Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Федераяльное государственное автономное образовательное учреждение Должность: Реконсидего образования «Российский университет дружбы народов имени Патриса Дата подписания: 0 Лумумбы»

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физико-химические методы обработки

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

Системная инженерия машиностроительных производств

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «<u>Физико-химические методы обработки</u>» является получение знаний, умений, навыков и опыта деятельности в области физико-химических методов обработки материалов, характеризующих этапы формирования компетенций и обеспечивающих достижение планируемых результатов освоения образовательной программы.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «<u>Физико-химические методы обработки</u>» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисииплины (результаты освоения дисииплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-3	Способен внедрять и осваивать новое	ОПК-3.1. Анализирует текущее состояние технологического оборудования ОПК-3.2. Выбирает технологическое оборудование в зависимости от типа производства и типоразмера детали ОПК-3.3. Применяет методы решения задач проектирования современной технологии машиностроения
ПК-4	Технологическая подготовка и обеспечение механообрабатывающего производства в машиностроении	ПК-4.1. Осуществляет разработку технологических процессов изготовления деталей машиностроения различной сложности ПК-4.2. Выполняет проектирование технологического оснащения производственных участков механообрабатывающего производства ПК-4.3. Производит контроль технологических процессов производства деталей машиностроения различной сложности и управление ими

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «<u>Физико-химические методы обработки</u>» относится к обязательной части блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Физико-химические методы обработки».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению

запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-3	Способен внедрять и осваивать новое технологическое оборудование	Материаловедение	Основы технологии машиностроения; Режущий инструмент.
ПК-4	Технологическая подготовка и обеспечение	Математика; Физика	Государственная итоговая аттестация.

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	механообрабатывающег		
	о производства в		
	машиностроении		

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «<u>Физико-химические методы обработки</u>» составляет __2 зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>ОЧНОЙ</u>

формы обучения

Вид учебной работы		всего,		Семестр(-ы)		
		ак.ч.	5			
Контактная работа, ак.ч.		36	36			
в том числе:						
Лекции (ЛК)		18	18			
Лабораторные работы (ЛР)		18	18			
Практические/семинарские занятия (С3)						
Самостоятельная работа обучающихся, ак.ч.		36	36			
Контроль (экзамен/зачет с оценкой), ак.ч.						
ак.ч.		72	72			•
Общая трудоемкость дисциплины	зач.ед.	2	2			

Таблица 4.2. Виды учебной работы по периодам освоения ОП ВО для <u>ЗАОЧНОЙ</u> формы обучения*

Вид учебной работы		всего,		Семестр(-ы)		
		ак.ч.	8			
Контактная работа, ак.ч.		18	18			
в том числе:						
Лекции (ЛК)		6	6			
Лабораторные работы (ЛР)		6	6			
Практические/семинарские занятия (С3)						
Самостоятельная работа обучающихся, ак.ч.		56	56			
Контроль (экзамен/зачет с оценкой), ак.ч.		4	4			
ак.ч.		72	72			
Общая трудоемкость дисциплины	зач.ед.	2	2			

^{* -} заполняется в случае реализации программы в заочной форме

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины	Содержание раздела (темы)	
Раздел 1. Область применения физико-	Область применения физико-химических методов обработки.	СР, ЛК
химических методов обработки		CI, JIK

