Документ подписан простой электронной подписью Информация о владельце:
ФИО: Ястребов Олефалькандрович государ

ФИО: Ястребов Олефедеральное государственное автономное образовательное учреждение Должность: Ректор Дата подписания. Оторо образования «Российский университет дружбы народов имени Патриса Уникальный программный ключ:

Лумумбы»

ca953a0120d891083f939673078ef1a989dae18a

Факультет физико-математических и естественных наук
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Применение ПО в неорганическом эксперименте
Рекомендована МССН для направления подготовки/специальности:
текомендована месті для направления подготовки/специальности.
04.04.01 «Химия»
(код и наименование направления подготовки/специальности)
(код и наименование направления подготовки/специальности)
0
Освоение дисциплины ведется в рамках реализации основной
профессиональной образовательной программы высшего образования (ОП ВО):
«Фундаментальная и прикладная химия»

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Применение ПО в неорганическом эксперименте» является развитие у студентов навыков использования современных компьютерных технологий при планировании исследований, получении и обработке результатов научных экспериментов, сборе, обработке, хранении, представлении и передаче научной информации.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Применение ПО в неорганическом эксперименте» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при

освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции	
шифр	Компетенция	(в рамках данной дисциплины)	
	Способен: искать нужные	УК-7.1. Использует цифровые технологии и	
	источники информации и	методы поиска, обработки, анализа, хранения и	
	данные, воспринимать,	представления информации в области химии.	
	анализировать, запоминать и	УК-7.2. Разрабатывает концепцию цифровых	
	передавать информацию с	технологий и методов поиска, обработки,	
	использованием цифровых	анализа, хранения и представления информации	
	средств, а также с помощью	в рамках обозначенной проблемы: формулирует	
	алгоритмов при работе с	цель, задачи, обосновывает актуальность,	
	полученными из различных	значимость, ожидаемые результаты и	
УК-7	источников данными с	возможные сферы их применения в условиях	
	целью эффективного	цифровой экономики и современной	
	использования полученной	корпоративной информационной культуры.	
	информации для решения	УК-7.3. Осуществляет мониторинг	
	задач; проводить оценку	использования цифровых технологий и методов	
	информации, ее	поиска, обработки, анализа, хранения и	
	достоверность, строить	представления информации в области химии,	
	логические умозаключения	корректирует отклонения, вносит	
	на основании поступающих	дополнительные изменения в план	
	информации и данных	использования цифровых технологий.	
		М-ПК-2-н-1. Проводит поиск	
	Способен проводить	специализированной информации в патентно-	
	патентно-информационные	информационных базах данных.	
М-ПК-2-н	исследования в выбранной	М-ПК-2-н-2. Анализирует и обобщает	
	области химии и/или	результаты патентного поиска по тематике	
	смежных наук	проекта в выбранной области химии	
		(химической технологии).	

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Применение ПО в неорганическом эксперименте» относится к элективной компоненте блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Применение ПО в неорганическом эксперименте».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

	Предшествующие Последующ				
Шифр	Наименование	дисциплины/модули,	дисциплины/модул		
шифр	компетенции	практики*	и, практики*		
	Способен: искать нужные	Актуальные задачи	Преддипломная		
	источники информации и	современной химии	практика		
	данные, воспринимать,	Научно-	приктики		
	анализировать,	исследовательская работа			
	запоминать и передавать				
	информацию с				
	использованием				
	цифровых средств, а				
	также с помощью				
	алгоритмов при работе с				
	полученными из				
УК-7	различных источников				
	данными с целью				
	эффективного				
	использования				
	полученной информации				
	для решения задач; проводить оценку				
	информации, ее				
	достоверность, строить				
	логические				
	умозаключения на				
	основании поступающих				
	информации и данных				
М-ПК-2-н	Способен проводить	Спектральные методы в	Преддипломная		
	патентно-	неорганической химии	практика		
	информационные	Химия координационных			
	исследования в	соединений			
	выбранной области химии	Резонансные методы в			
	и/или смежных наук	химии Электрохимические			
		методы исследования			
		Рентгендифракционные			
		методы в неорганической			
		химии			
		Физические методы			
		исследования веществ и			
		материалов			
		Физико-химический			
		анализ			
		Научно-			

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модул и, практики*
		исследовательская работа Экспериментальные методы исследования в	
		химии	

^{* -} в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Применение ПО в неорганическом эксперименте» составляет 3 зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для очной

