Документ подписан простой электронной подписью	
Информация о владельце:	
ФИО: Ястребов Олег Александрович State Autor	omous Educational Institution of Higher Education
Должность: Ректор	EDIENDCHID UNIVEDCITY OF DUCCIA
Дата подписания: 19.05.2023 16:30:35 EOPLES	FRIENDSHIP UNIVERSITY OF RUSSIA
Уникальный программный ключ:	RUDN University
ca953a0120d891083f939673078ef1a989dae18a	
Ág	rarian and Technological Institute

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Physical and Colloidal Chemistry

course title

Recommended by the Didactic Council for the Education Field of:

36.05.01 Veterinary

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

36.05.01 Veterinary

higher education programme profile/specialisation title

1. GOALS AND OBJECTIVES OF THE COURSE

The aim of mastering the course "**Physical and Colloidal Chemistry**" is to reveal the relationship between physical and chemical phenomena and understanding of the essence of physical and colloid-chemical processes occurring in nature and in biological systems.

2. REQUIREMENTS FOR LEARNING OUTCOMES

The implementation of the course "**Physical and Colloidal Chemistry**" is aimed at creating the following competencies (parts of competencies) for students:

Competence descriptor Competence **Indicators of competence** code **accomplishment** (within the course) Is able to use in professional GPC-4.1 Has the conceptual and methodological apparatus of the basic activity methods to solve natural sciences at a level sufficient for problems using modern equipment in the development full professional activity at the modern of new technologies and use level GPC-4.3 Willing GPC-4 modern professional to use modern methodology conduct to methodology designing and in experimental research and conducting experimental research interpretation of the results GPC-4.4 Uses modern professional methodology in interpreting research results

Table 2.1. List of competencies formed by students during the development of the course (results of the development of the course)

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course "**Physical and Colloidal Chemistry**" refers to the mandatory part of block B1 of the Educational Program of Higher Education.

As part of the Educational Program of Higher Education, students also master other courses and /or practices that contribute to achieving the planned results of mastering the course "**Physical and Colloidal Chemistry**".

Table 3.1. List of Higher Education Program components courses that contribute to expected learning outcomes

Competence code	Competence descriptor	Previous courses/modules, internships*	Subsequent courses/modules, internships*
--------------------	--------------------------	--	--

and stry ry cs	Biological chemistry Immunology Laboratory diagnostics of infectious and invasive diseases Study practice Clinical internship Industrial practice Academic research practice with the
	Industrial practice Academic research practice with the preparation of a scientific qualification project Preparation for and passing the state exam

4. COURSE WORKLOAD AND TRAINING ACTIVITIES

Course workload of the course "Physical and Colloidal Chemistry" is 2 credits.

Table 4.1. Types of academic activities during the period of the HE program mastering for *full-time* study

Types of academic activities		HOURS	Semesters			
			2	-	-	-
Contact academic hours		36	36	-	-	I
including						
Lectures		18	18	-	-	-
Lab work		18	18			-
Seminars (workshops/tutorials)		-	-	-	-	-
Self-study		30	30	-	-	-
Evaluation and assessment (ex	Evaluation and assessment (exam/pass/fail		6	-	-	-
grading)						
	Academic	72	72	-	-	-
Course workload hour						
	Credit unit	2	2	-	-	-