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
Раздел 2.	Физические основы электроэрозионной обработки;	•
Электроэрозионная	Электроискровая обработка; Электроимпульсная обработка;	
обработка	Качество обработанной поверхности; Основные параметры	
•	электроэрозионной обработки; Технологические показатели	
	электроэрозионной обработки; Типовые технологические	СВ ШС ПВ
	операции; Выбор режима электроэрозионной обработки;	СР, ЛК, ЛР
	Электроды-инструменты; Рабочая жидкость для	
	электроэрозионной обарботки; Регуляторы межэлектродного	
	промежутка; Оборудование для электроэрозионной	
	обработки.	
Раздел 3.	Электроконтактная обработка (Описание процесса	
Электромеханические	электроконтактной обработки; Стадии протекания; Сущность	
методы	электроконтактной обработки; Рабочие среды; Применяемые	
, ,	электрод – инструменты.); Электроабразивная обработка;	
	Магнитно-импульсная обработка (Теоретические основы	
	магнитно-импульсной обработки; Технологическое	
	оборудование магнитно-импульсной обработки;	
	Теоретические основы магнитно-импульсной обработки;	
	Особенности устройства электромагнитных насосов);	
	Электрогидравлическая обработка (Физические основы	
	электрогидравлического эффекта; Применение	СР, ЛК, ЛР
	электрогидравлического эффекта в технологии	, ,
	машиностроения и металлообработке); Ультразвуковая	
	обработка (Теоретические основы ультразвуковой обработки;	
	Устройство и работа ультразвуковых установок; Применение	
	ультразвуковой обработки в машиностроении; Обработка	
	ультразвуковой оораоотки в машиностроении; Оораоотка направленным абразивом; Ультразвуковая обработка с	
	абразивонесущим электролитом; Обработка свободным	
	абразивом; Резание с наложением ультразвуковых колебаний	
	на режущий инструмент; Ультразвуковая очистка;	
	Ультразвуковая дефектоскопия.).	
Раздел 4. Лучевые	Лучевые методы (Электроннолучевая обработка;	
методы	Особенности электроннолучевой обработки; Схема	
	установки для электроннолучевой обработки; Виды	
	электронно-лучевой обработки; Электронно-лучевое	
	испарение материалов; Размерная электронно-лучевая	
	обработка; Электронно-лучевая сварка; Электронно-лучевая	
	термообработка); Лазерная технология (Общие сведения о	
	лазерах; Основные потребители лазерной технологии;	CD 114 115
	Классы лазерной опасности;Принцип работы лазеров;	СР, ЛК, ЛР
	Классификация лазеров; Газовые лазеры; Твердотельные	
	лазеры; Жидкостные лазеры; Полупроводниковые лазеры);	
	Основные свойства лазерного излучения; Промышленные	
	лазерно-технологические системы (комплексы),	
	применяемые для обработки материалов (Лазерная резка	
	материалов; Лазерная обработка отверстий; Лазерная сварка;	
	Лазерная гравировка и маркировка).	
Раздел 5. Плазменная	Физическое объяснение плазмы и способы ее получения;	
обработка	Плазма и ее некоторые свойства; Получение дуговой плазмы;	
oopaooina	Факторы, влияющие на энергетические характеристики	
	плазменной струи; Области применения плазменных	СР, ЛК
	технологий (Резка материалов; Напыление (нанесение	
	покрытий); Токарная обработка; Наплавка; Сварка).	
	покрытин, токарная обработка, Паплавка, Сварка).	

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
Электрохимические	Основные законы, описывающие процесс электролиза;	
методы обработки	Классификация электрохимических методов обработки;	
	Электрохимические размерные и отделочные методы	
	(Методы электрохимической размерной обработки; Методы,	
	реализуемые на основе анодного растворения поверхности	
	заготовки; Комбинированные методы электрохимической	
	размерной обработки; Методы электрохимической	
	отделочной обработки; Отделочные методы, реализуемые на	
	основе анодного растворения поверхности заготовки;	
	Комбинированные методы электрохимической отделочной	
	обработки; Электролиты; Технологические параметры	
	размерной электрохимической обработки; Напряжение на	
	электродах; Сила тока в электролите и анодная	
	поляризационная кривая; Скорость анодного растворения;	
	Способы регулирования межэлектродного зазора.)	

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	- микрофоны (2) — itc ESCORT T-621A; - проектор — SANYO VGA PROJECTOR; - моноблок — ViewSonic VA1932WA; - экран — SereenMedia; - усилитель трансляционный — ROXTON AA-120
Лаборатория	Аудитория для проведения лабораторных работ, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	переносной мультимедиа проектор SANYO VGA PROJECTOR
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Компьютерный класс	Компьютерный класс для проведения занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная персональными компьютерами (в количествешт.), доской (экраном) и техническими средствами мультимедиа презентаций.	

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)		
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.			

