Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

<u>Civil Engineering and Built Environment</u>, <u>Mechanics of materials and engineering structures</u>,

Name of the discipline	Applications of Finite Element Method for
	Civil Engineering problems
Scope of discipline	3 credits (108 h.)
Discipline	e summary
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Plane Stress and Plane Strain Theory	- Plane stress and plan strain approximations. Coor-
	dinate systems. Displacement of material points.
	State of strain. State of stress. Stress equilibrium at
	tions Differential form of the governing equations
	Weighted residual method. Integral form of the
	governing equations.
	- Finite element concept. Description of finite element
	shape. Quadrilateral elements. Triangular elements.
	Interpolation of variables in finite elements.
	- Differentiation of functions in finite elements: Dif-
	ferentiation of shape functions. Differentiation of be-
Finite Flement Tools	havioral variables
rinte Liement 1 0018	-Integration of functions in finite elements: Integra-
	tion over quadrilateral elements; Integration over tri-
	angular elements.
	- Numerical integration. One-dimensional Gauss in-
	tegration: Gauss integration in quadrilaterals; Gauss
	integration in triangles.
Finite Element Networks	- Decomposition of a slab. Element shape. Displace-
	ment interpolation. Strain interpolation.
	- Element and system stiffness matrices. Element and
	system body load vectors. Boundary conditions:
	Shape of the boundary; System boundary load vector;
	Boundary conditions at nodes.
	- Algebraic governing equations. Assembly and solu-
	tion of the algebraic system equations. Assembly of
	the system equations.

	- Structure of the system matrix. Solution of linear equations with profile and status. Accuracy and convergence of the finite element method. Stress computation.
Finite Element Types	- Rectangular element with 4 nodes. Constant strain
	triangular element.
	- Quadrilateral element with 8 nodes. Linear strain
	triangular element.

Assistant at the Department of Civil engineering

W.I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

<u>Civil Engineering and Built Environment ,</u> <u>Mechanics of materials and engineering structures,</u>

Name of the discipline	Applications of Finite Element Method for
	Civil Engineering problems

Name of the discipline	Fundamentals of Finite Element Method
Scope of discipline	3 credits (108 h.)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Plane Stress and Plane Strain Theory	- Plane stress and plan strain approximations. Coor- dinate systems. Displacement of material points. State of strain. State of stress. Stress equilibrium at a point. Constitutive equations. Boundary condi-
	tions. Differential form of the governing equations. Weighted residual method. Integral form of the governing equations.
Finite Element Tools	 Finite element concept. Description of finite element shape. Quadrilateral elements. Triangular elements. Interpolation of variables in finite elements. Differentiation of functions in finite elements: Dif- ferentiation of shape functions. Differentiation of be- havioral variables Integration of functions in finite elements: Integra- tion over quadrilateral elements; Integration over tri- angular elements. Numerical integration. One-dimensional Gauss in- tegration: Gauss integration in quadrilaterals; Gauss integration in triangles.
Finite Element Networks	 Decomposition of a slab. Element shape. Displacement interpolation. Strain interpolation. Element and system stiffness matrices. Element and system body load vectors. Boundary conditions: Shape of the boundary; System boundary load vector; Boundary conditions at nodes.

	- Algebraic governing equations. Assembly and solu-
	tion of the algebraic system equations. Assembly of
	the system equations.
	- Structure of the system matrix. Solution of linear equations with profile and status. Accuracy and convergence of the finite element method. Stress computation.
Finite Element Types	- Rectangular element with 4 nodes. Constant strain
	triangular element.
	- Quadrilateral element with 8 nodes. Linear strain
	triangular element.

Ass. Professor at the Department of Civil engineering

W.J. T.H. Gebre

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

<u>Civil Engineering and Built Environment .</u> <u>Mechanics of materials and engineering structures,</u>

Name of the discipline	Geometric Shaping and Analysis of Shells
Scope of discipline	3 credits (108 h.)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Classification and forms of spatial structures	- Planar designs. Classification and forms of
	spatial structures. Signs of static shaping. Kine-
	matic surfaces.
On the design and construction of spatial	- Structures working "on the span", rigid shells,
structures	regular systems, suspended roofs, transforming
	systems, air-supporting and air-suspended struc-
	tures. Tent structures. Structural concept. Pro-
	duction, transportation and construction of spa-
	tial systems.
Shells of Revolution	- Spherical shell. Shells in the form of a single-
	cavity hyperboloid of revolution. Paraboloid and
	ellipsoid of revolution. Circular torus Pseudo-
	sphere. Catenoid. Globoid. A drop. The mating
	surfaces of coaxial cylinder and cone.
Ruled shells of zero Gaussian curvature	- Conical, cylindrical and torse shells. Build
	torse developments. Replacement of cylinders,
	cones and torse surfaces folds. Surfaces of the
	equal slope.
Ruled shells of negative Gaussian curvature	- Hyperbolic paraboloid. Conoids. Cylindroids.
	5 types of ruled helicoids. Ruled rotary and spi-
	roid surfaces. Catalan Surfaces.
Cyclic surfaces	- Channel surfaces. Normal cyclic surfaces. Cy-
	clic surfaces with a parallelism plane. Cyclic
	surfaces with circles in the planes of the bunch.
Kinematic surfaces	- Direct transfer surfaces. Rotative and spiroid
	surfaces.
Umbrella surfaces and umbrella type sur-	- wavy type and wavy surfaces. Corrugated sur-
faces	the cone Reinforced concrete motel tert um
	bralla shalls
Minimal surfaces	- Minimal surfaces strung on a rigid support con
	tour Dome structures made of plastic
	tour. Dome structures made of plastic.

