Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Факультет физико-математических и естественных наук

Рекомендовано МССН по направлению 04.00.00 «Химия»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины

ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ

Рекомендуется для направления подготовки/специальности 04.04.01 "XИМИЯ"

Направленность программы (профиль)

«ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ ХИМИЯ»

- 1. Цели и задачи дисциплины: Основной целью изучения основ физико-химического анализа в университетах является развитие научного мировоззрения, совершенствование навыков установления связей «состав свойство» в применении к сложным химическим системам, приобретение экспериментальных навыков изучения химических систем современными методами. Главными задачами курса являются: освоение теоретических основ, принципов физико-химического анализа на примере изучения основных типов диаграмм состояния одно- и многокомпонентных систем с различными свойствами, как исходных компонентов, так и веществ образующихся в системах; овладение методиками получения и анализа экспериментальных данных для изучения и построения диаграмм состояния различных систем, приобретение навыков практической работы с такими системами, как в лаборатории, так и в технологических условиях.
- **2. Место дисциплины в структуре ОП ВО:** Дисциплина «Физико-химический анализ» относится к вариативной части блока 1 (Модуль 1 "Неорганическая химия") учебного плана по направлению 04.04.01. Для успешного освоения дисциплины учащийся магистратуры обязан иметь базовые знания на уровне бакалавра.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 Предшествующие и последующие дисциплины, направленные на формирование компетенций

№ Шифр и наименование п/п компетенции	Предшествующие дисциплины	Последующие дисциплины
Универсальные компетенции		
УК-6 Способен определить и реализовать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки	Актуальные задачи современной химии Спектральные методы в неорганической химии Химия координационных соединений	Актуальные задачи современной химии Применение ПО в неорганическом эксперименте Термоаналитические методы в химии
	Резонансные методы в химии Электрохимические методы исследования Рентгендифракционные методы в неорганической химии Физические методы исследования веществ и материалов НИР Экспериментальные методы исследования в химии	Химия твердого тела Бионеорганическая химия НИР Преддипломная практика Экспериментальные методы исследования в химии
Профессиональные компетенции М-ПК-1-н Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области химии, химической технологии или смежных с химией науках	Спектральные методы в неорганической химии Химия координационных соединений Резонансные методы в химии Электрохимические методы исследования Рентгендифракционные методы в неорганической химии Физические методы исследования веществ и материалов НИР Экспериментальные методы исследования в химии	Применение ПО в неорганическом эксперименте Термоаналитические методы в химии Химия твердого тела Бионеорганическая химия НИР Преддипломная практика Экспериментальные методы исследования в химии

М-ПК-2-н Способен проводить	Спектральные методы в	Применение ПО в неорганическом
патентно-информационные	неорганической химии	эксперименте
исследования в выбранной	Химия координационных	Термоаналитические методы в
области химии и/или смежных	соединений	химии
наук	Резонансные методы в химии	Химия твердого тела
	Электрохимические методы	Бионеорганическая химия
	исследования	НИР
	Рентгендифракционные методы	Преддипломная практика
	в неорганической химии	Экспериментальные методы
	Физические методы	исследования в химии
	исследования веществ и	
	материалов	
	НИР	
	Экспериментальные методы	
	исследования в химии	

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Формируемые компетенции

Компетенции	Название компетенции	Составляющие компетенции		
УК-6	Способен определить и реализовать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки	УК-6.1. Оценивает свои ресурсы и их пределы (личностные, ситуативные, временные), оптимально их использует для успешного выполнения порученного задания. УК-6.2. Определяет приоритеты профессионального роста и способы совершенствования собственной деятельности на основе самооценки по выбранным критериям; УК-6.3. Выстраивает гибкую профессиональную траекторию, используя инструменты непрерывного образования, с учетом накопленного опыта профессиональной деятельности и динамично изменяющихся требований рынка труда		
М-ПК-1-н	Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области химии, химической технологии или смежных с химией науках	М-ПК-1-н-1. Составляет общий план исследования и детальные планы отдельных стадий, М-ПК-1-н-2. Выбирает экспериментальные и расчетнотеоретические методы решения поставленной задачи исходя из имеющихся материальных и временных ресурсов		
Способен проводить патентно- информационные исследования в выбранной области химии и/или смежных наук		М-ПК-2-н-1. Проводит поиск специализированной информации в патентно-информационных базах данных М-ПК-2-н-2. Анализирует и обобщает результаты патентного поиска по тематике проекта в выбранной области химии (химической технологии)		

В результате изучения дисциплины студент должен:

Знать: теоретические основы и современные подходы к решению вопросов в физико-химическом анализе; основные методы построения диаграмм состояния «состав свойство» для различных физико-химических систем; практическое значение построения диаграмм состояния для современной науки и техники; практические подходы к реализации задач физико-химического анализа в лабораторных и технологических условиях.

