Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Инжене	рная	акаде.	мия

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины Математическое моделирование, численные методы и комплексы программ

Рекомендуется для направления подготовки/специальности

09.06.01 «Информатика и вычислительная техника» (аспирантура)

Направленность программы (профиль)

Математическое моделирование, численные методы и комплексы программ

1. Цели и задачи дисциплины Формирование у аспирантов углубленных теоретических знаний в области, соответствующей научной специальности. Задачами дисциплины являются:

Актуализировать знания ключевых понятий из предшествующих дисциплин, особенно важные для математического моделирования. Ознакомить обучающихся с основными современными задачами математического моделирования, возникающими в различных областях. Научить обучающихся выбирать наиболее подходящий метод для решения поставленных перед ним задач. Ознакомить обучающихся с возможностями современных пакетов вычислительной математики.

2. Место дисциплины в структуре ОП ВО:

Дисциплина Математическое моделирование, численные методы и комплексы программ относится к *вариативной части учебного плана*.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 **Предшествующие и последующие дисциплины, направленные на формирование** компетенций

		компетенций	
$N_{\underline{0}}$	Шифр и наименование	Предшествующие	Последующие дисциплины
Π/Π	компетенции	дисциплины	(группы дисциплин)
Общег	профессиональные компете	енции	
	ОПК-3 способностью к	Системный анализ,	
	разработке новых	управление и обработка	
	методов исследования и	информации	
	их применению в		
	самостоятельной		
	научно-		
	исследовательской		
	деятельности в области		
	профессиональной		
	деятельности		
	ОПК-5 способностью	Системный анализ,	
	объективно оценивать	управление и обработка	
	результаты	информации	
	исследований и		
	разработок,		
	выполненных другими		
	специалистами и в		
	других научных		
	учреждениях		
	ОПК-7 владением		Научные исследования
	методами проведения		(научно- исследовательская
	патентных		деятельность)
	исследований,		
	лицензирования и		
	защиты авторских прав		
	при создании		
	инновационных		
	продуктов в области		

	профессиона и иой		
	профессиональной		
П., . 1	деятельности	(
Профе		(вид профессиональной деят	ельности
	ПК-3 способностью к	Приоритетные	
	самостоятельной (в том	направления развития	
	числе руководящей)	информатики и	
	научно-	вычислительной техники	
	исследовательской		
	деятельности,		
	требующей широкой		
	фундаментальной		
	подготовки в		
	современных		
	направлениях		
	отраслевой науки,		
	глубокой		
	специализированной		
	подготовки в		
	выбранном		
	направлении, владения		
	навыками современных		
	методов исследования		
	ПК-4 владением		Научные исследования
	фундаментальными		(подготовка научно-
	знаниями в основных		квалификационной работы
	разделах		(диссертации) на соискание
	математического		ученой степени кандидата
	моделирования,		наук)
	численных методов и		
	комплексов программ		
Пр	офессионально-специализ	ированные компетенции спет	циализации
			<u> </u>

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций: *ОПК-3, ОПК-5, ОПК-7, ПК-3, ПК-4*

В результате изучения дисциплины студент должен:

Знать: Основы методологии математического моделирования, элементы вероятностного моделирования, элементы операционного моделирования, основные классы численных методов, их особенности, теоретические подходы к созданию комплексов программ, принципы программной инженерии, новейшие тенденции программной инженерии

Уметь: Эффективно использовать на практике теоретические компоненты науки: понятия, суждения, умозаключения, законы; представить панораму методов программной инженерии, использовать современные средства создания комплексов программ, абстрагироваться от несущественного при математическом моделировании, планировать оптимальное проведение численного эксперимента; выбирать численные методы, подходящие для решения той или иной задачи.

Владеты: понятиями меры и интеграла Лебега; методикой планирования, постановки и обработки результатов численного эксперимента; математическим моделированием научных задач и задач проектирования техники, понятиями выпуклого анализа; понятиями математической статистики; основной терминологией теории принятия решений; основной терминологией теории исследования операций; основными численными методами; методологией постановки вычислительных экспериментов; одной из распространенных систем математического моделирования.

4. Объем дисциплины и виды учебной работы Общая трудоемкость дисциплины составляет _____

зачетных единиц.

Вид учебной работы		Всего	Семестры
		часов	4
Аудиторные занятия (всего)		40	40
В том числе:		-	
Лекции		20	20
Практические занятия (ПЗ)		20	20
Семинары (С)			
Лабораторные работы (ЛР)			
Самостоятельная работа (всего)		104	104
Общая трудоемкость	час	144	144
	зач. ед.	4	4

