Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов» (РУДН)

Факультет физико-математических и естественных наук Институт физических исследований и технологий

Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ МЕХАНИКА

Рекомендуется для направления подготовки/специальности 03.03.02 Физика

Квалификация (степень) выпускника

бакалавр

1. Цели и задачи дисциплины:

Дисциплина «Механика» читается на первом курсе обучения в бакалавриате по направлению 03.03.02 —Физика. Главной целью является создание фундаментальной базы знаний, на основе которой в дальнейшем можно развивать более углубленное и детализированное изучение механики в рамках цикла курсов по теоретической физике и специализированных курсов.

Задачи дисциплины: сформировать у студентов единую, стройную, логически непротиворечивую физическую картину окружающего нас мира природы. Создание такой картины происходит поэтапно, путем обобщения экспериментальных данных и на их основе производится построение моделей наблюдаемых явлений, со строгим обоснованием приближений и рамок, в которых эти модели действуют.

2. Место дисциплины в структуре ОП ВО:

Дисциплина «Механика» относится к базовой части учебного плана (модуль «Общая физика» Б1.О.01.07).

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 **Предшествующие и последующие дисциплины, направленные на формирование** компетенций

№	Шифр и наименование	Предшествующие	Последующие дисциплины (группы
Π/Π	компетенции	дисциплины	дисциплин)
1	ОПК-1. Способен		Дисциплины модулей «Общая
	применять базовые		физика», «Теоретическая физика»,
	знания в области		«Общий физический практикум»
	физико-математических		
	и (или) естественных		
	наук в сфере своей		
	профессиональной		
	деятельности		

3. Требования к результатам освоения дисциплины:

В результате изучения дисциплины студент должен:

Знать: основные явления и законы механики, основные теоретические представления и модели механики.

Уметь: решать физические задачи, связанные с механикой, использовать при решении задач основные законы, теоретические представления и модели механики, а также применять полученные знания для анализа основных задач, типичных для естественнонаучных дисциплин; использовать теоретические знания для объяснения результатов физических экспериментов.

Владеть: навыками проведения физических экспериментов с использованием законов механики.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 6 зачетных единиц.

Вид учебной работы	Всего				
	часов	1	2		
Аудиторные занятия (всего)	85	45	40		
В том числе:				-	-
Лекции	51	27	24		
Практические занятия (ПЗ)	34	18	16		
Семинары (С)					

Лабораторные работы (ЛР)					
Самостоятельная работа (всего)	131	63	68		
Общая трудоемкость	час	216	108	108	
зач. ед.		6	3	3	

5. Содержание дисциплины 5.1. Содержание разделов дисциплины

	Содержание разделов дисц	
№	Наименование раздела	Содержание раздела (темы)
П/П	Дисциплины	The arriver development of the control of the contr
1	Введение	Предмет физики. Сочетание экспериментальных и теоретических методов в познании окружающей природы. Системы единиц физических величин. Пространство и время в механике Ньютона. Системы координат и их преобразования. Инерциальные и неинерциальные системы отсчета.
2	Кинематика	Способы описания движения. Закон движения. Линейные и
	материальной точки	угловые скорости и ускорения. Система материальных точек. Преобразование координат и скоростей в классической механике. Закон сложения скоростей.
3	Динамика материальной точки	Понятия массы, импульса и силы в механике Ньютона. Законы Ньютона. Уравнение движения. Начальные условия. Импульс материальной точки. Закон сохранения и изменения импульса материальной точки и системы материальных точек. Теорема о движении центра масс. Движение тел с переменной массой. Уравнение Мещерского. Формула Циолковского.
4	Работа, энергия, мощность	Замкнутые системы отсчета. Консервативные силы. Кинетическая и потенциальная энергия материальной точки и системы материальных точек. Закон сохранения механической энергии системы. Соударение тел. Абсолютно упругий и неупругий удары.
5	Механика абсолютно твердого тела	Степени свободы абсолютно твердого тела. Вращательное движение твердого тела. Мгновенная ось вращения. Момент силы. Момент импульса тела. Момент силы и импульса относительно оси. Момент инерции. Теорема Гюйгенса-Штейнера. Уравнение движения и уравнение моментов. Кинетическая энергия твердого тела. Закон сохранения момента импульса тела. Движение тела с закрепленной точкой. Теорема Эйлера. Гироскопы. Прецессия гироскопа. Гироскопические силы.
6	Движение под действием различных сил	Упругие силы. Натяжение нитей и реакция твердых опор. Упругие силы деформации. «Абсолютно жесткие» связи. Силы тяготения. Падение тел. «Невесомость». Силы трения. Сухое и вязкое трение. Трение покоя и трение скольжения. Зависимость сил трения от скорости и диссипация энергии. Движение в вязкой среде. Явление застоя.
7	Механика упругих тел	Виды деформаций твердого тела и их количественная характеристика. Закон Гука. Модуль Юнга. Коэффициент Пуассона. Энергия упругих деформаций.
8	Колебательное движение	Свободные колебания систем с одной степенью свободы. Гармонические колебания. Математический и физический маятники. Сложение гармонических колебаний. Биения.

