Документ подписан простой электронной подписью Информация о владельце: ФИО: Ястребов Олег Александрович Должность: Ректор

Дата подписания: 19.05.2023 12:25:31 Federal State Autonomous Educational Institution of Higher Education Уникальный программный ключ: ca953a0120d891083f939673078ef1a9 NAMED AFTER PATRICE LUMUMBA **RUDN University**

Agrarian-Technological Institute

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Bacterial diseases

course title

Recommended by the Didactic Council for the Education Field of:

35.04.04 Agronomy field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Integrated Plant Protection

higher education programme profile/specialisation title

1. THE PURPOSE OF MASTERING THE DISCIPLINE

The purpose of mastering the discipline "Bacterial Diseases" is to familiarize with the features of the structure, physiology and genetics of bacteria, the principles of their classification, the symptoms of plant lesions. Mastering methods of isolating pathogens from plant tissue into a pure culture, calculating their harmfulness and the magnitude of economic damage. Evaluation of integrated control techniques used in the fight against phytobacteriosis

2. REQUIREMENTS FOR THE RESULTS OF MASTERING THE DISCIPLINE

Mastering the discipline "Bacterial Diseases" is aimed at the formation of the following competencies (parts of competencies) among students:

Table 1 - The list of competencies formed by students during the development of the discipline(the results of mastering the discipline)OPK-1.2; OPK-4.2; PC-4.5; PC-4.6; PC-7.1; PC-7.2

Cipher	Competence	Competency Achievement Indicators
OPK-1	Able to solve the problems of	OPK-1.2 Uses methods of solving problems in
	development of the field of	the development of agronomy based on the
	professional activity and (or)	search and analysis of modern achievements of
	organization on the basis of	science and production
	analysis of the achievements of	
	science and production	
OPK-4	Able to conduct research, analyze	OPK-4.2 Uses information resources,
	results and prepare reporting	scientific, experimental and instrumental base
	documents	for research in agronomy
OPK-5	Capable of participating in	OPK-5.1 Participates in experimental research
	experimental research in	in the field of plant protection under the
	professional activities	guidance of a highly qualified specialist
		OPK-5.2 Uses classical and modern research
		methods in plant protection
PK-1	Ready to participate in agronomic	PK-1.1 Defines, under the guidance of a
	research, statistical processing of	higherly qualified specialist, research objects
	experimental results, formulation of	and uses modern laboratory, vegetation and
	conclusions	field research methods in agronomy

PK-6	Able to consult on innovative	PC-6.1. Able to work with information systems
	technologies in agronomy	and databases on agricultural production
		management
		PK-6.2. Able to aggregate the need to use plant
		protection technologies for accelerated
		development of agricultural enterprises
PK-7	Able to carry out phytosanitary	PC-7.1 Recognizes quarantine objects and
	control at the state border in order	identifies quarantine pests and pathogens
	to protect the territory of the	PC-7.2 Conducts examination of crops and
	Russian Federation from the	crop products for the presence of quarantine
	penetration of quarantine and other	facilities
	dangerous pathogens and plant	
	pests, weeds	

3. THE PLACE OF DISCIPLINE IN THE STRUCTURE OF THE OP VO

The discipline "BACTERIAL DISEASES" refers to the mandatory part of block B1 OP VO.

Within the framework of the OP HE, students also master other disciplines and / or practices that contribute to the achievement of the planned results of the development of the discipline "BACTERIAL DISEASES".

 Table 2 – List of components of the HE OP that contribute to the achievement of the planned
 results of the discipline

Cipher	Name of competence	Previous	Subsequent
		disciplines/modules,	disciplines/modules
		practices	, practices
OPK-1	Able to solve typical problems of	History and	Work experience
	professional activity on the basis of	methodology of	
	knowledge of the basic laws of	scientific agronomy	
	mathematical and natural sciences	Information	
	with the use of information and	Technologies	
	communication technologies	Instrumental	
		research methods	
OPK-4	Able to implement modern	History and	Plant Growing, Crop
	technologies and justify their use in	methodology of	Production Practice,
	professional activities	scientific agronomy	Production Practice

