Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Арексиндови State Autono mous Educational Institution of Higher Education Должность: Ректор PEOPLES' ERIENDSHIP UNIVERSITY OF RUSSIA named after P. Lumumba Уникальный программный ключ: (RUDN University)

уникальный программный ключ: ca953a0120d891083f939673078ef1a989dae18a

Science faculty

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

NMR of organic compounds

course title

Recommended by the Didactic Council for the Education Field of:

04.04.01 «Chemistry»

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

«Fundamental and applied Chemistry»

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course "NMR of organic compounds" is to develop students' skills in establishing the structures of complex organic compounds by deciphering nuclear magnetic resonance spectra (hereinafter referred to as NMR) in the Trial program, allowing editing feeds. These skills are of great practical importance, since every synthetic chemist is faced with the task of establishing and proving the structure of the data obtained during the experiment. The greatest attention is paid to ¹H μ ¹³C NMR spectroscopy of organic compounds.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the discipline "NMR of organic compounds" is aimed at developing the following competencies (parts of competencies) among students:

Table 2.1. List of competences that students acquire through the course study

Competence code	Competence descriptor	Competence formation indicators (within this course)
M-PC-1-s	To be able to plan work and choose adequate methods for solving research problems in the chosen field of chemistry, chemical technology or sciences related to chemistry	M-PC-1-s-2. Selects experimental and computational-theoretical methods for solving the problem based on the available material and time resources
M-PC-2-s	To be able to conduct patent information research in the chosen field of chemistry and/or related sciences	M-PC-2-s-1. Searches for specialized information in patent information databases M-PC-2-s-2. Analyzes and summarizes the results of a patent search on the subject of the project in the selected field of chemistry (chemical technology)
M-PC-3-s	To be able to base on a critical analysis of the results of research and development, to assess the prospects for their practical application and the continuation of work in the chosen field of chemistry, chemical technology or sciences related to chemistry	M-PC-3-s-2. To determine possible directions for the development of work and prospects for the practical application of the results obtained

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course "NMR of organic compounds" refers to the *Electives* of block B1 of the higher educational programme curriculum.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Competence	Competence	Previous	Subsequent
code	descriptor	courses/modules*	courses/modules*
		Methods of Organic Chemistry	Undergraduate practice
	To be able to plan work and choose adequate methods	Theoretical organic chemistry The method of working	
	for solving research problems	with databases Fundamentals of	
M-PC-1-s	in the chosen field	biotechnology	
	of chemistry, chemical	Molecular spectral analysis	
	technology or sciences related to	Domino reactions in the synthesis of heterocycles	
	chemistry	Research work Experimental methods in the chemistry	
		Methods of Organic Chemistry	Undergraduate practice
		Theoretical organic chemistry	
	To be able to conduct patent	The method of working with databases	
M-PC-2-s	information research in the	Fundamentals of biotechnology	
	chosen field of chemistry and/or	Molecular spectral analysis	
	related sciences	Domino reactions in the synthesis of heterocycles	
		Research work Experimental methods in the chemistry	
M-PC-3-s	To be able to base on a critical analysis of the	Experimental methods in the chemistry	Mass spectrometry of organic compounds Research work
	results of research and development,		Undergraduate practice
	to assess the prospects for their		
	practical application and the		
	continuation of work in the chosen		
	field of chemistry, chemical		

Competence code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
	technology or sciences related to		
	chemistry		

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course is "NMR of organic compounds" is 3 credits.

Table 4.1. Types of academic activities during the periods of higher education

programme mastering (full-time training)

Type of academic activities		Total	Semesters			
		academic hours	1	2	3	4
Contact academic hours		54		54		
including:						
Lectures (LC)		36		36		
Lab Work (LW)		18		18		
Seminars (workshops/tutorials) (S)						
Self-studies		36		36		
Evaluation and assessment (exam/passing/failing grade)		18		18		
Course workload	academic hours_	108		108		
	credits	3		3		

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Modules	Themes	Types of academic activities
Section 1. Introduction	Theme 1.1. NMR spectroscopy and its place among physical methods for studying the processes and products of organic chemistry. Elements of the theory of the NMR phenomenon.	LC, LW
and theoretical foundations of the NMR	Theme 1.2. The history of the development of the method (I. Rabi, F. Bloch, E. Purcell). Spin	LC, LW
method	numbers and magnetic moment of atoms, Zeeman effect, Larmor frequencies.	
	Theme 1.3. Magnetic resonance conditions. Decay of free induction. Times of longitudinal and transverse relaxation.	LC, LW
Section 2. The structure of	Theme 2.1. Types of NMR spectrometers. Schematic diagram of the apparatus. Opportunities.	LC, LW
the NMR spectrometer	Theme 2.2. Description of the method of analysis, the output data obtained after the removal of the spectrum.	LC, LW
Section 3. Parameters of 1H and 13C NMR spectra	Theme 3.1. Solvents used, internal and external standards. Parameters of NMR spectra, their informative value. Width and intensity of the	LC, LW