		Затухающие колебания. Логарифмический декремент затухания. Вынужденные колебания. Резонанс. Параметрическое возбуждение колебаний. Автоколебания. Колебания в системах с медленно изменяющимися
		параметрами. Понятие о нелинейных колебаниях. Колебание систем с двумя степенями свободы. Фигуры Лиссажу. Нормальные колебания (моды) и нормальные частоты.
9	Механические волны	Распространение колебаний давления и плотности в среде. Волны. Длина волны, период колебаний, фаза и скорость волны. Бегущие волны. Продольные и поперечные волны. Уравнение бегущей волны. Фронт волны, волновая поверхность. Волны на поверхности жидкости. Волны на струне, в стержне, газах и жидкостях. Связь скорости волны с параметрами среды. Интерференция волн. Стоячие волны. Поток энергии в бегущей волне. Вектор Умова. Элементы акустики. Эффект Доплера.
10	Основы специальной теории относительности	Преобразование Галилея. Принципы относительности Галилея и Эйнштейна. Постулат о постоянстве скорости света. Пространство и время в теории относительности. Преобразования Лоренца и их следствия. Сокращение длины двигающихся отрезков и замедление темпа хода двигающихся часов. Сложение скоростей. Релятивистское уравнение движения. Импульс и скорость. Соотношение между массой и энергией.
11	Неинерциальные системы отсчета	Движение материальной точки в неинерциальной системе отсчета. Преобразование ускорений в классической механике. Силы инерции. Переносная и кориолисова силы инерции. Центробежная сила инерции. Законы сохранения.
12	Движение в гравитационном поле	Закон всемирного тяготения Ньютона. Напряженность и потенциал поля тяготения. Движение в поле центральных сил. Основные законы движения планет. Финитное и инфинитное движение. Космические скорости. Принцип эквивалентности сил инерции и сил тяготения. Представления о теории гравитации Эйнштейна.
13	Механика жидкостей и газов	Основы гидро- и аэростатики. Закон Паскаля. Сжимаемость жидкостей и газов. Основное уравнение гидростатики. Распределение давления в покоящейся жидкости (газе) в поле силы тяжести. Барометрическая формула. Закон Архимеда. Условия устойчивого плавания тел. Стационарное течение жидкости. Линии тока. Трубки тока. Уравнение Бернулли. Вязкость жидкости. Течение вязкой жидкости по трубе. Формула Пуазейля. Ламинарное и турбулентное течение. Число Рейнольдса. Лобовое сопротивление при обтекании тел. Циркуляция. Подъемная сила. Формула Жуковского. Эффект Магнуса.

5.2. Разделы дисциплин и виды занятий

No	Наименование раздела дисциплины .		Практ.	Лаб.	Семин	CPC	Всего
Π/Π			Зан.	Зан.			час.
1	Введение	2			-	2	4
2	Кинематика материальной точки	3			2	8	13
3	Динамика материальной точки	4			4	13	21

4	Работа, энергия, мощность	4		4	10	18
5	Механика абсолютно твердого тела	6		6	17	29
6	Движение под действием различных	2		2	6	10
	сил					
7	Механика упругих тел	2		2	6	10
8	Колебательное движение	9		4	18	31
9	Механические волны	6		2	10	18
10	Основы специальной теории	4		2	8	14
	относительности					
11	Неинерциальные системы отсчета	2		2	6	10
12	Движение в гравитационном поле	2	·	2	6	10
13	Механика жидкостей и газов	5		2	9	16

6. Лабораторный практикум не предусмотрен

7. Практические занятия (семинары)

