ФИО: Ястребов Олег **Federal**^BState Autonomous Educational Institution of Higher Education Должность: Ректор Дата подписания: 26.05.202% Patrice Lumunba Peoples' Friendship University of Russia» Уникальный программный ключ: са953-0120489108349396730789613989622183

ca953a0120d891083f9366736786f12989faBiochemical Technology and Nanotechnology (IBHTN)

(name of the main educational unit (MEU) - the developer of the educational program of higher education (EP HE))

WORKING PROGRAM OF THE DISCIPLINE

«Introduction to Bioinformatics»

(name of discipline/module)

Recommended by the MCSD for the areas of training/specialty:

04.04.01 Chemistry

(code and name of the area of training / specialty)

The study of the discipline is conducted within the framework of the main professional educational program of higher education (EP HE):

«Biochemical Technologies and Nanotechnology»

(name (profile/specialization) of the educational program)

2023.

1. PURPOSE OF THE DISCIPLINE

The purpose of the discipline "**Introduction to Bioinformatics**" is to provide students with an understanding of bioinformatics, relevant computational methods, the implementation of experimental work in molecular biology, biochemistry, genetics, as well as the development of algorithms for computer analysis of genomics and proteomics data, programs that allow to predict the spatial structure of biopolymers.

> 2. REQUIREMENTS FOR THE RESULTS OF THE DISCIPLINE as study of the discipline "Introduction to Bioinformatics" is aimed at

The study of the discipline "**Introduction to Bioinformatics**" is aimed at forming the following competencies (part of competencies):

Code	Competence	Indicators of competence achievement				
	-	(within this discipline)				
GPC -3.	Able to use computational methods and adapt existing software products to solve	GPC -3.2. Uses standard and original software products, adapting them, if necessary, to solve problems of professional activity.				
	tasks of professional activities	GPC -3.3. Uses modern computational methods for processing data from chemical experiments, modeling the properties of substances (materials) and processes with their participation.				
GPC -5.	Able to use the toolkit formalizations engineering, scientific technical tasks, application software for modeling and design of	GPC -5.2. be able to apply methods of mathematical modeling in engineering and biological research, conduct data analysis. GPC -5.3. Uses modern computational methods for processing data from chamical experiments				
	objects, systems, and processes	modeling the properties of substances (materials) and processes with their participation.				

Table 2.1. The list of competencies formed in the development of the discipline (the results of the discipline)

3. THE PLACE OF THE DISCIPLINE IN THE STRUCTURE OF THE EP HE

The discipline "**Introduction to Bioinformatics**" is part of the formed by participants in the educational process and is the discipline of choice of block 1 of the curriculum profile "Biochemical technology and nanotechnology".

Within the framework of the EP HE students also master other disciplines and/or practices that contribute to the achievement of the planned results of mastering the discipline "Introduction to Bioinformatics".

Table 3.1. List of components of the EP of Higher Education, contributing to the achievement of the planned results of mastering the discipline

Code	Name of competence	Previous disciplines/modules, internships*	Subsequent disciplines/modules, internships*
GPC -3.	Able to use computational methods and adapt existing software products to solve tasks of professional activities	Computer Technology in Scientific Research,	
GPC -5.	Able to use formalization tools engineering, scientific and technical tasks, applied software for modeling and design of objects, systems, and processes	• Computer Technology in Scientific Research,	

* - to be filled in accordance with the competence matrix and the curriculum of the EP HE

4. SCOPE OF THE DISCIPLINE AND TYPES OF WORK

The total labor capacity of the discipline "**Introduction to Bioinformatics**" is 3 credit units.