Technologies Instrumental research methods	Plant
Instrumental research methods	Plant
research methods	Plant
	Plant
OPK-5 Capable of participating in Agriculture, History Plant Growing,	
experimental research in professional and Methodology of Growing Practi	ce,
activities Scientific Agronomy Fundamentals of	f
Information Scientific Resea	ırch
Technologies in Agronomy,	
Instrumental Production Prac	tice
research methods	
PK-1 Ready to participate in agronomic Agriculture, History Crop production	1,
research, statistical processing of and Methodology of Fundamentals of	f
experimental results, formulation of Scientific Agronomy scientific resear	ch in
conclusions Information agronomy,	
Technologies Production prac	tice,
Instrumental Pre-diploma pra	ictice
research methods	
PK-7 Able to develop fertilizer application Soil science with the Crop	
systems taking into account soil basics of geology	
properties and biological	
characteristics of plants	
PK-11 Able to determine the total need for - Crop	
seed and planting material, fertilizers	
and pesticides	
PK-12Able to control the implementation ofAgricultureCrop	
the technological process of crop	
production	

4. THE SCOPE OF DISCIPLINE AND TYPES OF EDUCATIONAL WORK

The total labor intensity of the discipline "Bacterial Diseases" is 3 credit units (108 hours) for full-time education.

Table 4.1 – Types of educational work by periods of mastering the OP HE for full-time education

Type of educational work	Semesters

		Total, aca. hrs.	5	6
Contact work		60	60	-
including:				
Lectures (LC)		17	17	-
Laboratory works (LR)		17	17	-
Practical/Seminar Classes (FPs)		—	—	—
Independent work of students		48	48	-
Control (exam/test with grade)		26	26	-
Overall labor intensity of the discipline aca. hrs.		108	108	-
	Zach. Units.	3	3	-

Table 4.2. Types of educational work by periods of mastering the OP HE for <u>full-time</u> <u>and part-time</u> education

Type of educational work		TOTAL,	Semester(s)			
		aca.nrs.	1	2		
Contact work, ac.ch.		26	26			
Including:				ł		
Lectures (LC)		13	13			
Laboratory works (LR)		13	13			
Practical/Seminar Classes (FPs)						
Independent work of students, ac.ch.		57	57			
Control (exam /test with grade), ac.ch.		25	25			
Overall labor intensity of the discipline	aca.hrs	108	108			
	•					
	hrs.ed.	3	3			

Table 4. 3. Types of educational work by periods of mastering the OP HE for <u>part-time</u> education

Type of educational work		TOTAL,	Semester(s)		(s)	
		aca.hrs.	Winters.	Years.		
Contact work, aca.hrs.		30	30			
Including:						
Lectures (LC)		10	10			
Laboratory works (LR)		20	20			
Practical/Seminar Classes (FPs)						
Independent work of students, aca.hrs.		69	69			
Control (exam /test with grade), aca.hrs.		9	9			
Overall labor intensity of the discipline	aca.hrs.	108	108			
	hrs.ed.	3	3			

5. CONTENTS

Table 4 – Content of the discipline (module) by types of educational work

Name of the discipline	Contents	Type of
section		educational
		work
Section 1. Subject and tasks	Topic 1.1. History of the development and	LUX
of phytobacteriology	formation of science. Systematics of bacteria	
	by physiological and genetic signs.	

	Topic 1.2. Features of metabolism and	
	genetics of bacteria. Methods of penetration	
	of bacteria into plants and damage to plants,	
	symptoms of damage.	
	Topic 1.3. Interaction between a parasitic	
	bacterium and a host plant. Plant resistance	
	to bacterial pathogens and the factors that	
	determine it.	
	Topic 1.4. The relationship between bacteria	
	and other pests and pathogens of plant	
	diseases.	
	Topic 1.5. The economic importance of	
	phytobacteriosis: the economic	
	consequences of the defeat of crops, a	
	decrease in the quantity and quality of the	
	harvest of cultivated plants.	
Section 2. Morphology,	Topic 2.1. Features of respiration, enzymatic	LR, LC
physiology and genetics of	processes in various groups of bacteria.	
bacteria	Topic 2.2. Bacterial systematics, based on	
	physiological traits and DNA analysis,	
	characterizes the most pathogenic groups of	
	bacteria: Pseudomonas, Xanthomonas,	
	Erwinia, Agrobacter, and Clavibacter.	
Section 3. Biology	Topic 3.1. Interaction with the host plant:	LR, LC
	symbiotic and parasitic development,	
	survival in plant residues, distribution with	
	seeds and vectors.	
	Topic 3.2. Genes responsible for the	
	pathogenicity of bacteria and horizontal	
	gene transfer in bacteria.	
Section 4. Ecology of	Topic 4.1. Influence of climatic factors,	LR, LC
phytobacteria	physical and chemical soil factors;	
	Topic 4.2. Influence of antagonistic	
	microflora and microfauna: bacteriophages,	
	antibiotic producers and competitors.	

