Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Факультет физико-математических и естественных наук

Рекомендовано МССН

«Математика и механика»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины

Специальный семинар

Рекомендуется для направления (ий) подготовки (специальности (ей)) $\underline{01.03.01}$

Направления «Математика»

Квалификация (степень) выпускника: бакалавр

Математический институт им. С.М. Никольского

1. Цели и задачи дисциплины: сформировать представление о комплексе идей и методов современной математики, развить математическую культуру студента и подготовить его к самостоятельной научно-исследовательской работы. Реализация указанной цели включает прослушивание научных докладов семинара по дифференциальным и функционально-дифференциальным уравнениям под рук. А.Л. Скубачевского, при котором все основные результаты снабжаются строгими доказательствами; промежуточный и итоговый контроль выявляют степень усвоения полученных навыков.

2. Место дисциплины в структуре ООП:

Дисциплина «Специальный семинар» относится к вариативной части блока 1 учебного плана.

В таблице № 1 приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП ВО.

Таблица № 1 Предшествующие и последующие дисциплины, направленные на формирование компетенций

No॒	Шифр и наименование	Предшествующие	Последующие дисциплины						
п/п	компетенции	дисциплины	(группы дисциплин)						
Профе	Профессиональные компетенции								
		m * HH *	T						
1	ПК-1	ТФДП, Физика	Преддипломная практика, ВКР						
	Способен к определению								
	общих форм и								
	закономерностей								
	отдельнойпредметной								
	области								

3. Требования к результатам освоения дисциплины:

В результате изучения дисциплины студент должен:

Знать: основные университетские курсы (уравнения математической физики, дифференциальные уравнения, функциональный анализ и др.)

Уметь: применять имеющиеся знания для понимания научных докладов семинара и последующих самостоятельных научных исследований.

Владеть: основными методами ОДУ, УМФ, функционального анализа и др. дисциплин.

Освоение дисциплины направлено на формирование компетенций:

ПК-1 Способен к определению общих форм и закономерностей отдельной предметной области

4. Объем дисциплины и виды учебной работы

Вид учебной работы		Всего	Модули, семестры					
		часов	Е	F				
Аудиторные занятия (всего)		32	16	16				
В том числе:								
Лекции								
Практические занятия (ПЗ)								
Семинары (С)	32	16	16					
Лабораторные работы (ЛР)								
Самостоятельная работа (всего)		220	92	128				
В том числе:								
Курсовой проект (работа)								
Расчетно-графические работы								
Реферат								
Другие виды самостоятельной работы		184	92	92				
Вид промежуточной аттестации (зачет)				36				
Общая трудоемкость	час	252	108	144				
	зач. Ед.	7	3	4				

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

Название разделов (тем) дисциплины	Краткое содержание разделов (тем)					
	дисциплины:					
Введение	Описание возможных направлений исследований семинара на ближайшее время. Знакомство новых участников с					
	руководителями семинара, их научными интересами и достижениями.					
Сильно эллиптические системы	Исследование неравенства Гординга для					
дифференциальных уравнений	уравнений и систем уравнений с частными производными. Вывод необходимых и достаточных условий. Случай переменных коэффициентов. Метод локализации. Сравнение условий эллиптичности и сильной					

	эллиптичности.
Краевые задачи для эллиптических дифференциально-разностных уравнений	Разностные операторы в ограниченных областях евклидова пространства. Разбиение области, порожденное разностным оператором. Матричное описание разностных операторов, сравнение с символом разностного оператора. Решение задачи коэрцитивности (исследование неравенства типа Гординга) для дифференциально-разностных операторов.
Краевые задачи для эллиптических	Функциональные операторы с растяжениями и
функционально-дифференциальных	сжатиями аргументов, их свойства в
уравнений с растяжениями и сжатиями	пространствах Соболева. Описание при
аргументов	помощи преобразования Гельфанда. Модельная
	краевая задача для эллиптического
	функционально-дифференциального уравнения
	с растяжениями и сжатиями в звездной области.
	Эффект появления бесконечномерного
	ядра/коядра. Задача коэрцитивности для
	функционально-дифференциального оператора
	с растяжениями и сжатиями в ограниченной
	области, содержащей центр сжатий. Получение
	алгебраического критерия сильной
	эллиптичности в виде положительности
	скалярного символа оператора (комбинации
	преобразований Фурье и Гельфанда).
	Приложение к дифференциально-разностным
	операторам. Разрешимость и спектр первой
	краевой задачи для сильно эллиптического
	функционально-дифференциального уравнения
	с растяжениями и сжатиями аргументов.
	Исследование гладкости обобщенных решений
	в частных случаях. Особенности обобщенных
	решений первой краевой задачи для сильно
	эллиптического уравнения вблизи начала
	координат (центра сжатия).
	RoopAmar (Honripa Omarina).