5. COURSE CONTENTS

Table 5.1 Content of the course (module) by type of academic work

Modules	Content of the modules (topics)	Types of
		academic
		activities

Module 1. Phase	Topic 1.1 Types of solutions: liquid, gas,	Lectures,	Lab
equilibria. Properties of	solid. Thermodynamics of solutions.	work.	
solutions	Chemical potential of a solution		
	component. Types of solutions.		
	Heterogeneous multicomponent		
	systems. Gibbs phase rule. Single-		
	component heterogeneous systems.		
	Clapeyron-Clausius equation. State		
	diagrams of water.		
	Topic 1.2 Characteristics of binary	Lectures,	Lab
	systems. Number of parameters and	work.	
	number of phases. Equilibrium between		
	liquid solution and vapor. Raoul's law.		
	Deviations from Raoul's law for non-		
	ideal liquid solutions. Liquid-vapor state		
	diagrams for binary systems. Lever rule.		
	Azeotropic solutions. Fractional		
	distillation. Limited solubility of liquids.		
	Extraction. Solubility of gases in liquids.		
	Sechenov's law. Cryoscopy and		
	ebulioscopy. Osmosis. Colligative		
	properties of electrolyte solutions.		
	Topic 1.3 Vant-Goff isotonic	Lectures,	Lab
	coefficient.	work.	
	Topic 1.4 Equilibria between solid	Lectures,	Lab
	phases and melts. Types of melting	work.	
	diagrams. Physical and chemical		
	analysis.	T t	T . 1.
	Topic 1.5 Infee-component systems.	Lectures,	Lad
	The Globs-Rosebolin triangle. The	WOIK.	
Modulo 2	Topic 2.1 Differences between the	Lactures	Lah
Flactrochamistry	properties of electrolyte solutions and	Lectures,	Lau
Electrochemistry.	the properties of non electrolyte	WOIK.	
	solutions Arrhenius theory of		
	electrolytic dissociation Ionic equilibria		
	in solutions Dissociation constants		
	Ionic derivation of water Hydrogen		
	index Buffer solutions Reasons for the		
	stability of jonic systems. The jonic		
	strength of solutions		

	Theme 2.2 Electrical conductivity of electrolyte solutions. Specific, equivalent and molar conductivity of electrolyte solutions and their dependence on concentration. Kohlrausch's rule. Mobility of ions. Application of conductometry in analytical chemistry.	Lectures, work.	Lab
	Topic 2.3 Mechanism of appearance of the potential jump at the interface. Diffusion potential.	Lectures, work.	Lab
	Topic 2.4 Electrode potentials. The Nernst equation. Standard electrode potentials. Hydrogen electrode. Measurement of pH.	Lectures, work.	Lab
	Topic 2.5 Galvanic elements and electromotive force. Electrochemical and concentration elements. The Nernst equation. Calculation of the standard Gibbs energy.	Lectures, work.	Lab
Module 3. Chemical kinetics. Catalysis.	Topic 3.1 Basic definitions. Simple and complex reactions. Reaction rate. Kinetic law of acting masses. Kinetic equation, molecularity and order of reaction. Kinetics of simple zero, first and second order reactions. The half- turn period. Methods for determining the order of a reaction.	Lectures, work.	Lab
	Topic 3.2 Complex reactions:	Lectures,	Lab
	Topic 3.3 Influence of temperature on the reaction rate. Van Goff rule and Arrhenius equation. Determination of the shelf life of drugs and storage conditions.	Lectures, work.	Lab
	Topic 3.4 The theory of active collisions. Reaction activation energy, methods of determination. The theory of activated complex. Peculiarities of reactions in liquid solutions. Photochemical reactions.	Lectures, work.	Lab
	Topic 3.5 Catalysis. Kinetics of homogeneous catalytic reactions. Enzymatic catalysis. Michaelis-Menten equation. Inhibitors. Heterogeneous catalysis.	Lectures, work.	Lab

