Документ подписан простой электронной подписью Информация о владельце: ФИО: Ястребов Олег Александровин State Auton Должность: Ректор Дата подписания: 01.06.2023 15:09:07 EOPLES' Уникальный программный ключ: са953a0120d891083f939673078ef1a989dae18a

Faculty of Physics, Mathematics and Natural Sciences

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Elements of perturbation theory

course title

Recommended by the Didactic Council for the Education Field of:

01.04.01 Mathematics

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

«Functional methods in differential equations and interdisciplinary research»

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The purpose of mastering the discipline "Elements of perturbation theory" is to master the master the main concepts and some mathematical methods of analysing the change of the spectrum of a compact operator under small perturbations.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the discipline "Elements of perturbation theory" is aimed at developing the following competencies (parts of competencies):

Table 2.1. List of competences that students acquire through the course study

Code	Competence	Competence achievement indicators			
Coue	Competence	(within this discipline)			
		GPC-1.1. Uses existing methods of solving			
		mathematical problems and obtains new ones			
	Able to formulate and solve	GPC-1.2. Uses modern equipment, software and			
GPC-1	actual and important	ant professional data bases for solving problems in			
	problems of mathematics	chosen field of mathematics or related science			
		GPC-1.3. Uses modern methods of calculation an			
		theory for solving professional problems			

3.COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The discipline "Elements of perturbation theory" refers to the part formed by the participants in the educational relations of block B1 of the EP HE.

As part of the EP HE, students also master other disciplines and / or practices that contribute to the achievement of the planned results of mastering the discipline "Elements of perturbation theory".

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Code	Competence	Previous disciplines/modules, practices	Subsequent disciplines/modules, practices*
GPC-1		History and methodology of mathematics,, Introduction into low- dimensional topology	State examination

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total labor intensity of the discipline "Elements of perturbation theory" is 3 credits.

*Table 4.1. Types of academic activities during the periods of higher education programme mastering (full-time training)**

Type of study work		TOTAL,	Semester			
		a .h.	1	2	3	4
Contact work, academic hours		40			40	
Lectures (LC)		20			20	
Lab work (LW)						
Seminars (workshops/tutorials) (S)		20			20	
Self-studies		41			41	
Evaluation and assessment (exam/passing/failing		27			27	
grade)		27			27	
Course workload	a.h.	108			108	
	credits	3			3	

5. COURSE CONTENTS

	<i>Table 5.1.</i>	Course contents	and academic	activities types
--	-------------------	-----------------	--------------	------------------

Course Module Title	Brief Description of the Module Content	Type of study work	
Section 1 Analyzia in	Topic 1.1. Analysis in a normed space	Lectures, seminars	
Section 1. Analysis in operator spaces	Topic 1.2. Operator space	Lectures, seminars	
operator spaces	Topic 1.3. Operator-valued functions	Lectures, seminars	
Section 2 Supertural	Topic 2.1. Resolvent and its Laurent series	Lectures, seminars	
Section 2. Spectral representation of a finite-	Topic 2.2. Dependence of eigenvalues of a finite- dimensional operator on its small perturbation	Lectures, seminars	
dimensional operator	Topic 2.3. Singularities of the resolvent. Spectral projector	Lectures, seminars	
Section 3. Method of	Topic 3.1. Classical implicit function theorems	Lectures, seminars	
Newton's diagrams for analyzing bifurcations of	Topic 3.2. Newton's diagram. Bifurcation equation. Cases of simple and multiple roots	Lectures, seminars	
solutions to algebraic equations	Topic 3.3. Finding the principal term of the decomposition. Specification of the asymptotic	Lectures, seminars	
Section 4. Bifurcation of	Topic 4.1. Jordan chains and sets of Fredholm operators	Lectures, seminars	
eigenvalues	Topic 4.2. Bifurcation equation. Method of indefinite coefficients	Lectures, seminars	

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Classroom type	Classroom equipment	Specialized educational/laboratory equipment, software and materials for mastering the discipline
Seminar	An auditorium for conducting seminar-type classes, group and individual consultations, current control and intermediate certification, equipped with a set of specialized furniture and technical means for multimedia presentations.	-
For independent work of students	An auditorium for conducting seminar-type classes, group and individual consultations, current control and intermediate certification, equipped with a set of specialized furniture and technical means for multimedia presentations.	-

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main literature:

- 1. Ovchinnikov A.V., Kolybasova V.V., Krutitskaya N.Ch. Jordan form of operator matrix. 2009. MSU Publishers.
- 2. Kashchenko I.S. Asymptotic expansion for solutions of equations. YaSU Publishers. 2011.

Additional literature:

- 1. Kato T. Perturbation theory for linear operators. M.: Mir, 1972.
- 2. Vainberg M.M., Trenogin V.A. Bifurcation theory for solutions of nonlinear equations. Nauka, 1969.
- 3. Giacaglia G.E.O. Methods of perturbation theory for nonlinear systems. Nauka, 1979.

Resources of the information and telecommunications network "Internet":

1. RUDN ELS and third-party ELS, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System RUDN EBS http://lib.rudn.ru/MegaPro/Web
- ELS "University Library Online" http://www.biblioclub.ru
- EBS Yurayt http://www.biblio-online.ru
- ELS "Student Consultant" www.studentlibrary.ru

- EBS "Lan" http://e.lanbook.com/
- EBS "Trinity Bridge"

2. Databases and search engines:

- electronic fund of legal and normative-technical documentation http://docs.cntd.ru/
- Yandex search engine https://www.yandex.ru/
- Google search engine https://www.google.ru/
- abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

Evaluation materials and a point-rating system* for evaluating the level of formation of competencies (parts of competencies) based on the results of mastering the discipline "Non-Euclidean geometries and their applications" are presented in the Appendix to this Work Program of the discipline

Developer:

E.I. Galakhov

signature

name and surname

HEAD OF HIGHER EDUCATION PROGRAMME:

V.I. Burenkov

signature

name and surname

HEAD OF EDUCATIONAL DEPARTMENT

A

A.B. Muravnik

signature

name and surname