Аннотации докладов размещены на сайте:

http://web-local.rudn.ru/web-local/kaf/rj/index.php?id=63

5.2. Разделы дисциплин и виды занятий

No॒	Наименование раздела дисциплины	Лекц.	Практические занятия

п/п		П3/С	ЛР	из них в ИФ
1.	Введение	2		
2.	Сильно эллиптические системы дифференциальных уравнений	10		
3.	Краевые задачи для эллиптических дифференциально-разностных уравнений	10		
4	Краевые задачи для эллиптических функционально-дифференциальных уравнений с растяжениями и сжатиями аргументов	10		

6. Лабораторный практикум – не предусмотрен

7. Практические занятия (семинары)

№	Наименование раздела дисциплины	П3
п/п		
1.	Введение	2
2.	Сильно эллиптические системы дифференциальных уравнений	10
3.	Краевые задачи для эллиптических дифференциально-разностных уравнений	10
4	Краевые задачи для эллиптических функционально-дифференциальных уравнений с растяжениями и сжатиями аргументов	10

8. Материально-техническое обеспечение дисциплины:

учебная аудитория для проведения семинарских занятий, аудитория для чтения лекций, ноутбук - 1шт., проектор - 1шт., экран - 1шт., ксерокс - 1 шт., принтер - 1шт., сканер - 1 шт.

9. Информационное обеспечение дисциплины

- а) программное обеспечение: не требуется
- б) базы данных, информационно-справочные и поисковые системы: Yandex, Google, MathNet.

10. Учебно-методическое и информационное обеспечение дисциплины:

а) Основная литература:

- 1. Скубачевский А.Л. Краевые задачи для эллиптических функционально-дифференциальных уравнений и их приложения. Успехи математических наук 71 (2015), 3-112.
- 2. Россовский Л.Е. Эллиптические функционально-дифференциальные уравнения со сжатием и растяжением аргументов неизвестной функции. Современная математика. Фундаментальные направления 54 (2014), 3-138.

б) Дополнительная литература:

- 1. Skubachevskii A.L. Elliptic functional differential equations and applications. Basel-Boston-Berlin: Birkhauser, 2015.
- 2. Antonevich A., Lebedev A. Functional-Differential Equations. I. C*-theory. Harlow: Longman, 2015.

Вся литература имеется в библиотеке РУДН или в электронной библиотеке института.

- в) Программное обеспечение пакет «Марle»
- г) Базы данных, информационно-справочные и поисковые системы Математический институт

11. Методические рекомендации по организации изучения дисциплины:

Соответствие систем оценок (используемых ранее оценок итоговой академической успеваемости, оценок ECTS и балльно-рейтинговой системы (БРС) оценок текущей успеваемости) (В соответствии с Приказом Ректора №996 от 27.12.2006 г.):

Баллы	Традиционны	Баллы для перевода	Оценки	Оценки ECTS
БРС	e	оценок		
	оценки в РФ			
86 – 100	5	95 - 100	5+	A
80 – 100	3	86 - 94	5	В
69 – 85	4	69 - 85	4	С
51 – 68	3	61 - 68	3+	D
31 – 00	3	51 - 60	3	Е
0 50	2	31 - 50	2+	FX
0 – 50	2	0 - 30	2	F

- 1. Студенты обязаны сдавать все задания в сроки, установленные преподавателем.
- 2. В балльно-рейтинговую систему оценки знаний в течение семестра входят работа на занятии, выполнение домашних заданий и проработка текущего материала. Выдается 4 домашних задания на обозначенные в ФОС темы, каждое из которых оценивается из 10 баллов. По указанным разделам проводится опрос, который максимально оценивается 20 баллами.

