Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Институт биохимической технологии и нанотехнологии (ИБХТН) Рекомендовано МССН

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины

Промышленная микробиология

Рекомендуется для направления подготовки/специальности 28.04.01 «Нанотехнологии и микросистемная техника»

Направленность программы (профиль)

«Инновационные технологии и нанотехнологии в медицине, фармацевтике и биотехнологии»

1. Цели и задачи дисциплины:

Цель преподавания дисциплины — формирование у магистров современных представлений об уровне научных достижений в области промышленной микробиологии и знакомство с существующими промышленными процессами микробного синтеза целевых продуктов.

Основные задачи дисциплины:

- рассмотрение теоретических основ промышленной микробиологии и знакомство магистров с основными микробиологическими производствами продуктов метаболизма, биологически активных веществ, отдельных компонентов микробных клеток и биомассы.
- изучение биологических свойств микробов, их роли в природе и в жизни человека;
- изучение вопросов асептики, антисептики и стерилизации; хранения и контроля лекарственного сырья и готовых лекарственных средств в соответствии с санитарномикробиологическими требованиями и утвержденными нормативными документами;
- изучение препаратов, обеспечивающих специфическую диагностику, терапию и профилактику инфекционных заболеваний.

2. Место дисциплины в структуре ОП ВО:

Дисциплина «Промышленная микробиология» относится к части, формируемой участниками образовательных отношений, блока 1 учебного плана и является дисциплиной по выбору.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 Предшествующие и последующие дисциплины, направленные на формирование компетенций

	ROWITE	енции	
№ п/ п	Шифр и наименование компетенции	Предшествующие дисциплины	Последующие дисциплины
	П 1		
	1 1	ые компетенции	
1	ПК-1 Способен определить физико-		
	химические свойства наноматериалов, их	_ *	
	идентифицировать и дать оценку степени	химии;	
	их потенциальной опасности согласно	Физико-химические методы	
	используемым в организации методикам.	анализа;	
		Основы фитохимии и	
		технология	
		фитопрепаратов;	
		Применение полимеров в	
		биомедицинской	
		технологии и	
		нанотехнологии;	
		Введение в современную	
		биологию;	
		Химические методы	
		получения и свойства	
		наносистем	
2	ПК-3 Способен систематизировать и	Компьютерные технологии	
		в научных исследованиях;	
	биологических свойствах и токсичности	Физико-химические методы	
	наноматериалов, заносить эти сведения в	анализа;	

БД и извлекать из них требуемую	Основы фитохимии и
информацию; оценивать степень	технология
потенциальной опасности	фитопрепаратов;
наноматериалов на основе данных	Оценка безопасности
научной литературы	продукции наноиндустрии;
	Применение полимеров в
	биомедицинской
	технологии и
	нанотехнологии

1. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

№ п/п Код и наименование компетенции Код и наименование индикатора достижения компетенции 1 ПК-1 Способен определить физико-химические свойства наноматериалов, их идентифицировать и дать оценку степени их потенциальной опасности согласно используемым в организации методикам. ПК-3.4. Знает методы выделения, обнаружения и количественного определения токсических веществ, методы асептики, антисептики и стерилизации 2 ПК-3.4. Знает методы выделения, обнаружения и количественного определения токсических веществ, методы асептики, антисептики и стерилизации БД и извлекать из них требуемую информацию; оценивать степень потенциальной опасности наноматериалов на основе данных научной литературы опасности наноматериалов на основе данных научной литературы		ощее изучения дисциплины направлен на формирование еледующих компетенции:						
ПК-1 Способен определить физико-	No	Кол и наименование компетеннии	Код и наименование индикатора					
химические свойства наноматериалов, их идентифицировать и дать оценку степени их потенциальной опасности согласно используемым в организации методикам. 2 ПК-3 Способен систематизировать и реферировать данные литературы о биологических свойствах и токсичности наноматериалов, заносить эти сведения в БД и извлекать из них требуемую информацию; оценивать степень потенциальной опасности наноматериалов на основе данных	Π/Π	код и наименование компетенции	достижения компетенции					
2 ПК-3 Способен систематизировать и реферировать данные литературы о биологических свойствах и токсичности наноматериалов, заносить эти сведения в БД и извлекать из них требуемую информацию; оценивать степень потенциальной опасности наноматериалов на основе данных	1	химические свойства наноматериалов, их идентифицировать и дать оценку степени их потенциальной опасности согласно используемым в организации						
	2	ПК-3 Способен систематизировать и реферировать данные литературы о биологических свойствах и токсичности наноматериалов, заносить эти сведения в БД и извлекать из них требуемую информацию; оценивать степень потенциальной опасности наноматериалов на основе данных	обнаружения и количественного определения токсических веществ, методы асептики, антисептики и					

В результате изучения дисциплины студент должен:

Знать:

