- **298.** Rishi, G. Hepcidin: Regulation of the master iron regulator / G. Rishi, F. W. Daniel, V. N. Subramaniam. DOI 10.1042/BSR20150014 // Biosci. Rep. 2015. Vol. 35, № 3. Article e00192.
- **299.** Risk of cancer in patients with iron deficiency anemia: A nationwide population-based study / N. Hung, C.-C. Shen, Y.-W. Hu [et al.]. DOI 10.1371/journal.pone.0119647 // PLoS ONE. 2015. Vol. 10, № 3. Article e0119647.
- **300.** Ritchlin, C. T. Psoriatic arthritis / C. T. Ritchlin, R. A. Colbert, D. D. Gladman. DOI 10.1056/NEJMx170005 // N. Engl. J. Med. 2017. Vol. 376, № 10. P. 2095-2096.
- **301.** Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis / P. V. Voulgari, G. Kolios, G. K. Papadopoulos [et al.]. DOI 10.1006/clim.1999.4736 // Clin. Immunol. 1999. Vol. 92, № 2. P. 153-160.
- **302.** Role of IL-10 for induction of anemia during inflammation / H. Tilg, H. Ulmer, A. Kaser, G. Weiss. DOI 10.4049/jimmunol.169.4.2204 // J. Immunol. 2002. Vol. 169, № 4. P. 2204-2209.
- **303.** Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism / A. Loboda, M. Damulewicz, E. Pyza [et al.]. DOI 10.1007/s00018-016-2223-0 // Cell. Mol. Life Sci. 2016. Vol. 73, № 17. P. 3221-3247.
- **304.** Role of the p38 mitogen-activated protein kinase pathway in cytokine-mediated hematopoietic suppression in myelodysplastic syndromes / E. Katsoulidis,

- Y. Li, P. Yoon [et al.]. DOI 10.1158/0008-5472 // Cancer Res. 2005. Vol. 65, № 19. P. 9029-9037.
- **305.** Safety, tolerability, pharmacokinetics and pharmacodynamics of an anti-ferroportin antibody in patients with anemia due to chronic renal failure / P. Barrington, M. J. Sheetz, S. Callies [et al.]. DOI 10.1182/blood.V128.22.1280.1280 // Blood. 2016. Vol. 128, № 122. P. 1280.
- **306.** Saini, A. Waste management cytokines, growth factors and cachexia / A. Saini, N. Al-Shanti, C. E. Stewart. DOI 10.1016/j.cytogfr.2006.09.006 // Cytokine Growth Factor Rev. 2006. Vol. 17, № 6. P. 475-486.
- **307.** Schito, L. Hypoxia-inducible factors: Master regulators of cancer progression / L. Schito, G. L. Semenza. DOI 10.1016/j.trecan.2016.10.016 // Trends Cancer. 2016. Vol. 2, № 12. P. 758-770.
- **308.** Schneider, B. D. Effects of iron regulatory protein regulation on iron homeostasis during hypoxia / B. D. Schneider, E. A. Leibold. DOI 10.1182/blood-2003-02-0433 // Blood. 2003. Vol. 102, № 9. P. 3404-3411.
- **309.** Semenza, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation / G. L. Semenza, G. L. Wang. DOI 10.1128/mcb.12.12.5447-5454.1992 // Mol. Cell. Biol. 1992. Vol. 12, № 12. P. 5447-5455.
- **310.** Semenza, G. L. Hif-1 and tumor progression: Pathophysiology and therapeutics / G. L. Semenza. DOI 10.1016/s1471-4914(02)02317-1 // Trends Mol. Med. 2002. Vol. 8, 4 Suppl. P. S62-S67.
- **311.** Serum erythropoietin and angiogenetic factors in human colorectal cancer / A. Chabowska, M. Sulkowska, A. Wincewicz [et al.] // Prague Med. Rep. 2007. Vol. 108, № 4. P. 348-357.