Table 4.1. Types of educational work by periods of study of the program of higher education for **FULL-TIME** forms of learning

Turne of study more	TOTAL,	Semester(s)				
Type of study work	ac.h.	1	2	3	4	
Contact work, ac.h.	40		40			
Including:						
Lectures (LC)	16		16			
Laboratory work (LW)	16		16			
Practical/seminar classes (SP)	8		8			
Independent work of students, ac.h.	41		41			
Control (exam / pass with grade), ac.h.	27		27			
Total labor input of the discipline	108		108			
	Credit	3		3		

Таблица 4.2. Types of educational work by periods of study of the program of higher education for exact-correspondenc forms of learning

Type of study work		ΒСΕΓΟ,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Contact work, ac.h.	32		32			
Including:						
Lectures (LC)	16		16			
Laboratory work (LW)	8		8			
Practical/seminar classes (SP)		8		8		
Independent work of students, ac.h.	58		58			
Control (exam / pass with grade), ac.h.		18		18		
Total labor input of the dissipline ac.h		108		108		
Total labor input of the discipline	Credit	3		3		

5. DISCIPLINE CONTENT

Table 5.1. Content of the discipline (module) by type of study work

Name of discipline	Section (topic) content	Type of study*
Section 1: Introduction	Topic 1.1. Goals, objectives and methods, main	IC IW SP
Section 1. Introduction	applications Basic concepts Amino acids	
	structure and properties DNA RNA	
	nucleotides. Sequence analysis.	
Section 2: Databases	Internet for bioinformatics. Ways of presenting	LC, LW, SP
	of information . About sequences. Basics of	
	database structures: records, fields, objects.	
	FASTA, BLAST, GenBank, PDB record	
	formats. Classification of databases (automatic,	
	archival, curated). Main databases: GenBank,	
	EMBL, SwissProt, TrEMBL, PIR, PDB,	
	protein family banks (ProDom, PFAM,	
	InterPro, SCOP), metabolic databases, gene	
	banks (physical maps, OMIM), specialized data	
	banks. Search of homologous sequences in	
	databases.	
Section 3: Levels of	Analysis of nucleotide sequences. DNA	LC, LW, SP
structural organization	molecule structure, packaging,	
of proteins	Mathematical foundations of symbol sequences.	
	alignment. A mino acid substitution matrices	
	pairwise alignment and its evaluation multiple	
	alignment computational resources Global	
	alignment; the Niedelman-Wunsch algorithm.	
	Local alignment: Smith-Waterman algorithm.	
	Other alignment options. Statistical	
	significance of alignments. The dependence of	
	alignment on parameters. Multiple alignment.	
	Application of	
	alignment in bioinformatics.	
Section 4: Sequence	Analysis of nucleotide sequences. DNA	LC, LW, SP
Comparison	molecule structure, packaging,	
	complementarity. Genes, regulatory sequences.	
	Mathematical foundations of symbol sequence	
	alignment. Amino acid substitution matrices,	
	pairwise alignment and its evaluation, multiple	
	alignment; the Niedelman Wunsch algorithm	
	L ocal alignment: the Smith Waterman	
	algorithm	
	Other variants of alignments. Statistical	
	significance of alignments. The dependence of	
	alignment on parameters. Multiple alignment.	
	Application of Alignment in Bioinformatics	
Section 5. Methods for	Structure of the PDB record. Analysis of	LC, LW, SP
determining the spatial	structural features. Prediction of secondary	
structure biopolymers	structure. Prediction of tertiary structure of	
	proteins by homology. Homology modeling.	
	Folding and its recognition.	

Section 6: Predicting	Homolog analysis and functional signals.	LC, LW, SP
Biopolymer Function by	Leader peptides and transmembrane segments.	
Sequence	Protein modification sites (glycosylation,	
	phosphorylation, etc.).	
	Functional sites of DNA. Prokaryote and	
	eukaryote genes. Comparative methods of gene	
	prediction. Search for RNA with given	
	structure (tRNA, etc., mRNA regulatory sites).	
Section 7: Evolution at	Evolution of molecules and organisms	LC, LW, SP
the molecular level	(horizontal transfer, orthologues, paralogues,	
	gene trees). Phylogenetic tree. Models of	
	evolution. Evolution at genome level.	
	Population data analysis	
Section 8. Actual	Genome annotation, gene search, search for	LC, LW, SP
problems in	replication sites in the human genome.	
bioinformatics	Predicting the structure, function, and cellular	
	localization proteins. Medical and	
	Chemoinformatics.	

