Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Факультет физико-математических и естественных наук

Рекомендовано МССН по направлению 04.00.00 «Химия»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины

НЕОРГАНИЧЕСКАЯ ХИМИЯ

Рекомендуется для направления подготовки

04.06.01 «ХИМИЧЕСКИЕ НАУКИ»

Направленность программы (профиль):

• Неорганическая химия

1.Цели и задачи дисциплины:

Цель дисциплины - подготовка высококвалифицированных специалистов, знающих современное состояние неорганической химии, ее роль в современном естествознании и материаловедении.

Задачи

- изучить фундаментальныеосновы методов получения неорганических соединений и материалов
- научиться интерпретировать собственные и опубликованные в литературе результаты на основе современных представлений о химической связи м реакционной способности неорганических соединений

2.Место дисциплины в структуре ООП:

Дисциплина *Неорганическая химия* относится к вариативной части блока "Дисциплины (модули)"

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО

Предшествующие и последующие дисциплины, направленные на формирование компетенций

No॒	Шифр и наименование	Предшествующие	Последующие дисциплины			
Π/Π	компетенции	дисциплины	(группы дисциплин)			
Униво	Универсальные компетенции					
1. УК-1 Способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при		История и философия науки Методология научных исследований Приоритетные				
	решении исследовательских и практических задач, в том числе в междисциплинарных областях	направления развития химии				
Проф	Профессиональные компетенции					
1.	ПК-1 Владение методологией теоретических и экспериментальных исследований в области химии, владение культурой научного исследования в области химии	Методология научных исследований Приоритетные направления развития химии				
2.	ПК-4 Способность применять фундаментальные научные знания в области химии и смежных наук при осуществлении преподавательской деятельности; владение методами преподавания и разработки учебно-методических материалов дисциплин в области химии	Методика преподавания химии в высшей школе				

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

В результате изучения дисциплины аспирант должен:

Знать:

-современное состояние науки и методы научно-исследовательской деятельности в области неорганической химии

Уметь:

- -критически оценивать современные научные достижения в сфере неорганической химии и в междисциплинарных областях
- -применять фундаментальные научные знания в области химии и смежных науках в преподавательской деятельности
- -планировать эксперимент, выбирая наиболее информативные методы исследования для решения конкретных задач, применяя экспериментальные и расчетно-теоретические методы.

Владеть:

- -методологией теоретических и экспериментальных исследований в области химии, т.е. методами синтеза неорганических соединений с заданными свойствами и современными инструментальными методами исследования их состава, строения и свойств
 - -культурой научного исследования
- -методами преподавания и разработки учебно-методических материалов дисциплин в области химии

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 6 ЗЕ

Вид учебной работы		Всего	Семестры			
		часов	3	4		
Аудиторные занятия (всего)	80	40	40			
В том числе:		-	ı	-	-	-
Лекции			40	40		
Практические занятия (ПЗ)						
Семинары (С)						
Лабораторные работы (ЛР)						
Самостоятельная работа (всего)		82	41	41		
Общая трудоемкость	час	216	108	108		
	зач. ед.	6	3	3		

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

Введение

Настоящая программа охватывает основополагающие разделынеорганической химии, ее теоретические основы (строение вещества, термодинамика и кинетика), химию элементов, свойства и методы синтеза основных классов неорганических соединений, а также методы их исследования.

Программа разработана экспертным советом Высшей аттестационной комиссии по химии (по неорганической химии) при участии Института общей и неорганической химии им. Н.С.Курнакова РАН и Московского государственного университета им. М.В.Ломоносова.

2. Фундаментальные основы неорганической химии

1.1. ПЕРИОДИЧЕСКИЙ ЗАКОН Д.И.МЕНДЕЛЕЕВА И СТРОЕНИЕ АТОМА.

Основные представления о строении атома. Волновая функция и уравнение Шредингера. Квантовые числа, радиальное и угловое распределение электронной плотности. Атомные орбитали (s-, p-, d- и f-AO), их энергии и граничные поверхности. Распределение электронов по AO. Принцип минимума энергии. Принцип Паули. Атомные термы, правило Хунда. Современная формулировка периодического закона, закон Мозли, структура Периодической Системы. Коротко- и длиннопериодный варианты Периодической таблицы. Периоды и группы.

