Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Федеравтьное государственное автономное образовательное учреждение Должность: Ректор

ca953a0120d891083f939673078ef1a989dae18a

высшего образования

Дата подписания: 01.06.2023 01:03:31 Уникальный программный от дружбы народов имени Патриса Лумумбы»

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физические основы микро- и наноэлектроники

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

28.03.02 Наноинженерия

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

Нанотехнологии и наноматериалы в приборостроении

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Физические основы микро- и наноэлектроники» являются: формирование компетенций в осознанном и целенаправленном использования навыков и умений при создании элементной базы устройств микро- и наноэлектроники; изучение основ строения материалов и физики происходящих в них явлений, технологии материалов электронной и микроэлектронной техники, материалов наноэлектроники; изучение физических процессов и законов, лежащих в основе принципов действия приборов микро- и наноэлектроники, и определяющих характеристики и параметры этих приборов.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Физические основы микро- и наноэлектроники» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении

дисциплины (результаты освоения дисциплины)

Оисциплины (результаты освоения дисциплины)				
Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)		
ОПК-3	Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные	ОПК-3.1 Знает основные методы измерений в области наноинженерии ОПК-3.2 Умеет проводить выбор метода измерения и наблюдения нанообъектов ОПК-3.3 Владеет методами обработки и представления экспериментальных данных		
ОПК-5	Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии	ОПК-5.1 Знает эффективные и безопасные технические средства и технологии в области наноинженерии ОПК-5.2 Умеет принимать обоснованные технические решения в профессиональной деятельности		
ПК-6	Способен определять этапы изготовления электромеханической системы, формировать перечни оборудования и последовательность необходимых для ее изготовления технологических модулей и операций	ПК-6.1 Знает основные этапы изготовления электромеханической системы ПК-6.2 Владеет навыками формирования перечня оборудования и последовательности технологических модулей и операций для изготовления электромеханической системы		

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Физические основы микро- и наноэлектроники» относится к обязательной части блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Физические основы микро- и наноэлектроники».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению

запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-3	Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные	Физика	Электротехника Методы диагностики в нанотехнологиях Научно-исследовательская работа (получение первичных навыков научно- исследовательской работы) Технологическая практика Преддипломная практика
ОПК-5	Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии	Безопасность жизнедеятельности Введение в нанотехнологии и микросистемную технику Химия	Основы физики твердого тела в наноинженерии Сопротивление материалов Основы проектирования лазеров Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы) Технологическая практика Преддипломная практика
ПК-6	Способен определять этапы изготовления электромеханической системы, формировать перечни оборудования и последовательность необходимых для ее изготовления технологических модулей и операций	Химия	Основы физики твердого тела в наноинженерии Системы автоматизированного проектирования наноструктур и систем на их основе Системы автоматизированного проектирования гетероструктурных лазеров Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы) Технологическая практика Преддипломная практика

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Физические основы микро- и наноэлектроники» составляет 4 зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>**ОЧНОЙ**</u>

формы обучения

Para vivofino il noforma	всего,	Семестр(-ы)	
Вид учебной работы	ак.ч.	3	4
Контактная работа, ак.ч.	36	36	
в том числе:			
Лекции (ЛК)	18	18	
Лабораторные работы (ЛР)	18	18	
Практические/семинарские занятия (СЗ)			
Самостоятельная работа обучающихся, ак.ч.	90	90	
Контроль (экзамен/зачет с оценкой), ак.ч.	18	18	

Вид учебной работы		всего,	Семес	тр(-ы)
		ак.ч.	3	4
ак.ч		144	144	
Общая трудоемкость дисциплины	зач.ед.	4	4	

Таблица 4.2. Виды учебной работы по периодам освоения ОП ВО для <u>ЗАОЧНОЙ</u>

формы обучения*

Вид учебной работы		всего,	Семес	тр(-ы)
		ак.ч.	3	4
Контактная работа, ак.ч.		8	8	
в том числе:				
Лекции (ЛК)		4	4	
Лабораторные работы (ЛР)		4	4	
Практические/семинарские занятия (С3)				
Самостоятельная работа обучающихся, ак.ч.		127	127	
Контроль (экзамен/зачет с оценкой), ак.ч.		9	9	
ак.ч.		144	144	
Общая трудоемкость дисциплины	зач.ед.	4	4	

