Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребов Олег Федераяльное государственное автономное образовательное учреждение Должность: Реконсиде го образования «Российский университет дружбы народов имени Патриса Дата подписания: 2 Лумумбы»

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Нанотехнологии в машиностроении

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

15.04.05 «Конструкторско-технологическое обеспечение машиностроительных производств» (код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

Конструкторско-технологическое обеспечение энергетических производств

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Нанотехнологии в машиностроении» является получение знаний, умений, навыков и опыта деятельности в области нанотехнологии в машиностроении, характеризующих этапы формирования компетенций обеспечивающих достижение планируемых результатов освоения образовательной программы.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Нанотехнологии в машиностроении» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении

Aucummuna	(nownth mambi	OCOO DULLA	ducum muna)
оисциплины	(результаты	освоения	оисциплины	,

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-2	Применять современные методы исследования, оценивать и представлять результаты выполненной работы	ОПК-2.1. Применяет на практике знания современного состояние науки в отечественном и мировом машиностроении ОПК-2.2. Решает научные, технические, организационные и экономические проблемы конструкторскотехнологического обеспечения машиностроительных производств ОПК-2.3. Выполняет математическое моделирование процессов, средств и систем машиностроительных производств с использованием современных технологий проведения научных исследований
ОПК-3	Использовать современные информационно-коммуникационные технологии, глобальные информационные ресурсы в научно исследовательской деятельности	ОПК-3.1. Применяет программные средства в области конструкторско-технологического обеспечения машиностроительных производств ОПК-3.2. Анализирует, извлекает и использует необходимую информацию из различных источников при решении поставленных задач

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Нанотехнологии в машиностроении» относится к обязательной части блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Нанотехнологии в машиностроении».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению

запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-2	Применять современные методы исследования, оценивать и представлять	Дисциплины бакалавриата	Государственная итоговая аттестация

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	результаты выполненной работы		
ОПК-3	Использовать современные информационно-коммуникационные технологии, глобальные информационные ресурсы в научно исследовательской деятельности	Дисциплины бакалавриата	Государственная итоговая аттестация

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Нанотехнологии в машиностроении» составляет <u>3</u> зачетных единицы.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>**ОЧНОЙ**</u>

формы обучения

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		36	36			
в том числе:						
Лекции (ЛК)		18	18			
Лабораторные работы (ЛР)						
Практические/семинарские занятия (С3)		18	18			
Самостоятельная работа обучающихся, ак.ч.		72	72			
Контроль (экзамен/зачет с оценкой), ак.ч.						
ак		108	108			
Общая трудоемкость дисциплины	зач.ед.	3	3			

Таблица 4.2. Виды учебной работы по периодам освоения ОП ВО для

ВЕЧЕРНЕЙ формы обучения*

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		36		36		
в том числе:						
Лекции (ЛК)		18		18		
Лабораторные работы (ЛР)						
Практические/семинарские занятия (С3)		18		18		
Самостоятельная работа обучающихся, ак.ч.		72		72		
Контроль (экзамен/зачет с оценкой), ак.ч.						
05	ак.ч.	108		108		
Общая трудоемкость дисциплины	зач.ед.	3		3		

^{* -} заполняется в случае реализации программы в вечерней форме

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела	жание оисциплины (модуля) по видам учедной	Вид учебной
дисциплины	Содержание раздела (темы)	работы*
Раздел 1. Основные	Тема 1.1. Основные понятия и определения	
понятия и определения		ЛК, СР
Раздел 2. Наноэффекты	Тема 2.1. Наноэффекты и нанообъекты в природе.	
и нанообъекты в		ЛК, СР
природе. «Интуитивные»		JIK, CI
нанотехнологии		
Раздел 3. Хронология	Тема 3.1. Краткая история развития	
развития нанонауки,	нанотехнологии.	ЛК, СР
нанотехнологии,		int, or
нанопроизводства		
Раздел 4. Методы	Тема 4.1. Масштабы и процессы в системах	
диагностики	наночастиц;	
наноструктур	Тема 4.2. Особенности диагностики нанообъектов;	
	Тема 4.3. Электронная микроскопия;	ЛК, СЗ, СР
	Тема 4.4. Сканирующая зондовая микроскопия	
	(C3M);	
B 7.0	Тема 4.5. Спектральные методы исследования.	
Раздел 5. Основы	Тема 5.1. Нисходящие и восходящие подходы;	
конструирования	Тема 5.2. Элементарные объекты и методы	
объектов на атомно-	нанотехнологического конструирования;	
молекулярном уровне	Тема 5.3. Атомно-молекулярная сборка	
	(механосинтез) с помощью сканирующей зондовой	
	микроскопии (СЗМ);	
	Тема 5.4. Самоорганизация и самосборка;	THE CD CD
	Тема 5.5. Принцип молекулярного распознавания в	ЛК, СЗ, СР
	процессах самосборки;	
	Тема 5.6. Атомные кластеры как элементарные	
	объекты самосборки; Тема 5.7. Технологии формирования	
	поверхностных слоев с атомарной точностью;	
	Тема 5.8. Квантовые ямы, проволоки, точки;	
	Тема 5.9. Прецизионная литография.	
Раздел 6. Структура и	Тема 6.1. Особенности вещества наносистем;	
свойства	Тема 6.2. Структурные особенности	
наноструктурных	наноматериалов;	
материалов	Тема 6.3. Физические свойства;	
митериштер	Тема 6.4. Химические свойства;	ЛК, СЗ, СР
	Тема 6.5. Механические свойства;	
	Тема 6.6. Принципы классификации	
	наноматериалов.	
Раздел 7. Нанопорошки	Тема 7.1. Особенности структуры и свойств;	
T. T. T.	Тема 7.2. Основные методы получения;	ЛК, СР
	Тема 7.3. Применение нанопорошков.	Ź
Раздел 8. Углеродные	Тема 8.1. Аллотропные формы углерода;	
наноструктуры	Тема 8.2. Углеродные нанотрубки (УНТ);	C3, CP
	Тема 8.3. Графен.	
Раздел 9. Объемные	Тема 9.1. Общая характеристика методов	
наноматериалы	получения;	
_	Тема 9.2. Технологии порошковой металлургии;	шк сэ св
	Тема 9.3. Объемные наноматериалы, полученные	ЛК, СЗ, СР
	интенсивной пластической деформацией (ИПД);	
	Тема 9.4. Контролируемая кристаллизация из	

