Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Арскандровичьное государственное автономное образовательное учреждение должность: Ректор дата подписания: 10.06.20 высмерто образования «Российский университет дружбы народов»

уникальный программный ключ:

са953a0120d891083f939673078ef Факультет физико-математических и естественных наук

Научно-образовательный институт физических исследований и технологий

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория атомного ядра (наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

03.04.02 Физика

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

«Фундаментальная и прикладная физика»

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью дисциплины является закрепление студентами основных понятий и современных представлений о свойствах и структуре ядер, ядерных реакциях и их значении для астрофизики и ядерной энергетики; закрепление представлений об экспериментальных методах измерения различных характеристик состояний ядер и изучения ядерных реакций; закрепление представления о взаимодействии ядерных излучений с веществом.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Теория атомного ядра» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении

дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-2	Способен в сфере своей профессиональной деятельности организовывать самостоятельную и коллективную научно-исследовательскую деятельность для поиска, выработки и принятия решений в области физики.	ОПК-2.1 Оценивает перспективность планируемых исследований с точки зрения трендов развития выбранной научной области
ОПК-4	Способен определять сферу внедрения результатов научных исследований в области своей профессиональной деятельности.	ОПК-4.1 Способен определять сферу внедрения результатов научных исследований в области своей профессиональной деятельности;
		ОПК-4.2 Формулирует практическую значимость результатов научных исследований с учетом трендов развития науки и технологии.

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ПК-1	Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и	ПК-1.1. Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости; ПК-1.2. Умеет выделять и систематизировать
технологий с использование	использованием новейшего российского и зарубежного	основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Теория атомного ядра» относится к части, формируемой участниками образовательных отношений блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Теория атомного ядра».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению

запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-2	Способен в сфере своей профессиональной деятельности организовывать самостоятельную и коллективную научно- исследовательскую деятельность для поиска, выработки и принятия решений в области физики		Научно-исследовательская работа, оформление, подготовка к процедуре защиты и защита выпускной квалификационной работы
ОПК-4	Способен определять сферу внедрения результатов научных исследований в области своей		Научно-исследовательская работа, преддипломная практика, подготовка к процедуре защиты и защита

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ПК-1	профессиональной деятельности. Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего	практики	выпускной квалификационной работы Теория элементарных частиц и кварков Классическая и квантовая теория поля научно-исследовательская работа, преддипломная практика, подготовка к процедуре защиты и защита выпускной квалификационной работы
	российского и зарубежного опыта		

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Теория атомного ядра» составляет ____4_ зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>**ОЧНОЙ**</u>

формы обучения

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		54	54-	1	-	1
Лекции (ЛК)		36	36	1	-	ı
Лабораторные работы (ЛР)		-	-	-	-	-
Практические/семинарские занятия (СЗ)		18	18	-	-	-
Самостоятельная работа обучающихся, ак.ч.		63	63	-	-	-
Контроль (экзамен/зачет с оценкой), ак.ч.		27	27	-	-	-
Of war any and any and any	ак.ч.	144	144	•	-	•
Общая трудоемкость дисциплины	зач.ед.	4	4	-	-	-

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Таблица 5.1. Соде	•	
Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
Типы взаимодействий	Элементарные и фундаментальные частицы.	
частиц и ядер	Общая характеристика 4 типов взаимодействия	
Ядерные модели.	элементарных частиц: сильного,	
Природа ядерных сил.	электромагнитного, слабого и	
Дейтрон	гравитационного. Масштабы физических	
Ядерные реакции.	величин (энергий, расстояний) в ядерной	ЛК
Зарядовая симметрия	физике и физике элементарных частиц.	
сильных взаимодействий		
	ядра. Изотопы и изомеры. Энергия связи ядер.	
	Размеры и форма ядер. Методы их	
	определения.	
	Классификация ядерных моделей. Капельная	
	модель ядра. Формула Вайцзеккера.	
	Оболочечная модель ядра. Обобщенная модель	
	ядра. Модель кварковых мешков для ядер.	
	Короткодействие. Квантовые обменные	
	виртуальные процессы. Пионная теория	
	Юкавы. Включение других скалярных и	
	векторных мезонов. Современный подход к	ЛК
	объяснению механизма ядерного (сильного)	
	взаимодействия. Глюоны и кварки. Дейтрон в	
	приближении центральных сил. Дейтрон в	
	приближении трехмерной мерной сферической	
	ямы. Проблема дейтрона с учетом	
	нецентрального характера ядерных сил.	
	Основные понятия и определения. Общие	
	свойства ядерных реакций. Упругие и	
	неупругие ядерные реакции. Процессы	
	деления и синтеза ядер. Прямые, резонансные	
	и нерезонансные реакции. Реакции срыва,	
	подхвата, захвата и др. Фотоядерные,	
	электроядерные реакции и др. Законы	
	сохранения в ядерных реакциях. Альфа -	ЛК, СЗ
	распад. Особенности альфа - распада.	, 00
	Прохождение частиц через потенциальный	
	барьер (туннельный эффект). Бета - распад.	
	Энергетический спектр электронов в процессе	
	бета - распада. Методы определения массы	
	нейтрино. Фермиевские и Гамов -	
	Теллеровские переходы. Гамма - распад.	