- правила техники безопасности при работе в микробиологической лаборатории;
- принципы классификации микроорганизмов, морфологию и физиологию бактерий, грибов, вирусов, простейших, методы выделения чистых культур бактерий и методы культивирования вирусов;
- основы генетики микроорганизмов, принцип получения рекомбинантной вакцины.
- состав нормальной микробиоты и ее значение для макроорганизма;
- санитарно-показательные микроорганизмы, показатели санитарного состояния окружающей среды;
- фитопатогенную микрофлору и ее роль в порче лекарственного растительного сырья, микробиологические методы оценки качества лекарственных средств в соответствии с требованиями нормативных документов;
- влияние факторов окружающей среды на микроорганизмы, методы асептики, антисептики, консервации, стерилизации, аппаратуру и контроль качества стерилизации;
- понятие о химиотерапии;
- формы микробного антагонизма и происхождение антибиотиков, их классификацию, методы определения чувствительности микробов к антибиотикам;
- сущность биотехнологии;
- принципы конструирования иммунобиологических препаратов для профилактики и лечения инфекционных заболеваний, их классификацию (вакцины, анатоксины,

Уметь:

- пользоваться учебной, научной, справочной литературой по микробиологии и сетью Интернет для профессиональной деятельности, пользоваться специальным оборудованием, выполнять работу в асептических условиях, дезинфицировать и стерилизовать инструменты, рабочее место; проводить расчеты результатов эксперимента;
- приготовить и окрасить микропрепарат простым способом и по Граму, микроскопировать с иммерсией, определять на микропрепаратах, слайдах и фото микроорганизмы, участвующие в инфекционных процессах, проводить выделение и идентификацию чистой культуры микроорганизмов из исследуемого материала;
- анализировать лекарственные препараты и лекарственное растительное сырье, а также объекты окружающей среды, смывы с рук и посуды по показателям микробиологической чистоты, давать пояснения по применению иммунобиологических препаратов, определить чувствительность к антибиотикам.

Владеть:

- методом иммерсионной микроскопии микропрепаратов;
- техникой посева микроорганизмов на жидкие и плотные питательные среды;
- техникой работы по правилам асептики, антисептики, с применением стерилизации, дезинфекции;
- навыками экспериментальной работы с лабораторными животными;
- техникой определения микробной чистоты лекарственных средств и лекарственного растительного сырья, умением анализировать микробиологическую чистоту;
- давать пояснения по применению иммунобиологических препаратов;
- методом определения чувствительности микробов к антибиотикам.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4 зачетных единицы.

1 1 20			, ,	1		
		D	2 курс Семестры			
Вид учебной работы		Всего				
		часов	5	6	7	8
Аудиторные занятия (всего)		45			45	
Лекции		18			18	
Практические занятия (ПЗ)		18			18	
Лабораторные работы (ЛР)		9			9	
Самостоятельная работа (всего)		99			99	
Итоговая аттестация Диф.зачет						
Общая трудоемкость,	час	144	•		144	
	зач. ед.	4			4	

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

№ п/п	Наименование раздела дисциплины	Содержание раздела
1.	/ ' '	Морфология бактерий. Строение бактериальной клетки. Принципы классификации микроорганизмов.

2.	Физиология	Химический состав микробной клетки. Питание (типы и
	микроорганизмов.	механизм), дыхание микроорганизмов. Рост и размножение
		микробов.
3.	Бактериофаги.	Бактериофаги, их природа, строение, практическое применение.
4.	Генетика	Генетика микроорганизмов. Понятие о фенотипе и генотипе.
	микроорганизмов.	Категории изменчивости. Адаптация, мутации, рекомбинации.
5.	Генная инженерия.	Генная инженерия и ее роль в создании лекарственных
	1	препаратов.
6.	Вакцины.	Вакцины классические и современные. Принципы изготовления
	,	и применения. Преимущества и недостатки.
7.	Влияние факторов внешней	Асептика, антисептика, стерилизация, дезинфекция,
	среды на микроорганизмы.	консервация.
8.	Антибиотики.	Формы взаимоотношений между микроорганизмами. Симбиоз.
		Антагонизм. Антибиотики: происхождение, спектр и механизм
		действия. Побочное действие антибиотиков на микро- и
		макроорганизмы. Принципы рациональной
		антибиотикотерапии.
9.	Распространение и роль	Микробиология лекарственного растительного и животного
	микроорганизмов в	сырья и готовых лекарственных форм.
	окружающей среде.	• • •
10.	Ферментационные	Количественные характеристики роста и продуктивности
	процессы в	микроорганизмов. Кинетика роста микроорганизмов. Типы
	микробиологической	ферментационных процессов и их количественные показатели.
	промышленности.	Биореакторы для аэробной ферментации. Среды и сырье для
		микробиологической промышленности. Выделение продукта.
11.	Промышленный биосинтез	Субстраты для получения белково-витаминных концентратов.
	белковых веществ.	Сахаросодержащие субстраты: отходы сахарной, спиртовой,
		целлюлозной промышленности, гидролизаты растительных
		отходов. Особенности микробного роста на углеводородах.
		Технологическая схема производства белковых веществ.
		Особенности получения белка одноклеточных на спиртах и
		природных газах.
12.	Микробиологический	Субстраты и продуценты для получения аминокислот.
	метод получения	Регуляторные и ауксотрофные мутанты – продуценты
	аминокислот.	аминокислот. Состав сред для биосинтеза аминокислот. Техника
		выделения и очистки аминокислот. Технология получения
		глутаминовой кислоты. Технология производства лизина,
		триптофана. Двуступенчатое получение аминокислот из
		биосинтетических предшественников.
13.	Микробиологическое	Среды и аппараты, применяемые для получения органических
	получение органических	кислот. Поверхностное и глубинное культивирование. Среды
	кислот.	для получения органических кислот. Получение конечного
		продукта. Получение лимонной, молочной, уксусной и др.
		кислот.
14.	Микробиологический	Технология получения витаминов. Получение витамина В ₁₂ с
	синтез витаминов.	помощью пропионовокислых и метаногенных бактерий.
		Микроорганизмы – продуценты рибофлавина и его получение в
		промышленности. Пути биоконсервации при синтезе
		аскорбиновой кислоты.
15.	Промышленное получение	Полисахариды цитоплазмы и мембранных структур.
	микробных полисахаридов.	Полисахариды клеточных стенок. Внеклеточные полисахариды.
		Биосинтез полисахаридов. Состав питательных сред для
		производства полисахаридов. Практическое использование
		микробных полисахаридов.
16.	Биосинтез антибиотиков.	Образование антибиотиков в промышленных условиях.
		Выделение и очистка антибиотика. Антибиотики, образуемые

