Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Инженерная академия

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины: <u>Динамика, баллистика, управление движением</u> <u>летательных аппаратов</u>

Рекомендуется для направления подготовки/специальности

01.06.01 «Математика и механика (указываются код и наименование направления подготовки/специальности)

Направленность программы (профиль)

«Динамика, баллистика, управление движением летательных аппаратов» (наименование образовательной программы в соответствии с направленностью (профилем)

1. Цель и задачи дисциплины

Целью освоения дисциплины «Динамика, баллистика, управление движением летательных аппаратов» является формирование у аспирантов системы научных знаний о перспективных методах исследования и решения профессиональных задач с учетом мировых тенденций развития авиационной и ракетно-космической техники.

Основными задачами дисциплины являются:

- Знать новые методы разработки и исследования методик анализа, синтеза, оптимизации и прогнозирования качества процессов функционирования авиационной и ракетно-космической техники
- Владеть новыми методами выбора и преобразования математических моделей явлений, процессов и систем в области ракетно-космической техники с целью их исследования и реализации средствами вычислительной техники
- Уметь использовать новые методы разработки математических моделей, методов, компьютерных технологий и систем поддержки принятия решений в научных исследованиях, проектно-конструкторской деятельности, управлении технологическими, экономическими, социальными системами и в гуманитарных областях деятельности человека

2. Место дисциплины в структуре образовательной программы

Дисциплина «Динамика, баллистика, управление движением летательных аппаратов» относится к вариативной части Блока 1 учебного плана. В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Tаблица $1 - \Pi$ еречень предшествующих и последующих дисииплин

	1 аолица 1 — Перечень преошествующих и послеоующих ойсциплин						
№	Шифр и наименование	Предшествующие	Последующие дисциплины				
Π/Π	компетенции	дисциплины	(группы дисциплин)				
Универ	рсальные компетенции						
	Способность к	История и философия					
	критическому анализу	науки					
	и оценке	Методология научных					
	современных научных	исследований					
	достижений,						
	генерированию новых						
	идей при решении						
	исследовательских и						
	практических задач, в						
	том числе в						
	междисциплинарных						
	областях (УК-1)						
	Способность	История и философия	Научные исследования				
	планировать и решать	науки	(подготовка научно-				
	задачи собственного	Приоритетные	квалификационной работы				
	профессионального и	направления развития	(диссертации) на соискание				
	личностного развития	математики и механики	ученой степени кандидата				

	(7.77.0 %)		
	(УК-5)	Основы преподавания	наук)
		методов разработки	
		инженерных приложений	
		на основе	
		математического	
		моделирования с	
		использованием	
		информатики и	
		вычислительной техники	
		в высшей школе	
Общеп	рофессиональные компете	енции	
	готовностью к	Основы преподавания	Педагогическая практика
	преподавательской	методов разработки	
	деятельности по	инженерных приложений	
	основным	на основе	
		математического	
	образовательным	моделирования с	
	программам	использованием	
	высшего образования	информатики и	
	(ОПК-2)	вычислительной техники	
		в высшей школе	
Профе	L ССИОНАЛЬНЫЕ КОМПЕТЕНЦИИ	(вид профессиональной деят	тельности)
Профе	Готовность	Методология научных	у у у у у у у у у у у у у у у у у у у
		исследований	
	применять	Приоритетные	
	перспективные методы исследования и решения		
		направления развития	
		математики и механики	
	профессиональных	Практика по получению	
	задач с учетом	профессиональных	
	мировых тенденций	умений и опыта	
	развития авиационной	профессиональной	
	•	деятельности (научно-	
	и ракетно-	исследовательская)	
	космической техники		
	(ΠK-1);		
	Способность	Методология научных	
	создавать и	исследований	
	исследовать	Практика по получению	
	математические и	профессиональных	
	программные модели	умений и опыта	
	изделий и процессов,	профессиональной	
	связанных с	деятельности (научно-	
		исследовательская)	
	функционированием		
	объектов		
	авиационной и		
	ракетной техники		
	(ПК-2);		
	Готовность проводить	Методология научных	
	разработку и	исследований	
	исследование методик	Приоритетные	
		направления развития	
	анализа, синтеза,	математики и механики	
	оптимизации и		