* - - to be filled in only for **FULL-TIME** education: *LC* - *lectures*; *LW* - *laboratory work*; *SP* – *seminar/practical classes*.

6. MATERIAL AND TECHNICAL SUPPORT OF THE DISCIPLINE *Table 6.1. Material and technical support of the discipline*

Type of	Classroom equipment	Specialized training/laboratory		
auditory		equipment, software and materials		
		for mastering the discipline		
		(if necessary)		
		Set of specialized furniture, technical means:		
		20 Computer workstations:		
		Lenovo IdeaCentre 19.5" HD+Cel		
Computer class	Study room for lectures,	J1800/4Gb/500Gb/DVDRW/DOS/kb/m/black		
	Laboratory work,	1600x900 (19 pcs.), Lenovo IdeaCentre 23"		
	Practical/seminar classes	C560 (57331093) i3-4160T		
	Computer class No. 622.	(3.1GHz)/4G/1Tb/DVD- (19 pcs.)		
		SMulti/23FHD91920x1080)/NV 800M		
		2G/Wi-Fi/cam/White (1pc.).		
		Internet access is provided		
		Multimedia projector Everycom		
Auditorium	Auditorium № 636 for students'	Laptop Lenovo Thinkpad L530 Intel Core i3-		
for	independent work, equipped	2370M_2.4GHz/DDR3 4 GB,		
independent	with a computer with access to	1pc		
maependent	the electronic information and	Internet access provided. Presentation Kit.		
WOIK	entertainment system.	Windows XP, Microsoft Office 2007,		
		Microsoft Security Essentials		

* - the classroom for students' independent work **MUST** be specified!

7. EDUCATIONAL-METHODICAL AND INFORMATION SUPPORT OF THE DISCIPLINE

Basic Literature:

1. Chasovskikh, N. Y. Bioinformatics: Textbook / N. Y. Chasovskikh. - Moscow : GEOTAR-Media, 2020. - 352 c. - ISBN 978-5-9704-5542-5.

Additional literature:

2. Tore Samuelsson Genomics and Bioinformatics An Introduction to Programming Tools for Life Scientists From Bioinformatics Basics to Working Code - eBook on the Myilibrary publishing platform.

Resources of information and telecommunication network "Internet":

- 1. RUDN Libraries and third-party Libraries, to which university students have access to, based on contracts:
 - RUDN-ELS (electronic library system) RUDN http://lib.rudn.ru/MegaPro/Web
 - University Library Online ELS <u>http://www.biblioclub.ru</u>
 - ELS Yurite <u>http://www.biblio-online.ru</u>
 - Student's Consultant ELS <u>www.studentlibrary.ru</u>
 - ELS "Lan<u>" http://e.lanbook.com/</u>
 - Trinity Bridge ELS
- 2. Databases and search engines:
 - electronic collection of legal and regulatory and technical documentation <u>http://docs.cntd.ru/</u>
 - Yandex search engine <u>https://www.yandex.ru/</u>
 - Google search engine <u>https://www.google.ru/</u>
 - referral base SCOPUS http://www.elsevierscience.ru/products/scopus/
 - Federal Institute for Industrial Property (FIPS) <u>https://new.fips.ru</u>

Teaching materials for students' independent work while mastering the discipline/module:*

- 1. Course of lectures on the discipline "Introduction to Bioinformatics".
- 2. Laboratory and practical work on the discipline " **Introduction to Bioinformatics**" (in the presence of laboratory works).

* All didactic-methodical materials for students' independent work are placed according to the current order on the page of the discipline in **E-system**!

8. ASSESSMENT MATERIALS AND POINT-RATING SYSTEM FOR EVALUATING THE LEVEL OF COMPETENCE IN THE DISCIPLINE

Assessment materials and score-rating system for evaluating the level of competence (part of competence) for the discipline "**Introduction to Bioinformatics**" are presented in the Appendix to this Working Program of the discipline.

* - Grading materials and the scoring system are formed on the basis of the requirements of the corresponding RUDN local normative act.