		актиномицетами, бактериями, мицелиальными грибами. Пути
		повышения биосинтеза антибиотиков микроорганизмами.
17.	Получение ферментных	Особенности ферментов микроорганизмов. Ферменты
	препаратов.	микроорганизмов, применяемые в производстве. Получение
		активных продуцентов микробных ферментов. Питательные
		среды для культивирования микроорганизмов. Выделение и
		стабилизация ферментов. Применение ферментов.
18.	Производства, основанные	Производство вакцин, бактериофагов и препаратов,
	на получении микробной	нормализующих микрофлору человека.
	биомассы.	

1.1. Разделы дисциплин и виды занятий

$N_{\underline{0}}$	Наименование раздела дисциплины	ЛК	ЛР	ПР	CPC	Всего
Π/Π	наименование раздела дисциплины	7110	711	111		час.
1.	Предмет и задачи предмета промышленной микробиологии.	2	1		11	14
2.	Физиология микроорганизмов. Бактериофаги.	2	1		11	14
3.	Генетика микроорганизмов. Генная инженерия. Вакцины.	2	1	3	11	17
4.	Распространение и роль микроорганизмов в окружающей	2	1	3	11	17
	среде.		1			
5.	Ферментационные процессы в микробиологической	2	1	3	11	17
	промышленности.		1			
6.	Промышленный биосинтез белковых веществ.	2	1	2	11	16
7.	Промышленное получение микробных полисахаридов.	2	1	2	11	16
8.	Биосинтез антибиотиков. Получение ферментных	2	1	3	11	17
	препаратов.		1			1 /
9.	Производства, основанные на получении микробной	2	1	2	11	16
	биомассы.		1			10
	ИТОГО:	18	9	18	99	144

1.2. Лабораторный практикум

$N_{\underline{0}}$	Разделы дисциплины	Тематика практических занятий	Трудоемкость
Π/Π		•	(час.)
1	Физиология	Строение бактериальной клетки. Простая и сложная	1
	микроорганизмов.	окраска микроорганизмов. Окраска по Граму.	
		Изучение микробов в живом состоянии.	
2	Влияние факторов	Микробиологическая оценка антисептических и	1
	внешней среды на	дезинфицирующих средств.	
	микроорганизмы.		
5	Антибиотики.	Антибиотики. Определение чувствительности	1
		микроорганизмов к антибиотикам.	
3	Ферментационные	Изучение морфологии колоний. Определение	1
	процессы в	ферментативных свойств микроорганизмов.	
	микробиологической		
	промышленности.		
4	Промышленный	Методы культивирования микроорганизмов.	1
	биосинтез белковых	Питательные среды. Методы выделения чистых	
	веществ.	культур аэробных микроорганизмов.	
5	Микробиологический	Методы выделения и культивирования анаэробных	1
	метод получения	микроорганизмов. Идентификация чистой культуры	
	аминокислот.	микроорганизмов.	

6	Микробиологическое	Общая характеристика продуцентов органических	1
	получение органических	кислот и их лабораторная диагностика.	
	кислот.		
7	Микробиологический	Лабораторная диагностика продуцентов витаминных	1
	синтез витаминов.	препаратов.	
8	Промышленное	Общая характеристика продуцентов полисахаридов	1
	получение микробных	и их лабораторная диагностика.	
	полисахаридов.		
9	Производства,	Определение титра спор бактериальных и грибных	1
	основанные на	биопрепаратов.	
	получении микробной		
	биомассы.		

