Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

<u>Инженерная академия</u> (факультет/институт/академия)

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины <u>Автоматическое регулирование тепловых</u> двигателей

Рекомендуется для направления подготовки/специальности	
13.04.03 «Энергетическое машиностроение»	
(указываются код и наименование направления подготовки/специальности)	

Направленность программы (профиль)

Паро- и газотурбинные установки и двигатели

(наименование образовательной программы в соответствии с направленностью (профилем)

1. Цели и задачи дисциплины:

<u>Целью</u> преподавания дисциплины «Автоматическое регулирование тепловых двигателей» является приобретение студентами знаний о задачах, функциях, устройстве современных систем автоматического регулирования (САР) энергоустановок с двигателями внутреннего сгорания, а также об отличительных особенностях используемых систем, об обосновании их выбора и требованиях к разработке;

<u>Задачи</u> изучения дисциплины заключаются в необходимости усвоения студентами комплекса знаний по работе CAP: знание характеристик и физических основ процессов, определяющих работу составляющих системы «CAP - двигатель» и используемых для построения математической модели элементов системы.

2. Место дисциплины в структуре ОП ВО:

Дисциплина Автоматическое регулирование тепловых двигателей относится к вариативной части блока 1 учебного плана.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 Предшествующие и последующие дисциплины, направленные на формирование компетенций

No	Шифр и наименование	Предшествующие	Последующие дисциплины
Π/Π	компетенции	дисциплины	(группы дисциплин)
Униве	рсальные компетенции		
	Способность	Б1.О.03.07 Управление	Б1.О.02.02 Современные
	осуществлять поиск,	техническими системами	проблемы науки и
	критический анализ		производства в
	проблемных ситуаций		энергетическом
	на основе системного		машиностроении
	подхода, вырабатывать		
	стратегию действий		
	(УК-1)		
Общег	грофессиональные компет	енции	
	Способность	Б1.О.03.04 Теория	Б1.О.02.08 Проблемы
	формулировать цели и	паровых и газовых	снижения вредных выбросов
	задачи исследования,	турбин	ДВС
	выявлять приоритеты		Б1.В.01.ДВ.03.01 Спецглавы
	решения задач,		теории двигателей
	выбирать критерии		(конструкция)
	оценки (ОПК-1)		

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций: **универсальные компетенции (УК)**

- Способность осуществлять поиск, критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий (УК-1)

общепрофессиональные компетенции (ОПК)

- Способность формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать критерии оценки (ОПК-1)

В результате изучения дисциплины студент должен:

Знать: основы работы САР ДВС, физические основы проходящих процессов, характеристики энергоустановок с учетом специфики их применения, принципиальные особенности различных типов САР; элементную базу и основы построения САР.

Уметь: выявить регулируемые параметры и управляющие воздействия для условия надежной работы энергоустановки, выполнить сравнительный анализ и обосновать выбор схемы САР в зависимости от специфики назначения энергоустановки, выполнить необходимые расчеты и прогнозировать результаты целенаправленных изменений, внесенных в схему САР энергоустановки с учетом стоящих задач.

Владеть: теоретическими знаниями и практическими навыками для разработки САР ДВС.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 6 зачетных единиц.

Вид учебной работы		Всего	Семестры			
		часов	3	4		
Аудиторные занятия (всего)		86	54	32		
В том числе:		-	-	ı	-	-
Лекции		34	18	16		
Практические занятия (ПЗ)		34	18	16		
Семинары (С)						
Лабораторные работы (ЛР)		18	18	1		
Самостоятельная работа (всего)		103	72	31		
Контроль		27	18	9		
Общая трудоемкость	час	216	144	72		
	зач. ед.	6	4	2		

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

№	Наименование раздела дисциплины	Содержание раздела		
<u>π/π</u> 1.	Введение.	Понятие системы автоматического регулирования (САР). Совместная работа двигателей с потребителем. Основные		
2.	Двигатель как регулируемый объект.	определения и классификация САР. Характеристики дизелей и двигателей с искровым зажиганием. Характеристики потребителей энергии. Устойчивость работы двигателей. Фактор устойчивости. Уравнения движения дизеля с наддувом, двигателя без наддува и двигателя на холостом ходу.		
3.	Автоматические регуляторы частоты вращения.	Классификация автоматических регуляторов. Автоматические регуляторы прямого действия. Механические однорежимные, двухрежимные и всережимные регуляторы. Статические характеристики регуляторов. Степень неравномерности и степень нечувствительности регуляторов. Обеспечение всережимности регулирования. Уравнения движения регуляторов. Анализ уравнений движения и переходных процессов в регуляторах. Пневматические и гидравлические регуляторы. Регуляторы непрямого действия. Классификация. Функциональные схемы.		
4.	Системы автоматического регулирования (САР).	Функциональные схемы САР. Уравнения движения САР. Динамическое исследование		
		САР. Частотные характеристики САР и их		