- **312.** Serum erythropoietin level in anemic cancer patients / M. Ozguroglu, B. Arun, G. Demir [et al.]. DOI 10.1007/BF02826213 // Med. Oncol. 2000. Vol. 17, № 1. P. 29-34.

- **313.** Serum erythropoietin levels in anaemic patients with advanced human immunodeficiency virus infection / J. Camacho, F. Poveda, A. F. Zamorano [et al.]. DOI 10.1111/j.1365-2141.1992.tb06475.x // Br. J. Haematol. 1992. Vol. 82, № 3. P. 608-614.
- **314.** Serum immunoreactive erythropoietin in HIV-infected patients / J. L. Spivak, D. C. Barnes, E. Fuchs, T. C. Quinn // JAMA. 1989. Vol. 261, № 21. P. 3104-3107.
- **315.** Serum pro-hepcidin could reflect disease activity in patients with rheumatoid arthritis / H. R. Kim, K. W. Kim, S. Y. Yoon [et al.]. DOI 10.3346/jkms.2010.25.3.348 // J. Korean Med. Sci. 2010. Vol. 25, № 3. P. 348-352.
- **316.** Serum transferrin receptor concentration indicates increased erythropoiesis in Kenyan children with asymptomatic malaria / H. Verhoef, C. E. West, P. Ndeto [et al.]. DOI 10.1093/ajcn/74.6.767 // Am. J. Clin. Nutr. 2001. Vol. 74, N = 6. P. 767-775.
- **317.** Sharp, P. Molecular mechanisms involved in intestinal iron absorption / P. Sharp, S. K. Srai. DOI 10.3748/wjg.v13.i35.4716 // World J. Gastroenterol. 2007. Vol. 13, № 35. P. 4716-4724.
- **318.** Shavelle, R. M. Anemia and mortality in older persons: Does the type of anemia affect survival? / R. M. Shavelle, R. MacKenzie, D. R. Paculdo. DOI 10.1007/s12185-012-1007-z // Int. J. Hematol. 2012. Vol. 95, № 3. P. 248-256.
- **319.** Sieper, J. Axial spondyloarthritis / J. Sieper, D. Poddubnyy. DOI 10.1016/S0140-6736(16)31591-4 // Lancet. 2017. Vol. 390 (10089). P. 73-84.
- **320.** Single values of serum transferrin receptor and transferrin receptor ferritin index can be used to detect true and functional iron deficiency in rheumatoid arthritis patients with anemia / P. Suominen, T. Möttönen, A. Rajamäki, K. Irjala. DOI 10.1002/1529-0131(200005)43:5<1016::AID-ANR9>3.0.CO;2-3 // Arthritis Rheum. 2000. Vol. 43, № 5. P. 1016-1020.

- **321.** Smolen, J. S. Rheumatoid arthritis / J. S. Smolen, D. Aletaha, I. B. McInnes. DOI 10.1016/S0140-6736(16)30173-8 // Lancet. 2016. Vol. 388 (10055). P. 2023-2038.
- **322.** Soluble transferrin receptor (sTfR), ferritin, and sTfR/log ferritin index in anemic patients with nonhematologic malignancy and chronic inflammation / E. J. Lee, E. J. Oh, Y. J. Park [et al.] // Clin. Chem. 2002. Vol. 48, № 7. P. 1118-1121.
- **323.** Speeckaert, M. M. Biological and clinical aspects of soluble transferrin receptor / M. M. Speeckaert, R. Speeckaert, J. R. Delanghe. DOI 10.3109/10408363.2010.550461 // Crit. Rev. Clin. Lab. Sci. 2010. Vol. 47, № 5–6. P. 213-228.
- **324.** STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation / M. V. Verga Falzacappa, M. Vujic Spasic, R. Kessler [et al.]. DOI 10.1182/blood-2006-07-033969 // Blood. 2007. Vol. 109, № 1. P. 353-358.