Section 5. The main methods	Topic 5.1. Preventive, quarantine,	LR, LC
of combating bacteriosis	phytosanitary, agrotechnical and	
	exterminatory (biological, physical and	
	chemical methods) measures.	
Section 6. Bacteria as objects	Topic 6.1. Examination of plants, seeds and	LR, LC
of research	planting material for infection with	
	phytobacteria.	
	Topic 6.2. Plant sampling. Methods of	
	isolating bacteria into a pure culture.	
	Topic 6.3. Diagnosis of bacteria based on	
	phenotypic traits and DNA.	
	Topic 6.4. Preservation of bacteria in pure	
	culture	
	Topic 6.5. Plant inoculation techniques to	
	test bacterial pathogenicity and plant	
	resistance.	

6. MATERIAL AND TECHNICAL SUPPORT OF DISCIPLINE

Table 5 – Discipline Logistics

Audience type	Equipping the classroom	Specialized educational/laboratory equipment, software and materials for mastering the discipline
Lecture Hall	Auditorium for lecture-type classes,	
	equipped with a set of specialized	
	furniture; whiteboard (screen) and	
	technical means of multimedia	
	presentations.	
Laboratory	An auditorium for laboratory work,	List of specialized laboratory
	individual consultations, current control	equipment, installations,
	and intermediate certification, equipped	stands, etc.
	with a set of specialized furniture and	
	equipment.	
Computer Lab	Computer class for classes, group and	List of specialized software
	individual consultations, current control	installed on computers for

	and intermediate certification, equipped	mastering the discipline
	with personal computers (in the amount	(module)
	ofpieces), a whiteboard (screen)	
	and technical means of multimedia	
	presentations.	
For independent	An auditorium for independent work of	
work of students	students (can be used for seminars and	
	consultations), equipped with a set of	
	specialized furniture and computers with	
	access to EIOS.	
Audience type	Equipping the classroom	Specialized
		educational/laboratory
		equipment, software and
		materials for mastering the
		discipline

7. EDUCATIONAL, METHODOLOGICAL AND INFORMATION SUPPORT OF THE DISCIPLINE

Main literature:

1. Kirai Z., Klement Z., Shoimoshi F., Veresh J. Methods of phytopathology // Per.s eng. – M.: Kolos, 1974. 343 s.

2. Geshele E.E. Basics of phytopathological evaluation in plant breeding. 2nd ed. M.: Kolos, 1978. 204 s.

3. Shpaar D., Kleinhempel G., Muller G., Nauman K. Bacteriozy kul'nykh zavody / Per. with German.
M.: Kolos, 1980.143 p.

4. Dyakov, Y. T., & Elansky, S. N. (2019). Phytopathology.

5. Levitin, M., 2022. Agricultural phytopathology 3rd ed. Textbook for universities. Litres. 1.

 Lazarev, A. M., E. N. Mysnik, Y. A. Varitsev, I. A. Zaitsev, A. P. Kozhemyakov, F. A. Popov, S.
 A. Volgarev, and V. K. Chebotar. "Areas and zones of harmfulness of the main bacteriosis of plants on the territory of Russia and neighboring countries." (2017): 136-136.

7. General phytopathology with the basics of microbiollogy: Method. instructions for studying the discipline and tasks for control and course works of part-time students of agricultural universities on special. 1504 - "Plant Protection" / VSKhIZO: M.: 1987, - 49 p.

Resources of the information and telecommunication network "Internet":

1. RUDN University EBS and third-party EBS, to which university students have access on the basis of concluded contracts:

Electronic library system RUDN University – EBS RUDN University
 http://lib.rudn.ru/MegaPro/Web

- EBS "University Library Online" http://www.biblioclub.ru

- EBS Jurait http://www.biblio-online.ru

- EBS "Student Consultant" www.studentlibrary.ru
- EBS "Lan" http://e.lanbook.com/

- EBS "Trinity Bridge"

- 2. Databases and search engines:
- electronic fund of legal and normative-technical documentation of the http://docs.cntd.ru/
- Yandex https://www.yandex.ru/ search engine
- Google search engine https://www.google.ru/
- abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/
- http://quakes.globalincidentmap.com/,
- http://www. globalincidentmap. com/,

- ScienceDirect: http://www. sciencedirect. com
- EBSCO: http://search. ebscohost. com
- -Sage Publications:http://online. sagepub. com
- -Springer/Kluwer:http://www.springerlink.com
- -University Information System RUSSIA: <u>http://www.cir.ru/index.jsp</u>

Educational and methodical materials for independent work of students in the development of the discipline / module:

1. Lazarev, Alexander Mikhailovich. "List of scientific literature on the study of plant bacteriosis and the biological properties of their pathogens." (2019).