		тия (сенипары)	
№	№ раздела	Тематика практических занятий (семинаров)	Трудо-
Π/Π	дисциплины		емкость
			(час.)
1	2	Законы кинематики	2
2	2	Скорость и ускорение криволинейного движения	2
3	3, 6	Второй закон Ньютона	2
4	3, 6	Динамика поступательного движения	2
5	4	Работа и энергия	2
6	3, 4	Закон сохранения импульса. Столкновение тел	2
7	1-4	Контрольная работа 1	3
8	5	Вращательное движение твердого тела	2
9	5	Момент импульса	2
10	7	Упругие деформации	2
11	8	Гармонические колебания материальной точки	2
12	9	Колебания твердого тела, волны	2
13	11	Неинерциальные системы отсчета	2
14	10, 12	Движение в гравитационном поле, основы СТО	2
15	13	Механика жидкостей	2
16	5-9	Контрольная работа 2	3

8. Материально-техническое обеспечение дисциплины:

Лекционный компьютер, компьютерный проектор, аудитория для компьютерного тестирования, кабинет лекционных демонстраций.

9. Информационное обеспечение дисциплины

(а) программное обеспечение:

MEHTOP

б) базы данных, информационно-справочные и поисковые системы: телекоммуникационная учебно-информационная система (ТУИС) http://lib.rudn.ru/ - научная электронная библиотека РУДН

http://www.edu.ru/ – федеральный образовательный портал

http://genphys.phys.msu.ru/rus/demo/- кабинет физических демонстраций МГУ илиgenphys.phys.msu.ru/rus/demo/comp.php

https://www.youtube.com/playlist?list=PLcsjsqLLSfNCdvG1K6gh8OGVilgkA4k9U

http://genphys.phys.msu.ru/rus/ofp/

http://www.alpud.ru/- автоматизированные лабораторные практикумы удаленного доступа.

10. Учебно-методическое обеспечение дисциплины:

а) основная литература:

- 1. Д.В. Сивухин. Общий курс физики. Т.1. Механика. СПб.: Лань, 2006 (М.: Физматлит, 2010).
 - 2. И.В. Савельев. Курс общей физики. Т.1. М.: Астрель, 2004 (М.: КНОРУС, 2012).
- 3. Сборник задач по общему курсу физики. Часть І. Под редакцией В.А. Овчинкина. М.: Изд-во МФТИ, 2002.
 - б) дополнительная литература:
 - 1. Р.Фейнман и др. Фейнмановские лекции по физике. Т.1,2. М.:Либроком, 2009.
 - 2. Ч. Киттель, У. Найт, М. Рудерман. Механика. СПб.: Лань, 2005.
 - 3. С.Э.Хайкин. Физические основы механики. СПб.: Лань, 2008.
 - 4. С.П. Стрелков. Механика. СПб.: Лань, 2005.
- 5. В.А. Алешкевич, Л.Г. Деденко, В.А. Караваев. Механика. ACADEMA. М.; 2004 (Университетский курс общей физики).
- 6. В.С. Русаков, А.И. Слепков, Е.А. Никанорова, Н.И. Чистякова. Механика. Методика решения задач. М.; Физический факультет МГУ, 2010.
- 7. Сборник задач по общему курсу физики. Механика. Под ред. И.А. Яковлева. СПб.: Лань, 2006.
 - 8. И.Е. Иродов. Задачи по общей физике. СПб.: Лань, 2006.

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Необходимо обеспечить себя рекомендованными учебными материалами. В конце каждой главы в рекомендованном основном учебнике Д.В. Сивухина имеются задачи с решениями по теме раздела. Для более глубокого усвоения содержания каждого раздела необходимо внимательно изучить решения этих задач. После этого можно приступать к решению соответствующих задач из домашнего задания. Лекционный материал будет лучше усвоен при регулярной самостоятельной проработке и выполнении домашних заданий.

Лекционный курс предусматривает практическую работу студентов:

- 1) практические занятия (семинары), на которых студенты решают задачи механики, осваивают различные методики, применяемые для решения задач;
- 2) домашнее задание по решению наиболее типичных задач по изучаемому курсу;
- 3) лабораторные работы, на которых студенты проводят экспериментальные исследования разнообразных физических явлений и получают навыки работы с современным оборудованием, средствами измерений и методами обработки результатов измерений.

