Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов» (РУДН)

Факультет физико-математических и естественных наук Институт физических исследований и технологий

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

Рекомендуется для направления подготовки/специальности

03.03.02 Физика

Квалификация выпускника: бакалавр

1. Цели и задачи дисциплины:

Сформировать представление о методах и областях применения теории интегральных уравнений и вариационного исчисления, развить математическую культуру студента и подготовить его к усвоению других основных математических курсов и естественнонаучных дисциплин. Реализация указанной цели включает последовательное изложение теоретического материала на лекциях, при котором все основные результаты снабжаются строгими доказательствами; отработку приемов решения задач на практических занятиях; промежуточный и итоговый контроль выявляют степень усвоения полученных навыков.

2. **Место дисциплины в структуре ООП:** вариативная часть, модуль «Методы математической физики», Б1.О.01.06.

Необходимо знание математического анализа (дифференциальное и интегральное исчисление функций действительного переменного, числовые и функциональные ряды), начальные сведения из функционального анализа. Дисциплина является предшествующей к курсу по методам математической физики.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 Предшествующие и последующие дисциплины, направленные на формирование компетенций

	№	Шифр и наименование	Предшествующие дисци-	Последующие дисциплины			
	Π/Π	компетенции	плины	(группы дисциплин)			
1	1	ОПК-1: Способен при-	Математический анализ	Дисциплины модулей «Об-			
		менять базовые знания	Аналитическая геомет-	щая физика», «Теоретическая			
		в области физико-	рия	физика», «Общий физиче-			
		математических и	Линейная алгебра	ский практикум»			
		(или) естественных	Дифференциальные				
		наук в сфере своей	уравнения				
		профессиональной де-					
		ятельности					

3. Требования к результатам освоения дисциплины:

В результате изучения дисциплины студент должен:

Знать: классификацию линейных интегральных уравнений, определение вырожденного ядра, метод последовательных приближений для интегральных уравнений второго рода, определение самосопряжённого оператора определение характеристических чисел и собственных функций самосопряжённого оператора, теорему Гильберта-Шмидта, альтернативу Фредгольма, определение функции Грина в задаче Штурма-Лиувилля, теорему Стеклова, необходимые условия экстремума в простейшей задаче вариационного исчисления.

Уметь: находить характеристические числа и собственные функции однородного интегрального уравнения с самосопряжённым ядром, находить решение неоднородного интегрального уравнения с симметричным ядром, находить решение неоднородного интегрального уравнения Вольтерра типа свёртки с помощью преобразования Лапласа, находить экстремали в простейшей задаче вариационного исчисления.

Владеть: методом нахождения характеристических чисел и собственных функций и нахождения решения неоднородного интегрального уравнения с симметричным ядромсведением интегрального уравнения к краевой задаче для дифференциального уравнения второго порядка, методом решения неоднородного интегрального уравнения Вольтерра второго рода с помощью преобразования Лапласа, методом нахождения экстремалей в простейшей задаче вариационного исчисления.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 2 зачетных единиц.

Вид учебной работ	Ы	Всего часов	Семестры
	36 18 18 36 36 лет) 2	7	
Аудиторные занятия (всего)		36	36
В том числе:			
Лекции		18	18
Практические занятия (ПЗ)		18	18
Семинары (С)			
Лабораторные работы (ЛР)			
Самостоятельная работа (всего)		36	36
В том числе:			
Курсовой проект (работа)			
Расчетно-графические работы			
Реферат			
Другие виды самостоятельной работ	ты		
Вид промежуточной аттестации (зач	ет)	2	2
Общая трудоемкость	час	72	72
	зач. ед.	2	2

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

Часть 1. Краткие сведения из функционального анализа

Краткое введение в функциональный анализ. Гильбертово пространство. Определение гильбертова пространства. Скалярное произведение. Неравенство Коши–Буняковского. Системы ортонормированных функций. Метод ортогонализации Грамма–Шмидта. Базис в гильбертовом пространстве. Неравенство Бесселя. Равенство Парсеваля. Теорема Фишера–Рисса.

Дельта-функция Дирака. Определение. Свойства дельта-функции. Разложение дельта-функции в интеграл Фурье. Формулы Сохоцкого.