5. Содержание дисциплины

5.1. Солержание разделов лисциплины

	одержание разделов дисц	
No	Наименование раздела	Содержание раздела (темы)
п/п	дисциплины	
1.	Введение	Системный подход и математическое моделирование, как
		научная методология решения проблем. Концептуальное
		проектирование математических моделей. Проектирование
		модели для оценки надежности информационно-
		вычислительной системы.
2.	Математическое	Современное состояние проблемы моделирования систем.
	моделирование в	Математическое моделирование как основной способ
	технике	исследования. Математическое моделирование как метод
		познания реального мира. Изучение математического
		моделирования с использованием средств вычислительной
		техники. Использование математического моделирования в
		различных областях человеческой деятельности. Основные
		этапы математического моделирования.
3	Математические модели	Понятие математической модели. Структура
	в инженерных	математических моделей. Фундаментальные принципы
	дисциплинах	построения математических моделей. Классификация
		математических моделей. Классификация математических
		моделей, особенности, иерархия.
4	Методы исследования	Аналитические модели. Имитационные модели. Эмпирико-
	математических	статистические модели. Искусственный интеллект. Этапы
	моделей	построения математической модели.
5	Математические модели	Модели динамических систем. Особые точки. Бифуркации.
	в научных	Динамический хаос. Эргодичность и перемешивание.
	исследованиях	Понятие о самоорганизации. Диссипативные структуры.
		Режимы с обострением. Компьютерные технологии.
		Численные методы. Интерполяция и аппроксимация
		функциональных зависимостей. Численное
		дифференцирование и интегрирование. Информационные
		технологии. Исследование операций и задачи
		искусственного интеллекта. Распознавание образов.

(Содержание указывается в дидактических единицах. По усмотрению разработчиков материал может излагаться не в форме таблицы)

5.2. Разделы дисциплин и виды занятий

- 1								
	$N_{\underline{0}}$	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Семин	CPC	Bce-

п/п			зан.	зан.		ГО
						час.
1.	Введение	4	4		20	28
2.	Математическое моделирование в технике	4	4		20	28
3	Математические модели в инженерных дисциплинах	4	4		20	28
4	Методы исследования математических моделей	4	4		22	30
5	Математические модели в научных исследованиях	4	4		22	30

6. Лабораторный практикум не предумотрен

7. Практические занятия (семинары) (при наличии)

№ п/п	№ раздела дисциплины	Тематика практических занятий (семинаров)	Трудо- емкость (час.)
1.	Введение	Системный подход и математическое моделирование, как научная методология решения проблем. Концептуальное проектирование математических моделей. Проектирование модели для оценки надежности информационно-вычислительной системы.	4
2.	Математическое моделирование в технике	Современное состояние проблемы моделирования систем. Математическое моделирование как основной способ исследования. Математическое моделирование как метод познания реального мира. Изучение математического моделирования с использованием средств вычислительной техники. Использование математического моделирования в различных областях человеческой деятельности. Основные этапы математического моделирования.	4
3	Математические модели в инженерных дисциплинах	Понятие математической модели. Структура математических моделей. Фундаментальные принципы построения математических моделей. Классификация математических моделей. Классификация математических моделей, особенности, иерархия.	4
4	Методы исследования математических моделей	Аналитические модели. Имитационные модели. Эмпирико-статистические модели. Искусственный интеллект. Этапы построения математической модели.	4
5	Математические модели в научных исследованиях	Модели динамических систем. Особые точки. Бифуркации. Динамический хаос. Эргодичность и перемешивание. Понятие о самоорганизации. Диссипативные структуры. Режимы с обострением. Компьютерные технологии. Численные методы. Интерполяция и аппроксимация функциональных зависимостей. Численное дифференцирование и интегрирование. Информационные технологии. Исследование операций и задачи искусственного интеллекта. Распознавание образов.	4

8. Материально-техническое обеспечение дисциплины:

(описывается материально-техническая база, необходимая для осуществления образовательного процесса по дисииплине (модулю)).

ооризовительного процесси по оисциплине (мооулю)).	3.4		
Аудитория с перечнем материально-технического обеспечения	Местонахождение		
Учебная аудитория для проведения лабораторных работ			
(«Лаборатория автоматизированных систем управления»), ауд. №			
416			
Оборудование и мебель:			
- персональные компьютеры на базе системного блока BT/Core2-			
Duo3000/4x1024Mb/1000GbR/V512Mb/S/DVD+-RW + монитор,			
клавиатура, мышь (13 шт.);			
- учебно-исследовательский стенд программно-технического	г. Москва, ул.		
комплекса "Контар" (12 шт.); Орджоникидзе, д.			
- интерактивная доска Polyvision TSL 610;			
- проектор Toshiba TLP-XC3000;			
- коммутатор Cisco Catalyst 2960 24;			
- сетевой фильтр 13 шт.);			
- доступ в Интернет: ЛВС и Wi-Fi,			
- столы, стулья,			
- передвижная доска для маркера.			

9. Информационное обеспечение дисциплины

- а) Стандартное программное обеспечение персональных ЭВМ, МАТLAB
- б) информационно-справочные и поисковые системы Яндекс, Гугл.