		элементов. Устойчивость САР. Переходные процессы. Критерии устойчивости САР Рауза-Гурвица, А.В. Михайлова. Диаграмма И.А. Вышнеградского. Показатели качества работы САР.
5.	Синтез САР.	Синтез САР по устойчивости. Определение параметров автоматических регулятора при задании степени устойчивости. Определение параметров автоматических регулятора при заданном переходном процессе и регулируемом объекте.

5.2 Разделы дисциплин и виды занятий

No	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Семин	CPC	Bce-
Π/Π			зан.	зан.			го
							час.
1	Введение.	2	4			4	10
2	Двигатель как регулируемый объект.	8	8			30	46
3	Автоматические регуляторы частоты	14	12	18		40	84
	вращения.						
4	Системы автоматического	8	8			18	34
	регулирования (САР).						
5	Синтез САР.	2	2			11	15

6. . Лабораторный практикум

№	№ раздела	Наименование лабораторных работ	Трудо-
Π/Π	дисциплины		емкость
			(час.)
1.	3	Проведение инструкции по технике безопасности в	2
		лаборатории ДВС.	
2.	3	Устройство и работа автоматических регуляторов	2
		частоты вращения конструкции ЯМЗ и КАМАЗ.	
3.	3	Устройство и работа автоматических регуляторов	2
		частоты вращения конструкции типа РВ, В-2.	
4.	3	Устройство и работа автоматических регуляторов	2
		частоты вращения конструкции типа Д-6 и УТН-5.	
5.	3	Устройство и работа автоматических регуляторов	2
		частоты вращения конструкции R.Bosch.	
6.	3	Снятие регуляторных характеристик дизеля с	2
		всережимным регулятором.	
7.	3	Снятие регуляторных характеристик ТНВД с	2
		всережимным регулятором.	
8.	3	Снятие регуляторных характеристик ТНВД с	2
		двухрежимным регулятором.	
9.	3	Защита лабораторных работ	2

7. Практические занятия (семинары)

№	№ раздела	Тематика практических занятий (семинаров)	Трудо-
Π/Π	дисциплины		емкость
			(час.)

1	1	Регулятор Уатта. Статические и астатические	2
_	1	регуляторы. Регуляторы прямого и непрямого	_
		действия.	
2	1	Функциональные схемы САР.	2
3	2	Скоростные и нагрузочные характеристики дизеля и	2
		бензинового двигателя.	
4	2	Структурные схемы САР.	2
5	2	Решение дифференциального уравнения движения двигателя на примерах.	2
6	2	Расчет и построение амплитудно-фазовых характеристик двигателя.	2
7	3	Особенности конструкции двухрежимных и всережимных регуляторов.	2
8	3	Расчет восстанавливающей силы механического чувствительного элемента.	2
9	3	Расчет поддерживающей силы механического чувствительного элемента.	2
10	3	Анализ статических характеристик механического автоматического регулятора.	2
11	3	Расчет динамических характеристик механического автоматического регулятора.	2
12	3	Анализ динамических характеристик механического автоматического регулятора.	2
13	4	Анализ статических свойств САР двигателя с всережимным регулятором прямого действия.	2
14	4	Анализ динамических характеристик САР двигателя с всережимным регулятором прямого действия.	2
15	4	Критерии устойчивости Рауза-Гурвица.	2
16	4	Диаграмма И.А. Вышнеградского.	2
18	5	Определение параметров автоматического регулятора при задании степени устойчивости.	2

8. Материально-техническое обеспечение дисциплины:

- компьютерный класс для проведения расчетных работ
- мультимедийный проектор
- исследовательские двигательные установки ИДТ и УИТ
- топливный стенд для исследования топливных насосов высокого давления
- стенд для исследования электромагнитных форсунок

9. Информационное обеспечение дисциплины

а) программное обеспечение

Специализированное программное обеспечение проведения лекционных, лабораторных и практических занятий и самостоятельной работы студентов не предусмотрено.

Методические материалы для самостоятельной работы обучающихся и изучения дисциплины размещены в ТУИС РУДН в соответствующем разделе дисциплины.