2. Практические занятия (семинары)

№ п/п	Разделы дисциплины	Наименование практических занятий	Трудоемкость (час.)
1	Влияние факторов внешней среды на микроорганизмы.	Методы стерилизации, дезинфекции, асептики, антисептики, консервации.	3
2	Ферментационные процессы в микробиологической промышленности.	Идентификация чистых культур аэробных микроорганизмов.	3
3	Промышленный биосинтез белковых веществ.	Методы культивирования микроорганизмов. Питательные среды. Методы выделения чистых культур аэробных микроорганизмов.	3
4	Микробиологический синтез витаминов.	Общая характеристика продуцентов витаминных препаратов.	2
5	Промышленное получение микробных полисахаридов.	Общая характеристика продуцентов полисахаридов и их лабораторная диагностика.	2
6	Получение ферментных препаратов.	Образование внеклеточных ферментов бактериями. Определение их концентрации.	3
7	Производства, основанные на получении микробной биомассы.	Определение титра спор бактериальных и грибных биопрепаратов.	2

3. Материально-техническое обеспечение дисциплины:

Лекции, семинары: Учебная аудитория 636:

Оснащение:

Комплект специализированной мебели;

Технические средства: Мультимедийный проектор Everycom

Ноутбук Lenovo Thinkpad L530 Intel Core i3-2370M_2.4GHz/DDR3 4 GB, 1шт

20 посадочных мест слушателей. Обеспечен выход в интернет. Комплект презентаций.

Windows XP, Microsoft Office 2007, Microsoft Security Essentials.

Лабораторные работы: Лаборатория П-9:

Комплект специализированной мебели; Технические средства: Биостанция

IM-Q NIKON; Инкубатор CO₂ CCL-050B-8 Esco Global «Esco»; Аквадистилятор ДЭ-10 «ЭМО» СПб; Ламинарный бокс «ВЛ-22-1200» «CAMПО» Россия; Экструдер липосом ручной (шприцевой) на 0,5 мл LiposoFast-Basic «Avestin»; Стерилизатор воздуха рециркуляционный передвижной «ОМ-22», «САМПО» Россия; Прибор экологического контроля «Биотокс-10М»; Микроскоп NIKON ECLIPSE LV100POL; Термостат электрический суховоздушный ТС-80М; Термостат программируемый для проведения ПЦР-анализа ТП4-ПЦР-01-«Терцик»; Лабораторная центрифуга Liston C 2204 Classic.

4. Информационное обеспечение дисциплины

а) программное обеспечение:

программное обеспечение: Mozilla Firefox, Windows, Microsoft Office (Word, Excel).

б) базы данных, информационно-справочные и поисковые системы: ФИПС, Scopus, Elsiver.

5. Учебно-методическое обеспечение дисциплины:

а) основная литература

- 1. Методы определения ферментативной активности возбудителей инфекционных заболеваний [Текст/электронный ресурс]: Учебно-методическое пособие / Е.Г. Волина, Я.Р. Саруханова. Электронные текстовые данные. М.: Изд-во РУДН, 2017. 48c. [http://lib.rudn.ru/MegaPro2/UserEntry?Action=Rudn_FindDoc&id=457524&idb=0].
- 2. Система комплемента. Диагностические тесты с участием комплемента [Текст/электронный ресурс]: Учебно-методическое пособие / Л.Е. Саруханова, Е.Г. Волина, Я.Р. Саруханова. 2-е изд., испр.: Электронные текстовые данные. М.: Изд-во РУДН, 2016. 35 с.

[http://lib.rudn.ru/MegaPro2/UserEntry?Action=Rudn FindDoc&id=450450&idb=0].