2. Determination of phytopathogenic bacteria that infect cereals, cruciferous and nightshade cultures: Uchebnoe posobie / A. N. Ignatov, K. P. Kornev, E. S. Mazurin, M. S. Egorova. – Moscow : Peoples' Friendship University of Russia, 2015. – 112 p. – ISBN 978-5-209-06672-9. – EDN VXHEJZ.

3. Karimova, E. V., I. N. Alexandrov, and E. Y. Shneider. "Plant bacteriosis pathogens included in the EPOX Signal List." Plant protection and quarantine 12 (2012).

4. Ignatov AN, Egorova MS, Khodykina CF. Distribution of bacterial and phytoplasmic plant diseases in Russia. Plant protection and quarantine. 2015(5).

5. Gorshkov, Vladimir Yurievich. "Plant bacteriosis: molecular basis for the formation of plantmicrobial pathosystems." (2017).

8. ASSESSMENT MATERIALS AND POINT-RATING SYSTEM FOR ASSESSING THE LEVEL OF FORMATION OF COMPETENCIES IN THE DISCIPLINE "Bacterial Diseases"

Specialty: 35.03.04 Agronomy <u>1</u> semester

			Name of the appraisal tool		Certific	ation	Points	Points			
t				Current control						Themes	Section
Code of a supervised competency or part of i	Controlled liscipline section	Controlled heme of discipline	Performing Home	00	Execution aboratory assistant	Report, presentation	Fests	Rubezhnaya	Total		
	Section 1. Subject and	Topic 1.1. History of the development and formation of science. Systematics of bacteria by physiological and genetic signs.	1		4	3	2	10		10	30
OPK-1.1; OPK-1.2;	tasks of phytobacteriolog	Topic 1.2. Features of metabolism and genetics of bacteria. Methods of penetration of bacteria into plants and damage to plants, symptoms of damage.	1		4	3	2			10	
OPK-4.2;	у	Topic 1.3. Interaction between a parasitic bacterium and a host plant. Plant	1							10	
OPK-5.1; OPK-5.2; OPK-5.3:		resistance to bacterial pathogens and the factors that determine it. Topic 1.4. The relationship between bacteria and other pests and pathogens of			1	3	2				
PC-2.1;		Topic 1.5. The economic importance of phytobacteriosis: the economic			7	5	2				
PC-2.2; PC-3.2;		the harvest of cultivated plants.									
PC-4.2;	Section 2.	Topic 2.1. Features of respiration, enzymatic processes in various groups of	1		4	3	2			10	20
PC-4.5;	Morphology,							-		10	
PC 6 2	physiology and	I opic 2.2. Systematics of bacteria, based on physiological signs and DNA	1		4	2	2			10	
rU-0.2	genetics of bacteria	analysis, characteristics of the most pathogenic groups of bacteria			4	3	2				

Section 3. Biology	Topic 3.1. Interaction with the host plant: symbiotic and parasitic development, survival in plant residues, distribution with seeds and vectors.	1	4	3	2			10	20
	Topic 3.2. Genes responsible for the pathogenicity of bacteria and horizontal gene transfer in bacteria.	1	4	3	2			10	
Section 4.	Topic 4.1. Influence of climatic factors, physical and chemical soil factors;	1	4	3	2			10	20
Ecology of	Topic 4.2 Influence of antagonistic microflora and microfauna:	1						10	
phytobacteria	bacteriophages, antibiotic producers and competitors.		4	3	2			10	
Section 5. The	Topic 5.1. Preventive, quarantine, phytosanitary, agrotechnical and	1						10	10
main methods	exterminatory (biological, physical and chemical methods) measures.								
of combating			4	3	2				
bacteriosis									
Section 6.	Topic 6.1. Examination of plants, seeds and planting material for infection with	1						10	10
Bacteria as	phytobacteria.								
objects of	Topic 6.2. Plant sampling. Methods of isolating bacteria into a pure culture.								
research	Topic 6.3. Diagnosis of bacteria based on phenotypic traits and DNA.		4	3	2				
	Topic 6.4. Preservation of bacteria in pure culture								
	Topic 6.5. Plant inoculation techniques to test bacterial pathogenicity and plant								
	resistance.								
	TOTAL	12	48	36	24	10	10		100

