Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Факультет физико-математических и естественных наук

Институт Физических Исследований и Технологий (ИФИТ)

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины Физика нелинейных процессов и явлений

Рекомендуется для направления подготовки/специальности

03.06.01 Физика и астрономия

Направленность программы (профиль)

01.04.02 – теоретическая физика

Квалификация (степень) выпускника Исследователь. Преподаватель-исследователь. **1. Цели и задачи дисциплины:** Изложение основных математико-физических методов исследования нелинейных процессов и явлений. Нацелено на восстановление и закрепление на более высоком математическом уровне знаний в области физики сплошных сред, полученных в курсах общей и теоретической физики, а также в специальных курсах магистратуры.

2. Место дисциплины в структуре ОП ВО:

Дисциплина относится к вариативной части. Курс по выбору

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- Владение фундаментальными знаниями в основных разделах теоретической физики, включая классическую и квантовую теорию поля, физику ядра и элементарных частиц, физику конденсированного состояния (ПК-2)

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетных единиц.

Вид учебной работы		Всего часов		
Аудиторные занятия (всего)		40		
В том числе:		-		
Лекции		20		
Практические занятия (ПЗ)		-		
Семинары (С)		20		
Лабораторные работы (ЛР)		-		
Самостоятельная работа (всего)		68		
Общая трудоемкость	час	108		
	зач. ед.	3		

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

Название разделов (тем) дисциплины	Краткое содержание разделов (тем) дисци-		
	плины:		
1. Введение.	Линейность (приближения точечных бесструктурных объектов, плоских волн и т.д.) и нелинейность (описание локализованных протяженных объектов и структур, нелинейных волновых процессов); существенно нелинейные модели процессов и явлений.		
2. Нелинейные волновые уравнения.	Теплопроводность твердого тела, задача Ферми-Пасты-Улама и уравнение Кортевега — де Вриза (КдВ); дислокации в кристаллах, теория двойникования Френкеля-		

	Конторовой и уравнение синус-Гордон; нелинейное уравнение Шрёдингера (НУШ), уравнение Кадомцева-Петвиашвили.				
3. Уравнение КдВ и НУШ в конкретных физических задачах.	Кпноидальные волны и солитоны; ионно- звуковые волны в плазме; ленгмюровские волны; гравитационные волны на мелкой воде; «светлые» и «темные» солитоны; электромагнитные волны в нелинейном диэлектрике; солитоны в волоконных све- товодах; самофокусировка света.				
4. Методы интегрирования нелинейных волновых уравнений (1).	Бесконечный набор законов сохранения, преобразования Коула-Хопфа, Миуры и Кустанхеймо-Штифеля; метод обратной задачи рассеяния, представление Лакса.				
5. Методы интегрирования нелинейных волновых уравнений (2).	Схема Захарова-Шабата и АКСН; прямые методы Хироты и Уолквиста-Эстабрука; преобразования Бэклунда.				
6.Гамильтоновость нелинейных эволюционных уравнений и представление нулевой кривизны.	Гамильтоновость нелинейных эволюционных уравнений и представление нулевой кривизны.				
7. Локализованные структуры с нетривиальной топологией.	Топологические характеристики эволюционных процессов, гомотопические законы сохранения и элементы теории гомотопий				
8 Калибровочные и киральные поля.	Кинки, вихри, монополи, инстантоны и скирмионы в киральных и калибровочных моделях физики полей и частиц, конденсированных сред, астрофизики и космологии.				
9. Солитонные модели.	Модели ферромагнетиков, жидких кристаллов, графенов и иных наноструктур; топологический анализ дефектов и структур в конденсированных.				

6. Лабораторный практикум не предусмотрен

7. Структура курса

Количество аудиторных часов: 10 лекций по 2 аудиторных часа; 10 семинаров по 2 аудиторных часа. Всего: 40 аудиторных часов.

Самостоятельная работа: 68 часов.

Итого: 108 часов.

