Документ подписан простой электронной подписью	
Информация о владельце:	
ФИО: Ястребов Олег Арександрових тате Антор	mous Educational Institution of Higher Education
Должность: Ректор	Thous Educational Institution of Higher Education
Дата подписания: 07.06.2023 15:57.05 ОРСЕБ Л	RIENDSHIP UNIVERSITY OF RUSSIA
Уникальный программный ключ:	RUDN University
ca953a0120d891083f939673078ef1a989dae18a	
	Institute of Medicine

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

CHEMISTRY

course title

Recommended by the Didactic Council for the Education Field of:

31.05.03 Dentistry

(code and direction of training/specialty)

The course instruction is implemented within the professional education programme of higher education:

DENTISTRY

higher education programme profile/specialisation title

2022-2023

1. COURSE GOAL(s)

The goal of the course "Chemistry" is to equip students with the knowledge of systematic knowledge about the structure of a substance, the main laws governing chemical reactions, patterns in the chemical behavior of the main classes of inorganic and organic compounds in conjunction with their structure for using this knowledge as a basis for studying processes occurring in a living organism, and basic materials used in dental practice.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the course (module) "Chemistry" is aimed at the development of the following competences /competences in part: GC-6, GPC-3

Competence code	Competence descriptor	Competence formation indicators (within this course)
GC-6	the priorities of their own activities	temporary), uses them optimally for the
GPC-3	doping in sports and the fight	GPC-3.2. Understands the effect of the main types of doping on the physical qualities of a person, their side effects.

Table 2.1. List of competences that students acquire through the course study

3.COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the <u>core</u>/variable/elective* component of (B1) block of the higher educational programme curriculum.

* - Underline whatever applicable.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Compe tence code	Competence descriptor	Previous courses/modul es*	Subsequent courses/modules*
GC-6	Able to determine and implement the	Chemistry of	Biological Chemistry
	priorities of their own activities and ways	Biogenic	- Oral Biochemistry
	to improve it on the basis of self-	Elements	Pharmacology
	assessment and lifelong education.		
GPC-3	Capable of counteracting the use of	Chemistry of	Pharmacology
	doping in sports and the fight against it.	Biogenic	
		Elements	

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course <u>"Chemistry"</u> is 3 credits (108 academic hours).

*Table 4.1. Types of academic activities during the periods of higher education programme mastering (full-time training)**

Type of academic activities		Total Ser		nesters/training modules		
		academic hours	1	2	3	4
Contact academic hours				54		
including:						
Lectures (LC)	Lectures (LC)			18		
Lab work (LW)				36		
Seminars (workshops/tutorials) (S)						
Self-studies				54		
Evaluation and assessment						
(exam/passing/failing grade)						
Course workload academic hours_		108		108		
	credits	3		3		

5. COURSE CONTENTS

Course module title	Course module contents (topics)	Academic activities types
Classes of inorganic compounds	Main classes of inorganic compounds. Double oxides. Ceramic materials.	LW
Basic concepts of thermodynamics. First and second laws of thermodynamics.	Subject and methods of chemical thermodynamics. The relationship between the processes of metabolism and energy in the body. Chemical bioenergetics. Basic concepts of thermodynamics. Intensive and extensive parameters. State function. Internal energy. Work and heat are two forms of energy transfer. Types of thermodynamic systems (isolated, open, closed). Types of thermodynamic processes (isothermal, isobaric). Standard state. First law of thermodynamics. Enthalpy. Standard enthalpies of formation and combustion of a substance. Standard enthalpy of reactions. Hess' law. Application of the first law of thermodynamic to biosystems. The second law of thermodynamics. Reversible and irreversible processes. Entropy. Gibbs energy. Forecasting the direction of spontaneous processes in isolated and closed systems; the role of enthalpy and entropy factors. Thermodynamic equilibrium conditions. Standard Gibbs energies of formation and biological oxidation of matter. Standard	L, LW