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
	Ядерная изомерия. Эффект Мёссбауэра.	
	Измерение красного смещения.	
Уравнение Дирака.	Метрика Паули и метрика Бьёркена в	
Поляризационная	пространстве Минковского. Уравнение Дирака	
матрица плотности	для фермионов в релятивистской квантовой	
Релятивистская теория	механике. Различные представления (формы	
квантовых переходов.	записи) уравнения Дирака. Свойства α-матриц	ЛК, СЗ
Методы вычисления	Дирака и ү-матриц фон Неймана. Спин как	JIK, CJ
матричных элементов	циркуляция потока энергии в поле волны	
	электрона. Спиральность и киральность.	
	Двухкомпонентная формулировка уравнения	
	Дирака.	
	Релятивистская квантовая теория возмущений	
	для частиц со спином. Общая формула для	
	вероятности перехода поляризованного	
	фермиона из начального состояния в конечное	
	состояние в результате взаимодействия. S-	
	матрица. Диаграммы Фейнмана. Общие	ЛК, СЗ
	формулы для вероятностей распада	лк, сэ
	поляризованных фермионов и сечений	
	рассеяния поляризованных и	
	неполяризованных фермионов на других	
	частицах и ядрах. Физические и нефизические	
	расходимости.	
Релятивистская теория	Релятивистская кинематика процессов	
рассеяния. Формула	рассеяния. Методы учета энергии и импульса	
Мотта. Формула	отдачи частиц и ядер мишени. Лабораторная	
Розенблюта	система, система центра масс и произвольная	
Групповой подход к	система отсчета. Формула для	
классификации частиц.	дифференциального и полного сечений	
Мультиплеты частиц в	рассеяния релятивистских фермионов на	
группах $SU(2)$, $SU(3)$,	произвольном потенциале. Рассеяние	
SU(4)	неполяризованных релятивистских точечных	ЛК
Слабое взаимодействие.	электронов неподвижным кулоновским	
Теория Ферми. Правило	центром. Формула Мотта для сечения	
отбора Ферми и Гамова-	рассеяния. Предельный переход к	
Теллера	нерелятивистскому случаю и получение	
	формулы Резерфорда. Рассеяние	
	релятивистских точечных электронов на	
	протонах с учетом их структуры.	
	Электрический и магнитный форм-факторы.	
	Формула Розенблюта.	
	Стабильные и нестабильные частицы.	
	Резонансы. Первые попытки классификации	ЛК, СЗ
	элементарных частиц по их массам и спинам. Современный подход к классификации частиц,	
	современный подход к классификации частиц,	