		-
прогнозирования		
качества процессов		
функционирования		
авиационной и		
ракетной техники		
(ПК-3);		
Способность	Основы преподавания	
выбирать и	методов разработки	
преобразовывать	инженерных приложений	
	на основе	
математические	математического	
модели явлений,	моделирования с	
процессов и систем в	использованием	
области ракетно-	информатики и	
космической техники	вычислительной техники	
с целью их	в высшей школе	
исследования (ПК-4);	Практика по получению	
	профессиональных	
	умений и опыта	
	профессиональной	
	деятельности (научно-	
	исследовательская)	
Способность	Основы преподавания	
разрабатывать	методов разработки	
* *	инженерных приложений	
математические	на основе	
модели, методы,	математического	
компьютерные	моделирования с	
технологии и системы	использованием	
поддержки принятия	информатики и	
решений в научных	вычислительной техники	
исследованиях,	в высшей школе	
проектной и	Практика по получению	
конструкторской	профессиональных	
деятельности (ПК-5);	умений и опыта	
	профессиональной	
	деятельности (научно-	
	исследовательская)	
Способность	Приоритетные	
разрабатывать новые	направления развития	
1 1	математики и механики	
математические	Основы преподавания	
модели объектов	методов разработки	
авиационной и	инженерных приложений	
ракетно-космической	на основе	
техники, развивать	математического	
аналитические и	моделирования с	
приближенные	использованием	
методы исследования	информатики и	
(ПК-6).	вычислительной техники	
()'	вычислительной техники в высшей школе	
	Практика по получению	
	профессиональных	
	профессиональных	

		умений и опыта профессиональной деятельности (научно-исследовательская)	
Профе	ссионально-специализиров	ванные компетенции специал	изации

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

УК-1, УК-5, ОПК-1, ПК-1, ПК-2, ПК-3, ПК-4, ПК-5, ПК-6

(указываются в соответствии с ОС ВО РУДН)

В результате изучения дисциплины студент должен:

Знать:

Знать специализированные теоретические и практические знания, служащие основой для разработки новых идей

Знать методы исследования и решения профессиональных задач с учетом мировых тенденций развития авиационной и ракетно-космической техники.

Знать новые методы создания и исследования математических и программных моделей изделий и процессов, связанных с функционированием объектов авиационно-ракетной техники

Знать новые методы разработки и исследования методик анализа, синтеза, оптимизации и прогнозирования качества процессов функционирования авиационной и ракетной техники

Знать новые методы выбора и преобразования математических моделей явлений, процессов и систем в области ракетно-космической техники с целью их исследования

Знать новые методы разработки математических моделей, методов, компьютерных технологий и систем поддержки принятия решений в научных исследованиях

Знать новые методы разработки математических моделей объектов авиационной и ракетно-космической техники

Уметь:

Уметь анализировать, определять приоритеты, планировать, осуществлять мониторинг и обратную связь

Уметь применять методы исследования и решения профессиональных задач с учетом мировых тенденций развития авиационной и ракетно-космической техники.

Уметь использовать новые методы создания и исследования математических и программных моделей изделий и процессов, связанных с функционированием объектов авиационно-ракетной техники

Уметь использовать новые методы разработки и исследования методик анализа, синтеза, оптимизации и прогнозирования качества процессов функционирования авиационной и ракетной техники

Уметь использовать новые методы выбора и преобразования математических моделей явлений, процессов и систем в области ракетно-космической техники с целью их исследования

Уметь использовать новые методы разработки математических моделей, методов, компьютерных технологий и систем поддержки принятия решений в научных исследованиях

Уметь использовать новые методы разработки математических моделей объектов авиационной и ракетно-космической техники

Владеть:

Владеть технологией разработки плана мероприятий для проведения исследований, определять необходимые ресурсы и согласовывать их с коллегами и руководством

Владеть перспективными методами исследования и решения профессиональных задач с учетом мировых тенденций развития авиационной и ракетно-космической техники.