Закономерности изменения фундаментальных характеристик атомов: атомных и ионных радиусов, потенциала ионизации, энергии сродства к электрону и электроотрицательности. Границы Периодической Системы. Перспективы открытия новых элементов.

Периодичности в изменении свойств простых веществ и основных химических соединений оксидов, гидроксидов, гидридов, галогенидов, сульфидов, карбидов, нитридов и боридов.

1.2. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ МОЛЕКУЛ.

Понятие о природе химической связи. Основные характеристики химической связи: длина, энергия, направленность, полярность, кратность. Основные типы химической связи.

Основные положения метода валентных связей (MBC). Гибридизация орбиталей. Направленность, насыщаемость и поляризуемость ковалентной связи. Влияние неподеленных электронных пар на строение молекул, модель Гиллеспи.

Основные положения метода молекулярных орбиталей (ММО). Двухцентровыедвухэлектронные молекулярные орбитали. Энергетические диаграммы МО гомоядерных и гетероядерных двухатомных молекул. Энергия ионизации, магнитные и оптические свойства молекул. Многоцентровые МО, гипервалентные и электронодефицитные молекулы. Принцип изолобального соответствия. Корреляционные диаграммы.

Ионная связь. Ионная модель строения кристаллов, образование ионных кристаллов как результат ненаправленности и ненасыщаемости ион-ионных взаимодействий. Ионный радиус. Основные типы кристаллических структур, константа Маделунга, энергия ионной решетки.

Межмолекулярное взаимодействие – ориентационное, индукционное и дисперсионное. Водородная связь, ее природа.

Введение в зонную теорию. Образование зон — валентной и проводимости из атомных и молекулярных орбиталей, запрещенная зона. Металлы и диэлектрики. Границы применимости зонной теории.

1.3. КОМПЛЕКСНЫЕ (КООРДИНАЦИОННЫЕ) СОЕДИНЕНИЯ.

Основные понятия координационной теории. Типы комплексных соединений по классификации лигандов, заряду координационной сферы, числу центральных атомов. Номенклатура комплексных соединений. Изомерия комплексных соединений.

Образование координационных соединений в рамках ионной модели и представлений Льюиса. Теория мягких и жестких кислот и оснований Пирсона, уравнение Драго-Вейланда. Устойчивость комплексов в растворах и основные факторы, ее определяющие. Константы устойчивости комплексов. Лабильность и инертность. Энтропийный вклад в энергетическую устойчивость комплексов, сольватный эффект, хелатный эффект, правила циклов Л.А.Чугаева.

Природа химической связи в комплексных соединениях. Основные положения теории кристаллического поля (ТКП). Расщепление d- орбиталей в октаэдрическом и тетраэдрическом поле. Энергия расщепления, энергия спаривания и энергия стабилизации кристаллическим полем. Спектрохимический ряд лигандов. Понятие о теории Яна-Теллера, тетрагональное искажение октаэдрических комплексов.

Энергетическая диаграмма МО комплексных соединений. Построение групповых орбиталей и их взаимодействие с орбиталями центрального атома, σ - и π -донорные и акцепторные лиганды. Использование ТКП и ММО для объяснения оптических и магнитных свойств комплексных соединений. Диаграммы Танабэ-Сугано для многоэлектронных систем.

Карбонилы, металлокарбены, металлоцены, фуллериды. Комплексы с макроциклическими

лигандами. Полиядерные комплексы. Изо- и гетерополисоединения. Кластеры на основе переходных и непереходных элементов. Кратные связи металл-металл, понятие о δ-связи.

Механизмы реакций комплексных соединений. Реакции замещения, отщепления и присоединения лиганда, окислительно-восстановительные реакции. Взаимное влияние лигандов в координационной сфере. Транс-влияние И.И. Черняева, цис- эффект А.А. Гринберга. Внутрисферные реакции лигандов.

Применение комплексных соединений в химической технологии, катализе, медицине и экологии.

1.4. ОБЩИЕ ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ.

Основные понятия и задачи химической термодинамики как науки о превращениях энергии при протекании химических реакций. Термодинамическая система, параметры и функции состояния системы. Первый закон термодинамики. Внутренняя энергия и ее изменение при химических и фазовых превращениях. Энтальпия. Стандартное состояние и стандартные теплоты химических реакций. Теплота и энтальпия образования. Закон Гесса. Энергии химических связей. Теплоемкость, уравнение Кирхгофа.

