Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

<u>Инженерная академия</u> (факультет/институт/академия)

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины: «Теплообменные аппараты»					
Рекомендуется дл	ия направления подготовки/специальности				
	13.04.03 «Энергетическое машиностроение»				
	(указываются код и наименование направления подготовки/специальности)				
Направленность	программы (профиль)				
(uguyey	«Паро- и газотурбинные установки и двигатели» ование образовательной программы в соответствии с направленностью (профилем)				

- 1. Цели и задачи дисциплины: Целью освоения дисциплины «Теплообменные аппараты» является получение знаний, умений, навыков и опыта деятельности в области проектирования, исследования и эксплуатации теплообменных аппаратов, характеризующих этапы формирования компетенций и обеспечивающих достижение планируемых результатов освоения образовательной программы. Основными задачами дисциплины «Теплообменные аппараты» являются:
 - освоение студентами особенностей работы теплообменных аппаратов в энергетических установках;
 - формирование практических навыков по вопросам расчетов, конструирования, проектирования и исследования теплообменных аппаратов в энергетических установках.
 - изучение классификации и типов теплообменных аппаратов, основные соотношения для расчета теплообменных аппаратов, характер распределения температур и средний температурный напор в теплообменниках, расчет конечных температур теплоносителей в теплообменниках с прямоточной и противоточной схемой;

2. Место дисциплины в структуре ОП ВО:

Дисциплина «Теплообменные аппараты» относится к вариативной части Блока 1 учебного плана.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 Предшествующие и последующие дисциплины, направленные на формирование компетенций

		компетенции	
$\mathcal{N}_{\underline{0}}$	Шифр и наименование	Предшествующие	Последующие дисциплины
Π/Π	компетенции	дисциплины	(группы дисциплин)
Общек	ультурные компетенции		
1		Математическое	Современные проблемы науки
		моделирование тепловых	и производства в
		процессов	энергетическом
			машиностроении
2		Современные	Спец. главы эксплуатации
		энергетические	ПГТ
		технологии	
3		Методы испытаний	Практика по получению
		турбомашин	профессиональных умений и
			опыта профессиональной
			деятельности (Научно-
			исследовательская практика)
4		Когенерационные	Преддипломная практика
		установки на базе	
		тепловых двигателей	
		Современные	Государственная итоговая
5		компьютерные	аттестация
3		коммуникационные	
		технологии	
6		Спец главы теории	
U		тепловых двигателей	
Общеп	рофессиональные компете	енции	

Профессиональные компетенции (вид профессиональной деятельности)							
Профессионально-специализированные компетенции специализации							

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- Способностью управлять проектом на всех этапах его жизненного цикла (УК-2);
- Способностью анализировать, делать научные обобщения и выводы, выдвигать новые идеи, интерпретировать и представлять результаты научных исследований (ПК-3).

В результате изучения дисциплины студент должен:

Знать:

- методы решения задач оптимизации параметров различных систем теплообменных аппаратов;
- теоретические основы рабочих процессов в энергетических машинах, аппаратах и установках, методы расчетного анализа теплообменных аппаратов;
- знать современные технологии проектирования теплообменных аппаратов для разработки конкурентоспособных энергетических установок с прогрессивными показателями качества;
- современные достижения науки и передовых технологий в научно-исследовательских работах по созданию теплообменных аппаратов.

Уметь:

- применять методы решения задач оптимизации параметров различных систем теплообменных аппаратов;
- применять знание теоретических основ рабочих процессов в энергетических машинах, аппаратах и установках, методов расчетного анализа объектов профессиональной деятельности;
- применять современные технологии проектирования теплообменных аппаратов для разработки конкурентоспособных энергетических установок с прогрессивными показателями качества;
- применять современные достижения науки и передовых технологий в научно-исследовательских работах по созданию теплообменных аппаратов.

Владеть:

- навыками грамотного проектирования теплообменных аппаратов

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет зачетных единиц.