Часть 2. Введение

Интегральные уравнения. Классификация линейных интегральных уравнений. Уравнения с вырожденным ядром.

Часть 3. Уравнения Фредгольма второго рода

Уравнения Фредгольма второго рода. Метод последовательных приближений. Самосопряженные ядра. Теоремы о спектрах самосопряженных ядер. Теорема Гильберта— Шмидта. Альтернатива Фредгольма. Задача Штурма—Лиувилля. Функция Грина. Теорема Стеклова.

Часть 4. Уравнения типа свёртки

Уравнения типа свёртки по Фурье. Преобразование Фурье. Уравнения Вольтерра типа свёртки. Преобразование Лапласа.

Часть 5. Интегральные уравнения первого рода

Уравнение Абеля. Теорема Пикара. Определение корректности постановки математической задачи по Адамару. Метод наименьших квадратов. Метод регуляризации Тихонова.

Часть 6. Элементы вариационного исчисления

Простейшая задача вариационного исчисления. Основная лемма вариационного исчисления. Уравнение Эйлера. Частные случаи уравнения Эйлера. Функционал от нескольких траекторий. Изопериметрическая задача.

$N_{\underline{0}}$	Наименование раздела дисциплины	Лекц.	Практические	CPC	Всего
Π/Π			занятия		час.
1.	Краткие сведения из функционального	1			1
	анализа				
2.	Введение	1			1
3.	Уравнения Фредгольма второго рода	8	12	22	42
4.	Уравнения типа свёртки	2	4	4	10
5.	Интегральные уравнения первого рода	2			2
6.	Элементы вариационного исчисления	4	2	4	10
7.	Итоговый контроль			6	6

6. Лабораторный практикум: нет

7. Практические занятия (семинары)

№	№ раздела	Тематика практических занятий (семинаров)	Трудо-
Π/Π	дисциплины		емкость
			(час.)
1.	1	Краткие сведения из функционального анализа	
2.	2	Введение	
3.	3	Уравнения Фредгольма второго рода	12
4.	4	Уравнения типа свёртки	4
5.	5	Интегральные уравнения первого рода	
6.	6	Элементы вариационного исчисления	2

8. Примерная тематика курсовых проектов (работ) – нет

9. Учебно-методическое и информационное обеспечение дисциплины:

- а) основная литература
- 1. Зон Б.А. Лекции по интегральным уравнениям. М., Высшая школа, 2004.
- 2. Краснов М.Л., Киселев А.И., Макаренко Г.И. Интегральные уравнения. Задачи и упражнения. М., Наука, все годы изданий.
- 3. Хацкевич В.П. Интегральные уравнения.

http://web-local.rudn/ru/web-local/prep/prep_2071

4. Хацкевич В.П. Интегральные уравнения. Задачи и упражнения.

http://web-local.rudn/ru/web-local/prep/prep 2071

- а) дополнительная литература
- 5. Васильева А.Б., Тихонов Н.А. Интегральные уравнения. М., Физматлит, 2002. Вся литература есть в библиотеке РУДН и в электронном виде на кафедре.

Программное обеспечение – Windows, Microsoft Office, Maple, TeX, WinEdt. Базы данных, информационно-справочные и поисковые системы – Yandex, Google, MathNet.

10. Материально-техническое обеспечение дисциплины

Аудитории для проведения лекций и семинаров в учебном корпусе РУДН, ул. Орджоникидзе, 3.

Hoyтбук Toshiba Satellite 17/300GB Intel Core2 2.4 GHz, мультимедийный проектор и экран.

11. Методические рекомендации по организации изучения дисциплины:

Курс изучается на лекциях, на практических занятиях и в самостоятельной работе студентов. Соотношение часов между ними следующее: на 2 часа лекций и практических занятий приблизительно 1,6 часа на СРС в неделю.

На СРС выносятся двухнедельные задания, состоящие из контрольных теоретических вопросов и задач по текущей теме. Результаты выполнения домашних заданий входят в балльно-рейтинговую систему оценки знаний.

