Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Ал**федеразувное государственное автономное образовательное учреждение высшего** должность: Ректор

Дата подписания: 26.05.2023 15.40.45 «Российский университет дружбы народов имени Патриса Лумумбы»

Уникальный программный ключ:

са953a0120d891083f939673078cf1a989dae18a физико-математических и естественных наук

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Интеллектуальные системы и технологии»

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

01.03.01 "Математика"

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

«Математика

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Интеллектуальные системы и технологии» является ознакомление с терминологией и методами машинного обучения, нейросетями, глубокого обучения и искусственного интеллекта, овладение обучающимися понятиями и методами программирования на универсальном языке python, теории и практики обработки данных и решения задач с помощью современных библиотек, пакетов и фреймворков.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Интеллектуальные системы и технологии» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при

освоении дисциплины (результаты освоения дисциплины)

Шифр Компетенция		Индикаторы достижения компетенции				
шифр	компетенция	(в рамках данной дисциплины)				
УК-2	Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.1. Формулирует на основе поставленной проблемы проектную задачу и способ ее решения через реализацию проектного управления УК-2.2. Разрабатывает концепцию проекта в рамках обозначенной проблемы: формулирует цель, задачи, обосновывает актуальность, значимость, ожидаемые результаты и возможные сферы их применения УК-2.3. Планирует необходимые ресурсы, в том числе, с учетом их заменяемости				
ОПК-4	Способен решать задачи профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований информационной безопасности	ОПК-4.1. Представляет результаты работы в виде научной публикации (тезисы доклада, статья, обзор) на русском и английском языке ОПК-4.2. Представляет результаты своей работы в устной форме на русском и английском языке				
ОПК-5	Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	ОПК-5.1. Построение алгоритмов решения прикладных задач современной науки ОПК-5.2. Разработка компьютерных программ для решения фундаментальных научных проблем				

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Интеллектуальные системы и технологии» относится к обязательной части блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Интеллектуальные системы и технологии».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенция	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
УК-2	Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	Компьютерные науки и технологии программирования	Государственный экзамен
ОПК-4	Способен решать задачи профессиональной деятельности с использованием существующих информационно-коммуникационных технологий и с учетом основных требований информационной безопасности	Компьютерные науки и технологии программирования	Численные методы
ОПК-5	Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения	Дискретная математика и математическая логика	Государственный экзамен

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Интеллектуальные системы и технологии» составляет 2 зачетных единицы.

Вид учебной работы		ВСЕГО, ак.ч.	Семестр(-ы)							
		BCEI 0, ak.4.	1	2	3	4	5	6	7	8
Контактная работ	а, ак.ч.	34				34				
Лекции (ЛК)		34				34				
Лабораторные рабо	ты (ЛР)									
Практические/семинарские										
занятия (СЗ)										
Самостоятельная работа		38				38				
обучающихся, ак.ч.		30				30				
Контроль (экзамен/зачет с										
оценкой), ак.ч.										
Общая	ак.ч.	72				72				
трудоемкость	зач.ед.	2				2				
дисциплины		2								

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины	Солержание разлела (темы)	
1. Введение	Основные виды математических пакетов	ЛК
	используемых в современной прикладной математике	
	и физике, плюсы и минусы пакета Matlab и языка Python	
2. Основы работы с	Изучение интерфейса, редактирование и запуск	ЛК
Jupyter Notebook.	скриптов, построение графиков.	
3. Основы	Задание функций пользователя. Циклы, условные	ЛК
программирования на	операторы, работа с библиотеками (numpy, pandas,	
языке Python	matplotlib), построение графиков.	
4. Типы данных и работа	Простые типы данных, сложные типы данных,	ЛК
с ними, работа с	операции и функции для работы с ними, чтение и	
файловой системой	запись из файлов	
5. Математические	Библиотека питру, операторы и операнды, работа с	ЛК
выражения и функции,	математически функциями и выражениями.	
линейная алгебра	Специальные математические функции для работы с матрицами.	
6. Анализ	Решение систем линейных уравнений. Метод	ЛК
функциональных	наименьших квадратов. Метод главных компонент.	
зависимостей и	Аппроксимация и интерполяция	
обработка данных		
7. Основы	Линейный дискриминантный анализ. Решающее	ЛК
классификации и	правило, разделяющая гиперплоскость. Линейная	
регрессии, линейная	оптимизация и программирование. Машина опорных	
алгебра и оптимизация	векторов. Ядерная техника. Регуляризация. Работа с библиотекой scikit-learn.	
8. Неметрические	Логические методы классификации, деревья	ЛК