Table 5.1. Course contents and academic activities types

	Cibbs anarou of the reaction Examples of examples]
	Gibbs energy of the reaction. Examples of exergonic and endergonic processes occurring in the body. The	
	principle of energy conjugation.	
	principle of energy conjugation.	
Basic concepts of	Chemical balance. Reversible and irreversible reactions.	L, LW
chemical kinetics.		, ,
Classification of	• •	
reactions in kinetics.	equation of the isotherm and isobar of a chemical	
	reaction. Subject and basic concepts of chemical	
	kinetics. Chemical kinetics as a basis for studying the	
	rates and mechanisms of biochemical processes.	
	Average speed and true speed. Classification of	
	reactions in kinetics: homogeneous, heterogeneous,	
	simple and complex reactions. Molecularity of the	
	elementary act of the reaction. Kinetic equations.	
	Reaction order. half-life. Dependence of reaction rate	
	on concentration. Kinetic equations of zero, first,	
	second order reactions. Experimental methods for	
	determining the rate and rate constant of reactions. The	
	dependence of the reaction rate on temperature. The	
	temperature coefficient of the reaction rate and its	
	features for biochemical processes. The concept of the	
	theory of active collisions. Activation energy. Arrhenius	
	equation; the role of the steric factor. The concept of the	
	theory of the transition state. Catalysis. Homogeneous	
	and heterogeneous catalysis. Energy profile of the	
	catalytic reaction. Features of the catalytic activity of	
	enzymes. Michaelis-Menten equation and its analysis.	
Concentrations and	Classification of solutions. Methods for expressing the	LW
colligative	concentrations of solutions. Volumetric analysis.	
properties of	Titration. Raoult's law, cryoscopy, ebullioscopy, Van't	
solutions.	Hoff's law, isotonic, hyper-, hypotonic solutions.	
Ionic equilibrium in	Proton theory of Lewis acids and bases. Acidity,	L, LW
electrolyte	basicity constants, the relationship between the acidity	
solutions.	and basicity constant in a conjugated protolytic pair, the	
	general constant of the combined protolytic	
	equilibrium. Protolytic processes occurring in the oral	
	cavity, their effect on hard dental tissues. Ionic product	
	of water, pH of solutions; hydrolysis of salts, degree	
	and constant of hydrolysis. Hydrolysis of food products	
	in the oral cavity and its effect on hard dental tissues.	
	buffer solutions. hydrolysis of starch. Ampholytes.	
	Acidity of gastric juice. The role of pH in body fluids.	
	Solubility constant. General constant of combined	
	heterogeneous equilibrium. Conditions for the	
	formation and dissolution of precipitates. The	
	phenomenon of isomorphism.	

complexing	Werner's coordination theory. The nature of the chemical bond in complex compounds. Classification of complex compounds. Nomenclature of complex compounds. Polydentate ligands. Chelation. The structure of hemoglobin, chlorophyll. Stability of complex compounds in solutions. Complex instability constant. Toxic effect of salts of heavy metals. Antidotes.	LW
Disperse systems	Classification of dispersed systems. Classification of dispersed systems according to the degree of dispersion; according to the state of aggregation; according to the strength of intermolecular interaction between the dispersed phase and the dispersion medium. The nature of the colloidal state. Obtaining and properties of dispersed systems. Obtaining suspensions, emulsions, colloidal solutions. Dialysis, electrodialysis, ultrafiltration. Molecular-kinetic properties of colloidal dispersed systems: Brownian motion, diffusion, osmotic pressure, sedimentation equilibrium. Optical properties: light scattering (Rayleigh's Law). Electrokinetic properties: electrophoresis and electroosmosis; flow potential and sedimentation potential. The structure of the electrical double layer. Electrokinetic potential and its dependence on various factors. Stability of dispersed systems. Sedimentation, aggregation and condensation stability of lyosols. Factors affecting the stability of lyosols. Coagulation. Coagulation threshold and its definition, Schulze-Hardy rule, habituation phenomenon. mutual coagulation. The concept of modern theories of coagulation. Colloidal protection and peptization. Colloidal surfactants; biologically important colloidal surfactants (soaps, detergents, bile acids). Micellization in surfactant solutions. Determination of the critical micelle concentration. Liposomes.	L, LW
Electrochemical processes and redox reactions.	The theory of redox processes. The concept of redox systems. Standard redox potentials. The occurrence of EMF in the oral cavity during metal prosthetics. The appearance of a double electric layer at the metal- electrolyte interface. Electrode potential, methods of its measurement. Electrochemical series of voltages of metals. The principle of operation of galvanic cells. Dental materials. Their classification, brief description, application in dentistry. Basic (structural) dental materials: metals and alloys, polymers, ceramics. Corrosion of metals, its types. Electrochemical corrosion: conditions of occurrence; factors contributing to its flow in the oral cavity during metal	L, LW