б) дополнительная литература

- 1. Волина Е.Г., Саруханова Л.Е. Основы общей микробиологии, вирусологии и иммунологии, Москва, Изд. «Медицина», 2004.
- 2. Хаитов Р.М., Игнатьева Г.А., Сидорович И.Г. Иммунология. Норма и патология: Учебник. 3-е изд., перераб. и доп. М.: ОАО «Издательство «Медицина», 2010. 752с.: ил. (Учеб. лит. для студ. Медвузов)
- 3. Под ред. А.А. Воробьева Медицинская микробиология, вирусология и иммунология, Москва, Изд. «МИА», 2004. 691
- 4. Под ред. А.А.Воробьва, В.Н. Царева Практикум лабораторных работ с иллюстрированными ситуационными заданиями по микробиологии, иммунологии и вирусологии. Москва, ООО «Медицинское информационное агентство», 2008. 320 с.
- 5. Тэц В.В. Руководство к практическим занятиям по медицинской микробиологии, вирусологии и иммунологии, Москва, Изд. «Медицина», 2002.
- 6. Борисевич И.В., Воробьева М.С., Гайдерова Л.А., Горбунов М.А., Давыдов Д.С. и соавт. Медицинские иммунобиологические препараты. Москва, Изд. «Гелла принт», 2010.
- 7. Елинов Н.П., Заикина Н.А., Соколова И.П. Руководство к лабораторным занятиям по микробиологии, Москва, Изд. «Медицина», 1988.
- 8. Коротяев А.И. с соавт. Медицинская микробиология, иммунология и вирусология, Санкт- Петербург, Изд. «Специальная литература», 2002.
- 9. Шагинурова, Г.И. Техническая микробиология: учебно-методическое пособие / Г.И. Шагинурова, Е.В. Перушкина, К.Г. Ипполитов. Казань: Изд-во Казанского государственного технологического университета, 2010. 122 с. ISBN 978-5-7882-0909-8; [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=259051
- 10. Колчанов, Н.А. Роль микроорганизмов в функционировании живых систем: фундаментальные проблемы и биоинженерные приложения / под ред. Н.А. Колчанов, В.В. Власов, А.Г. Дегерменджи. Новосибирск: СО РАН, 2010. 472 с. (Интеграционные проекты СО РАН; вып. 28). ISBN 978-5-7692-1147-8: [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=98017
- 11. Сизенцов, А. Антибиотики и химиотерапевтические препараты: учебник / А. Сизенцов, И.А. Мисетов, И.Ф. Каримов Оренбург: Оренбургский государственный университет, 2012. 489 с. Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=270294
- 12. Борисов Л.Б. Медицинская микробиология, вирусология, иммунология, Москва, Изд. «МИА», 2002.

- 13. Под ред. В.Н. Царева Микробиология, вирусология, иммунология: учеб. для студентов мед. вузов. М.: Практическая медицина, 2009. -581 с.: ил.
- 14. Практикум лабораторных работ с иллюстрированными ситуационными заданиями по микробиологии, иммунологии, вирусологии. Под редакцией академика РАМН А.А.Воробьева, профессора В.Н.Царева МИА Москва, 2008, Учебное пособие для студентов медицинских вузов для студентов специальности «Фармация»
- 15. Микробиология: Учебник.: /под редакцией академика РАМН В.В.Зверева, профессора М.Н.Бойченко/ Министерство образования и науки/ГОУ ВПО «Первый Московский государственный медицинский университет имени И.М.Сеченова»/Москваизд.группа «ГЭОТАР Медиа» 2012г.
- 16. Учебник для студентов, обучающихся по специальности 060301.65 «Фармация» по дисциплине «Микробиология» С вопросами для самопроверки и обсуждений по темам.
- 17. Под ред. А.С. Быкова, А.А. Воробьева, В.В.Зверева. Атлас по медицинской микробиологии, вирусологии и иммунологии,2-е изд. М.:ООО «Медицинское информационное агентство», 2008. 272
- 18. Под ред. А.А. Воробьева Медицинская микробиология, вирусология и иммунология, Москва, Изд. «МИА», 2004. 691
- 19. Гирич В.С., Бабаева Е.Ю., Саруханова Л.Е., Васильева Е.А.Микрофлора лекарственных растений и микробиологический контроль лекарственного растительного сырья и лекарственных форм. Москва, Российский университет дружбы народов 2010. -33.
- 20. Е.Г.Волина, Л.Е.Саруханова. Общая микробиология/ Москва. 2008/ Учебник для студентов, обучающихся по специальности 060301.65 «Фармация» по дисциплине «Микробиология» С заданиями для самостоятельной работы по темам.

11. Методические указания для обучающихся по освоению дисциплины (модуля)

Методические рекомендации по написанию и защите рефератов

Реферат по дисциплине «Организация и управление фармацевтическим производством» является результатом индивидуальной или коллективной (в группах по 2 человека) работы студентов и отражает способности исполнителей к самостоятельной работе с литературой и навыки анализа конкретной проблемы.

Для написания реферата рекомендуется использовать учебную, научную и специальную научно-практическую литературу.

СТРУКТУРА РЕФЕРАТА

- 1. Введение 2. Основные разделы (главы, параграфы) 3. Заключение
- 3. Список использованной литературы 5. Приложение

Во введении характеризуется актуальность проблемы, цель и задачи работы, дается краткая характеристика используемых материалов.

Основные разделы работы содержат как теоретический, так и аналитический материал.

Для написания теоретической части реферата необходимо изучить литературу по данной теме (учебники, учебные пособия, монографии, статьи в периодических изданиях и т.д.). Теоретический раздел должен показать, что студент знаком с публикациями по рассматриваемой проблеме. Важно выразить собственное мнение в отношении позиций того или иного автора или содержания используемого документа. При использовании прямого цитирования обязательно делать ссылки на источник с указанием страниц.