Criteria for the evaluation of controlled types of work

N⁰	Estimated parameters	Scores	
p/n		Matches	Does not
		Parameters	match the
			parameters
1	Doing homework for lab work		
	- executed completely, carefully		
	-partially executed, carelessly	1	0
		0.5	0
2	Perform lab work		
	-made by yourself completely, carefully		
	decorated	4	0
	-made independently, carelessly designed	3	0
	-made partially independently	2	0
	-performed with an error in the result of the	1	0
	work		
3	Report, presentation of the section		
	-Clearly lined up, well illustrated	1	0
	-the report and presentation are well		
	designed, but there are inaccuracies	0.5	0
	-answers all questions	1	0
	-can't answer most questions	0.5	0
	-conclusions are entirely derived from the	1	0
	work	0.5	0
	- conclusions are fuzzy		

4	Tests		
	-Correctly answered 95-100% of the	2	0
	questions	1	0
	-Correctly answered 80-94% of questions	0.5	0
	-Correctly answered 50-79% of questions		
5	Milestone attestation		
	1) Quality of oral answer to questions		
	(a) Completeness of the response		
	-Replied in full	2.5	0
	-Answered most of the questions	1.5	0
	-Didn't answer most of the questions	0.5	0
	b) Consistency of the answer		
	- The answer is built logically	2.5	0
	- The answer is built illogically	0.5	0
	2)Test part		
	-Correctly answered 95-100% of the	5	0
	questions	4	0
	-Correctly answered 80-94% of questions	2	0
	-Correctly answered 50-79% of questions		
	Total:	10	0
6	Final attestation		
	1) Quality of oral answer to questions		
	(a) Completeness of the response		
	-Replied in full	2.5	0
	-Answered most of the questions	1.5	0

-Didn't answer most of the questions	0.5	0
b) Consistency of the answer		
- The answer is built logically	2.5	0
- The answer is built illogically	0.5	0
2)Test part		
-Correctly answered 95-100% of the	5	0
questions	4	0
-Correctly answered 80-94% of questions	2	0
-Correctly answered 50-79% of questions		
Total:	10	0

Questions for self-assessment and discussions on topics.

Section 1. Subject and tasks of phytobacteriology

Topic 1.1. History of the development and formation of science. Systematics of bacteria by physiological and genetic signs.

Whatspecies of bacteria were first identified as causative agents of plant diseases?

Who has made the greatest contribution to the development of phytobacteriology?

Topic 1.2. Features of metabolism and genetics of bacteria. Methods of penetration of bacteria into plants and damage to plants, symptoms of damage.

Features of the prokaryote genome (rod genome, mobile genome), the structure of the ribosomal apparatus, the types of DNA in the bacterial cell, the mobility of the bacterial genome.

Topic 1.3. Interaction between a parasitic bacterium and a host plant. Plant resistance to bacterial pathogens and the factors that determine it.

Types of parasitism in phytopathogenic bacteria, genetic systems of bacteria that determine their virulence, elisitors of the protective reaction of plants. Genetic features of plant resistance, genes of proteins-effectors of secretory systems of bacteria

Topic 1.4. The relationship between bacteria and other pests and pathogens of plant diseases. Synergism and antagonism of phytopathogens

Topic 1.5. The economic importance of phytobacteriosis: the economic consequences of the defeat of crops, a decrease in the quantity and quality of the harvest of cultivated plants. What losses do different groups of bacteria cause?

Section 2. Morphology, physiology and genetics of bacteria

Topic 2.1. Features of respiration, enzymatic processes in various groups of bacteria. Facultative anaerobes and strict aerobes – what are the differences between metabolism and harmfulness?

Topic 2.2. Bacterial systematics, based on physiological traits and DNA analysis, characterizes the most pathogenic groups of bacteria: Pseudomonas, Xanthomonas, Erwinia, Agrobacter, and Clavibacter.

What methods are used to identify, identify, determine genetic diversity and describe new species of phytopathogenic bacteria?

Section 3. Biology

Topic 3.1. Interaction with the host plant: symbiotic and parasitic development, survival in plant residues, distribution with seeds and vectors.

Factors affecting the survival of bacteria in soil, water, air and plants.

Seminal infection - meaning, methods of detection, methods of control

Topic 3.2. Genes responsible for the pathogenicity of bacteria and horizontal gene transfer in bacteria.