Module 4. Surface	Topic 4.1 Surface tension and	Lectures, L	ab
phenomena. Adsorption.	phenomena at the interface: adsorption,	work.	
Chromatography.	adhesion, wetting. Flotation as a method		
	of separation of dispersed phases.		
	Lyophobic and lyophilic surfaces.		
	Adhesion. Dupré's equation. Wetting.		
	The Gibbs adsorption theory.		
	Adsorption on liquid surfaces. Surface		
	active substances (surfactants). The		
	Duclos-Iraube rule. The Szyszkowski		
	Taria 4.2 Physical adapted	Lestures I	ala
	ropic 4.2 Physical adsorption,	Lectures, L	aD
	reversible adsorption on homogeneous	WOIK.	
	surfaces Henry and Langmuir		
	adsorption isotherms IIItimate		
	adsorption determination of specific		
	surface area of sorbents. Heat of		
	adsorption. Peculiarities of adsorption of		
	molecules and ions from solutions on		
	solid surfaces. Adsorption isotherm with		
	exchange constant. The lyotropic series.		
	Ionites.		
	Topic 4.3 Porous materials.	Lectures, L	ab
	Enterosorbents.	work.	
	Topic 4.4 Chromatography. Types of	Lectures, L	.ab
	chromatography. Qualitative and	work.	
	quantitative chromatographic analysis.	.	1
Module 5. Colloid	Topic 5.1 History, major tasks and	Lectures, L	,ab
chemistry. Classifications,	directions of development of colloidal	work.	
methods of production and	chemistry. Classification of dispersed		
properties of dispersed	(conoidal) systems, their importance.		
systems.	The fole of stabilizer.	Looturoo I	oh
	obtaining dispersions. Population	Lectures, L	aD
	Torrige 5.2 Misselle structure of	WOIK.	ah
	hydrophobia sol	Lectures, L	aD
	Topic 5.4 Commonality of molecular	VOIK.	ah
	and kinetic properties of solutions and	vork	aU
	disperse systems Diffusion and	WUIK.	
	Brownian motion. Fick's, Einstein's and		
	Einstein-Smoluchowski's equations		
	Osmosis and membrane processes of		
	purification of colloidal systems		
	(dialysis, ultrafiltration).		

	Topic 5.5 Kinetic stability of free- dispersed systems. Sedimentation. Analysis of dispersity of colloidal systems according to sedimentation and centrifugation. Suspensions. Hypsometric law. Topic 5.6 Optical properties. Scattering and absorption of light in colloidal systems. Rayleigh's law. Application of	Lectures, work. Lectures, work.	Lab
	Lambert-Beyer law to turbid media. Optical methods of research of dispersions (nephelometry, turbidimetry, ultramicroscopy, electron microscopy).		
Module 6. Electrical phenomena in dispersions. Aggregative stability. Coagulation.	Topic 6.1 Appearance of the double electric layer (DES) at the phase boundary. Lippmann equation. The structure of DES and its potentials DES (thermodynamic, adsorption and electrokinetic) and the influence of various factors on them. The isoelectric state.	Lectures, work.	Lab
	Topic6.2Electrokineticphenomena(electrophoresis,electro-osmosis,sedimentation and flow potentials) andtheirpracticalsignificance.Electrophoresis.Helmholtz-SMoluchowski equations.	Lectures, work.	Lab
	Topic 6.3 Factors of kinetic and aggregative stability of disperse systems. Coagulation, electrolyte coagulation threshold (rule of significance). Deryagin-Landau- Ferwey-Overbeck /DLFO/ theory of stability of hydrophobic colloids. Potential curves. Thixotropy.	Lectures, work.	Lab
	Topic 6.4 Gels of hydrophobic sols. Coagulation kinetics. Special cases of coagulation of sols with electrolytes. Structural and mechanical factor of stabilization of dispersions. Colloidal protection. Protective substances, protective numbers.	Lectures, work.	Lab
Module 7. Lyophilic colloids. Solutions of high molecular weight compounds (HMS) and their properties.	Topic 7.1 General characteristics of high molecular weight compounds (HMS). Classification of high-molecular- molecular compounds. Natural and synthetic high-molecular-molecular-	Lectures, work.	Lab

molecule compounds. Conformation macromolecules.	of		
Topic7.2SwellingofOMThermodynamicsandkineticsswelling.Resolutionsofhydropholepolymericmaterialsthermodynamicallyequilibritcolloidalsystems.ComparisonpropertiesofsolutionsofHMSahydrophobicsols.OsmoticpropertiesofsolutionsofHMSahydrophobicsols.OsmoticpressuviscosityandopticalpropertiesofNavysolutions.Solutionspolyelectrolytes.PolyampholyteProteinisoelectric point and methodsitsdetermination.Gibbs-Donnmembraneequilibrium.Disturbancestability ofpolymer solutions (gelaticcoacervation,desalinizaticdenaturationdesalinizatic	IC. of bic as um of und re, the of es. of an of on, on,	Lectures, work.	Lab
Topic 7.3 Gels of the Navy solution Properties of the gels of the Navy a gels of hydrophobic sols. Syneresis gels. Gels.	ns. Ind of	Lectures, work.	Lab