- 3. Студент допускается к итоговому контролю с любым количеством баллов, набранным в семестре. Итоговый контроль содержит 2 задания. На подготовку к ответу отводится 1 час, после чего производится устный опрос студента. Оценивается работа из 50 баллов независимо от количества баллов, полученных в течение семестра.
- 4. Если после итогового контроля студент получил менее 31 балла, то ему выставляется оценка F и он должен повторить дисциплину в установленном порядке. Если же в итоге студент получил не менее 31 балла, т.е. FX, то ему разрешается добор необходимого (до 51) количества баллов путём повторного одноразового выполнения предусмотренных итоговых контрольных мероприятий; при этом аннулируются, по усмотрению преподавателя, соответствующие предыдущие результаты. Ликвидация задолженностей проводится в период с 07.02 по 28.02 (с 07.09 по 28.09) по согласованию с деканатом.

12. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) — прилагается.

Программа составлена в соответствии с требованиями ОС 3++.

Разработчик

д.ф.-м.н., проф.

8

А.В. Фаминский

Директор Математического института,

д.ф.-м.н., профессор

4_

А.Л. Скубачевский

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов»

Факультет физико-математических и естественных наук

Математический институт им. С.М. Никольского

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Специальный семинар (наименование дисциплины)
01.03.01 «Математика»
бакалавр

Квалификация (степень) выпускника

Паспорт фонда оценочных средств по дисциплине «Специальный семинар»

Направление/Специальность: 01.03.01 «Математика»

			Наименование оценочного средства														
компетенции	Контролируемы й	Контролируемая		Текущий контроль Промежуточна я аттестация											Баллы раздел а		
Код контролируемой компетенции	и раздел дисциплины	тема дисциплины	Опрос	Тест	Коллоквиум	Контрольная	Выполнение ЛР	Выполнение КР/КП	СРС (Выполнение пз)	Реферат	Выполнение РГР	Посещение локлалов семинара		Зачет (Экзамен)	:	:	
ПК.1	Дифференциальн ые и функционально- дифференциальн ые уравнения	Дифференциальные и функционально- дифференциальные уравнения	10						15	25		50					100

ПЕРЕЧЕНЬ ТЕМ РЕФЕРАТОВ

- 1 Теорема об изоморфизме пространств Соболева, осуществляемом разностным оператором.
- 2. Фредгольмова и однозначная разрешимость краевой задачи для дифференциально-разностного уравнения на отрезке.
- 3. Гладкость обобщённых решений краевой задачи для дифференциально-разностного уравнения на отрезке.
- 4. Достаточные условия дискретности спектра краевой задачи для дифференциально-разностного уравнения.
- 5. Разностные операторы в ограниченных областях евклидова пространства: символ и матричное представление.
- 6. Первая краевая задача для сильно эллиптического дифференциально-разностного уравнения: понятие обобщённого решения, фредгольмова разрешимость и дискретность спектра.
- 7. Сильно эллиптические дифференциально-разностные уравнения в цилиндре: гладкость обобщённых решений.
- 8. Особенности обобщённых решений первой краевой задачи для сильно эллиптического дифференциально-разностного уравнения внутри области и на границе области.
- 9. Достаточное условие сильной эллиптичности функционально-дифференциального уравнения с растяжениями и сжатиями аргументов в ограниченной области.
- 10. Необходимые условия сильной эллиптичности дифференциально-разностного уравнения в ограниченной области.
- 11. Классы дифференциально-разностных уравнений, для которых получены одновременно необходимые и достаточные условия сильной эллиптичности.
- 12. Достаточные условия дискретности спектра краевой задачи для функционально-дифференциального уравнения с растяжениями и сжатиями аргумента.
- 13. Алгебра операторов сжатия, растяжения и умножения на однородные функции нулевой степени.
- 14. Достаточное условие сильной эллиптичности функционально-дифференциального уравнения с растяжениями и сжатиями аргументов в ограниченной области.
- 15. Необходимое условие сильной эллиптичности функционально-дифференциального уравнения с растяжениями и сжатиями аргументов в ограниченной области, содержащей неподвижную точку (начало координат).