Plasmids are the main factor in the transfer of genes between bacteria. Localization of virulence genes in bacterial plasmids

Bacteriophages - a factor in the transfer of genes between bacteria

Transposons (mobile genetic elements) - a factor in the transfer of genes between bacteria

Section 4. Ecology of phytobacteria

Topic 4.1. Influence of climatic factors, physical and chemical soil factors;

Effect of temperature, precipitation, wind and sunlight on bacterial pathogen transport and plant resistance

Topic 4.2. Influence of antagonistic microflora and microfauna: bacteriophages, antibiotic producers and competitors.

Symbiotic and antagonistic relationships between soil and plant microorganisms.

Section 5. The main methods of combating bacteriosis

Topic 5.1. Preventive, quarantine, phytosanitary, agrotechnical and exterminatory (biological, physical and chemical methods) measures.

Methods for diagnosing infestation of seeds and planting material

Influence of crop rotation on the prevention of bacteriosis

Vectors of bacteriosis and their control

Chemical methods of protection against bacteriosis - the role of copper and antibiotics

Biomethod against bacteriosis

Section 6. Bacteria as objects of research

Topic 6.1. Examination of plants, seeds and planting material for infection with phytobacteria.

Methods for diagnosing infestation of seeds and planting material

Topic 6.2. Plant sampling. Methods of isolating bacteria into a pure culture.

Nutrient media and methods of bacterial excretion

Topic 6.3. Diagnosis of bacteria based on phenotypic traits and DNA.

Immunological methods, biochemical methods, PCR and other methods of DNA and RNA

amplification, DNA: DNA hybridization, DNA sequencing, gene and genome analysis

Topic 6.4. Preservation of bacteria in pure culture

Nutrient media for storage, lyophilization, cryopreservation, maintenance of collections of microorganisms

Topic 6.5. Plant inoculation techniques to test bacterial pathogenicity and plant resistance.

Infestation of plants in the laboratory

Plant infestation under controlled conditions

Infestation of plants in the field

Creation and evaluation of the natural infectious background.

Methods for assessing plant response

Exam TICKETS BY DISCIPLINE: Bacterial diseases (1 SEMESTER)

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA Agrarian-Technological Institute Agrobiotechnology Department Discipline: BACTERIAL DISEASES Exam TICKET No 1

- 1. The role and tasks of phytobacteriology in modern agriculture.
- 2. Diagnosis of bacterial plant diseases. Diagnostic methods.
- 3. Species of bacteria in plants(pathogens, symbionts, epiphytes, rhizospheric bacteria).
- 4. Principles of molecular biological methods of diagnosis of bateria

Minutes of No_____ discussed at the meeting of the Department_____

Compiled by ____

Director of Department_____

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA

Agrarian-Technological Institute

Agrobiotechnology Department

Discipline: BACTERIAL DISEASES

CREDIT TICKET No 2

1. Physiological role of the main mechanisms of plant immunity in plant life

- 2. The role of microbiologists in the development of phytobacteriology as a science
- 3. Soft plant rot
- 4. Principle of the method of immunodiagnostics of phytopathogenic bacteria

Minutes of No_____discussed at the meeting of the Department_____

Compiled by ____

Director of Department

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA

Agrarian-Technological Institute

Agrobiotechnology Department

Discipline: BACTERIAL DISEASES

CREDIT TICKET No 3

1. Methods of collecting plantmaterial for the diagnosis of bacteriosis

- 2. Chemical with the remaining cell wall bacteria, spare substances
- 3. Ways of distribution of phytopathogenic bacteria

4. The principle of the method of isolation of bacteria into a pure culture. Selective media.

Minutes of No______ discussed at the meeting of the Department______

Compiled by ____

Director of Department

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA Agrarian-Technological Institute Agrobiotechnology Department Discipline: BACTERIAL DISEASES CREDIT TICKET No 4

1. Obligate plant pathogens (Phytoplasma, Xylella, Liberibacter)

- 2. Survival of phytopathogenic bacteria in the soil
- 3. Saprophytic (epiphytic, rhizospheric) stage of life of phytopathogenic bacteria
- 4. Carriers of bacterial phytopathogens

Minutes of No_____ discussed at the meeting of the Department_____

Compiled by ____

Director of Department_____

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA

Agrarian-Technological Institute

Agrobiotechnology Department

Discipline: BACTERIAL DISEASES

CREDIT TICKET No 5

1. Plant Protective Reaction Elisators (MAMPs/PAMPs)

2. Types of diagnostics of phytopathogenic bacteria (microbiological,

phytopathological, immunological and molecular-biological)

3. Selection of plant samples for the diagnosis of infestation

4. ELISA - principles, advantages and disadvantages. .

Minutes of No_____discussed at the meeting of the Department_____

Compiled by ____

Director of Department

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA

Agrarian-Technological Institute Agrobiotechnology Department Discipline: BACTERIAL DISEASES CREDIT TICKET No 6