Helicoidal and helical shape shells. Shells in	- Ordinary screw surfaces. Screw surface vari-
the form of spiral and spiral shape surfaces.	able pitch. Cyclic surface in the cylinder. Helical
	surfaces with generatrix in the planes of the
	bunch.
Membrane and cable coatings.	- Examples of built structures with membrane
	and suspended roofs.
Shells in the form of analytically indefinable	- Overview of the constructed structures Con-
surfaces	structive forms of wildlife and their influence on
	the development of fundamentally new spatial
	structures.
Spatial Composite Structures	- Smooth mating of two surfaces. Transforma-
	ble structures.
Geometrical Shaping of Shells (experimental	- Manufacturing models that demonstrate the
part)	methods of generating the middle surfaces of the
	shells.

Ass. Professor at the Department of Civil engineering

Director at the Department of Civil engineering

W.I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment, Mechanics of materials and engineering structures,

Built environment of smart city

Name of the discipline	Linear theory of elasticity
Scope of discipline	3 (108h)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Equilibrium equations.	The main hypotheses of the theory of elasticity. Equilibrium equations in the rectangular coordi- nate system. Equilibrium equations in the polar coordinate system. Boundary conditions.
Theory of solving problems of elasticity theory in displacements and stresses.	Deformation theory. Equations of continuity of deformation. The relationship between stresses and deformations. Solution of basic differential equations.
The plane problem of theory of elasticity.	Deformation theory. Equations of continuity of deformation. The relationship between stresses and deformations. Solution of basic differential equations.
Solution of problems of theory of elasticity.	Solution of problems in rectangular coordinate system. Solution of problems in the polar coordinate system.
The theory of bending of plates.	Derivation of the Sophie Germain equations for a thin plate. Calculation of rectangular plates. Calculation of round plates.

Developer:

Associate Professor of the Department of Civil Engineering

M. I. Rynkovskaya

ce.

Director at the Department of Civil engineering

zer

M.I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Theory and Design of Buildings and Structures/

Name of the discipline	Mathematical Modelling
Scope of discipline	3 (108h)
Discipline	summary
The name of the sections (topics) of the discipline	A summary of the sections (topics) of the discipline:
The subject and tasks of the course "mathe- matical modeling of spatial structures"	- Place, purpose and advantage of mathematical modelling in the process of knowledge of ob- jects and natural phenomena. Model, as a tool for the investigation of objects and phenomena and as a tool for managing them. Prerequisites for the successful application of mathematical modelling. Abstract model by R. Kalman. Clas- sification of objects by type of behavior. Analyt- ical and simulation models. Stages of mathemat- ical modelling. Historical experience in the for- mation of mathematical models and solving practical problems by means of mathematics. The task of the trajectory of a ray of light re- flecting from a mirror. The problem of the tra- jectory of a Brachistochrone problem. Models based on the principle of least action and the princi- ple of equilibrium.
Basic fundamental laws in mechanics	Principles of causality. Equations of state. Postu- lates about space and time. The law of conserva- tion. The least action. The principle of Lagrange. Hamilton-Ostrogradsky principle. Stable and unstable equilibrium. Euler equations. Principle d'Alembert.
The concept of a mathematical model	The concept of the model of the object or phe- nomenon. Mathematical model. The requirement for a mathematical model. General technology for solving practical problems using mathemat- ics. The sequence of construction and testing of mathematical models on the examples of the sim- plest problems of mechanics: stretching and compression of the beam. Bending of the beam, loss of stability of the beam. The test of a math- ematical model is an assessment of the state of an object. Models for controlling the parameters of objects and phenomena. The multiplicity of questions about the manifestations of objects

	and phenomena and the generality of models. Check the adequacy of mathematical models. Simplified models.
Formation of mathematical models	Ideas used as the basis of mathematical models.
	Reflection of properties and characteristics of
	objects in a mathematical model. Idealization
	and abstraction. Mathematical language of the
	formation of a practical problem. Characteristic
	concepts for describing objects and phenomena
	(energy, mass, force, space, time, etc.) and
	qualitative and quantitative representation in
	models. Covariance Tasks of analysis and syn-
	thesis. Determining relationships and empirical
	dependencies in mathematical models. Dimen-
	sion of the quantities and formulas expressing
	the problem. Simplification and refinement of
	the mathematical model. The dimension of the
	tasks. Analysis of the impact of simplifications
	and clarifications.
I ypes of mathematical models	Structural and functional models. Discrete and
	continuous, linear and nonlinear models. Simu-
	lation of partial differential equations. The prob-
	tern of the shapes of the searchight hinfor. Lin-
	Other types of models. Hierarchy of mothemati
	other types of models. Hierarchy of mathemati-
Methods for solving problems formulated by	The investigation of the mathematical problem
mathematical models.	generated by the created mathematical model.
	Existence, multiplicity and uniqueness of solu-
	tions. The choice of mathematical methods for
	solving the formulated problem. Exact and close
	solution. Variational tasks. The boundary value
	problem and the Cauchy problem. Analytical
	Solution. Asymptotic expansions. Kitz method. Bubnov Galerkin
	Method
	tasks. Euler method. Reduction of the solution to
	the solution of problems of linear algebra. Finite
	difference method and finite element method.
	Systems of linear equations and their solution.
	The problem of eigenvalues.
	extremums of functions and functionals. New-
	Research solutions. Selection and control of solu
	tion accuracy Dimensional
	Verification of models.
The use of computing in mathematical model-	The concept of computational experiment. Triad
ling.	"model-algorithm-program". Numerical simula-
	tion. A preliminary investigation of mathemati-
	cal models. Qualitative analysis. Dimensionless
	Exact solutions Algorithm solutions Program
	ming and problem solving software. Carrying