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
	основанный на их взаимодействиях.	
	Элементарные и фундаментальные частицы.	
	Алгебра генераторов унитарных групп $SU(N)$.	
	Фундаментальные, сопряженные, приводимые	
	и неприводимые представления групп $SU(N)$.	
	Схемы Юнга. Мультиплеты нуклонов,	
	скалярных и векторных мезонов, барионов и	
	барионных резонансов. Массовые	
	соотношения. Модель Ферми - Янга и модель	
	Сакаты.	
	Попытки объяснения непрерывного	
	энергетического спектра электронов,	
	испускаемых в процессах β^{\mp} - распада ядер.	
	Различные интерпретации этого явления.	
	Гипотеза Паули. Аналогия с	ЛК, СЗ
	электродинамикой. Гамильтониан слабого	
	взаимодействия. Основы теории Ферми (V -	
	вариант) β^{\mp} - распада ядер.	
II.		
Несохранение Р-	Обобщение теории на случай суперпозиции <i>S</i> ,	
четности. $V - \lambda A$	V, A, T, P - вариантов при сохранении P -	
взаимодействие.	четности. Несохранение пространственной	ПІС
Дискретные симметрии	четности. Предсказания Ли и Янга и	ЛК
Ток - токовая теория слабого	эксперимент Ву. Первые попытки объяснения	
	несохраненияР-четности	
взаимодействия.	двухкомпонентностью безмассового нейтрино.	
Физика нейтрино.	Обобщение на все частицы. Диагональные и	
Масса нейтрино и	недиагональные процессы. Угол Кабиббо.	
нейтринные осцилляции. Модель	Универсальность константы слабого	
	взаимодействия G_F . Дираковские,	
Вайнберга - Салама	Вейлевские и Майорановские нейтрино.	
	Электронные, мюонные и тауонные	
	нейтрино. Лептонные числа. Различные	ши сэ
	законы их сохранения.	ЛК, СЗ
	Проблема массы нейтрино. Способы ее	
	экспериментального определения. Нейтринные	
	осцилляции и их классификация.	
	Теоретические следствия и сравнение с	
	экспериментальными данными. Атмосферные,	
	солнечные, галактические и космические	
di.	нейтрино. по ОЧНОЙ форме обучения: <i>ПК – лектии: ПР – лаборато</i>	

^{* -} заполняется только по $\underline{\mathbf{OYHOЙ}}$ форме обучения: JK – лекции; JP – лабораторные работы; C3 – семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Широков С.В. Физика ядерных реакторов: учебное пособие Минск : Вышэйшая школа, 2011. 351 с. [Электронный ресурс]. URL: //biblioclub.ru/index.php?page=book&id=110106
- 2. Малышев Л.Г., Повзнер А.А. Физика атома и ядра. Екатеринбург: Издательство Уральского университета, 2014.-145 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_red&id=276290&sr=1

Дополнительная литература:

- 1. Широков Ю.М., Юдин Н.П. Ядерная физика. М.: Наука, 1980 728 с. [Электронный ресурс]. -URL: http://biblioclub.ru/index.php?page=book_red&id=450094&sr=1
- 2. Михайлов М. А. Ядерная физика и физика элементарных частиц: учебное пособие. М.: Прометей, 2013 25 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_red&id=437322&sr=1

- 3. Матышев, А.А. Атомная физика в 3 ч. Часть 1. Дискретность вещества и электрического заряда: учебное пособие для академического бакалавриата. М.: Юрайт, 2017. 282 с. (Университеты России). Электронный ресурс: https://www.biblio-online.ru/book/0A75D5E1-33C3-4FB8- ADEA-77B44592CD2D
- 4. Милантьев В.П. Атомная физика: учебник и практикум для академического бакалавриата. 2-е изд., испр. и доп. М.: Юрайт, 2017. 415 с. Электронный ресурс: https://www.biblioonline.ru/book/B8A5CD56-861F-4E07-8688-3E1530FF86E3
- 5. Бекман И.Н. Атомная и ядерная физика: радиоактивность и ионизирующие излучения: учебник для бакалавриата и магистратуры. 2-е изд., испр. и доп. М.: Юрайт, 2017. 398 с. Электронный ресурс: https://www.biblioonline.ru/book/CC95A403-E772-48A7-AE64-B1FF80F23AEC

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Лань» http://e.lanbook.com/
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
- реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

* - все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Теория атомного ядра» представлены в Приложении к настоящей Рабочей программе дисциплины.

Профессор, ИФИТ		Рыбаков Ю.П.	
Должность, БУП	Подпись	Фамилия И.О.	
РУКОВОДИТЕЛЬ БУП:			
Директор ИФИТ	A second	Лоза О.Т.	
Наименование БУП		Фамилия И.О.	
РУКОВОДИТЕЛЬ ОП ВО:			
Директор ИФИТ	Jan San San San San San San San San San S	Лоза О.Т.	
Должность, БУП	Подпись	Фамилия И.О.	

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта

РУДН.