1. Physiological role of exoenzymes in pathogenesis

2. Types of diagnostics and identification of taxonomic affiliation of plant pathogens

- 3. Reaction of bacteria to environmental factors
- 4. Principle of PCR method

Minutes of No_____ discussed at the meeting of the Department_____

Compiled by ____

Director of Department

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA

Agrarian-Technological Institute

Agrobiotechnology Department

Discipline: BACTERIAL DISEASES

CREDIT TICKET No 7

- 1. The role of bacteriosis in crop losses of major crops.
- 2. Classification of bacteria the main genetic groups
- 3. Pseudomonas
- 4.Principles of combating bacterial diseases of plants

Minutes of No______ discussed at the meeting of the Department______

Compiled by ____

Director of Department_____

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA

Agrarian-Technological Institute

Agrobiotechnology Department

Discipline: BACTERIAL DISEASES

CREDIT TICKET No 8

1. Xanthomonas & Xylella

- 2. Phytopathogenic bacteria in the soil and in irrigation water.
- 3. Genetic methods in the diagnosis of bacteria
- 4. Chemical methods of plant protection against bacteriosis

Minutes of No_____ discussed at the meeting of the Department_____

Compiled by ____

Director of Department

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA Agrarian-Technological Institute Agrobiotechnology Department Discipline: BACTERIAL DISEASES CREDIT TICKET No 9

- 1. Gram-positive phytopathogenic bacteria
- 2. Microbiome and metagenome importance for the fight against plant diseases
- 3. Disinfection of seeds from pathogens of bacteriosis
- 4. The principle of biochemical method for determining bacterial species

Minutes of No______ discussed at the meeting of the Department______

Compiled by ____

Director of Department_____

PEOPLES FRIENDSHIP UNIVERSITY OF RUSSIA

Agrarian-Technological Institute

Agrobiotechnology Department

Discipline: BACTERIAL DISEASES

CREDIT TICKET No 10

- 1. Phytopathological diagnosis of bacteriosis
- 2. Succession of bacterial pathogens
- 3. Biological method of combating bacteriosis

4. Agrobacterium

Minutes of No______discussed at the meeting of the Department______

Compiled by ____

Director of Department_____

Evaluation criteria:

(*in accordance with the current regulatory framework*)

Compliance of grading systems (previously used grades of final academic performance, ECTS grades and the point-rating system (BRS) of assessments of current academic performance).

BRS Scores	Traditional Assessments of the Russian Federation	Evaluation ECTS
95 - 100	5	Α
86 - 94		В
69 - 85	4	С
61 - 68	3	D
51 - 60		E
31 - 50	2	FX
0 - 30		F
51-100	Credit	Passed

Tests on the course "BACTERIAL DISEASES"

Test tasks

1. What questions does phytobacteriology focus on?

a) soil microflora and influence on the fertility and composition of soils, as well as the beneficial and pathogenic microflora of cultivated plants;

b) develops a technology for obtaining various products from microorganisms for the national economy and medicine (antibiotics, vaccines, enzymes, vitamins, etc.);

c) microorganisms pathogenic to humans: bacteria, viruses, fungi, protozoa.

d) microflora of the seas and other water bodies;

e) microorganisms of outer space and other planets;

2. Epiphytes are:

a) peaceful cohabitants - inhabitants of the surface tissues of plant organisms

b) pathogens that cause plant diseases

c) symbiotic microorganisms living in the digestive tract of insects

d) inhabitants of the integumentary tissues of warm-blooded animals and humans;

3. Abiogenic substrates of microorganisms include:

(a) Soils

b) insect organism

c) water

d) plant organism

e) air;

4. A bacterial cell from a eukaryotic cell is distinguished by the following features:

(a) Presence of an endoplasmic reticulum

b) no nuclear membrane

c) the presence of a cytoplasmic membrane

d) binding of oxidative phosphorylation enzymes with the plasma membrane

e) lack of highly organized organelles;

5. Microorganisms with a prokaryotic cell structure include:

(a) Viruses

b) phytoplasmas

- c) Prions
- d) actinobacteria (actinomycetes)

e) mushrooms

(e) Rickettsia;

6. Bacterial mobility is not ensured:

- (a) The presence of flagella
- b) endospora
- c) fimbriae
- d) reduction of the cell wall
- e) the presence of a capsule;

7. Mandatory for the bacterial cell internal structures are:

(a) Cytoplasm

- b) disputes
- c) nucleoid
- d) Volutin grains
- e) chloroplasts;

