ФИО: Ястребов Олег Арессерата State Autonomous Educational Institution of Higher Education должность: Pekrop PEOPLES' FRIEN DSHIP UNIVERSITY OF RUSSIA named after **Patrice Lumumba RUDN University**

Institute of Medicine

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Molecular Genetics in Practical Biology and Medicine

course title

Recommended by the Didactic Council for the Education Field of:

31.05.01 General Medicine

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

General Medicine

higher education programme profile/specialisation title

2023-2024

1. COURSE GOAL(s)

The goal of the course "Molecular Genetics in Practical Biology and Medicine" is toequip students with knowledge in the field of practical application of the achievements of Molecular Genetics.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the course (module) "Molecular Genetics in Practical Biology and Medicine" is aimed at the development of the following competences /competences in part: General Professional Competences- (GPC)-5.

Table 2.1. List of competences that students acquire through the course study

Competence code	Competence descriptor	Competence formation indicators (within this course)
GPC-5	Being able to assess morpho-functional, physiological conditions and pathological processes in the human body to solve professional tasks	GPC-5.1 Mastering the algorithm of clinical, laboratory and functional diagnosis when dealing with professional tasks
010-5		GPC-5.3 Being able to determine morpho- functional, physiological states and pathological processes of the human body

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the core/<u>variable</u>/elective* component of (B1) block of the higher educational programme curriculum.

* - Underline whatever applicable.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Compet ence code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
GPC-5	Being able to assess morpho-functional, physiological conditions and pathological processes in the human body to solve professional tasks		Biochemistry, Histology, Embryology, Cytology normal physiology Microbiology, Virology, Topographic Anatomy and Operative Surgery, Neurology, Medical Genetics, Neurosurgery, Forensic Medicine, Occupational Diseases,

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Compet ence code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
			Hospital therapy

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course <u>"Molecular Genetics in Practical Biology and</u> <u>Medicine</u>" is 2 credits (72 academic hours).

*Table 4.1. Types of academic activities during the periods of higher education programme mastering (full-time training)**

Type of academic activities	Total academic	Semesters/training modules		
		hours	1	2
Contact academic hours		34	34	
including:				•
Lectures (LC)				
Lab work (LW)				
Seminars (workshops/tutorials) (S)		34	34	
Self-studies		38	38	
<i>Evaluation and assessment (exam/passing/failing grade)</i>				
Course workload academic hours		72	72	
	credits	2	2	

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Module 1	Topic 1.1. History of Molecular Genetics.	S
Introduction into	Important trends and advances in Molecular	
Molecular Genetics	Genetics	
Module 2	Topic 2.1. Conjugation. Transformation.	S
Transfer of genetic	Transduction	
material in prokaryotes		
Module 3	Topic 3.1. Polymerase chain reaction. Types	S
Polymerase chain reaction	of PCR. Detection of amplified products	
Module 4	Topic 4.1. Genetic engineering. Vectors.	S
Genetic engineering.	Restriction Enzyme Digest Analysis.	
Hybridization methods	Hybridization methods	
Module 5	Topic 5.1. History of the method. DNA	S
DNA sequencing	sequencing techniques and their application	

Course module title	Course module contents (topics)	Academic activities types
Module 6	Topic 6.1 . Fluorescence in situ hybridization	
Molecular cytogenetic	(FISH). Comparative genomic hybridization	
methods	(CGH)	
Module 7	Topic 7.1. Types of stem cells and their	S
Stem cells and genome	characteristics. Induced pluripotent stem	
reprogramming	cells. Nuclear reprogramming technologies	
Module 8	Topic 8.1. Genome-editing technologies and	S
Genome editing	their application	
Module 9	Topic 9.1. Introduction into Epigenetics.	S
Methods of epigenetic	Factors influencing the epigenotype.	
analysis	Methods of epigenetic analysis	

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	Lecture/Seminars/ Lab Classroom, equipped with a set of specialized furniture (328, 329, 330, 331, 342, 343)	A set of specialized furniture; whiteboard; a set of devices includes multimedia projector, laptop, projection screen, stable wireless Internet connection. Software: Microsoft Windows, MS Office / Office 365, MS Teams, Chrome (latest stable release), Microscopes
Lab work	Laboratory of Biomolecular research (332, 332A)	PCR laboratory equipment
Self-studies	Self-studies classroom, equipped with a set of specialized furniture (342)	A set of specialized furniture; whiteboard; a set of devices includes multimedia projector, laptop, projection screen, stable wireless Internet connection. Software: Microsoft Windows, MS Office / Office 365, MS Teams,

 Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
		Chrome (latest stable release)

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

1. Klug W.S., Cummings M.R., Spencer C.A., Palladio M.A. Concepts of genetics. – Pearson Education International. – 2014.

Additional readings:

- 1. Fletcher H., Hickey I. Genetics. Garland Science. 2013.
- 2. Lewin B. Genes. Oxford University Press. 2012.
- 3. Vogel and Motulsky's Human Genetics: Problems and Approaches / M. Speicher, Antonarakis S.E., Motulsky A.G. Springer. 2010.

Internet sources:

1. Electronic libraries with access for RUDN students:

- RUDN online library <u>http://lib.rudn.ru/MegaPro/Web</u>
- Royal Society of Chemistry <u>http://pubs.rsc.org/</u>
- Scientific electronic library: <u>http://elibrary.ru</u>
- Nature http://www.nature.com/siteindex/index.html
- OxfordJournals <u>https://academic.oup.com/journals/</u>
- http://www.biblioclub.ru
- <u>http://www.biblio-online.ru</u>
- <u>www.studentlibrary.ru</u>
- <u>http://e.lanbook.com/</u>

1.Databases and search engines:

- National Center for Biotechnology Information (NCBI) <u>www.ncbi.nlm.nih.gov</u>
- ScienceDirect <u>http://www.sciencedirect.com</u>
- Google Academy <u>http://scholar.google.ru/</u>
- SCOPUS <u>http://www.scopus.com/</u>

Training toolkit for self- studies to master the course *:

1. The set of lectures on the course "Molecular Genetics in Practical Biology and Medicine"

* The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (GPC-5) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate professor, Department of Biology and General Genetics		O.B. Gigani
position, department	signature	name and surname
Head of the Department of Biology and General Genetics		M.M. Azova
position, department	signature	name and surname
HEAD OF EDUCATIONAL DEPA Department of Biology and General Genetics	RTMENT:	M.M. Azova
name of department	signature	name and surname
HEAD OF HIGHER EDUCATION PROG Head of the Department of Nursing Management	RAMME:	I.V. Radysh
position, department	signature	name and surname