б) базы данных, информационно-справочные и поисковые системы

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
 - Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru

- ЭБС Юрайт http://www.biblio-online.ru
- ЭБС «Консультант студента» www.studentlibrary.ru
- ЭБС «Лань» http://e.lanbook.com/
- 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

10. Учебно-методическое обеспечение дисциплины:

- а) основная литература
- 1. Деменков Н.П., Микрин Е.А. Управление в технических системах. М.: МГТУ им. Н.Э. Баумана, $2017 \frac{\text{http://baumanpress.ru/books/604/604.pdf}}{\text{Model of the model of th$
- 2. Крутов В.И. Автоматическое регулирование и управление двигателей внутреннего сгорания. Учебник для студентов вузов, обучающихся по специальности «Двигатели внутреннего сгорания». 5-е изд., перераб. и доп. М.: Машиностроение, 1989. 416 с: ил. ISBN:5-217-00341-3. http://lib.rudn.ru/MegaPro2/Web/SearchResult/ToPage/1
- 3. Смирнов С.В., Хамадиев А.А. Статический расчет механических регуляторов прямого действия.: Учебное пособие.-М.: РУДН, 20019.-60 с.: ил. ISBN 978-5-209-08925-4. http://lib.rudn.ru/MegaPro2/Web/SearchResult/ToPage/1
- 4. Смирнов С.В., Пономарева К.А. Исследование статических и динамических характеристик ДВС.: Методические указания.-М.: РУДН, 20019.-32 с. ил. ISBN 978-5-209-08921-6. http://lib.rudn.ru/MegaPro2/Web/SearchResult/ToPage/1
- б) дополнительная литература
- 1. Эммиль М.В. Автоматические регуляторы частоты вращения автомобильных и тракторных дизелей [Текст] : Учебное пособие / М.В. Эммиль. М. : Изд-во РУДН, 2007. 156 с. : ил. ISBN 978-5-209-02698-3 : 65.00. http://lib.rudn.ru/MegaPro2/Web/SearchResult/ToPage/1
- 2. Эммиль М.В. Методическое руководство к лабораторным работам по курсу «Регулирование двигателей внутреннего сгорания». М.: Изд-во РУДН, 2006. $88\,$ с. http://lib.rudn.ru/MegaPro2/Web/SearchResult/ToPage/1

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Организация занятий по дисциплине «Автоматическое регулирование тепловых двигателей» проводится по следующим видам учебной работы: лекции, практические и лабораторные занятия. Реализация компетентностного подхода в рамках направления подготовки 13.04.03 «Энергетическое машиностроение предусматривает сочетание в учебном процессе контактной работы с преподавателем и внеаудиторной самостоятельной работы обучающихся для более полного формирования и развития его профессиональных навыков.

Лекционные занятия проводится в поточной аудитории, в том числе с применением мультимедийного проектора в виде учебной презентации. Основные моменты лекционных занятий конспектируются магистрами, отдельные темы (части тем и разделов) предлагаются для самостоятельного изучения с обязательным составлением конспекта (проверяется преподавателем в процессе текущего контроля).

Целью практических и лабораторных занятий является получение магистрами знаний и выработка практических навыков работы в области тепловых двигателей. Для достижения этих целей используются традиционные формы работы — проведение исследований с помощью специализированных программ на компьютерах.

Групповая работа при анализе конкретной ситуации развивает способности проведения анализа и диагностики проблем. С помощью метода анализа конкретной ситуации у

обучающихся развиваются такие квалификационные качества, как умение четко формулировать и высказывать свою позицию, умение коммуницировать, дискутировать, воспринимать и оценивать информацию, поступающую в вербальной форме. Практические занятия проводятся в специальных аудиториях, оборудованных необходимыми наглядными материалами.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса, подготовка презентаций, выступление с докладами.

Самостоятельная работа осуществляется в индивидуальном формате на основе учебнометодических материалов дисциплины. Уровень освоения материала по самостоятельно изучаемым вопросам курса проверяется при проведении текущего контроля и аттестационных испытаний по дисциплине.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Материалы для оценки уровня освоения учебного материала дисциплины «Автоматическое регулирование тепловых двигателей» (оценочные материалы), включающие в себя перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, разработаны в полном объеме и доступны для обучающихся на странице дисциплины в ТУИС РУДН.

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Разработчики: Доцент департамента машиностроения должность, название кафедры	и приборострое	ния Подпись С	С.В. Смирнов инициалы, фамилия
Руководитель программы Доцент департамента машиностроения должность, название кафедры	и приборострое	ния подинсь	І.П. Ощепков инициалы, фамилия
Директор департамента машиностроения и приборостроения название кафедры	подпись	A.B.	Корнилова инициалы, фамилия