оощия грудовиковть дивциплины во		5a 10111bi	и один	ш.		
Вид учебной работы		Всего	Семестры			
		часов	5	6		
Аудиторные занятия (всего)		144	72	72		
В том числе:		-	-	-	-	-
Лекции			10	8		
Практические занятия (ПЗ)	Практические занятия (ПЗ)			16		
Семинары (С)						
Лабораторные работы (ЛР)			10	16		
Самостоятельная работа (всего)			42	32		
Общая трудоемкость	час	144	72	72		
	зач. ед.	4	2	2		

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	одержание разделов диси Наименование раздела	Содержание раздела (темы)		
Π/Π	дисциплины	содоржание раздена (темы)		
1.	Раздел №1.	Назначение, классификация ТА, жизненный цикл ТА. Принципы организации течения теплоносителей в аппаратах.		
2.	Раздел №2	Параметры, характеризующие тепловую эффективность аппаратов. Схемы течения теплоносителей, прямоток, перекрестный ток. Конструкции ТА Виды расчетов ТА. Основные элементы конструкции кожухотрубных аппаратов; компоновка трубных пучков; определение проходных сечений и скоростей теплоносителей. Тепловой, гидравлический, прочностной расчеты. Конденсационные установки паровых турбин. Общие сведения. Конструктивное оформление конденсатора. Насосы КУ. Тепловой расчет конденсатора. Методики гидродинамического расчета.		
3.	Раздел №3	Конструкции конденсатора. Расчет конденсатора и подогревателя. Общие сведения. Технические характеристики и типовые конструкции аппаратов. Тепловой и гидродинамический расчет аппаратов. Вопросы изготовления, монтажа и пуска в эксплуатацию ТА. Технологии изготовления элементов ТА. Пусковые испытания. Правила технической эксплуатации. Конденсационная установка. Подогреватели СРППВ. Подогреватели сетевой воды. Деаэрационная установка. Маслоохладители. Загрязнение и очистка ТА.		
4.	Раздел №4	Перспективные разработки по совершенствованию ТА ПТУ. Эффективность и надежность работы серийных ТА в условиях эксплуатации. Перспективные конструкции ТА ПТУ. Повышение вибрационной надежности. Перспективные поверхности теплообмена. Комплексное обоснование мероприятий по		
		совершенствованию ТА ПТУ.		

(Содержание указывается в дидактических единицах. По усмотрению разработчиков материал может излагаться не в форме таблицы)

5.2. Разделы дисциплин и виды занятий

$N_{\underline{0}}$	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Семин	CPC	Bce-
Π/Π			зан.	зан.			го
							час.
1.	Общие сведения о теплообменных	2	10	10		5	27
	аппаратах						
2.	Конструкция и расчет теплообменных	6	15	15		5	41
	аппаратов						
3.	Изготовление, монтаж и пуск в	3	10	10		5	28
	эксплуатацию теплообменных						
	аппаратов						
4.	Перспективные разработки по	1	3	3		5	12

совершенствованию теплообменных			
аппаратов			

6. Лабораторный практикум (при наличии)

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудо- емкость
11/11	дисциплины		(час.)
1.			

7. Практические занятия (семинары) (при наличии)

№ п/п	№ раздела дисциплины	Тематика практических занятий (семинаров)	Трудо- емкость
			(час.)
1.			

8. Материально-техническое обеспечение дисциплины:

(описывается материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)).

- учебная аудитория для проведения семинарских, практических занятий, текущего контроля и промежуточной аттестации;
- учебно-методическая аудитория для проведения практических занятий и лабораторных работ; «лаборатория термодинамики и тепломассообмена».

9. Информационное обеспечение дисциплины

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
- -Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
- -ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
- -ЭБС Юрайт http://www.biblio-online.ru
- -ЭБС «Консультант студента» www.studentlibrary.ru
- -ЭБС «Лань» http://e.lanbook.com/
- 2. Базы данных и поисковые системы:
- -электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
- -поисковая система Яндекс https://www.yandex.ru/
- -поисковая система Google https://www.google.ru/
- -реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Программное обеспечение:

Специализированное программное обеспечение проведения лекционных, практических занятий и самостоятельной работы студентов: не предусмотрено.