Обратимые и необратимые процессы. Второй закон термодинамики. Энтропия и ее физический смысл, уравнение Больцмана. Стандартная энтропия. Зависимость энтропии от параметров состояния. Энергия Гиббса. Направление химических процессов, критерии самопроизвольного протекания реакций в изолированных и открытых системах. Химический потенциал. Условие химического равновесия, константа равновесия. Изотерма химической реакции. Фазовые равновесия, число степенией свободы, правило фаз Гиббса. Фазовые диаграммы одно- и двухкомпонентных систем.

Скорость химической реакции, ее зависимости от природы и концентрации реагентов, температуры. Порядок реакции. Константы скорости и ее зависимость от температуры. Уравнение Аррениуса. Энергия активации и понятие об активированном комплексе. Обратимые реакции. Закон действующих масс. Влияние катализатора на скорость реакции. Гомогенный и гетерогенный катализ. Понятие о цепных и колебательных реакциях.

1.5. РАСТВОРЫ И ЭЛЕКТРОЛИТЫ.

Современные представления о природе растворов. Особенности жидких растворов. Порядок в жидкостях, структура воды и водных растворов. Специфика реакций в водных и неводных растворах.

Теория электролитической диссоциации. Ионное произведение воды и его зависимость от температуры. Водородный показатель рН, шкала рН. Кислоты и основания. Протолитическая теория Бренстеда-Лоури. Сопряженные кислоты и основания. Гидролиз. Современные взгляды на природу кислот и оснований.

Сильные и слабые электролиты. Зависимость степени электролитической диссоциации от концентрации, температуры, природы растворителя, посторонних электролитов. Закон разбавления Оствальда. Основные понятия теории сильных электролитов Дебая и Хюккеля.

Произведение растворимости. Динамическое равновесие в насыщенных растворах малорастворимых сильных электролитов и факторы, его смещающие.

Электрохимические свойства растворов. Сопряженные окислительно-восстановительные пары. Электродный потенциал. Окислительно-восстановительные реакции и их направление. Уравнение Нернста. Диаграммы Латимера и Фроста. Электролиз.

Коллигативные свойства растворов электролитов и неэлектролитов. Изотонический коэффициент. Закон Рауля. Криоскопия и эбулиоскопия, осмос.

1.6. Основы и методы неорганического синтеза.

Прямой синтез соединений из простых веществ. Реакции в газовой фазе, водных и неводных растворах, расплавах. Метод химического осаждения из газовой фазы, использования надкритического состояния. Золь-гель метод. Гидротермальный синтез. Твердофазный синтез и его особенности; использование механохимической активации. Химические транспортные реакции для синтеза и очистки веществ. Фотохимические и электрохимические методы синтеза. Применение вакуума и высоких давлений в синтезе. Основные методы разделения и очистки веществ. Методы выращивания монокристаллов и их классификация.

3. Химия элементов

2.1. Химия s-элементов.

Положение s-элементов в Периодической системе, особенности электронной конфигурации. Характерные степени окисления.

<u>Водород.</u> Особое положение водорода в Периодической системе. Изотопы водорода. Орто- и пара- водород. Методы получения водорода. Физико-химические свойства водорода. Гидриды и их классификация. Окислительно-восстановительные свойства водорода. Вода — строение молекулы и структура жидкого состояния. Структура льда, клатраты. Пероксид водорода, его получение, строение и окислительно-восстановительные свойства.

<u>Элементы группы IA.</u> Общая характеристика группы.* Основные классы химических соединений – получение и свойства. Нерастворимые соли. Особенности химии лития. Применение щелочных металлов и их соединений.

<u>Элементы группы IIA.</u> Общая характеристика группы.* Основные классы химических соединений — получение и свойства. Особенности комплексообразования металлов. Особенности химии бериллия, магния и радия. Сходство химии бериллия и лития. Применение бериллия щелочноземельных металлов и их соединений.

2.2. Химия р-элементов.

Положение р-элементов в Периодической системе. Особенности электронной конфигурации. Характерные степени окисления. Металлы, неметаллы, металлоиды среди р-элементов. Закономерности в изменении свойств во 2 и 3 периодах.

<u>Элементы группы IIIA.</u> Общая характеристика группы.* Особенности химии бора. Бороводороды, комплексные гидробораты, кластерные соединения бора, боразол, нитрид бора: особенности их строения и свойств.