Аналитический раздел основывается на фактическом материале. Для написания этого раздела могут быть использованы различные источники информации: статистические данные, нормативно-правовые акты, результаты специальных обследований, материалы

научно-практических семинаров, конференций и др.

Работа будет более интересной, если фактический материал рассматривается в динамике. Для наглядности и удобства анализа цифровые данные могут быть сведены в таблицы. Если цифровой материал занимает большой объем, его следует поместить в приложении.

Заключительная часть реферата должна содержать выводы и предложения по каждому разделу и по работе в целом. Они должны логически вытекать из ранее написанного материала.

После заключения в работе помещается список использованной литературы.

Общий объем реферата: 20-25 страниц машинописного текста формата А-4.

Результаты исследования, представленного в реферате, оформляются в виде доклада и его презентации.

Правила поведения и техники безопасности в химической лаборатории

- 1. Нельзя находиться в лаборатории в верхней одежде. Следует работать обязательно в халате. Категорически запрещается принимать пищу, пить воду в лаборатории. Нельзя работать в лаборатории в неустановленное время.
- 2. К выполнению лабораторной работы можно приступать после тщательного изучения методики и правил работы с приборами.
- 3. На рабочем столе должны находиться необходимые реактивы, оборудование, посуда, рабочий журнал. Нельзя ставить на рабочий стол посторонние предметы (сумки). Склянки с реактивами должны быть снабжены этикетками и закрыты.
- 4. После окончания работы следует вымыть посуду, отключить электроприборы, выключить воду, привести в порядок рабочее место и сдать его лаборанту.
- 5. Следует соблюдать определенные правила при работе с реактивами: концентрированные растворы кислот запрещается выливать в раковину, нельзя путать крышки от склянок и банок, это ведет к загрязнению реактивов, недопустимо брать твердые реактивы руками, нюхать, пробовать их на вкус, при наливании растворов пользуются воронкой, лишнее количество реактива нельзя выливать обратно, для этого используется колба с надписью «слив», при отборе проб растворов кислот и щелочей, органических жидкостей их следует набирать в пипетку с помощью груши или дозатором, Исследуемые оптическими методами растворы нельзя оставлять в кюветном отделении приборов, после работы кюветы тщательно промыть и высушить.

Правила оформления работы в лабораторном журнале

- 1. Написать название работы, цель работы и теоретические введение (основные законы, уравнения, формулы, эскизы графиков);
- 2. В экспериментальной части указать реактивы и оборудование, условие проведение эксперимента (температура, концентрации растворов и их расчет, длины волн и т.д.);
- 3. Результаты измерений и расчётов по экспериментальным данным, представленные в виде таблиц и графиков, привести в тетради.
 - 4. Записать вывод или заключение о результатах работы.
 - 5. Ответить на вопросы для самоконтроля.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Работа в семестре

Вид задания	Число заданий	Кол-во баллов	Сумма баллов
Лабораторные работы	4	5	20
Практические работы	10	3	30
Реферат			20
Экзамен			30

Соответствие систем оценок (используемых ранее оценок итоговой академической успеваемости, оценок ECTS и балльно-рейтинговой системы (БРС) оценок текущей успеваемости):

Баллы	Традиционные	Баллы для перевода	Оценки	Оценки
БРС	оценки в РФ	оценок		ECTS
86 - 100	5	95 - 100	5+	A
		86 - 94	5	В
69 - 85	4	69 - 85	4	С
51 - 68	2	61 - 68	3+	D
31 - 08	3	51 - 60	3	Е
0 - 50	2	31 - 50	2+	FX
		0 - 30	2	F

График проведения письменных контрольных работ формируется в соответствии с календарным планом курса.

Экзаменационный билет содержит 3 вопроса. На подготовку к ответу отводится 1,5 часа, после чего производится устный опрос студента. Оценивается работа из 30 баллов независимо от оценки, полученной в семестре.

Программа составлена в соответствии с требованиями ФГОС 33.04.01 «Промышленная фармация».

Разработчик:

Доцент кафедры микробиологии и вирусологии медицинского факультета РУДН, к.б.н.

Н.П. Сачивкина

Руководитель программы/ Директор ИБХТН

Я.М. Станишевский

ФГАОУ ВО «Российский университет дружбы народов» Институт биохимической технологии и нанотехнологии (ИБХТН)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

«Промышленная микробиология»

(наименование дисциплины)

Рекомендуется для направления подготовки/специальности

28.04.01 «Нанотехнологии и микросистемная техника»

Направленность программы (профиль)

«Инновационные технологии и нанотехнологии в медицине, фармацевтике и биотехнологии»

Магистр Квалификация (степень) выпускника Паспорт фонда оценочных средств по дисциплине «Промышленная

микробиология».