- **325.** Stauder, R. Anemia in the elderly: Clinical implications and new therapeutic concepts / R. Stauder, S. L. Thein. DOI 10.3324/haematol.2014.109967 // Haematologica. 2014. Vol. 99, № 7. P. 1127-1130.
- **326.** Steinbicker, A. U. Out of balance systemic iron homeostasis in iron-related disorders / A. U. Steinbicker, M. U. Muckenthaler. DOI 10.3390/nu5083034 // Nutrients. 2013. Vol. 5, № 8. P. 3034-3061.
- **327.** Sucker, C. The Heyde syndrome: Proposal for a unifying concept explaining the association of aortic valve stenosis, gastrointestinal angiodysplasia and bleeding / C. Sucker. DOI 10.1016/j.ijcard.2006.01.014 // Int. J. Cardiol. 2007. Vol. 115, Nol. P. 77-78.
- **328.** Sukhbaatar, N. Iron Regulation: Macrophages in Control / N. Sukhbaatar, T. Weichhart. DOI 10.3390/ph11040137 // Pharmaceuticals. 2018. Vol. 11, № 4. Article 137.
- **329.** Sustained plasma hepcidin suppression and iron elevation by Anticalinderived hepcidin antagonist in cynomolgus monkey / A. M. Hohlbaum, H. Gille, S.

- Trentmann [et al.]. DOI 10.1111/bph.14143 // Br. J. Pharmacol. 2018. Vol. 175, № 7. P. 1054-1065.
- **330.** Swets, J. A. Signal Detection Theory and ROC Analysis in Psychology and Diagnostics: Collected Papers / J. A. Swets. Mahwah : Erlbaum, 1996. 324 p. ISBN 9781138981911.
- **331.** Taguchi, K. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution / K. Taguchi, H. Motohashi, M. Yamamoto. DOI 10.1111/j.1365-2443.2010.01473.x // Genes Cells. 2011. Vol. 16, № 2. P. 123-140.
- **332.** Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation / P. Jaakkola, D. R. Mole, Y. M. Tian, [et al.]. DOI 10.1126/science.1059796 // Science. 2001. Vol. 292 (5516). P. 468-472.
- **333.** Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin / C. Latour, L. Kautz, C. Besson-Fournier [et al.]. DOI 10.1002/hep.26648 // Hepatology. 2014. Vol. 59, № 2. P. 683-694.
- **334.** Testosterone suppresses hepcidin in men: a potential mechanism for testosterone-induced erythrocytosis / E. Bachman, R. Feng, T. Travison [et al.]. DOI 10.1210/jc.2010-0864 // J. Clin. Endocrinol. Metab. 2010. Vol. 95, № 10. P. 4743-4747.
- **335.** The association of serum ferritin and transferrin receptor concentrations with mortality in women with human immunodeficiency virus infection / V. R. Gordeuk, G. Onojobi, M. F. Schneider [et al.] // Haematologica. -2006. Vol. 91, N_{2} 6. P. 739-743.
- **336.** The crucial impact of iron deficiency definition for the course of precapillary pulmonary hypertension / T. Sonnweber, M. Nairz, I. Theurl [et al.]. DOI 10.1371/journal.pone.0203396 // PLoS ONE. 2018. Vol. 13, № 8. Article e0203396.

- **337.** The effect of golimumab on haemoglobin levels in patients with rheumatoid arthritis, psoriatic arthritis or ankylosing spondylitis / D. E. Furst, J. Kay, M. C. Wasko [et al.]. DOI 10.1093/rheumatology/ket233 // Rheumatology. 2013. Vol. 52, № 10. P. 1845-1855.
- **338.** The effect of sepsis on the erythrocyte / R. M. Bateman, M. D. Sharpe, M. Singer, C. G. Ellis. DOI 10.3390/ijms18091932 // Int. J. Mol. Sci. 2017. Vol. 18, № 9. Article 1932.