Уметь: извлекать информацию и проводить систематический анализ состояния физико-химических систем на основании диаграмм состояния «состав - свойство»; составлять диаграммы состояния на основании полученных экспериментальных и теоретических данных; прогнозировать состояние простых физико-химических систем, исходя из известных теоретических/экспериментальных данных; критически оценивать возможность использования полученных результатов в науке и технике.

Владеть: основными методиками исследования состояния физико-химических систем в различных условиях; методами накопления и первичной обработки экспериментальных данных; способами представления экспериментальных результатов; методами вторичной обработки экспериментальных результатов с целью получения практически значимых характеристик состояния физико-химической системы; навыками практической работы в этой области химии, как в лабораторных, так и технологических условиях.

4. Объём дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетных единиц.

Вид учебной работы		Всего	Модули			
		часов	4			
Аудиторные занятия (всего)	48	48				
В том числе:						
Лекции		24	24			
Практические занятия (ПЗ)	Практические занятия (ПЗ)					
Семинары (С)						
Лабораторные работы (ЛР)		24	24			
Самостоятельная работа (всего)		60	60			
Общая трудоемкость	час	108	108			
	зач. ед.	3	3			

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

№	Наименование	Содержание раздела
Π/Π	раздела	
	дисциплины	
1.	Введение	1.1. Физико-химический подход к изучению химических систем. Зависимости состав — свойство, состав — температура фазовых превращений. Принципы физико-химического анализа: свободы выбора, соответствия, непрерывности изменения свойств. Равновесные и неравновесные состояния системы. Развитие физико-химического анализа, его значение для практики и современное состояние.
2.	Однокомпонентные системы	2.1. Диаграммы состояния типа серы и воды. Термодинамическое описание кривых испарения, возгонки, плавления. Тройная точка. Полиморфизм, энантиотропия, монотропия. Правило фаз Гиббса. Применение правила фаз к однокомпонентным системам. Температуры плавления стабильных и метастабильных фаз.

		A 17 × 17 V D F 11
		Формула Клапейрона-Клаузиуса. Уравнение Вант-Гоффа для
		переходов газ – твердое тело. Критическая точка типа жидкость-
		пар. Правило фаз и поведение изохор на Т-Р диаграммах веществ с
		положительным и отрицательным объемным эффектом плавления.
		Приведённое уравнение Ван-дер-Ваальса, правило Максвелла,
		закон соответственных состояний.
3.	Двухкомпонентные	3.1. Диаграммы эвтектического типа с ограниченной
	системы	растворимостью на основе исходных компонентов. Метрические
		характеристики фазовых диаграмм и их классификация на основе
		правила фаз Гиббса. Точки нонвариантных равновесий, линии
		моновариантных равновесий, поля бивариантных равновесий.
		Условия равновесия двух фаз, метод общей касательной.
		Правило рычага.
		Критическая температура растворимости. Законы Коновалова.
		Энтальпия и энтропия смешения. Анализ возможных типов
		диаграмм состояния исходя из взаимного расположения кривых
		1 1
		свободной энергии фаз. Пути конденсации и кристаллизации.
		Системы с неограниченной растворимостью компонентов.
		Диаграммы типа «сигары». Расслоение растворов. Связь
		критической температуры расслоения с энергией смешения.
		Пересечение линии испарения с линией критических точек,
		ретроградная конденсация. Слабые растворы. Фазовые границы
		вблизи чистого вещества.
		3.2. Бертоллиды, дальтониды, твердые растворы. Характерные
		признаки дальтонидов и бертоллидов. Сингулярные точки.
		Сингулярность в зависимости свойств от состава у дальтонидов.
		Виды бертоллидов. Структурные особенности бертоллидов,
		правильная система точек. Реальные и мнимые соединения.
		Генеалогическое родство дальтонидов и бертоллидов. Примеры
		систем с дальтонидами и бертоллидами.
		Полиморфизм. Примеры полиморфных превращений. Двойные
		системы эвтектического типа с полиморфными превращениями
		компонентов. Основные типы диаграмм систем с различной
		кристаллической структурой компонентов, промежуточными
		соединениями и полиморфными модификациями: эвтектические,
		перитектические, монотектические, синтектические,
		метатектические, диаграммы с ретроградным плавлением.
		3.3. Системы с псевдокомпонентами (внутренними параметрами).
		Изоморфные превращения в системах с переменной валентностью.
		Превращения между аморфными фазами.
4.	Экспериментальные	4.1. Термический и дифференциально-термический методы анализа,
••	методы построения	микроструктурный анализ, рентгенофазовый анализ. Виды
	фазовых диаграмм	термограмм, дифрактограмм, микроструктуры для систем
	фазовых диаграмм	эвтектического типа с полиморфным превращением компонента, с
		образованием неограниченных твердых растворов, диаграмм
		состояния с ограниченными твердыми растворами эвтектического и
<u> </u>	Т	перитектического типов.
5.	Трехкомпонентные	5.1. Метод изображения состава: треугольник Розебома, отношение
	системы	высот. Метод «остатков» Скрейнемакерса. Правила рычага для
		концентрационного треугольника Гиббса (I и II правило Свенсона,
		правила касательной и секущей). Тройная диаграмма состояния
		эвтектического типа. Пространственные и плоскостные диаграммы