Код	Контролируемый	ФОСы				
контролируемой	раздел	Аудиторная работа		Самостоятельная работа		Экзамен
компетенции	дисциплины					
		KP№1	КР№2	Реферат	Доклад	1
ПК-1	Предмет и задачи	15	15	20	20	30
ПК-3	предмета	13		20	20	30
TIK-3	промышленной					
	микробиологии.					
	Физиология					
	микроорганизмов.					
	Бактериофаги.					
	Генетика	•				
	микроорганизмов.					
	Генная инженерия.					
	Вакцины.					
	Распространение и					
	роль					
	микроорганизмов в					
	окружающей среде.					
	Ферментационные					
	процессы в					
	микробиологической					
	промышленности.					
	Промышленный					
	биосинтез белковых					
	веществ.					
	Промышленное					
	получение					
	микробных					
	полисахаридов.					
	Биосинтез					
	антибиотиков.					
	Получение					
	ферментных					
	препаратов.					
	Производства,					
	основанные на					
	получении					
	микробной					
	биомассы.					
	Итого:					100

Вопросы для подготовки к экзамену

По дисциплине «Промышленная микробиология»

Код контролируемой компетенции ОПК-3, ПК-4

- 1. Промышленная микробиология. Основные направления.
- 2. Морфология бактерий.
- 3. Строение бактериальной клетки.
- 4. Принципы классификации микроорганизмов.
- 5. Химический состав микробной клетки.
- 6. Питание (типы и механизм), дыхание микроорганизмов.
- 7. Рост и размножение микробов.
- 8. Бактериофаги, их природа, строение, практическое применение.
- 9. Генетика микроорганизмов. Понятие о фенотипе и генотипе.
- 10. Категории изменчивости микроорганизмов. Адаптация, мутации, рекомбинации.
- 11. Генная инженерия и ее роль в создании лекарственных препаратов.
- 12. Вакцины классические и современные. Принципы изготовления и применения. Преимущества и недостатки.
- 13. Асептика, антисептика, стерилизация, дезинфекция, консервация.
- 14. Формы взаимоотношений между микроорганизмами. Симбиоз. Антагонизм.
- 15. Антибиотики: происхождение, спектр и механизм действия. Побочное действие антибиотиков на микро- и макроорганизмы. Принципы рациональной антибиотикотерапии.
- 16. Микробиология лекарственного растительного и животного сырья и готовых лекарственных форм.
- 17. Количественные характеристики роста и продуктивности микроорганизмов. Кинетика роста микроорганизмов.
- 18. Типы ферментационных процессов и их количественные показатели. Биореакторы для аэробной ферментации. Среды и сырье для микробиологической промышленности. Выделение продукта.
- 19. Субстраты для получения белково-витаминных концентратов. Сахаросодержащие субстраты: отходы сахарной, спиртовой, целлюлозной промышленности, гидролизаты растительных отходов. Особенности микробного роста на углеводородах. Технологическая схема производства белковых веществ.
- 20. Субстраты и продуценты для получения аминокислот. Регуляторные и ауксотрофные мутанты продуценты аминокислот. Состав сред для биосинтеза аминокислот. Техника выделения и очистки аминокислот.
- 21. Технология получения глутаминовой кислоты.
- 22. Технология производства лизина, триптофана. Двуступенчатое получение аминокислот из биосинтетических предшественников.
- 23. Среды и аппараты, применяемые для получения органических кислот. Поверхностное и глубинное культивирование. Среды для получения органических кислот. Получение конечного продукта. Получение лимонной, молочной, уксусной и др. кислот.
- 24. Технология получения витаминов. Получение витамина В12 с помощью пропионовокислых и метаногенных бактерий.
- 25. Микроорганизмы продуценты рибофлавина и его получение в промышленности.
- 26. Пути биоконсервации при синтезе аскорбиновой кислоты.
- 27. Полисахариды цитоплазмы и мембранных структур. Полисахариды клеточных стенок. Внеклеточные полисахариды. Биосинтез полисахаридов.
- 28. Состав питательных сред для производства полисахаридов. Практическое использование микробных полисахаридов.

- 29. Образование антибиотиков в промышленных условиях. Выделение и очистка антибиотика. Антибиотики, образуемые актиномицетами, бактериями, мицелиальными грибами. Пути повышения биосинтеза антибиотиков микроорганизмами.
- 30. Особенности ферментов микроорганизмов. Ферменты микроорганизмов, применяемые в производстве.
- 31. Получение активных продуцентов микробных ферментов. Питательные среды для культивирования микроорганизмов. Выделение и стабилизация ферментов. Применение ферментов.
- 32. Производство вакцин, бактериофагов и препаратов, нормализующих микрофлору человека.
- 33. Пробиотики и продукты функционального питания: определение понятий, технология приготовления, используемые микроорганизмы.

Пример экзаменационного билета

дисциплины «Промышленная микробиология»

Время:

Время:

1 час

1 час

Группа	Ф.И.О. студента	

Экзаменационный билет № 1.

- 1. Приведите строение бактериальной клетки.
- 2. Генетика микроорганизмов. Понятие о фенотипе и генотипе.
- 3. Приведите примеры получения активных продуцентов микробных ферментов. Питательные среды для культивирования микроорганизмов. Выделение и стабилизация ферментов. Применение ферментов.