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
	аморфного состояния;	
	Тема 9.5. Технологии осаждения	
	наноструктурированных слоев на подложку.	
Раздел 10.	Тема 10.1. Применение нанотехнологии в	
Нанотехнологии в	машиностроении	CP
машиностроении		

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	- микрофоны (2) — itc ESCORT T-621A; - проектор — SANYO VGA PROJECTOR; - моноблок — ViewSonic VA1932WA; - экран — SereenMedia; - усилитель трансляционный — ROXTON AA-120
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	- переносной мультимедиа проектор SANYO VGA PROJECTOR; - рабочее место в составе: монитор LG W1943SE-PF Black, системный блок, клавиатура, компьютерная мышь - 15 шт.; интерактивная доска Smart Board 680i4 со встроенным проектором – 1 шт; многофункциональное устройство для печати и сканирования документов HP Laserjet Pro M1132 MFP - 1 шт.; доступ в интернет: ЛВС и Wi-Fi.
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Ю.Д. Третьякова. Нанотехнологии. Азбука для всех. М.: Физматлит, 2008. 368 с.
- 2. Ч. Пул, Ф. Оуэнс. Нанотехнологии. М.: Техносфера, 2005. 336 с.
- 3. Б.М. Балоян, А.Г. Колмаков, М.И. Алымов, А.М. Кротов. НАНОМАТЕРИАЛЫ
- 4. Классификация, особенности свойств, применение и технологии получения. Международный университет природы, общества и человека «Дубна» Филиал «Угреша». Москва, 2007.
- 5. Мария Рыбалкина. НАНОТЕХНОЛОГИИ для всех.
- 6. А.И. Гусев Наноматериалы, наноструктуры, нанотехнологии. М.: Φ ИЗМАТЛИТ, 2007. 414 с.
- 7. Рыжонков Д.И. Наноматериалы : учеб. пособие /Д. И. Рыжонков, В. В. Левина, Э.Л. Дзидзигури. 2-е изд. М. : БИНОМ. Лаб. знаний, 2010. 365 с.
- 8. Родунер, Э. Размерные эффекты в наноматериалах / Э. Родунер; пер. с англ. А. В. Хачояна; под ред. Р. А. Андриевского. М.: Техносфера, 2010. 350 с.
- 9. Словарь нанотехнологических и связанных с нанотехнологиями терминов. Под ред. С. В. Калюжного, М.:Физматлит, 2010. 528 с.
- 10. П. Харрис. Углеродные нанотрубы и родственные структуры, Москва, 2003.

Дополнительная литература:

- 1. Нанотехнологии, метрология, стандартизация и сертификация в терминах и определениях. Под ред. М. В. Ковальчука, П. А. Тодуа. 2009. 136 с.
- 2. Ковшов А.Н. Основы нанотехнологии в технике.: учеб. пособие для ВУЗов. М.: Академия, 2009.-236 с.
- 3. Г.М. Волков. Объемные наноматериалы.: учеб. пособие. М.: КНОРУС, 2011.-169 с.
- 4. Р.А. Андреевский, А. В. Рагуля. Наноструктурные материалы. М.: Академия, 2005.
- 5. Ю.И. Головин. Введение в нанотехнику. М.: Машиностроение, 2007.
- 6. Гусев А.И., А.А. Ремпель. Нанокристаллические материалы. : М.: ФИЗМАТЛИТ: МАИК: Наука, 2001.
- 7. В.В. Старостин. Материалы и методы нанотехнологии. : учеб. пособие для ВУЗов. М.: БИНОМ, 2008.
- 8. Нанотехнология в ближайшем десятилетии. Прогноз направления исследований. Под ред. М.К. Роко, Р.С. Уильямса и П. Аливисатоса, Москва, 2002.
- 9. Нанотехнологии в электронике Под ред. Ю.А. Чаплыгина, Москва, 2005.
- 10. Кобаяси Н. Введение в нанотехнологию. Москва. 2005.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
- ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
- ЭБС Юрайт http://www.biblio-online.ru
- ЭБС «Консультант студента» www.studentlibrary.ru
- ЭБС «Лань» http://e.lanbook.com/

- ЭБС «Троицкий мост»
- 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
- поисковая система Яндекс https://www.yandex.ru/
- поисковая система Google https://www.google.ru/
- реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Нанотехнологии в машиностроении».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Нанотехнологии в машиностроении» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - OM и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИКИ:

Лоцент кафельы

доцент кафедры машиностроительных технологий		Горбани С.	
Должность, БУП	Подпись	Фамилия И.О.	-
РУКОВОДИТЕЛЬ БУП: Заведующий кафедрой машиностроительных технологий		Вивчар А.Н.	
Наименование БУП	Подпись	Фамилия И.О.	-
РУКОВОДИТЕЛЬ ОП ВО: Заведующий кафедрой машиностроительных технологий		Вивчар А.Н.	
Наименование БУП	Подпись	Фамилия И.О.	-