	системы. Построение полей кристаллизации методом				
	изотермических сечений. Поля первичной кристаллизации				
	индивидуальных компонентов, совместной кристаллизации двух				
	компонентов, плоскость тройной эвтектики. Изменение вида				
	элементов двойных систем при переходе в тройную систему.				
	Применение правила фаз Гиббса к тройным системам.				
	5.2. Тройные системы с образующимся химическим соединением.				
	Триангуляция. Симплексные треугольники. Квазибинарные разрезы.				
	Теорема Райнза. Построение конод. Правило креста. Простейшие				
	типы диаграмм состояния: система с непрерывными жидкими и				
	твердыми растворами, с бинодальной поверхностью, с				
	моновариантным эвтектическим равновесием, с моновариантным				
	перитектическим равновесием, с инвариантным эвтектическим				
	равновесием.				
	5.3. Системы без твёрдых растворов. Теорема Алкемаде. Проекции				
	диаграмм. Свойства треугольников Алкемаде. Основные типы				
	диаграмм состояния, пути кристаллизации, изотермические сечения:				
	система с одной тройной эвтектикой, с одной тройной перитекикой,				
	с двойной и тройной перитекикой, с двойным соединением,				
	имеющим только тройное поле кристаллизации.				
Четырех-	6.1. Диаграммы состояния четырёхкомпонентных систем. Особые				
компонентные	сечения и проекции концентрационного тетраэдра. Изотермические				
системы	тетраэдры. Пример системы с неограниченной растворимостью				
	компонентов в жидком и твердом состоянии – изотермические				
	сечения и пути кристаллизации. Теорема Палатника о				
	соприкосновении областей состояния и ее применение к двух- и				
	трехмерным сечениям диаграмм. Геометрические образы				
	равновесий различного числа фаз. Правило Палатника для				
	критических элементов фазовых диаграмм.				
	компонентные				

5.2. Разделы дисциплины и виды занятий

$N_{\underline{0}}$	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Семин	CPC	Bce-
п/п			зан.	зан.			ГО
11/11							час.
1.	Введение	2				1	3
2.	Однокомпонентные системы	4				9	13
3.	Двухкомпонентные системы	6		6		14	26
4.	Экспериментальные методы	4		6		9	19
	построения фазовых диаграмм						
5.	Трехкомпонентные системы	6		12		14	32
6.	Четырёхкомпонентные системы	2				13	15
	Всего	24		24		60	108

6. Лабораторный практикум

№	№ раздела	Наименование лабораторных работ	Трудо-
Π/Π	дисциплины		ёмкость
			(час.)

1.	3	Построение диаграммы плавкости двухкомпонентной системы с эвтектикой	6
2.	4	Использование методов дифференциально- термического, кристаллооптического и рентгенофазового анализов для построения диаграммы состояния двухкомпонентной системы	6
3.	5	Построение диаграммы растворимости тройной водносолевой системы по методам Скрейнемакерса и Гиббса-Розебома	12
	Всего		24

7. Практические занятия (семинары) не предусмотрены программой.

8. Материально-техническое обеспечение дисциплины:

- 1. ЛАТРы
- 2. Высокотемпературные муфельные электропечи СНОЛ-13
- 3. Химическая посуда
- 4. Стандартные термопары типа «ХА»
- 5. Термоанализатор SDT Q600
- 6. Дифрактометр рентгеновский ДРОН-7
- 7. Магнитные мешалки
- 8. Просвечивающий микроскоп
- 9. Персональный компьютер

9. Информационное обеспечение дисциплины

а) программное обеспечение

программный пакет Microsoft Office (Word, Excel, Power Point)

- б) базы данных, информационно-справочные и поисковые системы (открытый доступ):
- Интерактивный дополнительный сетевой справочный курс для самостоятельной работы по теме "Фазовые диаграммы" (http://www.soton.ac.uk/~pasr1/index.htm)
- Сетевая база данных и пособие по анализу химической термодинамики F*A*C*T (http://www.crct.polymtl.ca/fact/download.php)
 (http://www.crct.polymtl.ca/fact/download.php)
- Сетевые библиотеки:
 - 1. Большая Научная Библиотека (http://sci-lib.com/)
 - Каталог химических ресурсов на CHEMPORT.RU (http://www.chemport.ru/catalog_tree.php)
 - 3. Сайт о химии (http://www.xumuk.ru/)
 - 4. Список библиотек (доступ с ПК РУДН) (http://www.rad.pfu.edu.ru/licenzirovannye-resursy/tehnicheskie-i-estestvennye-nauki)
 - 5. Электронная библиотека РФФИ (http://www.elibrary.ru)