Самостоятельная работа нужна как для усвоения лекционного (теоретического) материала, так и для подготовки к семинарам и лабораторным работам и выполнению домашнего занятия. Самостоятельная работа необходима и при подготовке к контрольным мероприятиям (подготовка к контрольным работам и коллоквиумам, выполнение и защита лабораторных работ, решение задач домашнего задания).

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Шкала оценок

Соответствие систем оценок (согласно Приказу Ректора № 996 от 27.12.2006 г.)

Баллы БРС	Баллы БРС Традиционные оценки в РФ		Оценки	Оценки
		оценок 95-100	5+	Δ
86-100	5	86-94	51	B
			3	D
69-85	4	69-85	4	С
5 1 60	2	61-68	3+	D
51-68	3	51-60	3	Е
0.50	2	31-50	2+	FX
0-50	2	0-30	2	F
51-60	Зачет		Зачет	Passed

Паспорт фонда оценочных средств по дисциплине МЕХАНИКА Направление/Специальность: 03.03.02 Физика

Tunpubli	ение/Специальность:	1 11911110	Наименование оценочного средства																
Код контролируемой компетенции или ее части		Контролируемая тема дисциплины	Текущий контроль											Промежуточная аттестация					
			Опрос	Тест	Коллоквиум	Контрольная работа	Выполнение ПР	Выполнение	Выполнение ДЗ	Реферат	Выполнение РГР				Экзамен/	••	:	Баллы темы	Баллы раздела
ОПК-1	Раздел 1: Поступательное движение твердого тела	Тема 1: Кинематика идинамика пост.движения		-	10	15			, ,									25	32
		Тема 2: Силы в природе Тема 3: СТО		3														3	
ОПК-1	Раздел 2: Вращательное движение твердого тела	Тема 1: Динамика вращательного движения Тема 2: Гироскопические явления			10	15				5					30			25	25
ОПК-1	Раздел 3: Механические	Тема 1: Колебания		4														4	8
OFFIC 1	колебания и волны	Тема 2: Волновые процессы		4														4	
ОПК-1		Реферат ИТОГО:		15	20	30				5								100	5 100

Вопросы к коллоквиумам

Вопросы к коллоквиуму 1 по теме «Кинематика и динамика поступательного движения»

- 1. Физические величины и их измерение. Системы единиц физических величин.
- 2. Материальная точка (определение), радиус-вектор (определение), траектория (определение).
 - 3. Как соотносятся «система отсчета» и «система координат».
- 4. Линейные и угловые скорости и ускорения. Связь между ними. Нормальное и тангенциальное ускорение.
- 5. Уравнение движения (определение), уравнение кинематической связи (определение). Способы описания движения. Закон движения.
 - 6. Замкнутая система (определение).
 - 7. Первый закон Ньютона. Инерциальные системы отсчета.
 - 8. Масса (определение), сила (определение). Второй закон Ньютона.
 - 9. Третий закон Ньютона. Закон сохранения импульса.
 - 10. Центр масс. Теорема о движении центра масс.
- 11. Движение тел с переменной массой. Уравнение Мещерского. Формула Циолковского.
 - 12. Работа силы. Консервативные силы. Потенциальные поля.
- 13. Кинетическая и потенциальная энергия материальной точки и системы материальных точек.
 - 14. Закон сохранения механической энергии системы.
- 15. Абсолютно упругий удар (определение), абсолютно неупругий удар (определение).

Вопросы к коллоквиуму 2 по теме «Кинематика и динамика вращательного движения»

- 1. Определение вектора момента импульса материальной точки.
- 2. Определение вектора момента силы.
- 3. Уравнение, описывающее изменение момента импульса под действием момента силы.
- 4. Полный момент импульса системы материальных точек. Закон сохранения момента импульса.
- 5. Момент инерции твердого тела.
- 6. Теорема Штейнера.
- 7. Момент инерции тонкого однородного стержня относительно перпендикулярной оси, проходящей через центр масс (формула).
- 8. Момент инерции тонкого однородного диска относительно перпендикулярной оси, проходящей через центр масс (формула).
- 9. Момент инерции однородного сплошного шара относительно оси, проходящей через его центр (формула).
- 10. Проекция момента импульса на фиксированную ось вращения.
- 11. Кинетическая энергия тела, вращающегося вокруг фиксированной оси.
- 12. Основной закон вращательного движения твердого тела в общем случае и в случае вращения вокруг фиксированной оси.
- 13. Дать определение мгновенной оси вращения. Где находится мгновенная ось вращения в случае цилиндра, скатывающегося с наклонной плоскости?
- 14. Сформулировать теорему Эйлера для случая движения твердого тела с одной неподвижной точкой.
- 15. Объяснить, почему при кратковременном воздействии на свободный гироскоп, вращающийся с большой угловой скоростью вокруг собственной оси, он сохраняет направление своей оси в пространстве. Привести примеры практического использования этого свойства.
- 16. Исходя из основного закона вращательного движения в векторной форме, объяснить причину возникновения вынужденной прецессии гироскопа с одной неподвижной точкой.