- **339.** The endocytic fate of the transferrin receptor is regulated by c-Abl kinase / H. Cao, B. Schroeder, J. Chen [et al.]. DOI 10.1074/jbc.M116.724997 // J. Biol. Chem. 2016. Vol. 291, № 32. P. 16424-16437.
- **340.** The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients / H. Ludwig, S. Van Belle, P. Barrett-Lee [et al.]. DOI 10.1016/j.ejca.2004.06.019 // Eur. J. Cancer. 2004. Vol. 40, № 15. P. 2293-2306.
- **341.** The hemochromatosis protein HFE signals predominantly via the BMP type I receptor ALK3 in vivo / L. Traeger, C. A. Enns, J. Krijt, A. U. Steinbicker. DOI 10.1038/s42003-018-0071-1 // Commun. Biol. 2018. Vol. 1. Article 65.
- **342.** The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis / A. Donovan, C. A. Lima, J. L. Pinkus [et al.]. DOI 10.1016/j.cmet.2005.01.003 // Cell Metab. 2005. Vol. 1, № 3. P. 191-200.
- **343.** The links of hepcidin and erythropoietin in the interplay of inflammation and iron deficiency in a large observational study of rheumatoid arthritis / G. A. Scholz, A. B. Leichtle, A. Scherer [et al.]. DOI 10.1111/bjh.15895 // Br. J. Haematol. 2019. Vol. 186, \mathbb{N} 1. P. 101-112.
- **344.** The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability / J. Chung, D. E. Bauer, A. Ghamari [et al.]. DOI 10.1126/scisignal.aaa5903 // Sci. Signal. 2015. Vol. 8 (372). Article ra34.
- 345. The potential impact of anaemia of chronic disease in COPD / T.Similowski, A. Agustí, W. MacNee, B. Schönhofer. DOI

- 10.1183/09031936.06.00143704 // Eur. Respir. J. 2006. Vol. 27, № 2. P. 390-396.
- **346.** The role of inflammation, iron, and nutritional status in cancer-related anemia: Results of a large, prospective, observational study / A. Macciò, C. Madeddu, G. Gramignano [et al.]. DOI 10.3324/haematol.2014.112813 // Haematologica. 2015. Vol. 100, № 1. P. 124-132.
- **347.** The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin / L. Silvestri, A. Pagani, A. Nai [et al.]. DOI 10.1016/j.cmet.2008.09.012 // Cell Metab. 2008. Vol. 8, № 6. P. 502-511.
- **348.** The significance of iron deficiency and anemia in a real-life COPD cohort / A. Pizzini, M. Aichner, T. Sonnweber [et al.]. DOI 10.7150/ijms.46163 // Int. J. Med. Sci. 2020. Vol. 17, № 14. P. 2232-2239.
- **349.** The transferrin receptor: the cellular iron gate / E. Gammella, P. Buratti, G. Cairo, S. Recalcati. DOI 10.1039/c7mt00143f // Metallomics. 2017. Vol. 9, № 10. P. 1367-1375.
- **350.** The type I BMP receptor Alk3 is required for the induction of hepatic hepcidin gene expression by interleukin-6 / C. Mayeur, L. K. Lohmeyer, P. Leyton [et al.]. DOI 10.1182/blood-2013-02-480095 // Blood. 2014. Vol. 123, № 14. P. 2261-2268.
- **351.** Thomas, C. Anemia of chronic disease: Pathophysiology and laboratory diagnosis / C. Thomas, L. Thomas. DOI 10.1532/LH96.04049 // Lab. Hematol. 2005. Vol. 11, № 1. P. 14-23.
- **352.** TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens / C. Peyssonnaux, A. S. Zinkernagel, V. Datta [et al.]. DOI 10.1182/blood-2005-06-2259 // Blood. 2006. Vol. 107, № 9. P. 3727-3732.
- **353.** Transferrin receptor 2: Evidence for ligand-induced stabilization and redirection to a recycling pathway / M. B. Johnson, J. Chen, N. Murchison [et al.]. DOI 10.1091/mbc.e06-09-0798 // Mol. Biol. Cell. 2007. Vol. 18, № 3. P. 743-754.