10. Учебно-методическое обеспечение дисциплины:

- а) основная литература:
 - 1. Аносов В.Я., Озерова М.И., Фиалков Ю.Я. «Основы физико-химического анализа» // М.: Наука.- 1976 (1978). 504 с.
 - 2. Т.Г. Баличева Физические методы исследования неорганических веществ. Учебное пособие для вузов. Под ред. А.Б.Никольского.// М.: Академия. 2006. 448 с.
 - 3. Практическое руководство по физико-химическим методам анализа. Учебное пособие. Под ред. И.П. Алимарина, В.М. Иванова.//М.: Изд-во МГУ. 1987. 204 с.
- б) дополнительная литература:
 - 1. Аносов В.Я., Погодин С.А. Основные начала физико-химического анализа// Л.: Изд-во АН СССР. 1947. 876 с.
 - 2. Ландау Л. Д., Лифшиц Е.М. Теоретическая физика. Учебное пособие для вузов: В 10-ти т. Т. 5, Ч.1: Статистическая физика. Под ред. Л.П.Питаевского. 5-е изд., стереотип. // М.: Физматлит, 2001. 616 с.
 - 3. В.П. Древинг, Я.А. Калашников. Правило фаз с изложением основ термодинамики. 2-е изд., перераб. и доп. // М.: Изд-во МГУ. 1964. 455 с.
 - 4. Диаграммы состояния систем тугоплавких оксидов: Справочник. Вып. 5. Ч. 2-4. Двойные системы. Отв. ред. Ф.Я. Галахов. // Л. : Наука. 1986, 1987,1988.

11. Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины «Физико-химический анализ» предполагается посещение студентами лекций, выполнение расчётно-графических и лабораторных работ, написание тестов. В конце семестра проводится промежуточный контроль в виде письменного экзамена.

Самостоятельная работа студентов включает в себя подготовку к этим видам работ и контроля.

Подготовка и выполнение лабораторных (расчётно-графических) работ

При выполнении лабораторных и расчётно-графических работ предварительно необходимо изучить соответствующие теоретические разделы лекционного курса «Физико-химический анализ». После получения конкретного задания следует провести необходимые предварительные расчёты. Изучить известную научную литературу, а также, пользуясь информационно-справочными и поисковыми системами, подготовится к выполнению лабораторного (расчётно-графического задания). Далее составить план работ по выполнению задания. Выполнить лабораторную (расчётно-графическую) работу и представить её результаты в форме подробного отчёта.

Оформление отчёта о выполнении лабораторной (расчётно-графической) работы

В отчёте должна быть подробно представлена подготовительная и экспериментальная работа студента.

Отчёт должен содержать следующие сведения:

- реферативные литературные данные и данные информационных источников по теме задания;
- расчёты, необходимые для проведения работы;
- план выполнения работы;
- подробное описание хода выполнения работы, с результатами промежуточных анализов;
- графическое представление результатов выполнения работы с аргументированными выводами из проделанной работы.

При оценке выполнения лабораторной (расчётно-графической) работы учитывается качество выполнения экспериментальной работы, уровень компетентности студента в решении задач поставленных в задании и обоснованность и полнота сделанных выводов по результатам выполнения работы.

Подготовка к решению тестов и прохождению промежуточной аттестации (экзамена).

При подготовке к решению тестов, а также прохождению промежуточной аттестации, студенты могут пользоваться лекционным материалом, основной и дополнительной литературой, а также рекомендуемыми информационными источниками. Для самоконтроля в процессе подготовки студент может использовать как предложенные вопросы по темам лекций, так и стандартные тесты, представленные в рекомендуемых интерактивных курсах.

При оценивании тестовых заданий учитывается количество правильных ответов. Оценка экзаменационного ответа подразумевает полноту ознакомления студента с теоретическим материалом по заданному вопросу и аргументированность ответа студента.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Материалы для оценки уровня освоения учебного материала дисциплины «Физикохимический анализ» (оценочные материалы), включающие в себя перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, разработаны в полном объеме и доступны для обучающихся на странице дисциплины в ТУИС РУДН.

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Разработчики:

Доцент кафедры неорганической химии

Фортальнова Е.А.

Руководитель программы

профессор,

кафедры органической химии

Варламов А. В.

Заведующий кафедрой неорганической химии

Хрусталев В.Н.