Оксид алюминия. Алюминаты и гидроксоалюминаты. Галогениды алюминия. Комплексные соединения алюминия. Сплавы алюминия. Алюмотермия. Амфотерность оксидов галлия, индия и таллия. Особенности химии Tl(I). Применение бора, алюминия, галлия, индия и таллия и их соединений.

<u>Элементы группы IVA.</u> Общая характеристика группы.* Особенности химии аллотропных модификаций углерода. Фуллерены и их производные. Нанотрубки. Карбиды металлов. Синильная кислота, цианиды, дициан. Роданостоводородная кислота и роданиды. Сероуглерод. Фреоны и их применение. Оксиды углерода. Карбонилы. Карбонаты.

Оксиды кремния, германия, олова и свинца. Кварц и его полиморфные модификации. Кремниевая кислота и силикаты. Галогениды. Кремнефтористоводородная кислота. Карбид кремния. Комплексные соединения олова и свинца. Применение простых веществ и соединений элементов группы IVA. Понятие о полупроводниках. Свинцовый аккумулятор.

<u>Элементы группы VA.</u> Общая характеристика группы.* Закономерности образования и прочность простых и кратных связей в группе. Особенности химии азота. Проблема связывания молекулярного азота. Особенности аллотропных модификаций фосфора.

Гидриды элементов группы VA: получение, строение молекул, свойства. Соли аммония. Жидкий аммиак как растворитель. Гидразин, гидроксиламин, азотистоводородная кислота. Галогениды элементов группы VA, получение и гидролиз.

Кислородные соединения азота. Особенности химии NO и NO₂. Азотная, азотистая кислоты и их соли: получение, свойства и окислительно-восстановительная способность. Диаграмма Фроста для соединений азота.

Кислородные соединения фосфора: оксиды, кислоты и их соли. Сравнение свойств кислот фосфора в разных степенях окисления. Конденсированные фосфорные кислоты и полифосфаты. Оксиды мышьяка, сурьмы и висмута, кислородосодержащие кислоты мышьяка и сурьмы и их соли. Сравнение силы кислот в группе. Сульфиды и тиосоли.

Применение простых веществ и соединений элементов VA группы. Удобрения.

<u>Элементы группы VIA</u> Общая характеристика группы.* Особенности химии кислорода. Строение молекулы кислорода, объяснение ее парамагнетизма. Озон и озониды. Аллотропные модификации серы и их строение.

Классификация оксидов. Простые и сложные оксиды, нестехиометрия оксидов. Гидроксиды и кислоты. Пероксиды, супероксиды.

Сероводород и сульфиды. Полисульфиды. Сульфаны. Оксиды серы, кислоты и их соли.

Политионовые кислоты и политионаты. Кислородные соединения селена и теллура. Сравнение силы, устойчивочти и окислительно-восстановительных свойств кислородных кислот в группе.

Галогениды серы, селена и теллура.

Применение простых веществ и соединений элементов VIA группы.

<u>Элементы группы VIIA.</u> Общая характеристика группы.* Особенности химии фтора и астата. Окислительные свойства галогенов. Взаимодействие галогенов с водой.

Галогеноводороды. Получение, свойства. Закономерность изменения свойств галогенводородных кислот в группе. Классификация галогенидов. Межгалогенные соединения: строение и свойства.

Кислородные соединения галогенов. Особенности оксидов хлора. Кислородсодержащие кислоты галогенов и их соли. Сопоставление силы, устойчивости и окислительновосстановительных свойств кислот кислородных кислот галогенов, диаграмма Фроста для галогенов.

Применение галогенов и их соединений.

<u>Элементы группы VIIIА.</u> Общая характеристика группы.* Соединения благородных газов и природа химической связи в них. Гидраты благородных газов. Фториды и кислородные соединения благородных газов. Применение благородных газов.

2.3. Химия d-элементов.

Положение d-элементов в Периодической системе. Электронное строение и основные степени окисления. Способность d-элементов к комплексообразованию. Закономерности изменения свойств d-металлов в 4, 5 и 6 периодах. Природа d-сжатия и ее следствия.

<u>Элементы группы IIIБ.</u> Общая характеристика группы.* Оксиды, гидроксиды и фториды металлов IIIБ группы — получение и свойства. Комплексные соединения. Сопоставление химии элементов IIIА и IIIБ групп. Применение металлов и их соединений.