- **354.** Transferrin receptor induction by hypoxia: HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation / L. Tacchini, L. Bianchi, A. Bernelli-Zazzera, G. Cairo. DOI 10.1074/jbc.274.34.24142 // J. Biol. Chem. – 1999. – Vol. 274, № 34. – P. 24142-24146.
- **355.** Transferrin receptor is necessary for development of erythrocytes and the nervous system / J. E. Levy, O. Jin, Y. Fujiwara [et al.]. DOI 10.1038/7727 // Nat. Genet. 1999. Vol. 21, № 4. P. 396-399.
- **356.** Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway / G. Weiss, B. Goossen, W. Doppler [et al.]. DOI 10.1002/j.1460-2075.1993.tb06039.x // EMBO J. 1993. Vol. 12, № 9. P. 3651-3657.
- 357. Tumor necrosis factor α inhibits expression of the iron-regulating hormone hepcidin in murine models of innate colitis / N. K. Shanmugam, S. Ellenbogen, E. Trebicka [et al.]. DOI 10.1371/journal.pone.0038136 // PLoS One. 2012. Vol. 7, № 5. Article e38136.
- **358.** Tumor necrosis factor-alpha and hematopoietic progenitors: Effects of tumor necrosis factor on the growth of erythroid progenitors CFU-E and BFU-E and the hematopoietic cell lines K562, HL60, and HEL cells / G. D. Roodman, A. Bird, D. Hutzler, W. Montgomery // Exp. Hematol. − 1987. − Vol. 15, № 9. − P. 928-935.
- **359.** Use of breath carbon monoxide measurements to assess erythrocyte survival in subjects with chronic diseases / B. L. Mitlyng, J. A. Singh, J. K. Furne [et al.]. DOI 10.1002/ajh.20644 // Am. J. Hematol. 2006. Vol. 81, № 6. P. 432-438.
- **360.** Usefulness of soluble transferrin receptor in the diagnosis of iron deficiency anemia in rheumatoid arthritis patients in clinical practice / F. Günther, R. H. Straub, W. Hartung [et al.]. DOI 10.1155/2022/7067262 // Int. J. Rheumatol. 2022. Vol. 2022. Article 7067262.
- 361. Valente de Souza, L. Impact of bacterial infections on erythropoiesis /
 L. Valente de Souza, A. Hoffmann, G. Weiss. DOI

- 10.1080/14787210.2021.1841636 // Expert Rev. Anti-Infect. 2021. Vol. 19, № 5. P. 619-633.
- **362.** Value of soluble transferrin receptors and sTfR/log ferritin in the diagnosis of iron deficiency accompanied by acute infection / F. M. El-Gendy, M. A. El-Hawy, M. S. Rizk [et al.]. DOI 10.1007/s12288-017-0836-6 // Indian J. Hematol. Blood Transfus. 2018. Vol. 34, № 1. P. 104-109.
- **363.** van Steenbergen, H. W. Anaemia to predict radiographic progression in rheumatoid arthritis / H. W. van Steenbergen, J. A. van Nies, A. H. van der Helmvan Mil. DOI 10.1136/annrheumdis-2013-203718 // Ann. Rheum. Dis. 2013. Vol. 72, № 7. P. e16.
- **364.** Vaupel, P. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response / P. Vaupel, L. Harrison. DOI 10.1634/theoncologist.9-90005-4 // Oncologist. 2004. Vol. 9, Suppl 5. P. 4-9.
- **365.** Vinchi, F. Reshaping Erythrophagocytosis and Iron Recycling by Reticuloendothelial Macrophages / F. Vinchi, S. Z. Vance. DOI 10.1097/HS9.0000000000000525 // Hemasphere. 2021. Vol. 5, № 2. Article e525.