Темы занятий

Содержание курса

Содержание курса посвящено изложению фундаментальных сведений по методам исследования нелинейных процессов и явлений теории поля, по универсальным нелинейным волновым уравнениям и методам их решения в применении к модельному описанию физики полей и частиц, конденсированных сред, астрофизики и космологии. В курсе активно используется язык теории групп и их представлений, дифференциальной геометрии и алгебраической топологии даются. Курс опирается на релятивистские представления, полученные студентами в рамках курса классической электродинамики, на лагранжев и гамильтонов формализмы, основы которых излагались в курсах классической механики и классической теории поля. Предполагается знание математического анализа, линейной алгебры, основ векторного и тензорного исчисления, дифференциальных уравнений, основ теории групп и дифференциальной геометрии. Необходимые сведения из алгебраической топологии (теории гомотопий и гомологий) излагаются непосредственно в курсе.

Темы лекций

Тема 1. Вводный раздел

Линейное приближение в описании физических явлений (приближение точечных бесструктурных объектов, плоских волн и т.д.) и нелинейная сущность процессов и явлений (описание локализованных протяженных объектов и структур, нелинейных волновых процессов); существенно нелинейные модели процессов и явлений.

Тема 2. Нелинейные волновые уравнения.

Теплопроводность твердого тела, задача Ферми-Пасты-Улама и уравнение Кортевега – де Вриза; дислокации в кристаллах, теория двойникования Френкеля-Конторовой и уравнение синус-Гордон; нелинейное уравнение Шрёдингера, уравнение Кадомцева-Петвиашвили.

Тема 3. Уравнение КдВ и НУШ в конкретных физических задачах.

Кноидальные волны и солитоны; ионно-звуковые волны в плазме; ленгмюровские волны; гравитационные волны на мелкой воде; «светлые» и «темные» солитоны; электромагнитные волны в нелинейном диэлектрике; солитоны в волоконных световодах; самофокусировка света.

Тема 4. Методы интегрирования нелинейных волновых уравнений.

Бесконечный набор законов сохранения, преобразования Коула-Хопфа, Миуры и Кустанхеймо-Штифеля; метод обратной задачи рассеяния, представление Лакса, схема Захарова-Шабата и АКСН; прямые методы Хироты и Уолквиста-Эстабрука; преобразования Бэклунда; гамильтоновость нелинейных эволюционных уравнений и представление нулевой кривизны.

Тема 5. Локализованные структуры с нетривиальной топологией.

Топологические характеристики эволюционных процессов, гомотопические законы сохранения и элементы теории гомотопий; кинки, вихри, монополи, инстантоны и

скирмионы в киральных и калибровочных моделях физики полей и частиц, конденсированных сред, астрофизики и космологии; солитонные модели ферромагнетиков, жидких кристаллов, графенов и иных наноструктур; топологический анализ дефектов и структур в конденсированных средах.

Учебно-тематический план

№ п/п	Наименование раздела дисциплины	Лекции	Лаб. занятия	Практ. занятия / семина- ры	Из них в ИФ	СРА	Всего часов
1.	Вводный раздел: линейность (приближения точечных бесструктурных объектов, плоских волн и т.д.) и нелинейность (описание локализованных протяженных объектов и структур, нелинейных волновых процессов); существенно нелинейные модели процессов и явлений.	3		3		8	14
2.	Нелинейные волновые уравнения: теплопроводность твердого тела, задача Ферми-Пасты-Улама и уравнение Кортевега — де Вриза (КдВ); дислокации в кристаллах, теория двойникования Френкеля-Конторовой и уравнение синус-Гордон; нелинейное уравнение Шрёдингера (НУШ), уравнение Кадомцева-Петвиашвили.	2		2	1	8	12
3.	Уравнение КдВ и НУШ в конкретных физических задачах: кноидальные волны и солитоны; ионно-звуковые волны в плазме; ленгмюровские волны; гравитационные волны на мелкой воде; «светлые» и «темные» солитоны; электромагнитные волны в нелинейном диэлектрике; солитоны в волоконных световодах; самофокусировка света.	3		3	1	8	14
4.	Методы интегрирования нелинейных волновых уравнений (1): бесконечный набор законов сохранения, преобразования Коула-Хопфа, Миуры и Кустанхеймо-Штифеля; метод об-	2		2	1	8	12