8. The main functions of the cytoplasmic membrane are:

- (a) Regulation of metabolite and ion transport
- b) formation of enzymes
- c) regulation of osmotic pressure
- d) participation in the synthesis of cell wall components
- e) participation in spore formation;
- 9. Among the phytopathogenic bacteria, the most common are:
- (a) Obligate aerobes
- b) obligate anaerobes
- c) facultative anaerobes
- d) extremely oxygen-sensitive;

10. For the coloring of microorganisms, complex methods are most often used:

(a) On Zil-Nilsson

- b) according to Romanovsky Giemse
- c) according to Gram
- d) according to the Tempest;

11. Which of the listed dyes is most often used to color microorganisms?

- (a) Fuchsin
- b) crystal-violet with iodine
- c) methylene blue
- d) erythrosan
- e) mascara;

12. The optimal temperature regime for the cultivation of phytobacteria is:

- a) + 6-20 0C
- b) + 25-30 0C
- c) +35-40 0C
- d) +40-45 0C;

13. Indicate the reason for the manifestation of pathogenic properties of conditionally pathogenic phytobacteria.

- a) biochemical properties of the strain
- b) adhesive properties (the ability of cells to stick together with each other or with other bodies)
- of bacterial cells
- c) decreased plant immunity
- d) a complex of properties of microorganisms and features of a plant organism
- e) toxins of phytobacteria;

14. The main sources of primary infection in phytobacteriosis are:

- (a) Irrigated water
- b) plant residues
- c) air
- d) seeds
- e) planting material

15. Indicate the main ways of penetration of phytobacteria into plant tissues.

(a) Mechanical damage

- b) integumentary tissues
- c) stomata, lentils, hydatodes
- d) root hairs

16. Which of these genera of phytobacteria belong to the Department of Firmicutes?

- (a) Xanthomonas
- b) Bacillus
- c) Agrobacterium
- d) Clavibacter
- e) Ralstonia

17. Representatives of which genera of phytobacteria are spore-forming?

- (a) Burkholderia
- b) Pseudomonas
- c) Bacillus
- d) Agrobacterium
- e) Clavibacter
- 18. The most common method of sterilization
- The nutrient medium is:
- a) dry-cooked
- b) autoclaving
- c) filtration
- d) boiling;

19. For the isolation of phytopathogenic bacteria of the genus Pseudomonas, it is preferable to use nutrient media:

- (a) Meat-peptic broth
- b) LB
- c) Čapeka
- d) Kings B
- e) potato-dextrose agar;

20. What type of disease is caused by phytobacteria of the genus Erwinia?

(a) Bacterial cancer

- b) gommosis
- c) burn
- d) soft rot
- e) mottled spotting;

21. Indicate the disease caused by the bacterium Xanthomonas campestris pv. campestris.

- a) root cancer of fruit
- b) tomato vascular cancer
- c) wet lettuce rot
- d) vascular bacteriosis of cabbage
- e) pome burn
- 22. Indicate the disease caused by the bacterium Pseudomonas syringae pv. lachrymans.
- a) mucous bacteriosis of cabbage
- b) angular spotting of cucumber
- c) toxic bacteriosis of watermelons and melons
- d) spotting of pumpkin leaves and cucumbers
- e) vascular bacteriosis of cucumber

23. What disease is caused by the causative agent Clavibacter michiganensis subsp.

michiganensis?

- a) bacteriosis of carrots
- b) tomato bacterial cancer
- c) necrosis of the core of the tomato stem
- d) black bacterial spot of tomato
- e) mottling of tomato fruits

Evaluation criteria:

(in accordance with the current regulatory framework)

Compiled by ____

Director of department _____

" "

Evaluation materials and a point-rating system for assessing the level of formation of competencies (parts of competencies) based on the results of mastering the discipline "BACTERIAL DISEASES" are presented in the Appendix to this Work Program of the discipline.

DEVELOPERS:

Professor of

Agrobiotechnology Department		Ignatov A.N.
(position, BCD)	(Signed)	(Surname: F.I.)
(position, BCD)	(Signed)	(Surname: F.I.)
(position, BCD) HEAD OF BCD:	(Signed)	(Surname: F.I.)
Director of Agrobiotechnology Department		Pakina E. N.
(position, BCD)	(Signed)	(Surname: F.I.)
HEAD OF EP HE:		
Director of Agrobiotechnology Department		Pakina E. N.
(position, BCD)	(Signed)	(Surname: F.I.)