	out computer calculations and their analysis. Planning calculations. Processing calculation results. Refinement of computational models.
Mathematical modelling in problems of me- chanics of a deformable solid	Representation of a solid body as a continuum. Other simplifying hypotheses and assumptions. Elastic body Plastic body Internal forces, stress- es, deformations, displacements. Stress-strain state of a solid. Strain tensor, stress tensor and principal stress. Hooke's law as an equation of state. Static equilibrium equations and equilibri- um equations in motion. Compatibility equations of deformations. The expression of the change of energy. The formulation and solution of prob- lems of statics and dynamics of a rigid body. Two-dimensional and one-dimensional prob- lems of the theory of elasticity. Construction of mathematical models and solving problems of mechanics of liquids and gases. Ideal incom- pressible fluid. Viscous fluid. Perfect gas. Set- ting goals. Euler's equation for the motion of an ideal fluid. Tasks hydrostatics. Perfect fluid movement and viscous fluid movement. Navier- Stokes equation. Waves in liquid and gas.
Problems of finding the optimal solution and their mathematical modelling	Ideas involved in the construction of mathemati- cal models of optimization problems. Variation- al tasks. The formulation and solution of the Brachistochrone problem. The simplest prob- lems of finding the optimal solution and solving them mathematically. Tasks on the best size of a tincan.Economic tasks in construction. Mathematical programming. Modelling by goal function and constraint inequalities.

Ass. Professor at the Department of Civil engineering

E. M. Tupikova

M.I. Rynkovskaya

Engineering Academy

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment, Mechanics of materials and engineering structures,

The name of the discipline	Mathematical methods of experimental data
	processing
The scope of the discipline	4 CREDITS, ECTS (144 hours).
The summary of the discipline	Title of the sections (topics) of the discipline
	The summary of the sections (topics) of the dis-
	cipline:
Sample characteristics as random variables.	Discrete and continuous random variables.
Methods for presenting the results of experiments.	Selective characteristics. The laws of distribution of
	random variables. Computer simulation of a ran-
	dom variable with a given distribution law: normal
	and log-normal distribution, Poisson distribution,
	equal probability distribution.
Methods of dropping measurement errors.	Rule "3 Sigma." Criterion for Chouvenet. Cri-
	teria of Romanovsky, Irvin, Dickson, variational
	scale.
Methods for testing statistical hypotheses.	The concept of a parametric criterion. Power
Parametric and nonparametric criteria.	criterion. Confidence. Errors of the first and second
·	kind. The use of computer technology for the elimi-
	nation of erroneous values.
Eundamentals of ontimization Construction	The concent of the objective function the
of mathematical models	limitations of the area of decision-making The Bran-
of mathematical models.	don mothed Estimation of adoguacy of the con
	don method. Estimation of adequacy of the con-
	structed models.
Methods of decision-making in conditions of	Criteria for Wald, Laplace, Hurwitz, Se-Vidge,
uncertainty and multicriteria.	mixed criteria.
Ranking factors. Processing of survey results.	Ranking methods. Calculation of the coeffi-
	cient of concord.

Assistant at the Department of Civil engineering Gebre

Director at the Department of Civil engineering kovskaya

Т. Н.

The second M.I. Ryn-

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment, Mechanics of materials and engineering structures, **Built environment of smart city**

Name of the discipline	Modelling of construction processes
Scope of discipline	3 (108h)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
	1.1. Main stages of buildings construction
Main points of modelling of	1.2. Main points of design of various construction
construction processes	processes.
Modelling of underground	2.1. Underground construction process by slurry
construction processes	wall
	method
	2.2. Underground construction process by top-
	down
	method
	2.3. Construction of various types of foundations
	3.1. Various types of formwork systems and
	fields of
Modelling of cast-in-situ construction	their applications
processes	3.2. Technology of concrete works
	3.3. Concrete curing in various climatic condi-
	tions
Modelling of construction of high-rise	4.1. Construction of skyscrapers
buildings	4.2. Construction of tower buildings
	4.3. Construction of high-rise buildings by
	method of floor lift

Developer:

Associate Professor at the Department of Civil engineering \checkmark

M.I. Rynkovskaya

The

M.I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

<u>Civil Engineering and Built Environment,</u> <u>Mechanics of materials and engineering structures,</u> <u>Built environment of smart city</u>

Name of the discipline	Geometric Shaping and Analysis of Shells
Scope of discipline	3 3 Е (108 час.)
Discipline	e summary
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
General approach to composite materials	Composition of composite materials. Matrix,
	different types of matrix. Reinforcement of
	composite materials, types of reinforcement.
Classification of composites	Classification by the type of reinforcing filler,
	by the type of matrix, by designation, depend-
	ingon the type and location of fibers. Isotropic
	and anisotropic composite materials. Their
	advantages and disadvantages.
Fiberglass composites	Mechanical and physical properties, methods
	ofproduction. Application of fiberglass in civil
	engineering. Spatial structures made of fiber-
	glass.
Methods of strength calculations for struc-	Strength criteria for isotropic and anisotropic
tures made of composites.	composite materials. Mieses-Hill criterion.
	Zakharov–Malmeister criterion. Goldenblat–
	Kopnov criterion. Their graphical interpretation
	and range of application. The modified strength
	criterion.
Nanotechnologies for production of ad-	Types of nano-particles. Carbon nanoparticles:
vancedcomposite materials	fullerenes, nano-tubes, astralens and the other
	ones. Concrete modified with nanoparticles. In-
	fluence of nano-modification on physical and
	mechanical properties of concrete.

Developer: Ass. Professor at the Department of Civil engineering

Program Manager Ass. Professor at the Department of Civil engineering

allas S. L. Shambina

M.I. Rynkovskaya

M.I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

<u>Civil Engineering and Built Environment , Mechanics of materials and engineering</u> <u>structures, Built environment of smart city</u>

Name of the discipline	Problem solving techniques in Civil
_	Engineering
Scope of discipline	3 credits (108 h.)
Discipline	e summary
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Introduction	Science as a continuously evolving system of knowledge of objective laws of nature, society and thinking. The goal of science. Scientific research. Purposes of scientific research. The theoretical
	studies. Applied research. Technical and techno- logical development. The purpose of development. Scientific and technical information. The scientific direction. The scientific problem. The wording of the problem and making hypotheses. Scientific theme.
Experimental studies	The basics of methodology of experimental studies. Natural experiments. Artificial experiments. The computational experiments. Laboratory experiment. Full-scale experiment. Research (search) experi- ment. The goals and objectives of experimental re- search. Experiment planning. The planning matrix. Regression analysis. factorial experiment.
Development of technical and	Copyright. Patent law. The invention. Useful model.
technological solutions scientific and technical	An industrial design. Application for intellectual
problems	property object. Methods of preparing the patent ap-
	plication. A patent search
	Selection of unique. Criticism of peers. Selection of the prototype. Criticism of the prototype. Drawing description.
Processing and analysis of research results	Comparison of results of theoretical and ex-
	perimental studies. The matching criteria.
	Criteria of adequacy of theoretical and exper-
	imental dependencies. Mathematical processing of
	experimental data. Analysis of experimental results.
	Preparation of research results for publication and
	scientific periodicals. Scientific report. Abstract.
	Dissertation.

Associate Professor of the Department of Civil Engineering

M. I. Rynkovskaya

Director of the Construction Department

M. I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

<u>Civil Engineering and Built Environment , Mechanics of materials and engineering</u> <u>structures, Built environment of smart city</u>

Name of the discipline	Structural Design in Steel
Scope of discipline	3 credits (108 h.)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Calculation of the transverse frame of the steel	Determination of the loads and impacts acting on
framework of a multistory building	the transverse frame of the steel framework of a multistory building
	The overall calculation of the transverse frame of the steel framework of a multistory building based ona flat FE model. Analysis of the calculation re- sults. The overall calculation of the transverse frame of the steel framework of a multistory building based on the spatial model of the FE model.
Calculation of metal truss	 Total FE calculation of metal truss. Analysis of the calculation results. Selection of cross-sections and checking the strength of the elements of the metal truss. Investigation of the stress-strain state of metal truss's joints

Developer:

Associate Professor of the Department of Civil Engineering

M. I. Rynkovskaya

Program Manager

Associate Professor of the Department of Civil Engineering

M. I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment, Mechanics of materials and engineering structures,

Name of the discipline	Geometric Shaping and Analysis of Shells
Scope of discipline	3 credits (108 h.)
Discipline	summary
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Classification and forms of spatial structures	- Planar designs. Classification and forms of
	spatial structures. Signs of static shaping. Kine-
	matic surfaces.
On the design and construction of spatial	- Structures working "on the span", rigid shells,
structures	regular systems, suspended roofs, transforming
	systems, air-supporting and air-suspended struc-
	tures. Tent structures. Structural concept. Pro-
	duction, transportation and construction of spa-
	tial systems.
Shells of Revolution	- Spherical shell. Shells in the form of a single-
	cavity hyperboloid of revolution. Paraboloid and
	ellipsoid of revolution. Circular torus Pseudo-
	sphere. Catenoid. Globoid. A drop. The mating
	surfaces of coaxial cylinder and cone.
Ruled shells of zero Gaussian curvature	- Conical, cylindrical and torse shells. Build
	torse developments. Replacement of cylinders,
	cones and torse surfaces folds. Surfaces of the
	equal slope.
Ruled shells of negative Gaussian curvature	- Hyperbolic paraboloid. Conoids. Cylindroids.
	5 types of ruled nelicoids. Ruled rotary and spi-
Cruchia guarfa esg	Champel surfaces. Normal surfaces.
Cyclic surfaces	- Channel surfaces. Normal cyclic surfaces. Cy-
	surfaces with circles in the planes of the bunch
Kinematic surfaces	- Direct transfer surfaces Rotative and spiroid
Ismematic surfaces	surfaces.
Umbrella surfaces and umbrella type sur-	- Wavy type and wavy surfaces. Corrugated sur-
faces	faces. Corrugated products. Umbrella domes on
	the cone. Reinforced concrete, metal, tent um-
	brella shells.