	ратной задачи рассеяния, представление Лакса.					
5.	Методы интегрирования нелинейных волновых уравнений (2): схема Захарова-Шабата и АКСН; прямые методы Хироты и Уолквиста-Эстабрука; преобразования Бэклунда.	2	2	2	7	11
6.	Гамильтоновость нелинейных эволюционных уравнений и представление нулевой кривизны.	2	2	1	7	11
7.	Локализованные структуры с нетривиальной топологией: топологические характеристики эволюционных процессов, гомотопические законы сохранения и элементы теории гомотопий;	2	2	2	7	11
8.	Калибровочные и киральные поля. Кинки, вихри, монополи, инстантоны и скирмионы в киральных и калибровочных моделях физики полей и частиц, конденсированных сред, астрофизики и космологии;	2	2	1	7	11
9.	Солитонные модели: ферромагнетиков, жидких кристаллов, графенов и иных наноструктур; топологический анализ дефектов и структур в конденсированных средах.	2	2		8	12
	ИТОГО	20	20	8	68	108

8. Материально-техническое обеспечение дисциплины:

Мультимедийная аудитория или учебная аудитория с возможностью использования проектора и компьютерной техники для занятий по представлению презентационных материалов обучающимися. Компьютерные (дисплейные) классы с доступом к сети Интернет и электронно-образовательной среде Университета для проведения обучающимися самостоятельной работы и проведения компьютерного тестирования обучающихся (при необходимости).

9. Информационное обеспечение дисциплины:

- а) программное обеспечение:
 - OC Windows, MS Office (программа корпоративного лицензирования (Microsoft Subscription) Enrollment for Education Solutions), браузер Firefox (лицензия MPL-2.0) или браузер Chrome (лицензия Google Chrome Terms of Service); Adobe Reader (Adobe Software License Agreement).

- OC Linux, офисный пакет LibreOffice (лицензия MPL-2.0), ПО для просмотра pdf (например, evince (лицензия GPL-2+ CC-BY-SA-3.0)).
- б) базы данных, информационно-справочные и поисковые системы:
 - Электронная библиотека РГБ http://www.rsl.ru/
 - Сайт библиотеки РУДН http://lib.rudn.ru/
 - Springer/Kluwer http://www.springerlink.com. Журналы и книги издательства Springer/Kluwer охватывают различные области знания и разбиты на предметные категории.
 - Tailor & Francis http://www.informaworld.com . Коллекция журналов насчитывает более 1000 именований по всем областям знаний.
 - Электронная библиотека http://www.rsl.ru/

10. Учебно-методическое обеспечение дисциплины:

Литература

Список обязательной литературы

1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика в 10 томах. – М.: ФИЗМАТЛИТ, 2005.

Список дополнительной литературы и источников в интернете

- 1. 1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика в 10 томах. М.: ФИЗМАТЛИТ, 2005.
- 2. Датта С. Квантовый транспорт: от атома к транзистору. М.: 2009. ИКИ-РХД

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Организационно-методическое построение курса.

Курс состоит из лекций, практических занятий (семинаров), предусмотрено проведение консультаций. Лекции проводятся в интерактивном режиме — слушатели вовлекаются в дискуссию методом постановки вопросов по представленному материалу, а также по материалу, отвечающему базовому уровню подготовки. Вопросы формулируются в форме, провоцирующей активную реакцию слушателей.

Формат семинара — разбор материала, данного слушателям для самостоятельной проработки с целью лучшего усвоения и закрепления полученных знаний, а также для получения опыта их практического использования. Материал имеет форму практических задач, решение которых требует как аналитических, выкладок так иногда и ограниченного компьютерного моделирования. Семинар проходит в дискуссионной форме и носит характер мастер-класса.

Промежуточная аттестация в течение семестра проводится в виде теста по пройденному материалу. В конце семестра — экзамен в письменной форме. Экзаменационная задание содержит только задачи, решение которых требует активного использования полученных в течение семестра знаний. После собеседования выставляется итоговая оценка.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Материалы для оценки уровня освоения учебного материала дисциплины «Физика нелинейных процессов и явлений» (оценочные материалы), включающие в себя перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, разработаны в полном объеме и доступны для обучающихся на странице дисциплины в ТУИС РУДН.

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Руководитель направления 03.06.01 «Физика и астрономия»

Директор института физических исследований и технологий,

д.ф.-м.н., профессор

О.Т. Лоза