формы обучения

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		36			36	
-				•		
Лекции (ЛК)		36			36	
Лабораторные работы (ЛР)						
Практические/семинарские занятия (СЗ)						
Самостоятельная работа обучающихся, ак.ч.		54			54	
Контроль (экзамен), ак.ч.		18			18	
ак.ч.		108			108	
Общая трудоемкость дисциплины	зач.ед.	3			3	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Разделы	Темы	Вид учебной работы*
	Тема 1.1. Современные методы физико-	ЛК
	химического анализа и программное	
	обеспечение (ПО).	
Раздел 1. Введение	Тема 1.2. Стандартное ПО.	ЛК
газдел 1. Введение	Тема 1.3. Современные программные	ЛК
	комплексы для анализа экспериментальных	
	результатов и расчёта физико-химических	
	характеристик. Базы данных (БД).	
Раздел 2. Физико-	Тема 2.1. Способы регистрации сигнала в	ЛК
химические	приборах.	
методы анализа и	Тема 2.2. Обработка сигнала и его	ЛК
современные	аппаратный пересчёт в исследуемые	
способы	физические величины для различных	
регистрации	методов анализа с применением	
экспериментальны	стандартного ПО.	
х данных	Тема 2.3. Калибровка приборов и	ЛК

Разделы	Темы	Вид учебной работы*
	возможности современного ПО.	
	Тема 3.1. Статистический анализ	ЛК
	экспериментальных зависимостей с	
Раздел 3. Методы	использованием стандартного ПО,	
обработки	современных программных комплексов и	
экспериментальны	БД.	
х данных	Тема 3.2. Моделирование и аппроксимация	ЛК
х даппых	экспериментальных результатов.	
	Тема 3.3. Оценка достоверности полученных	ЛК
	данных.	
	Тема 4.1. Общие требования к	ЛК
	представлению графических зависимостей.	
Раздел 4.	Тема 4.2. ПО и методы обработки	ЛК
Графическое	изображений с микроскопа: анализ	
представление	цифровой фотографии.	
результатов	Тема 4.3. ПО для построения 2D и 3D	ЛК
экспериментов	графических изображений при	
	представлении и интерпретации	
N. TELC	результатов.	

^{*}ЛК – лекции

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций	
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Кларк Т. Компьютерная химия. Практическое руководство по расчетам структуры и энергии молекул. Пер. с англ. А.А.Коркина; Под ред. В.С.Мастрюкова, Ю.Н.Панченко. // М.: Мир, 1990. 383 с.
- 2. Грановский В.А., Сирая Т.Н. Методы обработки экспериментальных данных при измерениях. // Л.: Энергоатомиздат. 1990. 288 с.
- 3. Лбов Г.С. Методы обработки разнотипных экспериментальных данных. // Новосибирск: Наука, 1981. 160 с.

Дополнительная литература:

- 1. ЭВМ помогает химии. Под ред. Г. Вернена, М. Шанона; Пер. с англ. под ред. И. Я. Берштейна, Н. Н. Храмова. // Л.: Химия, 1990. 383 с.
- 2. Баркер Ф.Д. Компьютеры в аналитической химии. Пер. с англ. О.А.Басченко, И.А.Тополя. // М.: Мир. 1987. 519 с.
- 3. Саутин С.Н., Пунин А.Е. Мир компьютеров и химическая технология // М. : Химия. 1991. 144 с.
- 4. Евсеев А.М., Николаева Л.С. Математическое моделирование химических равновесий. // М.: Изд-во МГУ, 1988. 191 с.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН им. П. Лумумбы и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
 - Электронно-библиотечная система РУДН им. П. Лумумбы ЭБС РУДН им. П. Лумумбы http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Лань» <u>http://e.lanbook.com/</u>
- 2. Базы данных и поисковые системы (открытый доступ):
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/
 - Большая Научная Библиотека (<u>http://sci-lib.com/</u>)
 - Каталог химических ресурсов на CHEMPORT.RU (http://www.chemport.ru/catalog_tree.php)
 - Сайт о химии (<u>http://www.xumuk.ru/</u>)
 - Электронная библиотека РФФИ (http://www.elibrary.ru)

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Применение ПО в неорганическом эксперименте».
- 2. Тесты.

* - все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы (ОМ) и балльно-рейтинговая система (БРС)* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Применение ПО в неорганическом эксперименте» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН им. П. Лумумбы (положения/порядка).

РАЗРАБОТЧИКИ:

Доцент кафедры неорганической химии	alopul-	Фортальнова Е.А.
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП: Кафедра неорганической химии	SOM L	Хрусталев В.Н.
Наименование БУП	JAJUJ HOBBIGHT	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО: Декан ФФМиЕН,		
заведующий кафедрой органической химии	Compenie	Воскресенский Л.Г.
Должность, БУП	Подпись	Фамилия И.О.