Владеть новыми методами создания и исследования математических и программных моделей изделий и процессов, связанных с функционированием объектов авиационноракетной техники

Владеть новыми методами разработки и исследования методик анализа, синтеза, оптимизации и прогнозирования качества процессов функционирования авиационной и ракетной техники

Владеть новыми методами выбора и преобразования математических моделей явлений, процессов и систем в области ракетно-космической техники с целью их исследования

Владеть новыми методами разработки математических моделей, методов, компьютерных технологий и систем поддержки принятия решений в научных исследованиях

Владеть новыми методами разработки математических моделей объектов авиационной и ракетно-космической техники

4. Объем дисциплины и виды учебной работы

Таблица 3 – Объем дисциплины и виды учебной работы

для очной формы обучения

Day awasayay aasaya	•	Всего, ак.	Семестр
Вид учебной работы		часов	4
Аудиторные занятия		58	58
в том числе:		-	-
Лекции (Л)		-	-
Практические/семинарские з	58	58	
Лабораторные работы (ЛР)	-	-	
Курсовой проект/курсовая р	-	-	
Самостоятельная работа (СР	Самостоятельная работа (СРС), включая контроль		86
Вид аттестационного испыта		Экзамен	
05	академических часов	144	144
Общая трудоемкость	зачетных единиц	4	4

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела (темы)
Π/Π	дисциплины	1 1 1
1.	1. Динамические свойства ЛА как объекта	1.1. Постановка задач баллистического и динамического проектирования
	управления	1.2. Принцип возмущенно-невозмущенного движений. Целесообразность перехода к изучению возмущенного движения
		1.3. Линеаризация как способ преобразования уравнений к виду, возможному для получения общего решения
		1.4. Разделение возмущенного движения ЛА на продольное и боковое
		1.5. Составление линейных уравнений возмущенного движения ЛА. Динамические коэффициенты
		1.6. Свободное и вынужденное возмущенное движение
		1.7. Продольное возмущенное движение

		1.8. Характеристическое уравнение и его возможные корни. Основные выводы по устойчивости и структуре возмущенного движения 1.9. Два этапа развития свободного продольного возмущенного движения
		1.10. Передаточная функция ЛА. Понятие о передаточном коэффициенте ЛА
		1.11. Частотные характеристики ЛА
		1.12. Основные требования к динамическим свойствам ЛА. Роль системного подхода
2.	2. Основы механики космического полета.	2.1. Закон всемирного тяготения. Интегралы уравнений движения.
	Задача двух тел	2.2. Уравнение орбиты. Скорость спутника. Связь скорости с типом орбиты. Характеристики орбит. Уравнение Кеплера.
3	3. Возмущенное движении КЛА	3.1. Общая характеристика возмущенного движения и самих возмущений. Общая постановка задачи.
		3.2. Сфера действия, сфера притяжения, сфера влияния.
		3.3. Метод оскулирующих элементов.
		3.4. Возмущающие воздействия, искажающие Кеплерову орбиту.

5.2. Разделы дисциплин и виды занятий

№ п/п	Наименование раздела дисциплины/темы занятия	Практ. / семинар.	СРС	Всего час.
1.	Раздел №1. Динамические свойства ЛА как объекта управления	22	36	58
	Тема 1.1. Постановка задач баллистического и динамического проектирования	1	3	4
	Тема 1.2. Принцип возмущенно-невозмущенного движений. Целесообразность перехода к изучению возмущенного движения	1	3	4
	Тема 1.3. Линеаризация как способ преобразования уравнений к виду, возможному для получения общего решения	2	3	5
	Тема 1.4. Разделение возмущенного движения ЛА на продольное и боковое	2	3	5
	Тема 1.5. Составление линейных уравнений возмущенного движения ЛА. Динамические коэффициенты	2	3	5
	Тема 1.6. Свободное и вынужденное возмущенное движение	2	3	5
	Тема 1.7. Продольное возмущенное движение	2	3	5
	Тема 1.8. Характеристическое уравнение и его возможные корни. Основные выводы по устойчивости и структуре возмущенного движения	2	3	5
	Тема 1.9. Два этапа развития свободного продольного возмущенного движения	2	3	5
	Тема 1.10. Передаточная функция ЛА. Понятие о передаточном коэффициенте ЛА	2	3	5
	Тема 1.11. Частотные характеристики ЛА	2	3	5
	Тема 1.12. Основные требования к	2	3	5