Minimal surfaces	- Minimal surfaces strung on a rigid support con-
	tour. Dome structures made of plastic.
Helicoidal and helical shape shells. Shells in	- Ordinary screw surfaces. Screw surface vari-
the form of spiral and spiral shape surfaces.	able pitch. Cyclic surface in the cylinder. Helical
	surfaces with generatrix in the planes of the
	bunch.
Membrane and cable coatings.	- Examples of built structures with membrane
	and suspended roofs.
Shells in the form of analytically indefinable	- Overview of the constructed structures Con-
surfaces	structive forms of wildlife and their influence on
	the development of fundamentally new spatial
	structures.
Spatial Composite Structures	- Smooth mating of two surfaces. Transforma-
	ble structures.
Geometrical Shaping of Shells (experimental	- Manufacturing models that demonstrate the
part)	methods of generating the middle surfaces of the
	shells.

Ass. Professor at the Department of Civil engineering

W.J. T.H. Gebre M.I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment,

Mechanics of materials and engineering structures,

Name of the discipline	Structural Design in Reinforced Concrete
Scope of discipline	3 credits (108 h.)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
The basic concepts of the design of reinforced	Historical background. Concrete and reinforced
concrete structures.	concrete. Advantages of reinforced concrete as
	a structural material. Design Codes. SI Units
	and shaded areas. Admixtures. Calculation ac-
	curacy. Introduction to Loads. Dead loads. Live
	loads. Environmental loads. Selection of De-
	sign loads. Calculation accuracy.
	Ultimate or nominal flexural moments. Crack-
	ing moment. Elastic stresses-concrete cracked.
	Design methods. Advantages of Strength De-
	sign. Elastic Stresses—Concrete Cracked.
Flexural and strength analysis of beams ac- cording ACI code.	Structural Safety. Derivation of beam expres-
	sions. Strains in Flexural Members. Balanced
	sections, tension-Controlled sections, and com-
	pression-controlled or brittle sections. Strength
	reduction or ϕ Factors. Minimum Percentage of
	Steel. Balanced steel percentage,
Analysis and Design of Beams (Single and	Analysis of T-beams. Design of T-beams. De-
Double Reinf; T-Beams; Continuous Beams)	sign of T-beams for negative moments. L-
	shaped beams. Load factors. Design of rectan-
	gular beams. Miscellaneous beam considera-
	tions. Determining steel area when beam di-
	mensions are predetermined. One-way slabs.

	Cantilever beams and continuous beams. Anal- ysis of Two-Way slabs with Beams. Design of two-way slabs by the ACI Code. Shear re- sistance of slabs. Depth limitations and stiff- ness requirements. Analysis of Two-Way slabs with Beams. Design of two-way slabs by the ACI Code. Shear resistance of slabs. Depth limitations and stiffness requirements.
Design of one-way slabs and Two- ways slabs.	Design of rectangular beam and one-way slabs. Two- ways slabs. Design of rectangular beams. Miscellaneous beam considerations. Determin- ing steel area when beam dimensions are prede- termined. One-way slabs. Cantilever beams and continuous beams Design of Doubly Reinforced Beams. Compression steel. Analysis of Two- Way slabs with Beams. Design of two-way slabs by the ACI Code. Shear resistance of slabs. Depth limitations and stiffness requirements. Distribution of Moments in slabs. Design of an interior flat plate. Placing of live loads. Transfer of moments and shears between slabs and col- umns.
Serviceability limit states of the structures (Deflec-	Importance of deflections. Control of deflections.
tion of Beams)	Calculation of deflections. Effective moments of
	deflections. Continuous-beam deflections. Types
	of cracks. Control of flexural cracks. ACI Code
	Provisions concerning cracks. Miscellane- ous cracks,
Shear and Torsion Design	Introductory Comments on Torsion Shear Stresses in Concrete Beams. Shear Strength of Concrete. Shear Strength of Members Subjected to Axial Forces. Shear cracking of reinforced concrete beam. Behavior of beams with web re- inforcement. ACI Code requirements. Design for Shear. Economical Spacing of Stirrups. Shear Friction and Corbels. Torsional reinforcing. Tor- sional moments that have to be considered in de- sign. Torsional moment strength. Torsional stresses. Design of torsional reinforcing. Addi- tional ACI Requirements
Bond, Development Lengths, and Splices.	Cutting off or bending bars. Bond stresses. De- velopment lengths for tension reinforcing. De- velopment lengths for welded wire fabric in ten- sion. Development lengths for compression bars. Critical sections for development length. Effect of combined shear and moment on development