^{* -} заполняется в случае реализации программы в заочной форме

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
Раздел 1. Общая характеристика электроники.	Тема 1.1. Роль физических явлений и процессов в электронике. Терминология. Основные направления развития электроники.	ЛК, ЛР
Раздел 2. Основы физики твердого тела и полупроводников.	Тема 2.1. Элементы зонной теории твердых тел. Статистика электронов и дырок в полупроводниках. Электропроводность электронных тел. Генерация и рекомбинация носителей заряда. Диффузия и дрейф носителей заряда в полупроводниках.	ЛК, ЛР
Раздел 3. Контактные и поверхностные явления в полупроводниках	Тема 3.1. Р-п переход. Контакт металл- полупроводник. Гетеропереходы. Биполярные полупроводниковые транзисторы. Полевые транзисторы	ЛК, ЛР
Раздел 4. Гальваномагнитные, термомагнитные и термоэлектрические явления в полупроводниках	Тема 4.1. Эффект Холла. Магнитнорезистивный эффект. Термомагнитные явления	ЛК, ЛР
Раздел 5. Оптические свойства полупроводников	Тема 5.1. Поглощение света в полупроводниках. Приемники оптического излучения. Светоизлучающие полупроводниковые приборы	ЛК, ЛР
Раздел 6. Перспективы развития микро и наноэлектроники	Тема 6.1. Современные достижения электроники. Физические основы перспективных направлений микро- и наноэлектроники.	ЛК, ЛР

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Лаборатория	Аудитория для проведения лабораторных работ, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Компьютерный класс	Компьютерный класс для проведения занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная персональными компьютерами (в количествешт.), доской (экраном) и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Щука, А. А. Наноэлектроника: учебное пособие / А. А. Щука; под редакцией А. С. Сигова. 5-е изд. Москва: Лаборатория знаний, 2017. 345с. Режим доступа: https://e.lanbook.com/book/135510
- 2. Стукалова А. С., Павлов В. С., Ярыгин Д. М., Глинкин А. С. Физические основы микроэлектроники : учебное пособие Санкт-Петербург : БГТУ "Военмех" им. Д.Ф. Устинова, 2017. 96 с. Текст : электронный // Лань : электронно-библиотечная система. Режим доступа: https://e.lanbook.com/book/157113
- 3. Шишкин, Г. Г. Наноэлектроника. Элементы, приборы, устройства : учебное пособие / Г. Г. Шишкин, И. М. Агеев. 4-е изд. Москва : Лаборатория знаний, 2020. 411 с. ISBN 978-5-00101-731-8.
- 4. Дьячков, П. Н. Электронные свойства и применение нанотрубок : монография / П. Н. Дьячков. 4-е изд. Москва : Лаборатория знаний, 2020. 491 с. (Нанотехнологии). ISBN 978-5-00101-842-1

Дополнительная литература:

1. Славникова, М. М. Физические основы микро- и наноэлектроники: Учебное пособие \— Томск: ТУСУР, 2014. — 232 с

Ресурсы информационно-телекоммуникационной сети «Интернет»:

1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:

Электронно-библиотечная система РУДН – ЭБС РУДН http://lib.rudn.ru/MegaPro/Web

- ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
- ЭБС Юрайт http://www.biblio-online.ru
- ЭБС «Консультант студента» www.studentlibrary.ru
- ЭБС «Лань» http://e.lanbook.com/
- ЭБС «Троицкий мост»
- 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
- поисковая система Яндекс https://www.yandex.ru/
- поисковая система Google https://www.google.ru/
- реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/ Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:
 - 1. Курс лекций по дисциплине «Физические основы микро- и нано электроники».
 - * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Физические основы микро- и нано электроники» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИКИ:

Доцент кафедры нанотехнологий и	Kanal	Т.А. Багаев
микросистемной техники Должность, БУП	<i></i>	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП: Заведующий кафедрой нанотехнологий и микросистемной техники	And	С.В. Попов
Наименование БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО: Доцент кафедры нанотехнологий и микросистемной техники	McL	М.О. Макеев
Должность, БУП	Подпись	Фамилия И.О.