- 16. Сильно эллиптическое уравнение с одним функциональным оператором в ограниченной области, удовлетворяющей условию типа звёздности: гладкость обобщённых решений в подобластях.
- 17. Особенности обобщённых решений в начале координат первой краевой задачи для сильно эллиптического уравнения с растяжениями и сжатиями аргументов.

Примерные варианты домашнего задания

1. Образом пространства $\{u \in H^1(0,2): u(0) = u(2) = 0\}$ под действием разностного оператора $R: L_2(0,2) \to L_2(0,2)$,

$$Ru = u(t) + u(t-1) + 2u(t+1),$$

является

- а) все пространство $H^{1}(0,2)$;
- б) пространство $\{v \in H^1(0,2): v(0) = v(2) = 0\};$
- в) пространство $\{v \in H^1(0,2): v(0) = v(1), v(2) = 2v(1)\};$
- г) пространство $\{v \in H^1(0,2): v(0) = 2v(1), v(2) = v(1)\}.$

Правильный ответ: в).

- 2. Разностный оператор $Ru = u(t) + \frac{1}{\sqrt{2}}[u(t-1) + u(t+1)]$ является положительным оператором в пространстве
- a) $L_2(0,2)$;
- 6) $L_2(0,3)$;
- B) $L_2(\mathbb{R})$.

Правильный ответ: а).

1. Поиск минимума функционала

$$J(y) = \int_{0}^{2} (y'^{2}(t) + y'(t)y'(t-1) - 2f(t)y(t))dt$$

на пространстве $\{y \in H^1(0,2): y(0) = y(2) = 0\}$ сводится к решению краевой задачи для дифференциально-разностного уравнения

a)
$$-(y'(t) + y'(t-1))' = f(t), t \in (0,2);$$

6)
$$-\left(y'(t) + \frac{1}{2}y'(t-1)\right)' = f(t), \ t \in (0,2);$$

B)
$$-(y'(t) + y'(t+1))' = f(t), t \in (0,2);$$

$$\Gamma(t) - \left(y'(t) + \frac{1}{2}y'(t-1) + \frac{1}{2}y'(t+1)\right)' = f(t), \ t \in (0,2).$$

Правильный ответ: г).

2. Спектр дифференциально-разностного оператора A_R : $L_2(0,2) \to L_2(0,2)$,

$$A_R u = -(Ru')' - u, D(A_R) = \{u \in H^1(0,2) \colon u(0) = u(2) = 0, Ru' \in H^1(0,2)\},$$

является вещественным при

a)
$$Ru = 2u(t) + u(t+1)$$
;

6)
$$Ru = u(t) + 2u(t-1) + 2u(t+1)$$
;

B)
$$Ru = 2u(t) + u(t-1) - u(t+1)$$
.

Правильный ответ: б).

1. Спектр дифференциально-разностного оператора $A_R \colon L_2(0,2) \to L_2(0,2),$

$$A_R u = -(Ru')' + u, D(A_R) = \{u \in H^1(0,2): u(0) = u(2) = 0, Ru' \in H^1(0,2)\},\$$

является полуограниченным при

a)
$$Ru = 2u(t) + u(t+1);$$

6)
$$Ru = u(t) + 2u(t-1) + 2u(t+1)$$
;

B)
$$Ru = u(t) + u(t-1) - 2u(t+1)$$
.

Правильный ответ: а), в).

2. При $a^2b \neq -1$ краевая задача

$$-(u'(t) + au'(t-1) + bu'(t+2))' = tu(t), \ t \in (0,3),$$
$$u(t) = 0, \ t \notin (0,3),$$

- а) не имеет решений;
- б) имеет конечное число линейно независимых обобщенных решений;
- в) имеет бесконечное число линейно независимых обобщенных решений.

Правильный ответ: б)

1. Укажите, какой из следующих операторов является положительным в $L_2(0, +\infty)$:

a)
$$Ru = u(t) + \frac{1}{3}u(t/2);$$

6)
$$Ru = u(t) + \frac{1}{3}u(t/2) + \frac{2}{3}u(2t)$$
;

B)
$$Ru = u(t) + \frac{1}{2}u(t/2) + u(2t)$$
.