	lengths. Effect of shape of moment Diagram on
	development lengths. Cutting off or bending
	bars. Bar splices in flexural members. Tension
	splices. Compression splices. Headed and me-
	chanically anchored bars.
Columns. Design of short columns subject to axial	Types of columns. Axial load capacity of col-
load and bending. Slender columns.	umns. Code requirements for cast-in-place Col-
	umns. Failure of tied and spiral columns. De-
	sign of axially loaded columns. Design formu-
	las. Comments on economical column design.
	Axial load and bending. The Plastic centroid.
	Use of interaction Diagrams. Design and analy-
	sis of eccentrically loaded columns using inter-
	action Diagrams. Shear in Columns. Slender-
	ness effects. Slender columns in nonsway and
	sway frames. ACI Code treatments of slender-
	ness Effects. Magnification of column mo-
	ments in nonsway and sway frames.
Footings	Design of wall footings. Plain concrete footings.
	Rectangular isolated footings. Combined foot-
	ings. Actual soil pressures. Allowable soil pres-
	sures. Design of square isolated footings. Foot-
	ings subjected to axial loads and moments. Load
	transfer from columns to footings. Footings sup-
	porting round or regular polygon-shaped col-
	umns.

Ass. Professor at the Department of Civil engineering

T.H. Gebre

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment,

Mechanics of materials and engineering structures,

Name of the discipline	Structural Design in Reinforced Concrete:
	Special Topics
Scope of discipline	3 credits (108 h.)
Discipline	summary
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
The basic concepts of the design of reinforced	Historical background. Concrete and reinforced
concrete structures.	concrete. Advantages of reinforced concrete as
	a structural material. Design Codes. SI Units
	and shaded areas. Admixtures. Calculation ac-
	curacy. Introduction to Loads. Dead loads. Live
	loads. Environmental loads. Selection of De-
	sign loads. Calculation accuracy.
	Ultimate or nominal flexural moments. Crack-
	ing moment. Elastic stresses-concrete cracked.
	Design methods Advantages of Strength De-
	sign Electic Strasses Concrete Creeked
	Sign. Elastic Stresses—Concrete Cracked.
Flexural and strength analysis of beams ac-	Structural Safety. Derivation of beam expres-
cording ACI code.	sions. Strains in Flexural Members. Balanced
	sections, tension-Controlled sections, and com-
	pression-controlled or brittle sections. Strength
	reduction or φ Factors. Minimum Percentage of
	Steel Balanced steel percentage.
	Steen Dulaneed Steer percentage,
Analysis and Design of Beams (Single and	Analysis of T-beams. Design of T-beams. De-
Double Reinf: T-Beams: Continuous Beams)	sign of T-beams for negative moments. L-
, , ,,	shaped beams. Load factors. Design of rectan-
	gular beams. Miscellaneous beam considera-
	tions. Determining steel area when beam di-
	mensions are predetermined. One-way slabs.
	Cantilever beams and continuous beams. Anal-
	ysis of Two-Way slabs with Beams. Design of

	two-way slabs by the ACI Code. Shear re- sistance of slabs. Depth limitations and stiff- ness requirements. Analysis of Two-Way slabs with Beams. Design of two-way slabs by the ACI Code. Shear resistance of slabs. Depth
	limitations and stiffness requirements. Design of rectangular beam and one-way slabs. Two- ways slabs. Design of rectangular beams.
Design of one-way slabs and Two- ways slabs.	Miscellaneous beam considerations. Determin- ing steel area when beam dimensions are prede- termined. One-way slabs. Cantilever beams and continuous beams Design of Doubly Reinforced Beams. Compression steel. Analysis of Two- Way slabs with Beams. Design of two-way slabs by the ACI Code. Shear resistance of slabs. Depth limitations and stiffness requirements. Distribution of Moments in slabs. Design of an interior flat plate. Placing of live loads. Transfer of moments and shears between slabs and col- umns.
Serviceability limit states of the structures (Deflec- tion of Beams)	Importance of deflections. Control of deflections. Calculation of deflections. Effective moments of Inertia. Long-Term deflections. Simple-Beam deflections. Continuous-beam deflections. Types of cracks. Control of flexural cracks. ACI Code Provisions concerning cracks. Miscellane- ous cracks,
Shear and Torsion Design	Introductory Comments on Torsion Shear Stresses in Concrete Beams. Shear Strength of Concrete. Shear Strength of Members Subjected to Axial Forces. Shear cracking of reinforced concrete beam. Behavior of beams with web re- inforcement. ACI Code requirements. Design for Shear. Economical Spacing of Stirrups. Shear Friction and Corbels. Torsional reinforcing. Tor- sional moments that have to be considered in de- sign. Torsional moment strength. Torsional stresses. Design of torsional reinforcing. Addi- tional ACI Requirements
Bond, Development Lengths, and Splices.	Cutting off or bending bars. Bond stresses. De- velopment lengths for tension reinforcing. De- velopment lengths for welded wire fabric in ten- sion. Development lengths for compression bars. Critical sections for development length. Effect of combined shear and moment on development lengths. Effect of shape of moment Diagram on development lengths. Cutting off or bending

