Документ подписан простой электронной подписью

Информация о владельце:

Должность: Ректор

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

ФИО: Ястребов Олег Алектейскай State Autonomous Educational Institution of Higher Education Дата подписания: 07.06.2023 15:57:05 **PEOPLES' FRIENDSHIP UNIVERSITY OF RUSSIA RUDN University**

Institute of Medicine

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Mathematics

course title

Recommended by the Didactic Council for the Education Field of:

31.05.03 Dentistry

field of studies / speciality code and title

The course instruction is implemented within the professional education programme ofhigher education:

Dentistry

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course «**Mathematics**» is to equip students with the knowledge of the basic mathematic knowledge necessary for subsequent natural science disciplines, as well as to form their natural science worldview.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the course (module) «**Mathematics**» is aimed at the development of the following competences /competences in part: **GPC-8, PC-1, PC-6.**

Table 2.1. List of competences that students acquire through the course study

Competence code	Competence descriptor	Competence formation indicators (within this course)
PC-1	Being able to implement critical analysis of problem situations based on systems approach, develop an action strategy.	PC-1.1. Analyzing the problem situation as a system identifying its components and links between them. PC-1.2. Defining gaps in the information required to deal with a problem situation and designing processes to address them. PC-1.3. Assessing in a critical way the reliability of information sources; working with contradictory information from different sources. PC-1.4. Developing and giving meaningful reasons for and against a strategy for solving a problem situation in terms of a systematic and interdisciplinary approaches.
PC-6	Being able to identify and implement the priorities of their own activities and the ways of improving them based on self-assessment and lifelong learning.	PC 6.1. Assessing their own resources and their (personal, contextual, time) limits; using them in an optimal way to successfully perform the assigned task
GPC-8	Being able to use main physical and chemical, mathematical and scientific notions and methods when dealing with professional tasks.	GPC-8.1. Applying basic fundamental physical and chemical knowledge to deal with professional tasks. GPC-8.2. Using applied natural science knowledge to deal with professional tasks. GPC-8.3. Applying fundamental mathematical knowledge to deal with professional tasks.

3.COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the <u>core</u>/variable/elective* component of (B1) block of the higher educational programme curriculum.

* - Underline whatever applicable.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Compete nce code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
PC-1	Being able to implement critical analysis of problem situations based on systems approach, develop an action strategy.	-	Bioethics, introduction into specialty, philosophy, history of medicine, jurisprudence, economics, psychology, pedagogy, organization of general patient care, public health and healthcare, internal medicine, general surgery, life safety, catastrophe medicine, forensic medicine.
PC-6	Being able to identify and implement the priorities of their own activities and the ways of improving them based on self-assessment and lifelong learning.	-	Bioethics, jurisprudence, economics, psychology, pedagogy, medical informatics.
GPC-8	Being able to use main physical and chemical, mathematical and scientific notions and methods when dealing with professional tasks.	-	Physics, chemistry, biological chemistry, biology, normal physiology, microbiology, immunology, pharmacology, epidemiology, radiation diagnostics, materials science.

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course is 2 credits (72 academic hours).

Table 4.1. Types of academic activities during the periods of higher education

programme mastering (full-time training)*

Type of academic activities		Total	Ser	nesters/tra	aining mod	lules
		academic hours	1			
Contact academic hours	34	34				
Including:						
Lectures (LC)	17	17				
Lab work (LW)						
Seminars (workshops/tutorials) (S)		17	17			
Self-studies	38	38				
Evaluation and assessment (exam/passing/failing grade)		0	0			
Course workload academic		72	72			

		Total	Sem	esters/tra	ining mod	lules
Type of academic activi	ities	academic hours	1			
	hours_					
	credits	2	2			