- **366.** Vishnu, P. Haematological manifestations of human immune deficiency virus infection / P. Vishnu, D. M. Aboulafia. DOI 10.1111/bjh.13783 // Br. J. Haematol. 2015. Vol. 171, № 5. P. 695-709.
- **367.** Weiss, G. Anaemia in inflammatory rheumatic diseases / G. Weiss, G. Schett. DOI 10.1038/nrrheum.2012.183 // Nat. Rev. Rheumatol. 2013. Vol. 9, N = 4. P. 205-215.
- **368.** Weiss, G. Anemia of Chronic Disease / G. Weiss, L. T. Goodnough. DOI 10.1056/NEJMra041809 // N. Engl. J. Med. 2005. Vol. 352, № 10. P. 1011-1023.
- **369.** Weiss, G. Anemia of chronic disorders: new diagnostic tools and new treatment strategies / G. Weiss. DOI 10.1053/j.seminhematol.2015.07.004 // Semin. Hematol. 2015. Vol. 52, № 4. P. 313-320.

- **370.** Weiss, G. Anemia of inflammation / G. Weiss, T. Ganz, L. T. Goodnough. DOI 10.1182/blood-2018-06-856500 // Blood. 2019. Vol. 133, № 1. P. 40-51.
- **371.** Weiss, G. Pathways for the regulation of macrophage iron metabolism by the anti-inflammatory cytokines IL-4 and IL-13 / G. Weiss, C. Bogdan, M. W. Hentze // J. Immunol. 1997. Vol. 158, № 1. P. 420-425.
- **372.** Wilkinson, N. The IRP/IRE system in vivo: Insights from mouse models / N. Wilkinson, K. Pantopoulos. DOI 10.3389/fphar.2014.00176 // Front. Pharmacol. 2014. Vol. 5. Article 176.
- **373.** Woldeamanuel, G. G. Prevalence of anemia before and after initiation of antiretroviral therapy among HIV-infected patients at Black Lion Specialized Hospital, Addis Ababa, Ethiopia: A cross-sectional study / G. G. Woldeamanuel, D. H. Wondimu. DOI 10.1186/s12878-018-0099-y // BMC Hematol. 2018. Vol. 18. Article 7.
- **374.** World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva: World Health Organization, 2011.-40 p.
- 375. World Health Organization. Nutrient requirements for people living with HIV. 2004. URL: https://www.who.int/nutrition/publications/Content_nutrient_requirements.pdf (дата обращения: 05.12.2019).
- **376.** Worwood, M. Iron deficiency anemia and iron overload / M. Worwood, A. May. DOI 10.1016/B978-0-7020-3408-4.00009-6 // Dacie and Lewis Practical Haematology / by ed. B. J. Bain, I. Bates, M. A. Laffan, S. M. Lewis. Chapter 9. 11th ed. Philadelphia: Churchill Livingstone, 2011. P. 175-200.
- **377.** Wrighting, D. Interleukin-6 induces hepcidin expression through STAT3 / D. Wrighting, N. Andrews DOI 10.1182/blood-2006-06-027631 // Blood. 2006. Vol. 108, N 9. P. 3204-3209.

- **378.** Xiao, X. Bone morphogenic proteins in iron homeostasis / X. Xiao, V. M. Alfaro-Magallanes, J. L. Babitt. DOI 10.1016/j.bone.2020.115495 // Bone. 2020. Vol. 138. Article 115495.
- **379.** Zhu, Y. The correlation of cytokines TNF alpha, IFN-gamma, Epo with anemia in rheumatoid arthritis / Y. Zhu, D. Ye, Z. Huang // Zhonghua Xue Ye Xue Za Zhi. 2000. Vol. 21, № 11. P. 587-590. [Article in Chinese].
- **380.** Zoller, H. Iron-induced hypophosphatemia: An emerging complication / H. Zoller, B. Schaefer, B. Glodny. DOI 10.1097/MNH.0000000000000329 // Curr. Opin. Nephrol. Hypertens. 2017. Vol. 26, № 4. P. 266-275.