DEVELOPERS: Assistant Professor IBHTN Job title, MEU	Signature	Kezimana Parfait Full name
HEAD OF THE MEU: Director of IBHTN Наименование БУП	Yu. Stort Signature	Y.M. Stanishevskiy Full name
HEAD OF THE EP HE: Director of IBHTN Должность, БУП	Ya. Stor Signature	Y.M. Stanishevskiy Full name

Federal State Autonomous Educational Institution of Higher Education «Patrice Lumumba Peoples' Friendship University of Russia»

Institute of Biochemical Technology and Nanotechnology (IBHTN)

(name of the main educational unit (MEU) - the developer of the educational program of higher education (EP HE))

ASSESSMENT TOOLKIT FOR THE DISCIPLINE

«Introduction to Bioinformatics»

(name of discipline/module)

04.04.01 - "Chemistry"

(code and name of the area of training / specialty)

"Biochemical Technologies and Nanotechnology"

(name (profile/specialization) of the educational program)

Master

Graduate qualification (degree)

	Controlle	Controlled subject of	FOS	(forms o	of contro	ol of the le	evel of n	naster	ing of	the	Scores
	d section	the discipline	educational program)			-			of the		
	of the		Class work				Self		Credit/	case	
	discipline						an	d woi	'k	total	
Code of controlled			Control work No. 1	Control work No. 2	Control work #3	Performing laboratory work	Fulfillment of TOR	Summary	SURS	work	
	Basics bioinformati cs	Bionformatics as a scientific discipline and connections with molecular biology and other disciplines	10								20
		A set of information describing biopolymers (proteins, nucleic acids) and file formats used in bioinformatics.									
	Bioinformat ion bases data.	Biological DBs, Classification and types, and other information about the database		10				20		-	30
		NCBI. GenBank repository and analytical functions.									
OPC-5, OPC		Databases on small molecules and drugs. Databases on metabolomics and its Appendices. Toxicological databases.								25	
	Tools/meth ods for working with	Methods for comparing the primary structures of biopolymer molecules. Gene ontologies.			10	25		-			50
	information from biological bases data.	Comparison algorithms. Alignment, local, global. Multiple alignment. Working with databases in Entrez BLAST and other Internet services for bioinformatics analysis									
		Phylogenetic analysis and visualizations									
	Total										100

Passport of the assessment fund for the discipline "Introduction to Bioinformatics"

Questions to prepare for the credit In the discipline "Introduction to Bioinformatics"

- 1. The first question from:
- Bionformatics: definition, basic concepts, goals and objectives.
- Relationships of Bionformatics with Other Disciplines of Biology
- Basics of Molecular Biology
- Sequencing methods
- Biopolymers proteins, nucleic acids.
- Amino acid and nucleotide sequences as the main information component of bioinformatics.
- File formats used in bioinformatics.
- Recording amino acid sequences.
- Recording nucleotide sequences.
- NCBI GenBank database.
- Sources of biological information and databases
- Classification and types of databases.
- Comprehensive, universal and combined databases.
- Organism-specific databases.
- Databases on types of molecules.
- Database problems
- EMBL nucleotide sequence database.
- SwissProt Protein Database.
- PDB Protein Data Bank.
- Small molecule and drug databases.
- Databases on metabolomics and its applications.
- Toxicological databases
- Built-in tools for working with databases on the Internet.
- Internet tools for working with information from biological
- BLAST
- Alignment, local, global.
- Multiple Alignment.
- Phylogenetic analysis and visualizations

2. The second and third question: solving specific problems using methods:

- Alignment
- Phylogenetic analysis

Module test No. 1 "Introduction to Bioinformatics"

- 1. Bionformatics: definition, basic concepts, goals and objectives.
- 2. Relationships of Bionformatics with Other Disciplines of Biology
- 3. Basics of Molecular Biology
- 4. Sequencing methods
- 5. Biopolymers proteins, nucleic acids.
- 6. Amino acid and nucleotide sequences as the main information component of bioinformatics.
- 7. File formats used in bioinformatics.
- 8. Recording amino acid sequences.
- 9. Recording nucleotide sequences.

