Документ подписан простой электронной подписью Информация о владельце: ФИО: Ястребов Олег Арександорам State Autono mous Educational Institution of Higher Education Должность: Ректор Дата подписантребор 2023 СС: 57 КТЕНОВНИР Уникальный программный ключ: са953a0120d891083f939673078ef1a989dae18a

Faculty of Science

COURSE SYLLABUS

FUNDAMENTALS OF CONTEMPORARY MASS SPECTROMETRY

course title

Recommended by the Didactic Council for the Education Field:

04.04.01 Chemistry

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

«Pharmaceutical analysis in the production and drug quality control» higher education programme profile/specialisation title

1. INTERNSHIP GOAL(s)

The purpose of mastering the discipline "FUNDAMENTALS OF CONTEMPORARY MASS SPECTROMETRY" is to gain an understanding of the features of the fragmentation of various classes of organic compounds under electron ionization, the skills to obtain and analyze the totality of the spectral characteristics of organic compounds.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the discipline "FUNDAMENTALS OF CONTEMPORARY MASS SPECTROMETRY" is aimed at developing the following competencies (parts of competencies) among students:

Competence code	Competence descriptor	Competence formation indicators (within this course)
	To be able to plan work and choose adequate methods for solving research	M-PC-1-n-1. To draw up a general plan of research and detailed plans for individual stages.
M-PC-1-n problems in the chosen field of chemistry, chemical technology or sciences related to chemistry		M-PC-1-n-2. To select experimental and computational-theoretical methods for solving the problem based on the available material and time resources.
	To be able to perform patent information research	M-PK-2-n-1. To search for specialized information in patent information databases.
M-PC-2-n	in the chosen field of chemistry and/or related sciences	M-PK-2-n-2. To analyze and summarize the results of a patent search on the subject of the project in the selected field of chemistry (chemical technology).

Table 2.1. List of competences that students acquire during the internship

3. INTERNSHIP IN HIGHER EDUCATION PROGRAMME STRUCTURE

The discipline "FUNDAMENTALS OF CONTEMPORARY MASS SPECTROMETRY" refers to *the Elective Disciplines Module* of block B1 of the EP HE.

As part of the EP HE, students also master other disciplines and / or practices that contribute to the achievement of the planned results of mastering the discipline FUNDAMENTALS OF CONTEMPORARY MASS SPECTROMETRY".

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Compete nce code	Competence descriptor	Previous courses/modules, internships*	Subsequent courses/modules, internships*
	To be able to plan work and choose adequate	Actual problems of modern chemistry	Undergraduate practice

Compete nce code	Competence descriptor	Previous courses/modules, internships*	Subsequent courses/modules, internships*
	methods for solving research problems in the chosen field of chemistry, chemical technology or sciences related to chemistry	Chemistry of natural compounds Chemical methods of drug quality control in world pharmacopoeias pharmaceutical chemistry Modern information technologies in pharmacy Database Methodology Elemental analysis methods in drug quality control Physical and chemical bases of drug quality control Optical methods in pharmaceutical analysis Experimental research methods in pharmaceutical analysis Research work Experimental research methods in the chemistry of organic chemistry	
M-PC-2-n	To be able to perform patent information research in the chosen field of chemistry and/or related sciences	Actual problems of modern chemistry Chemistry of natural compounds Chemical methods of drug quality control in world pharmacopoeias pharmaceutical chemistry Modern information technologies in pharmacy Database Methodology Elemental analysis methods in drug quality control Physical and chemical bases of drug quality control Optical methods in pharmaceutical analysis Experimental research methods in pharmaceutical analysis Research work Experimental research	Undergraduate practice

Compete nce code	Competence descriptor	Previous courses/modules, internships*	Subsequent courses/modules, internships*
		methods in the chemistry of organic chemistry	

4. INTERNSHIP WORKLOAD

Course workload of the discipline «FUNDAMENTALS OF CONTEMPORARY MASS SPECTROMETRY» is 2 credits.

Table 4.1. Types of educational work by periods of mastering EP VO for **FULL-TIME EDUCATION**

Types of academic activities		Total	Semesters			
		ac.h,	1	2	3	4
Contact work ac.h.		36			36	
including:		_				
Lectures (LC)		18			18	
Lab Works (LW)		18			18	
Seminars (PC)						
Self-study, <i>ac.h</i> .		18			18	
Evaluation and assessment (exam or pass/fail grading), ac.h.		18			18	
Total labor intensity ac.h.		72			72	
Total labor intensity	ac.h.	2			2	

5. INTERNSHIP CONTENTS

Modules	Contents (topics, types of practical activities)	Workload, academic hours
	Theme 1.1. Principles of the mostly used methods for ions generation. Soft and hard ionization techniques.	LK
Section 1. Basic principles of mass spectrometry	Theme 1.2. Principles of the mostly used methods for ions separation and detection. Magnetic sector, quadrupole, quadrupole ion trap, linear ion trap, Orbitrap, ion cyclotron resonance and time-of- flight mass analyzers.	LK, LW
Section 2. Tandem mass spectrometry	Theme 2.1 Ion activation techniques: collision- induced dissociation, electron-transfer and electron-capture dissociation, photon-induced fragmentation. Multiply reaction monitoring	LK, LW
Section 3. Basic principles of mass spectral data interpretation.	Theme 3.1. The main fragmentation pathways of organic compounds. Bond scission and rearrangement mechanisms. Odd and even electron ions. The use of mass spectra databases, match and reverse match factors, head-to-tail and side-by-side comparison of mass spectra.	LK, LW