6. COURSE EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. N	Aaterial d	and technical	support of	f the course
	<i>imcimimi</i>		support	

Classroom for Academic Activity Type	Equipping the classroom	Specialized educational/laboratory equipment, software and materials for the development of the course (if necessary)
Lecture	An auditorium for conducting lecture-type classes, equipped with a set of specialized furniture; a board (screen) and technical means of multimedia presentations.	 -reagents, -instruments, -sets of reference materials, -materials for current knowledge control (tests, control tasks).
Laboratory	An auditorium for laboratory work, individual consultations, routine monitoring and interim certification, equipped with a set of specialized furniture and equipment.	-distiller, -analytical scales, -magnetic stirrers, -ionomers, -pH-meters, -Liquid thermostat, -polarimeter (saccharimeter), -meters

		-Conductivity meters (conductivity meters), EMF-measurers, -photometers,
		-gasometers,
		-chromatographs,
		-nephelometers,
		-Viscosimeters
Self-studies	An auditorium for independent	
	work of students (can be used for	
	seminars and consultations),	
	equipped with a set of specialized	
	furniture and computers with access	
	to an electronic information and	
	educational environment.	

7. RESOURCES RECOMMENDED FOR COURSE STUDIES

Main readings:

- Belyaev A.P. Physical and colloidal chemistry : textbook / A.P. Belyaev, V.I. Kuchuk ; edited by A.P. Belyaev. - 3-th edition, revised. and supplement. - Moscow : GEOTAR-Media, 2021. - 816 c. - ISBN 978-5-9704-5690-3.
- Mikhalenko Irina Ivanovna. Practical work in physical chemistry : a textbook for fulltime students of Pharmacy, studying in the course of physical and colloid chemistry. Kinetics of chemical reactions. Catalysis. Module / I.I. Mikhalenko. - Moscow : PFUR, 2020. - 78 c. : ill. - ISBN 978-5-209-09653-5

Additional Readings:

- 1. A.G. Stromberg, D.P. Semchenko Physical Chemistry. M: Vysshaya shkola. 2001.
- 2. Emanuel N.M., Knorre D.G. Course of Chemical Kinetics. Textbook. M: High School. 1984. 463 c.
- Filippov Yu.I., Popovich M.P. Physical Chemistry. Moscow State University. 1980. 399 c.
- 4. Glazov V.M., Fundamentals of Physical Chemistry. Textbook. M. Vysshaya shkola.1981. 465c.
- 5. Atkins P. Physical Chemistry: In 2 vols. Moscow: Mir, 1980. T.1, 2.
- 6. Laboratory work and tasks in colloid chemistry. Edited by Yu.G. Frolov. M.1986.215s.

Internet sources

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" http://www.biblioclub.ru
- EL "Yurayt" <u>http://www.biblio-online.ru</u>
- EL "Student Consultant" <u>www.studentlibrary.ru</u>
- EL "Lan" <u>http://e.lanbook.com/</u>
- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/

- Yandex search engine https:// www .vandex.ru/
- Google search engine https://www.google.ru/
- Scopus abstract database http://www.elsevierscience.ru/products/scopus/

Educational and methodological materials for independent work of students during the development of the course/ module*:

- 1. A course of lectures on the course "Physical and Colloidal Chemistry".
- 2. Laboratory workshop on the course "Physical and Colloidal Chemistry".

* - The training toolkit and guidelines for the internship are placed on the internship page in the university telecommunication training and information system under the set procedure.

ASSESSMENT TOOLKIT AND GRADING SYSTEM* 8. FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS COURSE RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course results are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor, Department of Physical and Colloid Chemistry Markova E.B. Position Basic curriculum Signature Full name Associate Professor, Department of Physical and Colloid Chemistry Shishko T.F. Position, Basic curriculum Signature Full name. **HEAD OF EDUCATIONAL DEPARTMENT:** Department of Physical and Colloid Chemistry Cherednichenko A.G. Name Basic Curriculum Signature Full name. **HEAD OF HIGHER EDUCATION PROGRAMME:** Director of the Department of Veterinary Medicine Vatnikov Yu.A. Full name

Signature

Position. Basic curriculum