Наименование раздела дисциплины	а Содержание раздела (темы)	
методы классификации	решений, критерий прироста информации	
9. Обсуждение тенденций машинного обучения и открытые вопросы	Бустинг, нейронные сети, ускорение вычислений на кластере GPU	ЛК
10. Основы Pytorch	Работа с тензорами. Линейная регрессия. Градиентный спуск. Автоматическое дифференцирование.	ЛК
11. Конволюционные нейронные сети	Понятие свёртки. Двумерная свёртка. Работа с изображениями. Нейронные сети с модулем torch.nn	ЛК
12. Автоэнкодеры	Понижающие шумы автоенкодеры Расстояние Кульбака-Лейблера Латентное пространство переменных Вариационные автоенкодеры	ЛК
13. Unet-архитектура	Сегментация изображений. Различные варианты архитектур с обходными (residual) соединениями	ЛК
14. Генеративно-состязательные сети	Архитектура GAN Примеры генеративно-состязательных сетей Проблемы обучения GAN	ЛК
15. Обсуждение тенденций искусственного интеллекта, глубокого обучения, открытые вопросы	Трансформеры, рекуррентные сети, языковые модели. Применение алгоритмов глубокого обучения в физике, химии, инженерных задачах	ЛК

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисииплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	Нет
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом	нет

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
	специализированной мебели и	
	компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Уэс Маккини. Python и анализ данных / (пер. А. Слинкин). ДМК Пресс, 2015. 482 с.
- 2. Swaroop C.H.. A Byte of Python [пер. с англ.] . 2013
- 3. Muhammad Yasoob Ullah Khalid. Intermediate Python (2016) [эл. ресурс, пер. с англ.] https://github.com/lancelote/interpy-ru
- 4. Ежов, А. А. Нейрокомпьютинг и его применения в экономике и бизнесе / Ежов А. А. Шумский С. А. Москва : Национальный Открытый Университет "ИНТУИТ", 2016
- 5. Джоши Пратик. Искусственный интеллект с примерами на Python. Вильямс, 2019. 448 с.

Дополнительная литература:

- 1. Сэджвик Р., Уэйн К., Дондеро Р. Программирование на языке Python: учебный курс. : Пер. с англ. СПб.: ООО «Альфа-книга», 2017. 736 с.
- 2. Паттерсон Джош, Гибсон Адам. Глубокое обучение с точки зрения практика. М.: ДМК-Пресс, 2018. 418 с.
- 3. Ферлитш Эндрю. Шаблоны и практика глубокого обучения. М.: ДМК-Пресс, 2022.-2022.-538 с.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

<u>http://pythontutor.ru/</u> - Бесплатный курс по программированию на Python с нуля, работает прямо в браузере, на русском. Для начинающих.

<u>https://www.geeksforgeeks.org/</u> - хорошие задачи по программированию и ресурсы по алгоритмам и структурам данных, от самых простых до довольно сложных.

https://leetcode.com/ - хорошие задачи по программированию

https://checkio.org/ - решение задач по программированию в игровой форме
 https://scikit-learn.org/stable/ - Machine Learning in Python, основная библиотека для машинного обучения и работы с данными

1. Ресурсы по Python и Anaconda

https://www.anaconda.com - Anaconda - дистрибутив python с большинством нужных библиотек (нет pytorch, нужно доустанавливать)

https://python.ivan-shamaev.ru/guide-conda-environments-anaconda-python-data-science-platform/ - про Анаконду и настройку jupyter notebook https://colab.research.google.com/ - облачная альтернатива Google Colab, всё предустановлено, есть pytorch.

2. Ресурсы по нейронным сетям

https://neurohive.io/ru/osnovy-data-science/obratnoe-rasprostranenie/ - обратное распространение ошибки (backpropagation) - обратное

https://programforyou.ru/poleznoe/convolutional-network-from-scratch-part-zero-

introduction - свёрточная нейронная сеть с нуля

https://habr.com/ru/company/yandex/blog/307260/ - Самое главное о нейронных сетях (обзор от Яндекса, 2016 год)

https://tproger.ru/translations/neural-network-zoo-1/ - схематические изображения различных нейросетевых архитектур

3. Pytorch

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html https://github.com/yunjey/pytorch-tutorial

4. Статьи по применению глубокого обучения в физике: https://github.com/thunil/Physics-Based-Deep-Learning - физика и глубокое обучение

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Интеллектуальные системы и технологии» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН

РАЗРАБОТЧИКИ:

Доцент, Математический институт Карандашев Я.М. им. С.М. Никольского Должность, БУП Фамилия И.О. Подпись РУКОВОДИТЕЛЬ БУП: Директор Математического Муравник А.Б. института им. С.М. Никольского Наименование БУП Подпись Фамилия И.О. РУКОВОДИТЕЛЬ ОП ВО: Профессор Математического Фаминский А.В. института им. С.М. Никольского Должность, БУП Подпись Фамилия И.О.