Правильный ответ: б).

8. Поиск минимума функционала

$$J(y) = \int_{0}^{3T} (y'(t) + 2y'(t/3))^{2} dt$$

на множестве функций $y \in H^1(0, +\infty)$, удовлетворяющих условиям y(0) = 1, y(t) = 0 $(t \ge T)$, сводится к решению краевой задачи для уравнения

a)
$$-(y'(t) + 2y'(t/3))' = 0$$
, $t \in (0,T)$;

6)
$$-\left(y'(t) + \frac{1}{2}y'(3t)\right)' = 0, \ t \in (0,T);$$

B)
$$-(13y'(t) + 2y'(t/3) + 6y'(3t))' = 0, t \in (0,T);$$

$$\Gamma) - (y'(t) + 2y'(t/3) + 6y'(3t))' = 0, \ t \in (0, T).$$

2. Краевая задача

$$-(y'(t) + 5y'(t/2))' = 0, t \in (0,1),$$
$$y(0) = y(1) = 0$$

имеет

- а) единственное тривиальное решение;
- б) конечное число линейно независимых обобщенных решений;
- в) бесконечное число линейно независимых обобщенных решений.

Правильный ответ: в).

1. Для какой из следующих краевых задач (краевые условия везде одинаковы и имеют вид $y(0)=0, y(t)=0, \ t\geq 1$, а $f\in L_2(0,1)$) всякое обобщенное решение обязательно принадлежит $H^2(0,1)$:

a)
$$-\left(y'(t) - \frac{1}{2}y'(t/2)\right)' + 3y(t) = f(t), \ t \in (0,1);$$

6)
$$-\left(y'(t) + \frac{1}{2}y'(2t)\right)' = f(t), \ t \in (0,1);$$

B)
$$-(y'(t) + 2y'(t/2))' = f(t), t \in (0,1)$$
?

Правильный ответ: а).

2. Для каких из следующих краевых задач (краевые условия везде одинаковы и имеют вид $y(0) = 0, y(t) = 0, \ t \ge 1$, а $f \in L_2(0,1)$) обобщенное решение единственно:

a)
$$-(y'(t) + y'(t/3))' = f(t), t \in (0,1),$$

6)
$$-(y'(t) + 10y'(3t))' = f(t), t \in (0,1),$$

B)
$$-\left(y'(t) + \frac{1}{10}y'(3t)\right)' = f(t), \ t \in (0,1)$$
?

Правильный ответ: б), в).

Примеры вопросов к опросу

- 1. Сравните условия эллиптичности скалярного уравнения и системы дифференциальных уравнений.
- 2. Что можно сказать про количество классов разбиения ограниченной области, порожденного группой целочисленных сдвигов?
- 3. Что можно сказать про количество подобластей внутри одного класса?
- 4. Как проверяется положительная определенность разностного оператора, действующего на функции во всем пространстве и в ограниченной области?
- 5. Что такое проблема коэрцитивности?
- 6. Приведите пример, когда необходимые условия сильной эллиптичности дифференциально-разностного уравнения совпадают с достаточными.
- 7. Какова структура множества, на котором обобщенные решения краевой задачи для сильно эллиптического дифференциально-разностного уравнения могут иметь особенности?
- 8. Может ли гладкость обобщенного решения краевой задачи для сильно эллиптического дифференциально-разностного уравнения сохраняться во всей области?
- 9. Почему обычный метод локализации не работает для уравнений с растяжениями и сжатиями аргументов?
- 10. Какие свойства операторов сжатия и умножения на однородные функции нулевой степени позволяют построить символьное исчисление для соответствующей операторной алгебры?
- 11. Почему метод сведения к системе эллиптических дифференциальных уравнений не всегда удобен при исследовании краевых задач для уравнений с растяжениями и сжатиями аргументов?
- 12. В каких точках может нарушаться гладкость обобщенного решения краевой задачи для сильно эллиптического уравнения с растяжениями и сжатиями аргументов?
- 13. Каковы особенности исследования функционально-дифференциальных уравнений с растяжениями и сжатиями аргументов в случае переменных коэффициентов?