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities
	Mathematics as a method for studying	types
	biological systems. Connection and	
	communication between the scientific	
	disciplines. Examples of setting and solving	
	biological problems using mathematical	LC, S
	methods. Physicochemical processes, their	,
	formalization. Multiphysics tasks.	
Module 1	Quantitative and qualitative models,	
Introduction.	reduction, the idea of a qualitative analysis of	
introduction.	a mathematical model. The need to use the	
	1. Repetition of the basic information	LC, S
	from the high school math course.	
	Numerical sets and subsets – Number line,	
	modulus of a number – Operations with	
	fractions – Scientific notation of a number –	
	Literal algebraic expressions – Percent, mass	
	fraction – Proportion – Logarithm.	
	Cartesian coordinate system. Solution of a	LC, S
	system of two linear equations (SLE) by	
	analytical and graphical methods. Number	
	axis – Cartesian coordinate system – Equality	
	 Equation – Graphical and analytical 	
	solution of equations – Solution of a linear	
	equation with 1 unknown – Solution of a	
	linear equation with 2 unknowns – Solution	
	of a system of 2 linear equations with 2	
M - J-1 - 2	unknowns	
Module 2 Linear algebra.	Vectors and matrices. Solution of SLE by	LC, S
Linear argeora.	the Gauss-Jordan method. Scalar and vector	
	– Dot product of vectors – Orthogonality –	
	Vector length – Angle between vectors –	
	The method of adding up of equations –	
	Matrix notation of SLE, Gauss–Jordan	
	method with integer coefficients for	
	independent SLE.	
	Linear dependence of equations. General and	LC, S

Course module title	Course module contents (topics)	Academic activities types
	particular solutions of SLE. Linear dependence of vectors, of equations (algebraic and geometric interpretations). General and particular solutions of a consistent dependent SLE. Inconsistent systems. Multiplication of vectors and matrices. Transformation of vector by left multiplication by a matrix, algebraic and geometric senses (on a plane). Matrix multiplication.	LC, S
	Determinant and eigenvalues of a matrix. Determinant of a 2x2 matrix. Cramer's rule. Homogeneous systems. Eigenvalues and eigenvectors of a 2x2 matrix, characteristic equation of a matrix.	LC, S
Module 3 Differential calculus.	Functions and graphs. Numbers, parameters, variables – Cartesian coordinate system – Function, methods of definition, function domain Function graph, its advantages – Functions and their graphs in physiology – Elementary functions and their graphs – Graph transformations – Function properties – Sketching a graph by its features (without a table) – Graphs of functions with parameters – Asymptotes – Limit of a sequence – Limit of a function (limit of a continuous function at a point and at infinity; limit at a discontinuity point) – Limit of a rational function at infinity – Theorems about limits – Analyzing the graph of a function using limits – Plan for analyzing the functional dependence.	LC, S
Module 3 Differential calculus	Functions and graphs. Numbers, parameters, variables – Cartesian coordinate system – Function, methods of definition, function domain Function graph, its advantages – Functions and their graphs in physiology – Elementary functions and their graphs –	LC, S

Course module title	Course module contents (topics)	Academic activities types
	Graph transformations – Function properties – Sketching a graph by its features (without a table) – Graphs of functions with	
	parameters – Asymptotes – Limit of a sequence – Limit of a function (limit of a	
	continuous function at a point and at infinity; limit at a discontinuity point) –	
	Limit of a rational function at infinity – Theorems about limits – Analyzing the	
	graph of a function using limits – Plan for analyzing the functional dependence. 2. Fundamentals of Differential	LC, S
	Calculus. Analysis of graphs using derivatives. Velocity of the mechanical movement, rate of change of the physiological variables – Derivative –	
	Tangent and secant lines – Slope of the tangent line – Linearization of the function, differential – Calculation of the simplest derivatives – Table of derivatives – Rules of	
	differentiation – Analysis of graphs of functions using the 1 st and the 2 nd derivatives.	
	Fundamentals of Differential Calculus. Analysis of graphs using derivatives. Velocity of the mechanical movement, rate of change of the physiological variables – Derivative – Tangent and secant lines – Slope of the tangent line – Linearization of the function, differential – Calculation of the simplest derivatives – Table of derivatives – Rules of differentiation – Analysis of graphs of	LC, S
	functions using the 1 st and the 2 nd derivatives 2. Foundations of Integral Calculus. Separable ordinary differential equations (ODEs). ODE of one variable – Reason for using ODEs – Examples from physics, chemistry, biology – Autonomous and non—	LC, S
	autonomous ODEs – General and particular solutions of ODE – The Cauchy problem – Graphical representation of the solution –	