№ п/п	Наименование раздела дисциплины/темы занятия	Практ. / семинар.	СРС	Всего час.
	динамическим свойствам ЛА. Роль системного подхода			
2.	Раздел №2. Основы механики космического полета. Задача двух тел	18	25	43
	Тема 2.1. Закон всемирного тяготения. Интегралы уравнений движения.	6	8	14
	Тема 2.2. Уравнение орбиты. Скорость спутника. Связь скорости с типом орбиты.	6	8	14
	Тема 2.3. Характеристики орбит. Уравнение Кеплера	6	9	15
3.	Раздел №3. Возмущенное движении КЛА	18	25	43
	Тема 3.1. Общая характеристика возмущенного движения и самих возмущений. Общая постановка задачи.	4	6	10
	Тема 3.2. Сфера действия, сфера притяжения, сфера влияния.	4	6	10
	Тема 3.3. Метод оскулирующих элементов	5	6	11
	Тема 3.4. Возмущающие воздействия, искажающие Кеплерову орбиту	5	7	12
	Экзамен	58	86	144

6. Лабораторный практикум (при наличии) – не предусмотрен

7. Практические занятия (семинары) (при наличии)

$N_{\underline{0}}$	№ раздела	Тематика практических занятий (семинаров)	Трудо-
Π/Π	дисциплины		емкость
			(час.)
1.	1	Тема 1.1. Постановка задач баллистического и динамического	
		проектирования	1
2	1	Тема 1.2. Принцип возмущенно-невозмущенного движений.	1
		Целесообразность перехода к изучению возмущенного движения	1
3	1	Тема 1.3. Линеаризация как способ преобразования уравнений к	2
		виду, возможному для получения общего решения	2
4	1	Тема 1.4. Разделение возмущенного движения ЛА на продольное	2
		и боковое	2
5	1	Тема 1.5. Составление линейных уравнений возмущенного	2
		движения ЛА. Динамические коэффициенты	
6	1	Тема 1.6. Свободное и вынужденное возмущенное движение	2
7	1	Тема 1.7. Продольное возмущенное движение	2
8	1	Тема 1.8. Характеристическое уравнение и его возможные корни.	
		Основные выводы по устойчивости и структуре возмущенного	2
		движения	
9	1	Тема 1.9. Два этапа развития свободного продольного	2
		возмущенного движения	
10	1	Тема 1.10. Передаточная функция ЛА. Понятие о передаточном	2
		коэффициенте ЛА	
11	1	Тема 1.11. Частотные характеристики ЛА	2
12	1	Тема 1.12. Основные требования к динамическим свойствам ЛА.	2
		Роль системного подхода	
13	2	Тема 2.1. Закон всемирного тяготения. Интегралы уравнений	6
	_	движения.	-
14	2	Тема 2.2. Уравнение орбиты. Скорость спутника. Связь скорости	6
		с типом орбиты.	-

15	2	Тема 2.3. Характеристики орбит. Уравнение Кеплера	6
16	3	Тема 3.1. Общая характеристика возмущенного движения и самих возмущений. Общая постановка задачи.	4
17	3	Тема 3.2. Сфера действия, сфера притяжения, сфера влияния.	4
18	3	Тема 3.3. Метод оскулирующих элементов	5
19	3	Тема 3.4. Возмущающие воздействия, искажающие Кеплерову орбиту	5

8. Материально-техническое обеспечение дисциплины

Таблица 5 – Материально-техническое обеспечение дисциплины

9. Информационное обеспечение дисциплины

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Лань» http://e.lanbook.com/
- 2. Сайты министерств, ведомств, служб, производственных предприятий и компаний, деятельность которых является профильной для данной дисциплины:
 - 3. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/

- реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Методические материалы для самостоятельной работы обучающихся и изучения дисциплины (<u>также размещены в ТУИС РУДН в соответствующем разделе</u> дисциплины):

- 1. Курс лекций по дисциплине «Динамика, баллистика, управление движением летательных аппаратов» (приложение 2).
- 2. Методические указания для самостоятельной работы обучающихся по дисциплине «Динамика, баллистика, управление движением летательных аппаратов» (приложение 3).

10. Учебно-методическое обеспечение дисциплины

Основная литература:

- 1. Под ред. Бюшгенса Г.С. Динамика полета. М.: Машиностроение, 2011. 776 с.
- 2. Механика космического полета. Под ред. акад. Мишина В.П. М.:Машиностроение, 1989.
- 3. Лысенко Л.Н. Наведение и навигация баллистических ракет. М: Издательство МГТУ им. Н.Э Баумана, 2007г., 670с.
- 4. Дмириевский А.А., Лысенко Л.Н. Внешняя баллистика. 4-е издание. М: Машиостроение, 2005.
- 5. Иванов Н.М., Лысенко Л.Н. Баллистика и навигация космических аппаратов. 2-е издание. М: Дрофа, 2004.