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Корягин С.И., Пименов И.В., Худяков В.К. Способы обработки материалов: Учебное пособие / Калинингр. ун-т Калининград, 2000. 448 с. ISBN 5-88874-152-3.
- 2. Подураев В.Н., Камалов В.С., Физико-химические методы обработки. М. «Машиностроение», 1973, 346 с.
- 3. Попов Л.М. Физико-химические методы обработки: Компьютерный текст лекций. 2-е изд., перер. Челябинск: Издательство ЮУрГУ, 2006. 97 с.
- 4. Артамонов Б.А., Волков Ю.С., Дрожалова В.И., Электрофизические и электрохимические методы обработки материалов. М.: Высшая школа, 1983. 248 с.
- 5. Бирюков Б.Н. Электрофизические и электрохимические методы размерной обработки. М.: Машиностроение, 1981. 128 с.
- 6. Носенко В. А., Даниленко М. В. Физико-химические методы обработки: учеб. пособие. Старый Оскол: ТНТ, 2012. 196 с.
- 7. Пашков А. Е. Физико-технические методы обработки: учеб. пособие. Иркутск: Изд-во ИрГТУ, 2005. 200 с.
- 8. Поляков З. И., Исаков В. М., Исаков Д. В., Шамин В. Ю. Электрофизические и электрохимические методы обработки: учеб. пособие. Челябинск: ЮУрГУ, 2006. 89 с.
- 9. Справочник по электрохимическим и электрофизическим методам обработки // Г. Л. Амитан, И. А. Байсупов, Ю. М. Барон и др.; под общ. ред. В. А. Волосатова. Л.: Машиностроение. Ленингр. отделение, 1988. 719 с.
- 10. Технологические процессы механической и физико-химической обработки в авиадвигателестроении: учеб. пособие / В. Ф. Безъязычный, М. Л. Кузьменко, В. Н. Крылов и др., под общей ред. В. Ф. Безъязычного. 2-е изд., доп. М.: Машиностроение, 2007. 539 с.

Дополнительная литература:

- 1. Александров С. Е. Технологии химического осаждения из газовой фазы: учеб. пособие. СПб.: Изд-во СПбГПУ, 2012. 216 с.
- 2. Артамонов Б. А., Волков Ю. С., Дрожалова В. И. Электрофизические и

- электрохимические методы обработки материалов: учеб. пособие / Под ред. В. П. Смоленцева (в 2-х томах). Т. 1. Обработка материалов с применением инструмента. М.: Высшая школа, 1983. 247 с.
- 3. Гальванические покрытия в машиностроении. Справочник. В 2-х томах / Под ред. М. А. Шлугера. М.: Машиностроение, 1985. T. 1. 1985. 240 с.
- 4. Елисеев Ю. С., Саушкин Б. П. Электроэрозионная обработка изделий авиационнокосмической техники. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2010. — 437 с.
- 5. Житников В. П., Зайцев А. Н. Импульсная электрохимическая размерная обработка. М.: Машиностроение, 2008. 413 с.
- 6. Лившиц А. Л., Кравец А. Т., Рогачев И. С., Сосненко А. Б. Электроимпульсная обработка металлов. М.: Машиностроение, 1967. 295 с.
- 7. Мирзоев Р. А. Электрохимическая обработка металлов. Анодные процессы: учеб. пособие. Л.: ЛПИ, 1988. 64 с.
- 8. Немилов Е. Ф. Справочник по электроэрозионной обработке материалов. Л.: Машиностроение. Ленингр. отделение, 1989. 164 с.
- 9. Немилов Е. Ф. Электроэрозионная обработка материалов: учебник. Л.: Машиностроение, Ленингр. отделение, 1983. 160 с.
- 10. Орлов В. Ф., Чугунов Б. И. Электрохимическое формообразование. М.: Машиностроение, 1990. 240 с.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:

Электронно-библиотечная система РУДН – ЭБС РУДН http://lib.rudn.ru/MegaPro/Web

- ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
- ЭБС Юрайт http://www.biblio-online.ru
- ЭБС «Консультант студента» www.studentlibrary.ru
- ЭБС «Лань» http://e.lanbook.com/
- ЭБС «Троицкий мост»
- 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
- поисковая система Яндекс https://www.yandex.ru/
- поисковая система Google https://www.google.ru/
- реферативная база данных SCOPUS <u>http://www.elsevierscience.ru/products/scopus/</u>
 Учебно-методические материалы для самостоятельной работы обучающихся при

освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «<u>Физико-химические методы обработки</u>».
- 2. Методические указания для самостоятельной работы обучающихся по дисциплине Физико-химические методы обработки.

^{* -} все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС</u>!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Физико-химические методы обработки» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИКИ:

Должность, БУП

Должность, БУП Фамилия И.О. Подпись Должность, БУП Фамилия И.О. Подпись Фамилия И.О. Должность, БУП Подпись РУКОВОДИТЕЛЬ БУП: Заведующий кафедрой Вивчар А.Н. машиностроительных технологий Наименование БУП Фамилия И.О. Подпись РУКОВОДИТЕЛЬ ОП ВО: доцент кафедры Алленов Д.Г. машиностроительных технологий

Подпись

Фамилия И.О.