Вопросы к тесту 1 по теме «Механические колебания и волны»

- 1. Амплитуда, частота и фаза колебаний. Уравнение осциллятора.
- 2. Энергия колеблющейся материальной точки.
- 3. Собственные колебания и собственная частота. Математический маятник.
- 4. Период колебаний физического маятника. Приведенная длина.
- 5. Затухающие колебания. Коэффициент затухания и логарифмический декремент.
- 6. Вынужденные колебания и явление резонанса.
- 7. Добротность колебательной системы.
- 8. Параметрический резонанс.
- 9. Колебания в связанных системах. Парциальные частоты. Нормальные колебания и нормальные частоты.
- 10. Волны в упругих средах. Продольные и поперечные волны. Скорость и длина волны.
- 11. Уравнение плоской монохроматической волны. Фазовая скорость.
- 12. Группа волн. Групповая скорость. Пример: две волны с одинаковыми амплитудами и близкими частотами и длинами волн.
- 13. Скорость продольной волны в упругом стержне.
- 14. Скорость волны в натянутой струне.
- 15. Уравнение стоячей волны. Собственные частоты струны, закрепленной на концах.
- 16. Звуковые волны в воздухе. Скорость звука.
- 17. Эффект Доплера. Объяснить, почему для звуковых волн получается разное изменение частоты при одной и той же скорости источника относительно приемника в случае движущегося источника и в случае движущегося приемника. Почему такое различие отсутствует для электромагнитных волн?
- 18. Энергия волны. Вектор Умова.

Вопросы к тесту 2 по механике «Силы в природе. Специальная теория относительности»

- 1. Сила трения. Внешнее (сухое) трение. Внутреннее (вязкое) трение.
- 2. Сила трения покоя. Сила трения скольжения. Законы сухого трения (Кулон).
- 3. Трение качения.
- 4. Движение тел в вязкой среде. Сила вязкого трения при малых и больших скоростях.
- 5. Упругие деформации. Типы упругих деформаций.
- 6. Закон Гука для деформации растяжения (сжатия); для деформации сдвига.
- 7. Потенциальная энергия деформации растяжения; деформации сдвига.
- 8. Неинерциальные системы отсчета. Центробежная сила. Сила Кориолиса.
- 9. Теорема Кориолиса. Абсолютное и переносное ускорение.
- 10. Закон всемирного тяготения.
- 11. Законы Кеплера.
- 12. Финитное и инфинитное движения. Космические скорости.
- 13. Принципы относительности Галилея и Эйнштейна.
- 14. Формулы прямых и обратных преобразований Галилея.
- 15. Формулы прямых и обратных преобразований Лоренца..
- 16. Основные положения специальной теории относительности.
- 17. Интервал между событиями (определение).
- 18. Законы релятивистской механики. Импульс. Энергия.

Примерные тестовые задания

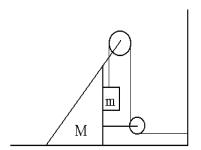
- 1. Точка М движется по спирали с постоянной по величине скоростью в направлении, указанном стрелкой. При этом величина нормального ускорения....
- 1. уменьшается 2. увеличивается 3.равна нулю 4. не изменяется
- **2**. Шарик массой m упал с высоты H на стальную плиту и упруго отскочил от нее вверх. Изменение импульса шарика в результате удара равно....
 - 1. $2m\sqrt{gH}2.m\sqrt{gH/2}3.m\sqrt{8gH}4.m\sqrt{2gH}$

3. Как связана сила, действующая на материальную точку в потенциальном поле с ее потенциальной энергией?