Course module title	Course module contents (topics)	Academic activities types
	Antiderivative and indefinite integral -	
	Geometrical meaning of antiderivative –	
	Table of indefinite integrals – Integration	
	rules – Separable ODEs – Definite integral,	
	the Newton–Leibniz formula –	
	Integration of ODE of one variable	
	accounting the initial condition – Application	
	of ODEs for the analysis of the kinetics of	
	chemical and biological processes –	
	Fundamentals of chemical kinetics	

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Seminars	laptop - 1 pc., projector - 1 pc., screen - 1 pc., copier - 1 pc., printer - 1 pc., scanner - 1 pc.	laptop - 1 pc., projector - 1 pc., screen - 1 pc., copier - 1 pc., printer - 1 pc., scanner - 1 pc.
Lecture	laptop - 1 pc., projector - 1 pc., screen - 1 pc., copier - 1 pc., printer - 1 pc., scanner - 1 pc.	laptop - 1 pc., projector - 1 pc., screen - 1 pc., copier - 1 pc., printer - 1 pc., scanner - 1 pc.

7. RESOURCES RECOMMENDED FOR COURSE STUDY

a) Software:

On-line graph plotting: https://www.geogebra.org/

- b) Databases, reference and knowledge bases on mathematics:
 - 1. https://www.khanacademy.org/
 - 2. https://mathworld.wolfram.com/topics/
 - 3. Video tutorials using the Gauss-Jordan https://www.youtube.com/watch?v=0fTSBIBD7Cs https://www.youtube.com/watch?v=eYSASx8_nyg

method:

10. Literature.

- G. Strang, E. Herman et al. Calculus, vol. 1. 2016. (OpenStax, Rice University)
- 2. S. Lang. Introduction to Linear Algebra. Second Edition. Springer, 1986. (Yale University)
- 3. S. Lipschutz. Theory and Problems of Linear Algebra. 1991. Additional:
- 4. A. Panfilov. Qualitative analysis of differential equations, 2010.

Internet (based) sources

- 1. Electronic libraries with access for RUDN students:
 - -Electronic library network of RUDN ELN RUDN http://lib.rudn.ru/MegaPro/Web
 - ELN «University Library online» http://www.biblioclub.ru
 - ELN Urait http://www.biblio-online.ru
 - ELN «Student Advisor» www.studentlibrary.ru
 - ELN «Lan» http://e.lanbook.com/
- 2. Databases and search engines:
 - electronic fund of legal and regulatory and technical documentation http://docs.cntd.ru/
 - search system Yandex https://www.yandex.ru/
 - search system Google https://www.google.ru/
 - abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/

Training toolkit for self- studies to master the course *:

- 1. The set of lectures on the course "Mathematics"
- 2. The laboratory workshop (if any).on the course "Mathematics"
- 3. The guidelines for writing a course paper / project (if any) on the course "Mathematics".

4.												
т.	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•

* The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (GPC-8, PC-1, PC-6) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Lecturer at the Mathematical	
Institute named after S.M.	
Nikolskii	A. Tokarev

position, department	signature	name and surname
Director of the Mathematical		
Institute named after S.M.		A Clauboohovalay
Nikolskii		A. Skubachevsky
position, department	signature	name and surname
HEAD OF EDUCATIONAL DEPART	TMENT:	
of Mathematical Institute		A. Skubachevsky
name of department	signature	name and surname
HEAD		
OF HIGHER EDUCATION PROGRA	AMME:	
First Deputy Director of MI for		
Anadamia Affaina		Iv.V.Radysh
Academic Affairs		1v. v.1xauy511
position, department	signature	name and surname