<u>Элементы группы IVБ.</u> Общая характеристика группы.* Оксиды и гидроксиды титана и циркония. Титанаты и цирконаты. Соли титанила и цирконила. Галогениды. Способность к комплексообразованию. Закономерности в стабильности различных степеней окисления. Влияние лантаноидного сжатия на свойства гафния. Сопоставление металлов IVAи IVБ групп. Применение титана и циркония и их соединений.

<u>Элементы группы VБ.</u> Общая характеристика группы.* Оксиды и галогениды. Ванадаты, ниобаты и танталаты. Способность к комплексообразованию и образованию кластеров. Закономерности в стабильности различных степеней окисления. Диаграмма Фроста для соединений ванадия. Сопоставление свойств соединений ванадия(V) и фосфора (V). Применение ванадия, ниобия и тантала и их соединений.

<u>Элементы группы VIБ.</u> Общая характеристика группы.* Оксиды, галогениды и сульфиды. Сравнение свойств хромовой, молибденовой и вольфрамовой кислот и их солей. Особенности комплексообразования. Кластеры. Бронзы. Поликислоты и их соли. Пероксиды. Окислительно-восстановительные свойства соединений хрома, закономерности в стабильности различных степеней окисления. Сопоставление химии элементов VIA и VIБ групп. Применение хрома, молибдена и вольфрама и их соединений.

<u>Элементы группы VIIБ.</u> Общая характеристика группы.* Кислородные соединения марганца, их кислотно-основные и окислительно-восстановительные свойства, диаграмма Фроста для соединений марганца. Стабильность соединений марганца в различных степенях окисления. Особенности химии технеция и рения. Рениевая кислота и перренаты. Сопоставление химии элементов VIIA и VIIБ групп. Применение марганца и рения.

<u>Элементы группы VIIIБ.</u> Общая характеристика группы* Обоснование разделения элементов на семейства железа и платиновые металлы.

Семейство железа: получение и физико-химические свойства железа, кобальта и никеля. Оксиды и гидроксиды, галогениды и сульфиды Соединения железа, кобальта и никеля в высших степенях окисления. Комплексные соединения, особенности комплексов с ${\rm d}^6$ конфигурацией центрального атома. Коррозия железа и борьба с ней. Применение железа, кобальта и никеля.

Платиновые металлы: Основные классы комплексных соединений платиновых металлов.

Оксиды и галогениды платиновых соединений. Применение платиновых металлов.

<u>Элементы группы ІБ.</u> Общая характеристика группы.* Оксиды, гидроксиды и галогениды. Изменение в устойчивости степеней окисления элементов в группе. Комплексные соединения. Сопоставление элементов ІА и ІБ групп. Применение меди, серебра и золота.

<u>Элементы группы IIБ.</u> Общая характеристика группы.* Особенности подгруппы цинка в качестве промежуточной между переходными и непереходными металлами. Оксиды, гидроксиды, галогениды и сульфиды. Амальгамы. Особенности соединений ртути в степени окисления +1. Способность к комплексообразованию и основные типы комплексов цинка, кадмия и ртути. Сопоставление с элементов IIA и IIБ групп. Применение цинка, кадмия и ртути.

2.4. Химия f-элементов.

Общая характеристика f-элементов.* Особенности строения электронных оболочек атомов. Лантанидное и актинидное сжатие. Сходство и различие лантаноидов и актиноидов. Внутренняя периодичность в семействах лантаноидов и актиноидов.

<u>Семейство лантаноидов.</u> Методы получения, разделения и физико-химические свойства металлов. Степени окисления элементов и закономерности их изменения в ряду. Основные классы химических соединений - получение и свойства. Комплексные соединения лантанидов. Особенности химии церия и европия. Сопоставление d- и f- элементов 3 группы. Применение лантаноидов.

<u>Семейство актиноидов</u>. Обоснование актиноидной теории. Методы получения и физикохимические свойства актиноидов. Особенности разделения актиноидов. Степени окисления актиноидов и закономерности их изменения в ряду. Основные классы химических соединений актиноидов — получение и свойства. Комплексные соединения актиноидов. Особенности химии тория и урана. Сопоставление актиноидов с d- элементами 6-го периода. Применение актиноидов и их соединений. Перспективы синтеза трансактиноидов.

