Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Affect Handlin State Autonomous Educational Institution of Higher Education Должность: Ректор PIES: ERIENDSHIP UNIVERSITY OF RUSSIA named after P. Lumumba (RUDN University)

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

Science faculty

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Domino-reactions in the synthesis of heterocycles

course title

Recommended by the Didactic Council for the Education Field of:

04.04.01 «Chemistry»

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

«Fundamental and applied chemistry»

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course of «Domino reactions in the synthesis of heterocycles» is in the formation of the system of knowledge about the laws in the chemical behavior of the main classes of organic compounds in relation to their structure in order to use this knowledge as a basis for study at the molecular level, the processes occurring in the living organisms.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the couse "Domino reactions in the synthesis of heterocycles" is aimed at developing the following competencies (competencies in part):

Table 2.1. List of competences that students acquire through the course study

Competence code	Competence descriptor	Competence formation indicators (within this course)
M-PC-1-s	and choose adequate methods for solving research problems in the chosen field of chemistry, chemical technology or	
M-PC-2-s	Ability to conduct patent information research in the chosen field of chemistry and/or related sciences	M-PC-2-s-1. Searches for specialized information in patent information databases. M-PC-2-s-2. Analyzes and summarizes the results of a patent search on the subject of the project in the selected field of chemistry (chemical technology).

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the elective component of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Competenc e code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
M-PC-1-s	The ability to plan	Methods of Organic	Chemistry of natural
	work and choose	Chemistry	compounds
	adequate methods	Theoretical organic	Chemistry of heterocyclic
	for solving research	chemistry	compounds
	problems in the	The method of working	Mass spectrometry of organic
	chosen field of	with databases	compounds
	chemistry, chemical	Fundamentals of	Stereochemistry
	technology or	biotechnology	Fundamentals of drug design
	sciences related to	Research work	Research work

Competenc	Competence	Previous	Subsequent
e code	descriptor	courses/modules*	courses/modules*
	chemistry	Experimental methods in chemistry	Undergraduate practice
	Ability to conduct	Methods of Organic	Chemistry of natural
	patent information	Chemistry	compounds
	research in the	Theoretical organic	Chemistry of heterocyclic
	chosen field of	chemistry	compounds
	chemistry and/or	The method of working	Mass spectrometry of organic
M-PC-2-s	related sciences	with databases	compounds
		Fundamentals of	Stereochemistry
		biotechnology	Fundamentals of drug design
		Research work	Research work
		Experimental methods in	Undergraduate practice
		chemistry	

^{*} To be filled in according to the competence matrix of the higher education programme.

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course is 4 credits

Table 4.1. Types of academic activities during the periods of higher education programme mastering (full-time training)

Type of academic activities		Total	Semesters			
		academic hours	1	2	3	4
Contact academic hours		72		72		
including:						
Lectures (LC)		36		36		
Lab Works (LW)		36		36		
Seminars (workshops/tutorials) (S)						
Self-studies		54		54		
Evaluation and assessment (exam/passing/failing grade)		18		18		
Course workload	academic hours	144		144		
	credits	4		4		

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Section 1. Introduction.	Theme 1.1. The concept of domino reactions.	
Classification of domino	Terminological contradictions – "cascade",	LC
reactions	"tandem" and domino processes.	
	Theme 1.2. Anionic, cationic, radical, pericyclic	LC, LW
	domino processes - the principle of referring to	

Course module title	Course module contents (topics)	Academic activities types
	one or another type.	
Section 2. Anionic domino reactions	Theme 2.1. General description Anion-anion processes, anion-radical reactions. Anionic-pericyclic domino reactions.	LC
reactions	Theme 2.2. Anionic reactions and transition metal catalysis.	LC, LW
Section 3. Cationic	Theme 3.1. General characteristics. Cation - cationic processes.	LC
domino reactions	Theme 3.2. Cationic-pericyclic reactions. Cationic-reductive domino reactions	LC, LW
Section 4. Radical domino	Theme 4.1. General description	LC
reactions	Theme 4.2. Radical-radical domino processes. Radical pericyclic reactions.	LC, LW
Section 5. Multicomponent domino reactions	Theme 5.1. General description. Strecker, Biginelli, Hanch, Ugi, Passerini reactions. Examples of reactions and analysis of mechanisms.	LC, LW
Section 6. Domino reactions based on	Theme 6.1. General example of a reaction. Study of the mechanism and analysis of typical cases of application.	LC
Knoevenagel condensation	Theme 6.2. Various combinations of this reaction with others in the synthesis of more complex structures.	LC, LW
Section 7. Knoevenagel Condensation - Cycloaddition	Theme 7.1. Examples of the combination of the Knoevenagel condensation and various types of cycloadditions ([1+4], [2+3], [2+4]) in the synthesis of five-membered and six-membered heterocyclic compounds.	LC, LW
Section 8. Knoevenagel Condensation - Cycloaddition	Theme 8.1. Examples of the combination of Knoevenagel condensation and Michael addition in the synthesis of five-membered and sixmembered heterocyclic compounds.	LC, LW

^{* -} to be filled in only for <u>full</u>-time training: LC - lectures; LW - lab work; S - seminars

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	A lecture hall for lecture-type classes, equipped with a set of specialised furniture; board (screen) and technical means of multimedia presentations.	
Lab work	A classroom for laboratory work, individual	rotary evaporator, heating

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)		
	consultations, current and mid-term assessment; equipped with a set of specialised furniture and machinery.	mantle, magnetic stirrer without heating, magnetic stirrer with heating, electronic weighers, vacuum pump		
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment.			

^{*} The premises for students' self-studies are subject to **MANDATORY** mention

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

1. L. Titze, G. Brashe, K. Guericke Domino-reactions in organic synthesis. Moscow, Binom, 2010.

Additional readings:

1. J. Joule, M. Mills Chemistry of heterocyclic compounds, Moscow, Mir, 2004

Internet sources

- 1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:
 - RUDN Electronic Library System (RUDN ELS) http://lib.rudn.ru/MegaPro/Web
 - EL "University Library Online" http://www.biblioclub.ru
 - EL "Yurayt" http://www.biblio-online.ru
 - EL "Student Consultant" www.studentlibrary.ru
 - EL "Lan" http://e.lanbook.com/
 - EL "Trinity Bridge"
 - 2. Databases and search engines:
 - Yandex search engine https://www.yandex.ru/
 - Google search engine https://www.google.ru/
 - abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/
 - database Reaxys https://www.reaxys.com/#/search

*Training toolkit for self- studies to master the course *:*

Course of lectures on the discipline "Domino reactions in the synthesis of heterocycles".

2. Guidelines for laboratory works "Preparative organic chemistry"

* The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (competences in part) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:		
Head of the Department of Organic Chemistry	Complance	L. G. Voskressensky
Position, Department	Signature	name and surname
HEAD OF EDUCATIONAL DEPA	ADTMENT.	
HEAD OF EDUCATIONAL DEPA	KINENI:	
Organic Chemistry Department	Company	L. G. Voskressensky
Name of Department	Signature	name and surname
HEAD OF HIGHER EDUCATION PROC	GRAMME:	
Dean of Science faculty,		
Head of the Department of		L. G. Voskressensky
Organic Chemistry	Dougland	
Position, Department	Signature	name and surname