Документ подписан простой электронной подписью Информация о владельце:
ФИО: Ястребов Олег Аврександрович

ФИО: Ястребов Олег **Федеральное государ ственное автономное образовательное учреждение** Должность: Ректор Дата подписания: 16.06. **Высшего образования «Российский университет дружбы народов»**

Уникальный программный ключ:

са953a0120d891083f939673078Факуивиет физико-математических и естественных наук

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Спецлаборатория (наименование дисциплины/модуля) Рекомендована МССН для направления подготовки/специальности: 03.03.02 Физика (код и наименование направления подготовки/специальности) Освоение дисциплины ведется В рамках реализации основной профессиональной образовательной программы высшего образования (ОП **BO**): Физика (наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Спецлаборатория» является формирование у студентов базовой подготовки в области фундаментальной и прикладной физики, практическая подготовка для самостоятельной научно-исследовательской или технологической работы с использованием современного инструментария, программно-аппаратных средств, методов математического моделирования и аналитического изучения широкого спектра задач прикладной физики.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Спецлаборатория» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при

освоении дисииплины (результаты освоения дисииплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)		
ПК-2	Способен проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта	ПК-2.1. Собирает и анализирует научнотехническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования ПК-2.2. Владеет практическими навыками использования современных методов исследования в выбранной области		

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Спецлаборатория» относится к вариативной части блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Спецлаборатория».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению

запланированных результатов освоения дисииплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ПК-2	Способен проводить	Теория колебаний и	Преддипломная практика
	научные	ВОЛН	_

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического	практики* Радиофизика Основы физики плазмы Основы физики СВЧ Введение в радиоэлектронику Радиоэлектроника	практики*
	оборудования) и информационных технологий с учетом отечественного и зарубежного опыта		

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Спецлаборатория» составляет 3 зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>**ОЧНОЙ**</u>

формы обучения

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	7			
Контактная работа, ак.ч.		72	72			
в том числе:						
Лекции (ЛК)						
Лабораторные работы (ЛР)						
Практические/семинарские занятия (С3)		72	72			
Самостоятельная работа обучающихся, ак.ч.		36	36			
Контроль (экзамен/зачет с оценкой), ак.ч.						
ак.		108	108			
Общая трудоемкость дисциплины	зач.ед.	3	3			

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины Содержание раздела (темы)		Вид учебной работы*
Приборы, техника и	Активные и пассивные методы диагностики	
методы физического	(зонды, энергетические анализаторы	
эксперимента и	заряженных частиц); СВЧ диагностические	ЛК, СЗ
диагностик.	методы (резонаторная, интерферометрия,	
	спектральный состав излучения); Оптическая	
	спектрометрия (модели равновесия,	

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
	радиационные процессы в плазменных системах); Импедансная спектроскопия (измерения амплитудно-частотных и фазочастотных характеристик образцов); ЭПРспектрометрия (методы анализа, анализ фотобиологических процессов, определение величин и констант обменного взаимодействия ионов); Масс-спектрометрия (методы анализа, время-пролетные, квадрупольные и магнитные анализаторы); Рентгеновская спектрометрия (методы анализа, сплошной и линейчатый спектр)	
Модели и методы вычислительного эксперимента	Метод «водяного мешка»; Метод частиц в ячейке; Метод Монте-Карло.	ЛК, СЗ
Системы и методы аналитических вычислений	Системы и алгоритмы символьной (аналитической) математики (Системы символьной математики и языки программирования высокого уровня Maple, MatLab и MathCad, Simulink); Методы решения обыкновенных дифференциальных уравнений, интегральных уравнений.	

^{*} - заполняется только по **ОЧНОЙ** форме обучения: ЛК – лекции; ЛP – лабораторные работы; C3 – семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
	Аудитория для проведения занятий	
	лекционного типа, оснащенная	
Лекционная	комплектом специализированной мебели;	
	доской (экраном) и техническими	
	средствами мультимедиа презентаций.	
	Аудитория для проведения занятий	
	семинарского типа, групповых и	
	индивидуальных консультаций, текущего	
Семинарская	контроля и промежуточной аттестации,	
Семинарская	оснащенная комплектом	
	специализированной мебели и	
	техническими средствами мультимедиа	
	презентаций.	
Для	Аудитория для самостоятельной работы	
самостоятельной	обучающихся (может использоваться для	

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
работы	проведения семинарских занятий и	
обучающихся	консультаций), оснащенная комплектом специализированной мебели и	
	компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Основы научных исследований [Текст] : учеб. пособие / [Б. И. Герасимов и др.]. М.:ФОРУМ, 2011. 269 с.
- 2. Полные тексты международных научных журналов World Scientific Publishing: http://www.worldscinet.com/

Рефераты и полные тексты статей из журналов, книги, книжных серий, электронных ссылок научных издательств:

- Springer Verlag http://springerlink.com/
- Blackwell Publishing http://www.blackwellpublishing.com/contacts/
- POLYMERSnetBASE http://www.polymersnetbase.com/
- Chemical Abstracts http://chemabs.cas.org
- The Royal Society Of Chemistry http://www.rsc.org
- American Chemical Society http://pubs.acs.org
- The Electrochemical Society http://www.electrochem.org

Дополнительная литература:

- 1. Фрайден Дж. Современные датчики. Справ. М.: Техносфера, 2005.
- 2. Букингем М. Шумы в электронных приборах и системах / пер. с англ. М.: Мир, 1986. Алексеев Е.Р., Чеснокова О.В. Решение задач вычислительной математики в пакетах Mathcad 12, MATLAB 7, Maple 9. М.: Изд-во «НТ Пресс», 2004.
- 3. Собельман И.И. Введение в теорию атомных спектров. М.: Наука, 1977.
- 4. Уманский М.М. Аппаратура рентгеноструктурных исследований. М. 1960.
- 5. Ельяшевич М.А. Атомная и молекулярная спектроскопия, в 2-х томах. М.: УРСС, 2007.
- 6. Блюменфельд Л.А. и др. Применение электронного парамагнитного резонанса в химии. Новосибирск: Изд. Сиб. Отд. АН СССР, 1962.
- 7. Феррар Т., Беккер Э. Импульсная и Фурье-спектроскопия ЯМР. М.: 1973.
- 8. Блюмих Б. Основы ЯМР. М.: Техносфера, 2007.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:

- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Лань» http://e.lanbook.com/

РАЗРАБОТЧИКИ:

- 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

* - все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

Доцент, ИФИТ Коновальцева Л.В. РУКОВОДИТЕЛЬ БУП: Лоза О.Т. Директор ИФИТ Подпись Фамилия И.О. РУКОВОДИТЕЛЬ ОП ВО: Лоза О.Т. Директор ИФИТ Лоза О.Т.