- * Примечание. Общая характеристика группы включает в себя:
- 1) Положение группы в Периодической системе.
- 2) Электронная конфигурация атомов.
- 3) Изменение в группе основных атомных характеристик: размеров атомов, потенциалов ионизации, сродства к электрону, электроотрицательности.
- 4) Формы существования простых веществ, нахождение в природе, получение простых веществ из природных источников.
- 5) Изменение в группе основных физических и химических свойств простых веществ, основные характерные степени окисления.
- <u>3. Общие представления о физических методах исследования в неорганической химии</u> Дифракционные методы исследования: рентгенофазовый и рентгеноструктурный анализы, нейтронография, электронография.

Спектральные методы исследования: электронные спектры в видимой и УФ-области. Колебательная спектроскопия – ИК и комбинационного рассеяния. Спектроскопия ЭПР, ЯМР, ЯКР и γ – резонансные. EXAFS-спектроскопия. Спектроскопия циркулярного дихроизма.

Исследования электропроводности и магнитной восприимчивости. Исследования дипольных моментов. Импеданс-спектроскопия.

Оптическая и электронная микроскопия. Локальный рентгено-спектральный анализ.

Термогравиметрия и масс-спектрометрия.

Исследование поверхности методами рентгено- и фотоэлектронной спектроскопии, ожеспектроскопии и т.п.

5.2. Разделы дисциплин и виды занятий

No	Наименование раздела	Лекции	CPC	Всего
п/п				
1.	1.1.Периодический закон	2	4	6
	Д.И.Менделеева и строение атома			
2.	1.2.Химическая связь и строение	8	16	24
	молекул			
3.	1.3. Комплексные (координационные)	6	14	20
	соединения			
4.	1.4.Общие закономерности протекания	4	8	12
	химических реакций			
5.	1.5.Растворы электролитов	6	16	22
6.	1.6.Основы и методы неорганического	8	10	18
	синтеза			
7.	2.1.Химия s-элементов	6	10	16
8.	2.2.Химия р-элементов	10	14	24
9.	2.3.Химия d-элементов	12	18	30
10.	2.4.Химия f-элементов	8	10	18
11.	3.Общие представления о физических	10	16	26
	методах исследования в			
	неорганической химии			
	ВСЕГО	80	136	216

- 6. Лабораторный практикум: не предусмотрено учебным планом.
- 7. Практические занятия (семинары): не предусмотрено учебным планом.

8. Материально-техническое обеспечение дисциплины:

Мультимедийная аудитория или учебная аудитория с возможностью использования проектора и компьютерной техники для занятий по представлению презентационных материалов обучающимися. Компьютерные (дисплейные) классы с доступом к сети Интернет и электронно-образовательной среде Университета для проведения обучающимися самостоятельной работы и проведения компьютерного тестирования обучающихся (при необходимости).

Наименование специальных* помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения. Реквизиты подтверждающего
Москва, ул. Орджоникидзе, 3, корп.1 Учебная химическая лаборатория для проведения групповых занятий лекционного, семинарского и лабораторного типа, индивидуальных консультаций, самостоятельной работы: ауд. 614	Комплект специализированной мебели, доска меловая; специализированное оборудование химической лаборатории, химическая посуда, химические реактивы, ноутбук, имеется wi-fi	Документа Программа корпоративного лицензирования (Microsoft Subscription) Enrollment for Education Solutions (EES) № 56278518 от 23.04.2019 (продлевается ежегодно, программе присваивается новый номер)

9. Информационное обеспечение дисциплины

- а) программное обеспечение:
 - OC Windows, MS Office (программа корпоративного лицензирования (Microsoft Subscription) Enrollment for Education Solutions), браузер Firefox (лицензия MPL-2.0) или браузер Chrome (лицензия Google Chrome Terms of Service); Adobe Reader (Adobe Software License Agreement).
- б) базы данных, информационно-справочные и поисковые системы:

Учебно-научный информационный	http://lib.rudn.ru/	
библиотечный центр РУДН		
ЭБС РУДН	http://lib.rudn.ru/MegaPro/Web	
ЭБС "Университетская библиотека ONLINE"	http://www.biblioclub.ru	
Телекоммуникационная учебно-	http://esystem.pfur.ru/course/view.php?id=998	
информационная система (ТУИС) РУДН		
Портал фундаментального химического	http://www.chemnet.ru	
образования России		
Научная электронная библиотека eLibrary.ru	http://www.elibrary.ru/defaultx.asp	
Химическая энциклопедия	http://www.chemport.ru	
XuMuK: сайт о химии для химиков	www.xumuk.ru	
Базы данных, информационно-справочные и	www.webofscience.com	
поисковые системы:	http://www.scopus.com/	
IOPSCIENCE IOP Publishing	http://iopscience.iop.org/journals?type=archive	
Mendeley	http://www.mendeley.com/	
Nature	http://www.nature.com/siteindex/index.html	
Reaxys, Reaxys Medicinal Chemistry	https://www.reaxys.com/	
RSC, журналы Королевского химического	http://pubs.rsc.org/	
общества (Royal Society of Chemistry),		
ScienceDirect (ESD), «FreedomCollection», ИД	http://www.sciencedirect.com	
"Elsevier"		
SciFinder-n	https://scifinder-n.cas.org/	
SPRINGER	https://rd.springer.com/	
Wiley Online Library	www.wileyonlinelibrary.com	
Академия Google	https://scholar.google.ru/	

10. Учебно-методическое обеспечение дисциплины:

- а) основная литература
- 1. Ахметов Н.С. Общая и неорганическая химия СПб.:Лань, 2014. 743 с.
- 2. Угай Я.А. Общая и неорганическаяхимия. М.: Высшая школа, 2000. 527 с
- 3. Ю.Д. Третьяков и др. Неорганическаяхимия. Химия элементов. Кн.1. М.: Химия, 2001. 472 с.
- 4. Ю.Д. Третьяков и др. Неорганическаяхимия. Химия элементов. Кн.2. М.: Химия, 2001. 583 с.
- 5. Мартыненко Л.И., Спицын В.И. Избранные главы неорганической химии- М.: Изд-во МГУ, 1988. 254 с.

б). дополнительная литература

- 1. Молодкин А.К. Химия элементов IA-VIIIA групп. Учебное пособие для химических специальностей вузов. Изд-во РУДН, 2016, 2018. 182 с. http://lib.rudn.ru/MegaPro/UserEntry?Action=Rudn_FindDoc&id=448766&idb=0
- 2. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия 3-е изд. М. Химия, 1994. 592 с.
- 3. Молодкин А.К. Химия переходных элементов М: Изд-во РУДН, 2007. 365 с.

- 4. Мюллер У. Структурная неорганическая химия. Долгопрудный : Издательский Дом "Интеллект", 2010. 352 с.
- 5. Шрайвер Д. Неорганическаяхимия: В 2-х томах. Т. 1 / Д. Шрайвер, П. Эткинс; Пер. с англ. М.Г.Розовой; Под ред. В.П.Зломанова. М.: Мир, 2004. 679 с.
- 6. Шрайвер Д. Неорганическая химия: В 2-х томах. Т. 2 / Д. Шрайвер, П. Эткинс; Пер. с англ. М.Г.Розовой; Под ред. В.П.Зломанова. М.: Мир, 2004. 486 с.

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Технология процесса обучения по дисциплине «Неорганическая химия» включает в себя следующие образовательные мероприятия:

- аудиторные занятия (лекционно-семинарская форма обучения);
- организация самостоятельной образовательной деятельности аспирантов;
- контрольные мероприятия в процессе обучения и по его окончанию;
- организация и проведение консультаций;
- промежуточная аттестация.

Аудиторные занятия проводятся В интерактивной форме использованием мультимедийного обеспечения (ноутбук, проектор) и технологии проблемного обучения. Презентации позволяют качественно иллюстрировать практические занятия схемами, формулами, чертежами, рисунками. Кроме того, презентации позволяют структурировать материал занятия. Электронная презентация позволяет отобразить процессы в динамике, что позволяет улучшить восприятие материала.

Самостоятельная работа организована в соответствие с технологией проблемного обучения и предполагает следующие формы активности:

- самостоятельная проработка учебно-проблемных задач, выполняемая с привлечением основной и дополнительной литературы;
- поиск научно-технической информации в открытых источниках с целью анализа и выявления ключевых особенностей.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Материалы для оценки уровня освоения учебного материала дисциплины «Неорганическая химия» (оценочные материалы), включающие в себя перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, разработаны в полном объеме и доступны для обучающихся на странице дисциплины в ТУИС РУДН.

Luflemu

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Разработчики:

доцент кафедры неорганической химии

М.Г. Сафроненко

Заведующий кафедрой неорганической химии

В.Н. Хрусталёв