Пример экзаменационного билета

дисциплины «Промышленная микробиология»

Г	A II O		
Группа	Ф.И.О. студента		

Экзаменационный билет № 2.

- 1. Питание (типы и механизм), дыхание микроорганизмов.
- 2. Микробиология лекарственного растительного и животного сырья и готовых лекарственных форм.
- 3. Технология получения витаминов. Получение витамина В12 с помощью пропионовокислых и метаногенных бактерий.

Каждый вопрос оценивается от 0 до 10 баллов. Максимальное количество баллов – 30.

Баллы	Критерий оценки
0	Обучающийся не ответил на вопрос или ответ полностью неверен.
5	Обучающийся дал верный, достаточно полный ответ, раскрывающий основные положения вопроса.
1 1()	Обучающийся дал верный, развернутый, четкий и хорошо структурированный ответ, полностью раскрывающий вопрос.

Шкала оценивания: за экзамен студент получает:

«Отлично» («5») – от 27 до 30 баллов.

«Хорошо» («4») – от 21 до 26,9 баллов.

«Удовлетворительно» («3») – от 15 до 20,9 баллов.

«Неудовлетворительно» («2») – 14,9 и менее баллов.

Темы для рефератов

Код контролируемой компетенции ОПК-3, ПК-4

- 1. Направленный мутагенез для получения промышленных штаммов микроорганизмов.
- 2. Использование методов генетической инженерии при конструировании новых штаммов микроорганизмов.
- 3. Липиды микроорганизмов для кормовых целей.
- 4. Методы повышения биосинтеза антибиотиков микроорганизмами.
- 5. Промышленное производство микробных биопестицидов.
- 6. Производство бактериофагов.
- 7. Методы получения активных форм ферментов микроорганизмов.
- 8. Производство пробиотиков.
- 9. Современные методы хранения микроорганизмов продуцентов биологически активных веществ.
- 10. Методы традиционной селекции в получении промышленных штаммов микроорганизмов.
- 11. Применение генетической трансформации в биотехнологии и селекции микроорганизмов.
- 12. Основные источники сырья для микробиологической промышленности.
- 13. Методы культивирования промышленных штаммов микроорганизмов.
- 14. Ферментационные процессы в микробиологической промышленности.
- 15. Промышленные процессы с использованием иммобилизованных ферментов и клеток.
- 16. Микробиологические методы производства аминокислот и органических кислот.
- 17. Микробиологический синтез витаминов.
- 18. Промышленное получение микробных полисахаридов.
- 19. Получение активных продуцентов микробных ферментов.
- 20. Производства, основанные на получении микробной биомассы.
- 21. Основные технологические стадии получения антибиотиков.
- 22. Направленный поиск продуцентов антибиотиков.
- 23. Биосинтез антибиотиков микроорганизмами. Двухфазный характер развития продуцентов антибиотиков.
- 24. Промышленный метод получения полусинтетических антибиотиков. Применение антибиотиков.
- 25. Пробиотики и продукты функционального питания: определение понятий, технология приготовления, используемые микроорганизмы.
- 26. Биологическое консервирование. Преимущества. Примеры биологических видов консервирования и микроорганизмы, используемые в процессах.

КРИТЕРИИ ОЦЕНКИ

Реферат оценивается от 0 до 20 баллов:

	Баллы			
Критерии оценки	не	частично	полностью	
Tripinopini oxonini	соответствует	соответствует	соответствует	
	критерию	критерию	критерию	
Работа включает все указанные в задании элементы	0	1	2	
Работа оформлена в соответствии с требованиями	0	1	2	
Студентом корректно оформлены заимствования	0	1	2	
В реферате указана актуальная информация	0	1	2	
Студентом представлены объективные проверенные	0	1	2.	
научные источники информации	U	1	2	
Реферат отражает идеи, высказанные в источниках	0	1	2	
Студент сопоставляет данные нескольких				
источников, выявляет связи между ними, проводит	0	1	2	
сравнение, обобщение, классификацию				
Студент представляет информацию кратко и	0	1	2	
информативно	U	1	2	
Студент использует собственные формулировки для	0	1	2	
представления информации	U	1	2	
Формулировки студента не искажают смыслы,	0	1	2.	
изложенные в источниках	U	1	2	
Итого:	0	10	20	

Шкала оценивания:

- «Отлично» («5») от 18 до 20 баллов.
- «Хорошо» («4») от 14 до 17,9 баллов.
- «Удовлетворительно» («3») от 10 до 13,9 баллов.
- «Неудовлетворительно» («2») 9,9 и менее баллов.

Разработчик:

Caruf. Yu. Stanl Доцент кафедры микробиологии и вирусологии медицинского факультета РУДН, к.б.н.

Н.П. Сачивкина

Руководитель программы/ Директор ИБХТН

Я.М. Станишевский