	prosthetics.	
Classification of organic reactions. Conjugated and aromatic compounds.		L, LW
· ·	Mutual influence of atoms in a molecule. Electronic	L, LW
Biologically active macromolecular substances (structure, properties, participation in the functioning of living systems).	Polymers. The concept of medical polymers. Properties of IUD solutions. Features of the dissolution of IUDs as a consequence of their structure. The shape of macromolecules. The mechanism of swelling and dissolution of the IUD. Dependence of the swelling value on various factors. Anomalous viscosity of HMS solutions. Staudinger equation. Viscosity of blood and other biological fluids. Osmotic pressure of biopolymer solutions. Polyelectrolytes. Isoelectric point and methods for its determination. Donnan membrane equilibrium. Oncotic pressure of plasma and blood serum. Stability of biopolymer solutions. Salting out biopolymers from solution. Coacervation and its role in biological factors. Gelation of IUD solutions. Jelly properties: syneresis and thixotropy.	L

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lab work	Classroom for lab works, equipped with a set of specialized furniture	A set of specialized furniture, reagent kits, stands, chemical glassware (test tubes, cups, flasks, pipettes, burettes), D.I. Mendeleev's table, activity series

 Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
		of metals, solubility table, marker board, markers, sponge, fume hood, centrifuge, photocolorimeters, potentiometers, analytical balances, multimedia systems.
Self-studies	Classroom for seminar-type classes, self-studies, group and individual consultations, current control and intermediate certification, equipped with a set of specialized furniture and multimedia equipment	A set of devices includes portable multimedia projector, laptop, projection screen, stable wireless

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

- Harper's Illustrated Biochemistry: textbook / Rodwell V. W., Bender D. A., Botham K. M., Kennelly P. J., Weil P. A. United States: McGraw Hill Education, 2015 817 p. 30-th Edition.
- Brown T, LeMay H., Bursten B. et al. Chemistry: The Central Science. 14th Edition. -Pearson, 2017 – 1248 p.
- Sharma R.K. Textbook of Coordination Chemistry.-New Delhi: Discovery Publishing House, 2007 285p.
- Charles E Carraher Jr. Introduction to Polimer Chemistry. 4th Edition CRC Press, 2017 588 p.
- Kovalchukova O.V Lectures on general and bioorganic chemistry. Part 1. General chemistry. M .: Publishing house RUDN, 2011.
- Kovalchukova O.V, Avramenko O.V Lectures on general and bioorganic chemistry. Part 2. Bioorganic chemistry. M .: Publishing house of RUDN, 2010.
- Langdon J. Physical Chemistry: Theories, Models and Applications. NY RESEARCH PRESS, 2018 246 p.

Additional readings:

- Geoffrey A. Lawrance. Introduction to Coordination. A Wiley Series of Advanced Texbooks.- NSW, Australia, 2010 -304 p.
- David R. Klein. Organic Chemistry. 1sh Edition. Wiley, 2011 1392 p.
- Kovalchukova O.V., Avramenko O.V., Vu Thi Nkog An The theoretical foundations of the course "Chemistry". M .: Publishing house of RUDN,2018.

 Nivaldo Tro. Chemistry: A Molecular Approach. 5th Edition. – Pearson, 2019 – 1320 p.

c) List of educational and electronic materials:

- Lectures on general chemistry for the specialty "Dentistry".
- Lectures on organic chemistry for the specialty "Dentistry".

Internet-(based) sources:

- 1. Electronic libraries with access for RUDN students:
- Electronic libraries of RUDN http://lib.rudn.ru/MegaPro/Web
- ELS «University Library Online» <u>http://www.biblioclub.ru</u>
- ELS Юрайт <u>http://www.biblio-online.ru</u>
- ELS «Student Advisor» <u>www.studentlibrary.ru</u>
- ЭБС «Лань» <u>http://e.lanbook.com/</u>

Training toolkit for self- studies to master the course *:

1. The set of lectures on the course "Chemistry"

2. The laboratory workshop (if any).on the course "Chemistry"

3. The guidelines for writing a course paper / project (if any) on the course "Chemistry".

4.

* The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (GC-6, GPC-3) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor of the

General Chemistry

Department,

Assistant of the General

Chemistry Department

Polyanskaya N. A.

signature

Associate Professor of the		
General Chemistry		
Department,		
Assistant of the General		
Chemistry Department		Stepnova A.F.
position, department	signature	name and surname
position, department	signature	name and surname
HEAD OF EDUCATIONAL DEPA of General Chemistry	RTMENT:	Davydov V.V.
name of department	signature	name and surname
HEAD OF HIGHER EDUCATION PROG First Deputy Director of Medical Institute	RAMME:	Razumova S.N.

position, department

signature

name and surname