	bars. Bar splices in flexural members. Tension
	splices. Compression splices. Headed and me-
	chanically anchored bars.
Columns. Design of short columns subject to axial	Types of columns. Axial load capacity of col-
load and bending. Slender columns.	umns. Code requirements for cast-in-place Col-
	umns. Failure of tied and spiral columns. De-
	sign of axially loaded columns. Design formu-
	las. Comments on economical column design.
	Axial load and bending. The Plastic centroid.
	Use of interaction Diagrams. Design and analy-
	sis of eccentrically loaded columns using inter-
	action Diagrams. Shear in Columns. Slender-
	ness effects. Slender columns in nonsway and
	sway frames. ACI Code treatments of slender-
	ness Effects. Magnification of column mo-
	ments in nonsway and sway frames.
Footings	Design of wall footings. Plain concrete footings.
	Rectangular isolated footings. Combined foot-
	ings. Actual soil pressures. Allowable soil pres-
	sures. Design of square isolated footings. Foot-
	ings subjected to axial loads and moments. Load
	transfer from columns to footings. Footings sup-
	porting round or regular polygon-shaped col-
	umns.

Ass. Professor at the Department of Civil engineering

W.J. T.H. Gebre M.I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program <u>08.04.01 Civil Engineering</u> <u>Design and Theory of Buildings and structures,</u> <u>Mechanics of materials and engineering structures,</u> <u>Built environment of smart city</u>

Name of the discipline	Structural dynamics
Scope of discipline	3 credit (108h)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
General information on the dynamics of de-	General concepts. Forces of inertia. The
formed systems	D'Alembert principle. The main types of dynamic
	load. Dynamic tasks, reduced to tasks of static cal-
	culation. Calculation of inertial loads
Hit	Dynamic factor
Oscillations of systems with <i>n</i> degrees of free-	Elastic natural oscillations of systems with
dom	one degree of freedom. Forced oscillations of sys-
	tems with one degree of freedom. Resonance. At-
	tenuation of vibrations. Elastic free oscillations of
	systems with several degrees of freedom.
Free oscillations of rod systems as systems	Free oscillations of beams as systems with
with distributed mass	distributed mass. Longitudinal oscillations of a rod
	with distributed mass. The method of displace-
	ments in problems on harmonic vibrations of rod
	systems. Free vibrations of rod systems with distrib-
	uted mass. Free oscillations of the Π-shaped frame.
Calculation of fatigue	Voltage variables. Stress cycle. Fatigue. Curve
	fatigue. Limit of endurance. The main factors affect-
	ing the value of the limit of endurance
Free oscillations of plates and shells	Free vibrations of rectangular plates. Oscilla-
	tions of cylindrical and spherical shells.

The

Associate Professor at the Department of Civil engineering kovskaya

M.I. Ryn-

The

M.I. Ryn-

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment,

Mechanics of materials and engineering structures,

Name of the discipline	Structural Stability
Scope of discipline	3 credits (108 h.)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
1. Concepts of structural stability	Definition of stability. Instability without large dis placements: Order and linearity of structural theo ries; First order theory of an axially loaded bar; Se cond order theory for Euler columns; Behaviour of geometrically imperfect columns; Behaviour of col umns with load perturbation. Instability with large displacements: Nonlinear mathematical model of a 2-bar truss; Solutions of governing equations; Types of instability for shallow and steep trusses.
2. Second order plane frame analysis	Members of a frame: Governing equations for a member and their solution. Member stiffness ma- trix: Exact stiffness coefficients; Limit expressions for the stiffness coefficients. Member load vector: Exact load coefficients; Limit expressions for the load coefficients. Algorithms for second order plane frame analysis. Limitations of second order analysis.
3. Single columns and column groups	Single columns: Boundary conditions for single col umns. Elastically supported single columns. Effec tive length and slenderness of columns. Linked Col umns. Columns in frames: Translation and rotation restraints at nodes; Single column with girder re straint and side-sway. Columns in portal frames. Columns in multistorey buildings. General method for the analysis of column stability in frames.

Assistant at the Department of Civil engineering

T.H, Gebre

WY. T.H, Gebre M. I. Rynkovskaya

Academy of Engineering

Department of Civil Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment,

Mechanics of materials and engineering structures,

Built environment of smart city

Name of the discipline	Project management	
The scope of the discipline	5 credits (180 h.)	
Summary of the discipline		
The name of the sections (topics) of the disci- pline	Summary of the sections (topics) of the discipline:	
1. Foundations of Project Management	Definition of a project. Nature of construction pro- jects. Project life-cycle. Principles of project man- agement. Project management functions.	
2. Project planning and scheduling	Scheduling process. Work breakdown structures. Scheduling techniques. Critical path method. Re- source management. Crashing.	
3. Project cost estimating	Planning and design. Project scope management. Elements of cost estimation. Estimating methods, project budgeting. Bidding.	
4. Performance measurement	Definition of performance. Performance issues in construction. Factors affecting project success. In- dustry reports. Performance measurement tools. key performance indicators.	