10. Учебно-методическое обеспечение дисциплины:

(указывается наличие печатных и электронных образовательных и информационных ресурсов)

- а) основная литература
- 1. Трухний А.Д., Ломакин Б.В. Теплофикационные паровые турбины и турбоустановки. Учебное пособие. [Электронный ресурс] https://www.studmed.ru/truhniy-ad-lomakin-bv-teplofikacionnye-parovye-turbiny-i-turboustanovki 8478e54a640.html
- 2. С.В. Цанев, В.Д. Буров, А.Н. Ремезов. Газотурбинные и парогазовые установки тепловых электростанций. [Электронный ресурс]

- б) дополнительная литература
- 1. Соколов В.С. Газотурбинные установки. [Электронный русурс] https://www.studmed.ru/sokolov-vs-gazoturbinnye-ustanovki f21ef400579.html
- 2. Капелович Б.Э. Эксплуатация паротурбинных установок [Электронный русурс] https://www.studmed.ru/kapelovich-be-ekspluataciya-paroturbinnyh-ustanovok e0f5252f2e3.html
- 3. Бессонный А.Н., Дрейцер Г.Л., Кунтыш В.Б. и др. Основы расчета и проектирования теплообменников воздушного охлаждения [Электронный русурс] https://www.studmed.ru/bessonnyy-an-dreycer-gl-kuntysh-vb-i-dr-osnovy-rascheta-i-proektirovaniya-teploobmennikov-vozdushnogo-ohlazhdeniya c6c32cdbf2b.html
- 4. Чичиндаев А.В. Оптимизация компактных пластинчато-ребристых теплообменников. Часть 2. Примеры расчета и справочные материалы [Электронный русурс] https://www.studmed.ru/chichindaev-av-optimizaciya-kompaktnyh-plastinchato-rebristyh-teploobmennikov-chast-2-primery-rascheta-i-spravochnye-materialy_f2f83747d8c.html

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Организация занятий по дисциплине «Переменные режимы установок с ПГТ» проводится по следующим видам учебной работы: лекции, лабораторные работы, практические занятия, самостоятельная работа студентов.

Реализация компетентностного подхода в рамках направления подготовки 13.04.03«Энергетическое машиностроение» предусматривает сочетание в учебном процессе контактной работы с преподавателем и внеаудиторной самостоятельной работы обучающихся для более полного формирования и развития его профессиональных навыков. Лекционные занятия проводятся в поточной аудитории, в том числе с применением мультимедийного проектора в виде учебной презентации. Основные моменты лекционных занятий конспектируются студентами, отдельные темы (части тем и разделов) предлагаются для самостоятельного изучения с обязательным составлением конспекта (проверяется преподавателем в процессе текущего контроля).

Целью практических занятий и лабораторных работ является получение студентами знаний и выработка практических навыков работы в области изучения особенностей расчета при проектировании и эксплуатации энергетических установок, работающих на переменном режиме. Для достижения этих целей используется выступление студентов с докладами на предложенные преподавателем темы, написание рефератов. Практические занятия и лабораторных работ проводятся в специальных аудиториях с оборудованием для показа видеоматериалов и презентаций.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса и выполнение реферата.

Самостоятельная работа осуществляется в индивидуальном формате на основе материалов из списка дополнительной литературы. Уровень освоения материала по самостоятельно изучаемым вопросам курса проверяется при проведении текущего контроля и аттестационных испытаний (экзамен) по дисциплине.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Материалы для оценки уровня освоения учебного материала дисциплины «Теплообменные аппараты» (оценочные материалы), включающие в себя перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, разработаны в полном объеме и доступны для обучающихся на странице дисциплины в ТУИС РУДН.

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Разработчики:		A	
Доцент департамента машиностроения должность, название кафедры	и приборостроения	Подпись	М.В. Синкевич инициалы, фамилия
Руководитель программы Доцент департамента машиностроения должность, название кафедры	и приборостроения	подпись	Ю.А. Антипов инициалы, фамилия
Директор департамента машиностроения и приборостроения название кафедры	подпись	Kof	А.В. Корнилова инициалы, фамилия