Дополнительная литература:

- 1. *Алексеев К.Б.*, *Бебенин Г.Г.*, *Ярошевский В.А.* Маневрирование космических аппаратов. Москва: Машиностроение, 1970. 232 с.
- 2. Эльясберг П. Е. Введение в теорию полета искусственных спутников Земли. Москва: Наука, 1965. 540 с.
- 3. *Химмельблау Д*. Прикладное нелинейное программирование. Москва: Мир, 1975. 534 с.
- 4. *Херрик С.* Астродинамика. Москва: Мир, 1978. 359с.
- 5. *Сихарулидзе Ю.Г.* Баллистика летательных аппаратов. Москва: Наука, Главная редакция физико-математической литературы, 1982. 352 с.
- 6. Решетнев М.Ф., Лебедев А.А., Бартенев В.А., Красильщиков М.Н., Малышев В.А., Малышев В.А., Управление и навигация искусственных спутников Земли на околокруговых орбитах. Москва: Машиностроение, 1988. 336с.
- 7. *Соловьёв Ц.В.*, *Тарасов Е.В.* Прогнозирование межпланетных полетов. Москва: Машиностроение, 1973. 400 с.

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Организация занятий по дисциплине «Динамика, баллистика, управление движением летательных аппаратов» проводится по следующим видам учебной работы:

интерактивные практические занятия (семинары), подготовку самостоятельных работ и их последующую защиту.

Реализация компетентностного подхода в рамках направления подготовки <u>01.06.01 «Математика и механика»</u> предусматривает сочетание в учебном процессе контактной работы с преподавателем и внеаудиторной самостоятельной работы обучающихся для более полного формирования и развития его профессиональных навыков, самостоятельное изучение некоторых тем курса и подтверждение своих знаний в ходе контрольных мероприятий.

Аспирант обязан освоить все темы, предусмотренные учебно-тематическим планом дисциплины. Отдельные темы и вопросы обучения выносятся на самостоятельное изучение. Аспирант изучает рекомендованную литературу и кратко конспектирует материал, а наиболее сложные вопросы, требующие разъяснения, уточняет во время консультаций. Аналогично следует поступать с разделами курса, которые были пропущены в силу различных обстоятельств.

Целью практических занятий и семинаров является получение аспирантами знаний и выработка практических навыков работы в области баллистики и навигации ракет-носителей. Для достижения этих целей используются как традиционные формы работы — решение задач, работа с технологическим оборудованием/специализированным программным обеспечением при выполнении лабораторных работ и т.п., так и интерактивные методы — групповая работа, анализ конкретных ситуаций, и т.п.

С помощью метода анализа конкретной ситуации у обучающихся развиваются такие квалификационные качества, как умение четко формулировать и высказывать свою позицию, умение коммуницировать, дискутировать, воспринимать и оценивать информацию, поступающую в вербальной форме. Практические занятия и семинары проводятся в специальных аудиториях, оборудованных необходимыми наглядными материалами.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса.

Самостоятельная работа осуществляется в индивидуальном формате на основе учебно-методических материалов дисциплины (*приложения 2-4*). Уровень освоения материала по самостоятельно изучаемым вопросам курса проверяется при проведении текущего контроля и аттестационных испытаний (экзамен и/или зачет) по лиспиплине.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств, сформированный для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Динамика, баллистика, управление движением летательных аппаратов» представлен в $npunoжehuu\ l$ к рабочей программе дисциплины и включает в себя:

- перечень компетенций с указание этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;

- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Разработчики:		
доцент департамента механики и мехатроники		О.Е. Самусенко
должность	подпись	инициалы, фамилия
ст.преп. департамента механики и мехатроники	Ato H	Т.А. Морозова
должность	подпись	инициалы, фамилия
Руководитель программы		
профессор департамента механики и мехатроники	M	Ю.Н. Разумный
должность, название кафедры	подпись	инициалы, фамилия
	10	
Директор департамента	1	Ю.Н. Разумный
механики и мехатроники	\mathcal{H}	10.11. 1 азумный
меланики и мелатроники	подпись	инициалы, фамилия
		, , , 1