Modules	Themes	Types of academic activities
	NMR line.	
	Theme 3.2. Integration. Chemical shift. Chemical shifts of 1H and 13C nuclei of organic molecules.	LC, LW
	Theme 3.3. The concept of the fine structure of the 1H and 13C NMR spectra, SSCC. Spin-spin interaction.	LC, LW
Section 4. NMR features of various classes of organic compound	Theme 4.1. Characteristic signals in proton and carbon spectra of alkenes, alkynes, arenes, carboxylic acids and carbonyl compounds. Their use to establish structure.	LC, LW
Section 5. Trial Program	Theme 5.1. Acquaintance and basic methods of working in Trial programs: Fourier transform of spectra, adjustment of phases of the 1st and 2nd orders, integration, correlation of signals, editing of spectra, etc.	LC, LW
Section 6. Decoding of 1H spectra of unknown compound	Theme 6.1. Transformation of 1H NMR fids for further work with the spectrum: determination of the spatial structure of organic compounds from the data	LC, LW
Section 7. Decoding of 13C spectra of unknown compounds	Theme 7.1. Transformation of 1H NMR fids for further work with the spectrum: determination of the spatial structure of organic compounds from 13C NMR data.	LC, LW
Section 8. Decoding the spectra of unknown compounds from the totality of NMR data.	Theme 8.1. Transformation of 1H NMR fids for further work with the spectrum: determination of the spatial structure of organic compounds from the totality of 1H and 13C NMR data, taking into account the SSCC values.	LC, LW

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
	A lecture hall for lecture-type	
Lastuma	classes, equipped with a set of specialised furniture; board	
Lecture	1 1	
	(screen) and technical means	
	of multimedia presentations.	
Lab work	A classroom for laboratory	A set of specialized furniture; specialized
	work, individual consultations,	chemical laboratory equipment: IR Fourier
	current and mid-term	spectrometer BRUKER "MPA", gas
	assessment; equipped with a	chromatography-mass spectrometer
	set of specialised furniture and	FOCUS-DSQ with a turbomolecular pump
	machinery.	250 1 / s, gas cylinder (helium), fume hood,

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
		air conditioning, computer, wi-fi available In NMR spectroscopy, the instruments of the Scientific and Educational Center for Collective Use of RUDN University are used: http://www.rudn.ru/index.php?pagec=5972 , http://ccp.rudn.ru/?pagec=940 Laboratory work is carried out in the building of the Center for Collective Use of RUDN University under the guidance of the staff of the center, who are equipped with Jeol "JNM-ECA 600" and Jeol "JNM- ECA 400" NMR spectrometers.
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment.	

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main reading:

1. Slikter Ch. Fundamentals of the theory of magnetic resonance.

Additional reading:

- 1. Zaitsev B.E. Fundamentals of NMR spectroscopy: Lecture notes / B.E. Zaitsev. M.: Publishing House of RUDN University, 2009.
- 2. Ernst R., Bodenhausen J., Vokaun A. NMR in one and two dimensions: TRANS. from English. ed. K. M. Salikhova, M.: Mir, 1990.
- 3. Sergeev N. M. NMR spectroscopy (for organic chemists): M.: Publishing house of Moscow State University, 1981.
 - 4. Deroum E. Modern NMR methods for chemical research. M.: Mir, 1992.
- 5. Günter H. Introduction to the course of NMR spectroscopy: TRANS. from English. M.: Mir, 1984.

Resources of the information and telecommunications network "Internet":

- 1. RUDN Electronic Library System (ELS) and third-party ELS, to which university students have access on the basis of concluded agreements:
- RUDN Electronic Library System RUDN EBS

http://lib.rudn.ru/MegaPro/Web http://lib.rudn.ru:8080/MegaPro/Web

Databases Scopus

https://www.scopus.com/

Databases Web of Science
 http://apps.webofknowledge.com/WOS GeneralSearch input.do?

product=WOS&search_mode=GeneralSearch&SID=N1cZ3JYEClUJdm14VTK&pre ferencesSaved=

- Organic Chemistry Portal http://www.organic-chemistry.org/
- Databases Reaxys https://www.reaxys.com/reaxys/secured/search.do
- 2. Databases and search engines:
- electronic fund of legal and normative-technical documentation http://docs.cntd.ru/
- Yandex search engine https://www.yandex.ru/
- Google search engine https://www.google.ru/
- abstract database SCOPUS

http://www.elsevierscience.ru/products/scopus/

Training toolkit for self- studies to master the course *:

- 1. A course of lectures on the discipline "NMR of organic compounds".
- 2. Laboratory workshop on the discipline "NMR of organic compounds".
- * The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (competences in part) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor of the Department of Organic Chemistry	Bylls	F. I. Zubkov
Position, Department	Signature	name and surname
HEAD OF EDUCATIONAL DEPA	ARTMENT:	
Organic Chemistry Department		L. G. Voskressensky
Name of Department HEAD	Signature	name and surname
OF HIGHER EDUCATION PROC	GRAMME:	
Dean of Faculty of Science, Head of the Department of Organic Chemistry	(paugerin	L. G. Voskressensky
Position, Department	Signature	name and surname