10. Учебно-методическое обеспечение дисциплины:

(указывается наличие печатных и электронных образовательных и информационных ресурсов)

- а) основная литература
- 1. Математическое моделирование: Идеи. Методы. Примеры. 2-е изд., испр. М. Физматлит. 2001. 320 с. ISBN 5-9221-0120-X
- б) дополнительная литература
- 1. Математическое и компьютерное моделирование распределенных механических структур: монография. / Крысько В.А., Павлов С.П., Жигалов М.В., Салтыкова О.А., Крысько А.В. Саратов: Сарат. гос. техн. ун-т, 2018. 432 с. ISBN 978-5-7433-3244-1
- 2. Вейвлет-анализ в математическом моделировании распределенных механических структур. Учебное пособие. / Афонин О.А., Кириченко А.В., Яковлева Т.В., Салтыкова О.А., Яковлева Т.В., Крысько А.В. Саратов: КУБИК, 2018. 144 с. ISBN 978-5-91818-589-6
- 3. Методы математического моделирования и решения прикладных задач. / Учебное пособие. Яковлева Т.В., Салтыкова О.А., Кириченко А.В., Павлов С.П. Саратов: КУБИК, 2018. 68 с. ISBN 978-5-91818-607-7

11. Методические указания для обучающихся по освоению дисциплины (модуля)

На практических занятиях по дисциплине проводятся контрольные мероприятия с целью выявления полученных знаний, умений, навыков и компетенций. В рамках самостоятельной работы аспиранты изучают учебно-методическое обеспечение дисциплины, готовят домашнее задание, работает над вопросами и заданиями для самоподготовки, занимается поиском и обзором научных публикаций и электронных источников информации. Самостоятельная работа должна носить систематический характер и контролируется преподавателем, учитывается преподавателем для выставления аттестации.

Для повышения качественного уровня освоения дисциплины аспирант должен готовиться к лекции, так как она является ведущей формой организации обучения студентов и реализует функции, способствующие:

- формированию основных понятий дисциплины,
- стимулированию интереса к дисциплине, темам ее изучения,
- систематизации и структурированию всего массива знаний по дисциплине,
- ориентации в научной литературе, раскрывающей проблемы дисциплины.

Подготовка к лекции заключается в следующем:

- изучение материала предыдущей лекции,
- анализ темы предстоящей лекции (по тематическому плану, по информации лектора),
- ознакомление с учебным материалом по учебнику и учебным пособиям,
- анализ места изучаемой темы в своей профессиональной подготовке,
- подготовка вопросов, которые возможно задать лектору на лекции.

Подготовка к практическим занятиям:

- ознакомление с планом практического занятия: вначале с основными вопросами, затем – с вопросами для обсуждения, оценка объема задания;
- изучение конспекта лекции по теме практического занятия, выделение материала, необходимого для изучения поставленных вопросов;
- ознакомление с рекомендуемой основной и дополнительной литературой по теме, новыми публикациями в периодических изданиях;
- выделение основных понятий изучаемой темы, владение которыми способствует эффективному освоению дисциплины;
- подготовка тезисов или мини-конспектов, которые могут быть использованы при публичном выступлении на занятии.

Рабочая программа дисциплины в части целей, перечню знаний, умений, терминов и учебных вопросов может быть использована вами в качестве ориентира в организации обучения.

<u>Подготовка к зачету</u>. К зачету необходимо готовиться целенаправленно, регулярно, систематически и с первых дней обучения по данной дисциплине. В самом начале изучения дисциплины аспирант знакомится с программой по дисциплине, перечнем знаний и умений, которыми аспирант должен владеть, контрольными мероприятиями, учебником, учебными пособиями по изучаемой дисциплине, электронными ресурсами, перечнем вопросов к зачету.

Систематическое выполнение учебной работы на лекциях, практических занятиях и занятиях позволит успешно освоить дисциплину и создать хорошую базу для сдачи зачета.

От аспирантов требуется посещение занятий, выполнение заданий руководителя дисциплины, знакомство с рекомендованной литературой и подготовка эссе к круглому столу (выбор темы эссе осуществляется по согласованию с руководителем дисциплины и научным руководителем). Аспиранты выполняют проекты, творческие задания для самостоятельной работы с учетом профильности дисциплин, которые будут реализоваться ими в процессе производственной практики. Результаты выполнения заданий для самостоятельной работы оцениваются на основе балльно-рейтинговой оценки и отражаются в образовательном маршруте аспиранта. При аттестации аспиранта оценивается качество работы на занятиях (умение вести научную дискуссию, способность четко и емко формулировать мысли), уровень подготовки свои К самостоятельной исследовательской деятельности специалиста в области педагогики высшей школы, истории педагогики и образования, качество выполнения заданий (презентаций, докладов, аналитических записок и др.).

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Материалы для оценки уровня освоения учебного материала дисциплины «Математическое моделирование, численные методы и комплексы программ» (оценочные материалы), включающие в себя перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы, методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы

формирования компетенций, разработаны в полном объеме и доступны для обучающихся на странице дисциплины в ТУИС РУДН.

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Разработчики:	0
доцент А/	Салтыкова О.А.
Руководитель программы профессор	Разумный Ю.Н.
Заведующий кафедрой профессор	Разумный Ю.Н.
4	