1.
$$F_x = \frac{dU}{dx}$$
 2. $F_x = -\frac{dU}{dx}$ 3. $F_x = \int U(x)dx$

- **4.** Шар радиуса R и массы M вращается с угловой скоростью ω . Работа, необходимая для увеличения скорости его вращения в 2 раза, равна...
 - 1. $0.75MR^2\omega^2$
- $2. MR^2\omega^2$
- 3. $1.5MR^2\omega^2$ 4. $0.6MR^2\omega^2$
- **5.** Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид $\xi=0.01 \sin(10^3 t-2x)$. При этом длина волны равна...
 - 1. 0,01 м
- 2. 3,14 m
- 3. 0,5 м
- 4. 2 m

Примерные варианты контрольных работ


КОНТРОЛЬНАЯ РАБОТА № 1

Задача 1.

В системе, изображенной на рисунке, известны массы клина М и тела т. Коэффициент трения между клином и телом равен k. Стол идеально гладкий, массы нити и блоков пренебрежимо малы. Найти ускорение тела относительно стола, по которому скользит клин.

Задача 2.

Автомобиль движется горизонтально по окружности радиуса R=40м с постоянным тангенциальным ускорением $a_{ au}=0.62$ м / $ce\kappa^2$

без начальной скорости. Коэффициент трения скольжения между колесами и поверхностью k = 0,2. Какой путь пройдет автомобиль до начала скольжения?

Задача 3.

На краю неподвижной тележки массы М стоят два человека массы m каждый. Оба человека прыгают с тележки с горизонтальной скоростью u относительно тележки: 1) одновременно и 2) один за другим. Найти скорость тележки в случаях 1) и 2). В каком случае эта скорость больше и во сколько раз? Трением пренебречь.

КОНТРОЛЬНАЯ РАБОТА № 2

Залача 1.

К концу нити, намотанной на цилиндр, прикреплен груз массы m. Масса цилиндра равна М. Цилиндр катится без скольжения. Найти силу натяжения нити. Весом блока и нити пренебречь.

Задача 2.

Монета массы m и радиуса r, вращаясь в горизонтальной плоскости с угловой скоростью \square отвесно падает по вертикали на горизонтальный диск и прилипает k нему. В результате диск приходит во вращение вокруг своей вертикальной оси. Найти изменение кинетической энергии при таком взаимодействии. Момент инерции диска относительно его геометрической оси равен I_0 , расстояние между осями диска и монеты равно d.

Задача 3.

K середине тонкого однородного стержня длины l и массы m прикреплена пружина с коэффициентом жесткости k. Найти период колебаний такого маятника относительно оси, проходящей через верхний конец стержня. При вертикальном положении стержня пружина недеформирована.

Примерные тренинговые задания

1. Координаты точки заданы уравнениями $x = A\cos\omega t$, $y = B\sin\omega t$, где A, B, ω – постоянные. Чему равен модуль ускорения точки?

- 2. Угол поворота колеса радиусом 10 см изменяется со временем по закону $\varphi = 4 + 2t t^3$ [рад]. Определить угловую и линейную скорости.
 - 3. С какой высоты h упало тело, если в последнюю секунду оно прошло путь 76 м?
- 4. Лифт движется вверх с постоянным замедлением *а* . Человек в лифте уронил книгу. Чему равно ускорение падающей книги относительно лифта?
- 5. Определить силу натяжения нити математического маятника массы m, который висит в вагоне, движущемся горизонтально с ускорением a.
- 6. Шар абсолютно упруго сталкивается с таким же, но покоящимся шаром. Под каким углом они разлетятся? Удар нецентральный.
- 7. Тело массой m движется со скоростью v и ударяется о неподвижное тело такой же массы. Удар центральный и неупругий. Какое количество тепла, выделившееся при ударе.
- 8. Шар катится по горизонтальной плоскости. Найти отношение его полной энергии к кинетической энергии поступательного движения.
- 9. Чему равен момент инерции однородного стержня длиныl=20 см и массы m=600 г относительно оси, проходящей через его середину, перпендикулярно ему.
- 10. Точка лежит на ободе вращающегося колеса. Во сколько раз нормальное ускорение точки отличается от ее тангенциального ускорения в тот момент, когда вектор полного ускорения составляет угол 30^{0} с вектором ее линейной скорости?
- 11 Фазовая скорость волны равна 300 м/с. Чему равна длина волны, если ее круговая частота равна 2500 с $^{-1}$?
- 12. Материальная точка совершает гармонические колебания по закону $x = 0.9\cos(\frac{2\pi}{3}t + \frac{\pi}{4})$. Чему равно максимальное значение ускорения точки?
 - 13. Чем определяется: а) высота звука; б) громкость звука?
 - 14. Куда направлена сила Кориолиса, если поезд движется на восток по экватору?
- 15. Чему равна сила Кориолиса, действующая со стороны вагона на рельсы, если масса вагона 20 тонн, направление движения с севера на юг, скорость 100 км/ч, место 30° северной широты?