Module test No. 2 "Introduction to Bioinformatics"

- 1. NCBI GenBank database.
- 2. Sources of biological information and databases
- 3. Classification and types of databases.
- 4. Comprehensive, universal and combined databases.
- 5. Organism-specific databases.
- 6. Databases on types of molecules.
- 7. Database problems
- 8. EMBL nucleotide sequence database.
- 9. SwissProt Protein Database.
- 10.PDB Protein Data Bank.
- 11. Small molecule and drug databases.
- 12. Databases on metabolomics and its applications. Toxicological databases

Module test No 3

"Introduction to Bioinformatics"

- 1. Built-in tools for working with databases on the Internet.
- 2. Internet tools for working with information from biological
- 3. BLAST
- 4. Alignment, local, global.
- 5. Multiple Alignment.
- 6. Phylogenetic analysis and visualizations

Laboratory (seminar) works "Introduction to Bioinformatics"

- 1. Familiarization with popular databases GeneBank, EMBL, Swiss-Prot, UniProt and others
- 2. BLAST search engine, MUSCLE, CLUSTAL and others
- 3. We have a sequence of a gene. Its nucleotide sequence is given. Determine what this gene is and select primers so that we can determine the presence of this gene in the transformed organism.
- 4. What is the normal function of the protein encoded by this gene? Is there a homologue of this gene in the genome of some organism? If so, what is the function of this gene? Which chromosome contains a region homologous to this gene?
- 5. Algorithms for assembling genomic sequences from fragments
- 6. Alignment construction of two short artificial sequences
- 7. Alignment construction of two real sequences
- 8. Alignment editing
- 9. Alignment of sequences with similar function (possible homologs)
- 10. Alignment of sequences containing homology sites
- 11. Find the sequence from the fragment
- 12. Use BLAST to search the database for a specific gene/protein
- 13.Compare the multiple alignment constructed by Clustal
- 14.Make a pattern by multiple alignment
- 15. Find a document in the database that contains information about a protein
- 16.Phylogenetic analyses of PhyML

DEVELOPERS: Assistant Professor IBHTN

Job title, MEU

Signature

Kezimana Parfait Full name

Federal State Autonomous Educational Institution of Higher Education «Patrice Lumumba Peoples' Friendship University of Russia»

Institute of Biochemical Technology and Nanotechnology (IBHTN)

(name of the main educational unit (MEU) - the developer of the educational program of higher education (EP HE))

INDEPENDENT STUDY OF THE STUDENT FOR THE DISCIPLINE

«Introduction to Bioinformatics»

(name of discipline/module)

04.04.01 - "Chemistry"

(code and name of the area of training / specialty)

"Biochemical Technologies and Nanotechnology"

(name (profile/specialization) of the educational program)

Master

Graduate qualification (degree)

Essay topics

- 1. Structure and functions of genes and proteins.
- 2. Are discoveries and advances in molecular biology and genetics related to the emergence of bioinformatics?
- 3. Characteristics of the genome of an organism.
- 4. The main tasks of bioinformatics
- 5. Methods for Recognizing Functional Segments in Nucleotide Sequences
- 6. Methods for comparing the primary structures of biopolymer molecules
- 7. Problems of phylogeny of genomic sequences.
- 8. Predicting gene functions.
- 9. Genome comparison
- 10.Pharmacogenomics and pharmacogenetics
- 11.Genetic basis of individual drug sensitivity.
- 12.Genetic differences in drug receptors.
- 13. Clinical significance of pharmacodynamic gene polymorphisms

DEVELOPERS: Assistant Professor IBHTN	Junipac	Kezimana Parfait
Job title, MEU	Signature	Full name

The program is compiled in accordance with the requirements to the Educational standard of higher education of RUDN University.

HEAD OF THE MEU:	ye. Start	
Director of IBHTN		Y.M. Stanishevskiy
Наименование БУП	Signature	Full name
HEAD OF THE EP HE:	ye. Stor	
Director of IBHTN		Y.M. Stanishevskiy
Должность, БУП	Signature	Full name