За семестр проводится одна контрольная работа (две задачи) и один коллоквиум. На коллоквиуме требуется знание основных понятий, определений, формулировок теорем без доказательства. Итоговый контроль знаний предполагает более углублённое знание и понимание идейной стороны теории интегральных уравнений и основ вариационного исчисления, изложение теорем с доказательствами, навыки нахождения решений простейших задач.

Базой для данного курса являются курс математического анализа (дифференциальное и интегральное исчисление, числовые и функциональные ряды) и начальные сведения из функционального анализа, которые излагаются непосредственно в данном курсе.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Шкала оценок

Соответствие систем оценок (согласно Приказу Ректора № 996 от 27.12.2006 г.)

Баллы БРС	Традиционные оценки в РФ	Баллы для пере- вода оценок	Оценки	Оценки
96 100	5	95-100	5+	A
86-100	3	86-94	5	В
69-85	4	4 69-85 4		С
51-68	3	61-68	3+	D
31-08		51-60	3	Е
0-50	2	31-50	2+	FX
0-30		0-30	2	F
51-60	Зачет		Зачет	Passed

Паспорт фонда оценочных средств по дисциплине «Интегральные уравнения и вариационное исчисление» Направление/Специальность: 03.03.02 «Физика»

, ,				Наименование оценочного средства						Баллы	Баллы
компе-	Контролируемый раздел дисциплины	Контролируемая тема дисциплины	Текущий контроль			Промежуточная аттестация		темы	раздела		
Код контролируемой 1 тенции или ее части			Опрос	СРС (Домашний тест)	Коллоквиум	Контрольная работа	Зачет	·	:		
ОПК-1	Раздел 1: «Интегральные урав- нения»	Тема 1: «Интегральные уравнения. Клас- сификация линейных интегральных уравнений. Уравнения с вырожденным ядром. Уравнения Фредгольма второго рода. Уравнения типа свёртки. Интегральные уравнения первого рода»	5	10	5	30	20	•	•	70	70
	Раздел 2: «Вариационное исчисление»	Тема 1: «Простейшая задача вариационного исчисления. Основная лемма вариационного исчисления. Уравнение Эйлера. Частные случаи уравнения Эйлера. Функционал от нескольких траекторий. Изопериметрическая задача»	5		5		20			30	30
	ИТОГО:		10	10	10	30	40			100	100

Контрольная работа № 1.Интегральные уравнения Задачи:

- 1. Неоднородное интегральное уравнение Фредгольма второго рода с симметричным ядром;
- 2. Неоднородное интегральное уравнение Вольтерра типа свёртки.

Вопросы к зачету по дисциплине Интегральные уравнения и вариационное исчисление

- 1. Гильбертовы пространства.
- 2. Дельта-функция Дирака (определение, простейшие свойства). Преобразование Фурье.
- 3. Классификация линейных интегральных уравнений.
- 4. Уравнения Фредгольма второго рода с вырожденным ядром.
- 5. Метод последовательных приближений для интегральных уравнений второго рода.
- 6. Самосопряжённые ядра. Определение самосопряжённого оператора.
- 7. Определение характеристических чисел и собственных функций оператора \hat{K} .
- 8. Определение вырожденных характеристических значений. Кратность вырождения.
- 9. Действительность характеристических значений самосопряжённого оператора.
- 10. Ортогональность собственных функций, принадлежащих разным характеристическим значениям.
- 11. Теорема о спектре самосопряжённого ядра.
- 12. Теорема об оценке нормы функции \hat{K} z.
- 13. Теорема о спектре редуцированного оператора.
- 14. Теорема Гильберта-Шмидта.
- 15. Решение неоднородного уравнения Фредгольма в виде ряда по собственным функциям.
- 16. Альтернатива Фредгольма.
- 17. Задача Штурма-Лиувилля. Определение функции Грина. Теорема Стеклова
- 18. Интегральные уравнения Вольтерра второго рода типа свертки. Определение и примеры.
- 19. Простейшая задача вариационного исчисления.
- 20. Основная лемма вариационного исчисления.

Каждый студент вытягивает два вопроса из данного перечня. Ответ на каждый оценивается от 0 до 20 баллов в зависимости от полноты ответа.

Руководитель направления 03.03.02

Директор института физических исследований и технологий, д.ф.-м.н., профессор

О.Т. Лоза