Перечень вопросов итоговой аттестации по курсу

- 1. Физические величины и их измерение. Системы единиц физических величин.
- 2. Материальная точка (определение), радиус-вектор (определение), траектория (определение).
 - 3. Как соотносятся «система отсчета» и «система координат».
- 4. Линейные и угловые скорости и ускорения. Связь между ними. Нормальное и тангенциальное ускорение.
- 5. Уравнение движения (определение), уравнение кинематической связи (определение). Способы описания движения. Закон движения.
 - 6. Замкнутая система (определение).
 - 7. Первый закон Ньютона. Инерциальные системы отсчета.
 - 8. Масса (определение), сила (определение). Второй закон Ньютона.
 - 9. Третий закон Ньютона. Закон сохранения импульса.
 - 10. Центр масс. Теорема о движении центра масс.
- 11. Движение тел с переменной массой. Уравнение Мещерского. Формула Циолковского.
 - 12. Работа силы. Консервативные силы. Потенциальные поля.
- 13. Кинетическая и потенциальная энергия материальной точки и системы материальных точек.
 - 14. Закон сохранения механической энергии системы.
- 15. Абсолютно упругий удар (определение), абсолютно неупругий удар (определение).
 - 16. Определение вектора момента импульса материальной точки.
 - 17. Определение вектора момента силы.

- 18. Полный момент импульса системы материальных точек. Закон сохранения момента импульса.
 - 19. Основной закон вращательного движения твердого тела.
 - 20. Момент инерции твердого тела. Теорема Штейнера.
- 21. Момент инерции тонкого однородного стержня относительно перпендикулярной оси, проходящей через центр масс (формула).
- 22. Момент инерции тонкого однородного диска относительно перпендикулярной оси, проходящей через центр масс (формула).
- 23. Момент инерции однородного сплошного шара относительно оси, проходящей через его центр (формула).
 - 24. Кинетическая энергия тела, вращающегося вокруг фиксированной оси.
 - 25. Гироскоп (определение).
 - 26. Вынужденная прецессия гироскопа.
 - 27. Разновидности сухого трения (сила трения покоя, скольжения, качения).
 - 28. Упругие деформации твердого тела.
 - 29. Гармонические колебания материальной точки. Уравнение осциллятора.
 - 30. Физический маятник. Приведенная длина физического маятника.
- 31. Затухающие колебания. Время релаксации. Логарифмический декремент затухания.
 - 32. Вынужденные колебания и явление резонанса. Добротность (определение).
 - 33. Волны в упругих средах. Уравнение плоской волны. Волновое число.
 - 34. Стоячие волны.
 - 35. Звуковые волны в газе. Скорость звука.
 - 36. Эффект Доплера в акустике.
 - 37. Принципы относительности Галилея и Эйнштейна.
 - 38. Формулы прямых и обратных преобразований Галилея.
 - 39. Формулы прямых и обратных преобразований Лоренца..
 - 40. Основные положения специальной теории относительности.
 - 41. Законы релятивистской механики. Импульс. Энергия.
 - 42. Неинерциальные системы отсчета. Центробежная сила и сила Кориолиса.
 - 43. Теорема Кориолиса. Абсолютное и переносное ускорение.
 - 44. Закон всемирного тяготения. Законы Кеплера.
 - 45. Финитное и инфинитное движения. Космические скорости.
 - 45. Законы гидростатики. Основное уравнение гидростатики.
 - 47. Стационарное течение жидкостей. Теорема о неразрывности струи.
 - 48. Уравнение Бернулли.
 - 49. Понятие вязкости. Течение вязкой жидкости в цилиндрической трубе.
 - 50. Ламинарное и турбулентное течения. Число Рейнольдса.
 - 51. Пограничный слой и явление отрыва
 - 52. Движение тел в жидкостях и газах. Лобовое сопротивление и подъемная сила.

Программа составлена в соответствии с требованиями ОС ВО РУДН.

Руководитель направления 03.03.02

Директор института физических исследований и технологий, д.ф.-м.н., профессор

О.Т. Лоза