Table 5.1. Internship contents*

ModulesContents (topics, types of practical activities)		Workload, academic hours
	Theme 4.1. The main fragmentation pathways and diagnostic ions for acyclic compounds with up to one functional group. Theme 4.2. The main fragmentation pathways and diagnostic ions for cyclic compounds with up to one functional group.	LK, LW
Section 4. Protocol for structure determination of	Theme 4.3. The main fragmentation pathways and diagnostic ions for aromatic compounds with up to one functional group	LK, LW
unknowns by EI mass spectrometry.	Theme 4.4. The main fragmentation pathways and diagnostic ions for acyclic compounds with more than one functional group	LK, LW
	Theme 4.5. The main fragmentation pathways and diagnostic ions for cyclic compounds with more than one functional group	LK, LW
	Theme 4.6. The main fragmentation pathways and diagnostic ions for aromatic compounds with more than one functional group	LK, LW
Section 5 Quantitative analysis	Theme 5.1. Methods of quantitative analysis, calibration procedures for external and internal standards, isotope dilution technique.	LK, LW

* The contents of internship through modules and types of practical activities shall be <u>FULLY</u> reflected in the student's internship report.

6. INTERNSHIP EQUIPMENT AND TECHNOLOGY SUPPORT EQUIREMENTS

Table 6.1. Classroom Equipment and	l Technology Support Requirements
------------------------------------	-----------------------------------

Classroom for Academic Activity Type	Audience equipment	Specialized educational / laboratory equipment, software and materials for mastering the discipline (if necessary)
Lecture Room	An auditorium for lecture-type classes, equipped with a set of specialized furniture; board (screen) and technical means of multimedia presentations.	
Laboratory room	Educational chemical laboratory for group laboratory-type classes, individual consultations, monitoring, intermediate certification, independent work	Room is equipped with a set of specialized furniture; specialized equipment of the spectroscopy laboratory: manual press, scales, consumables for sample preparation, Thermo DSQ II mass spectrometer
Room for	An auditorium for independent work of	1 1 1
independent work	students (can be used for seminars and	of specialized furniture

Classroom for Academic Activity Type	Audience equipment	Specialized educational / laboratory equipment, software and materials for mastering the discipline (if necessary)	
of students	consultations), equipped with a set of specialized furniture and computers with access to the EIOS.		

* - the audience for independent work of students is indicated MANDATORY!

7. RECOMMENDED SOURCES FOR COURSE STUDIES

Main reading:

- 1. McLafferty, Fred W., ed. Mass spectrometry of organic ions. Elsevier, 2012.
- 2. Scheinmann, Feodor, ed. An introduction to spectroscopic methods for the identification of organic compounds: Mass spectrometry, ultraviolet spectroscopy, electron spin resonance spectroscopy, nuclear magnetic resonance spectroscopy (recent developments), use of various spectral methods together, and documentation of molecular spectra. Elsevier, 2013.
- 3. Pretsch, Ernö, Philippe Bühlmann, Christian Affolter, Ernho Pretsch, P. Bhuhlmann, and C. Affolter. Structure determination of organic compounds. Vol. 13. Berlin: Springer, 2009.

Additional reading:

Watson, J. Throck, and O. David Sparkman. Introduction to mass spectrometry: instrumentation, applications, and strategies for data interpretation. John Wiley & Sons, 2007.

Electronic libraries with access for RUDN by P. Lumumba students:

1. RUDN by P. Lumumba ELS and third-party ELS, to which university students have access on the basis of concluded agreements:

- RUDN by P. Lumumba Electronic Library System - RUDN EBS by P. Lumumba http://lib.rudn.ru/MegaPro/Web

- ELS "Университетская библиотека онлайн" <u>http://www.biblioclub.ru</u>

- EBS Юрайт http://www.biblio-online.ru

- ELS "Консультант студента" www.studentlibrary.ru - EBS "Lan" http://e.lanbook.com/

- EBS "Троицкий мост"

2. Databases and search engines:

- electronic fund of legal and normative-technical documentation http://docs.cntd.ru/

- Yandex search engine https://www.yandex.ru/
- Google search engine <u>https://www.google.ru/</u>

- abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/

* - all educational and methodological materials for independent work of students are placed in accordance with the current procedure on the page of the discipline in TUIS!

8. ASSESSMENT AND EVALUATION TOOLKITS

Evaluation materials and a point-rating system* for assessing the level of formation of competencies (parts of competencies) based on the results of mastering the discipline " FUNDAMENTALS OF CONTEMPORARY MASS SPECTROMETRY " are presented in the Appendix to this Work Program of the discipline.

* - OM and BRS are formed on the basis of the requirements of the relevant local normative act of RUDN by P. Lumumba (regulations / order).

DEVELOPERS:

Assistant professor, Organic

R.S.Borisov

Chemistry Department

Position, Department

Signature

Full name

HEAD OF DEPARTMENT: Organic Chemistry Department

Name of Department

Signature

L. G. Voskressensky

Full name

HEAD OF EP HE: Dean of Science faculty,

Head of the Department of

Organic Chemistry

Position, Department

Signature

Full name

L. G. Voskressensky