Developer:

<u>Ass. Professor</u> <u>Department of Civil engineering</u>

signature

Elsheikh A.M surname, initials

<u>Director</u> <u>Department of Civil engineering</u>

signature

Rynkovskaya M.I. surname, initials

Academy of Engineering

Department of Civil Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Name of the discipline	Digital technologies in construction
The scope of the discipline	4 credits (144 h.)
Summary of the discipline	
The name of the sections (topics) of the discipline	Summary of the sections (topics) of the discipline:
1. BIM Technology	Introduction to BIM process and integrated project de- livery. ND modelling. BIM software systems and guide- lines to choosing different BIM software systems.
2. Basic Modelling	Introduction of modelling environment and tools. Mod- elling approaches to producing plans, 3D models, views and sections of buildings. Modelling of building including basic and vital elements, production of plans, views and 3D models.
3. Advance Concepts	Model customizations, elements and materials. Creation of internal components, external elements, massing and site modelling. Elements visibility, visualization and walkthroughs.
4. Virtual and Augmented Reality	Virtual Reality vs. Augmented Reality. Applications of AR/VR in construction.

Developer:

<u>Ass. Professor</u> <u>Department of Civil engineering</u>

signature

Elsheikh A.M surname, initials

<u>Director</u> <u>Department of Civil engineering</u>

signature

Rynkovskaya M.I. surname, initials

Academy of Engineering

Department of Civil Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Name of the discipline	BIM-Technology in Construction Manage-
	ment
The scope of the discipline	4 credits (144 h.)
Summary of the discipline	
The name of the sections (topics) of the dis- cipline	Summary of the sections (topics) of the discipline:
1. BIM Technology	The concept of BIM. Project delivery methods and BIM implementation. Levels of Development (LOD). Applications in construction management.
2. Cloud-BIM for design/construction coordi- nation & clash detection	BIM for buildability scenario forecasting. Interference management. Clash detection.
3. Construction Planning and 4D Simulation	Construction planning. Elements to model location for scheduling tasks. 4D simulations.
4. Quantity Takeoff and Cost Estimating	Types of estimates. Conceptual estimate. Detailed estimate. Model-based calculation.

Developer:

<u>Ass. Professor</u> <u>Department of Civil engineering</u>

signature

Elsheikh A.M surname, initials

<u>Director</u> <u>Department of Civil engineering</u>

signature

Rynkovskaya M.I. surname, initials

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment, Mechanics of materials and engineering structures, **Built environment of smart city**

Name of the discipline	Optimization methods in Civil Engineering
Scope of discipline	3 3 Е (108 час.)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Introduction to optimization	Methods of Operations Research.
	Historical development.
Statement of optimization problem	Constrained and unconstrained optimization
	problems. Design Vector. Design Constraints
	constraint surface. Objective Function. Objec-
	tive Function Surfaces.
Classification of optimization problems	Classification Based on the Existence of Con-
	straints. Classification Based on the Nature of
	the Design Variables. Classification Based on
	the Physical Structure of the Problem. Classifi-
	cation Based on the Nature of the Equations In-
	volved.
	Single-variable optimization. Theorem of nec-
Classical optimization techniques	essary and sufficient condition.
	The necessary and sufficient conditions for the
Multivariable optimization with no con-	minimum or maximum of an unconstrained
straints	function of several variables

Developer:

Ass. Professor at the Department of Civil engineering

M.I. Rynkovskaya

Director at the Department of Civil engineering

M.I. Rynkovskaya

Academy of Engineering

ANNOTATION OF THE EDUCATIONAL DISCIPLINE

Educational program 08.04.01 Civil Engineering

Civil Engineering and Built Environment,

Mechanics of materials and engineering structures,

Name of the discipline	Building materials (special topic)
Scope of discipline	3 credits (108 h.)
Discipline summary	
The name of the sections (topics)	A summary of the sections (topics)
of the discipline	of the discipline:
Section #1.	1. Properties, structure and composition of
BASIC PROPERTIES OF BUILDING MATERIALS	building materials
	2. Physical properties and structural char-
	acteristics
	3. Mechanical properties.
Section #2. THERMAL INSULATION MATE-	1. Purpose and classification of thermal insu-
RIALS I part	lation materials
	2. Technical properties of heat-insulating ma-
	terials
Section No.3. THERMAL INSULATION	1. Inorganic heat-insulating materials and
MATERIALS 2 part	products.
	2. Organic thermal insulation materials and
	products.
Section #4. THERMAL INSULATION	1. Organic thermal insulation materials and
MATERIALS Part 3	products.
	2. Heat-insulating plastics
Section #5.	1. General provisions
MATERIALS FOR ROOFING	2. Rolled and mastic roofs
	Roofs made of sheet and piece materials
Section #6. PAINT AND VARNISH MATERIALS Part	1. Nomenclature and characteristics
1	2. Binders for paints
	3. Pigments

Section #7. PAINT AND VARNISH MATERIALS	 Pigments Fillers Diluents and solvents Types of paint compositions
Section #8. ACOUSTIC MATERIALS	 General information Sound-absorbing materials

Ass. Professor at the Department of Civil engineering

W. T.H. Gebre M.I. Rynkovskaya