Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Федеральное государственное автономное образовательное учреждение Должность: Ректор Дата подписания: 15.07.2022 10.50.50 образования «Российский университет дружбы народов»

Уникальный программный ключ: ca953a0120d891083f939**Инстипую биохимической технологии и нанотехнологии (ИБХТН)**

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Введение в нанотехнологию

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

04.04.01 «Химия

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется В рамках реализации основной профессиональной образовательной программы высшего образования (ОП **BO**):

«Биохимические технологии и нанотехнологии»

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Введение в нанотехнологию» является формирование представлений, знаний, умений, навыков получения нанообъектов и наноматериалов и изучения их физико-химических и биологических свойств.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Введение в нанотехнологию» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ПК-1-н.	Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области химии, химической технологии или смежных с химией науках	ПК-1-н-1. Организовывает проведение исследовательских и экспериментальных работ с целью модификации продукции и получения новых объектов и материалов.
ПК-1-т.	Способен определять способы, методы и средства решения технологических задач в выбранной области химии (химической технологии)	ПК-1-т-2. Разрабатывает требования по организации технологии получения продукции в области химии и химической технологии.

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Основы фармацевтической технологии и нанотехнологии» относится к вариативной компоненте обязательной части блока 1 учебного плана профиля «Биохимические технологии и нанотехнологии».

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Основы фармацевтической технологии и нанотехнологии».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисииплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
	Способен	Физико-химические	Нанотехнологии в
ПК-1-н.	планировать работу и	методы анализа	медицине
11К-1-н.	выбирать адекватные		Применение полимеров в
	методы решения		биомедицинской

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*		
	научно-	Биохимические	технологии и		
	исследовательских	технологии получения	нанотехнологии		
	задач в выбранной	БАС	Химия биоорганических		
	области химии,	Основы	соединений		
	химической	фармацевтической	Оценка безопасности		
	технологии или	технологии и	продукции наноиндустрии		
	смежных с химией	нанотехнологии	Промышленная		
	науках		токсикология		
			Промышленная		
			микробиология		
			Курсовая работа		
			«Биохимические и		
			фармацевтические		
			технологии»		
			Основы фитохимии и		
			технологии		
			фитопрепаратов		
	Способен определять	Основы	Охрана объектов		
	способы, методы и	фармацевтической	интеллектуальной		
	средства решения	технологии и	собственности		
ПК-1-т.	технологических	нанотехнологии	Курсовая работа		
	задач в выбранной		«Патентные исследования»		
	области химии		Преддипломная практика		
	(химической				
	технологии)				

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Введение в нанотехнологию» составляет 3 зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>**ОЧНОЙ**</u>

формы обучения

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		54		54		
в том числе:						
Лекции (ЛК)		18		18		
Лабораторные работы (ЛР)		18		18		
Практические/семинарские занятия (С3)		18		18		
Самостоятельная работа обучающихся, ак.ч.		36		36		
Контроль (экзамен/зачет с оценкой), ак.ч.		18		18		
05	ак.ч.	144		108		
Общая трудоемкость дисциплины	зач.ед.	4		3		

Таблица 4.2. Виды учебной работы по периодам освоения ОП ВО для ОЧНО-

ЗАОЧНОЙ формы обучения

Вид учебной работы		всего,		Семестр(-ы)		
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		54		54		
в том числе:						
Лекции (ЛК)		18		18		
Лабораторные работы (ЛР)		9		9		
Практические/семинарские занятия (СЗ)		9		9		
Самостоятельная работа обучающихся, ак.ч.		54		54		
Контроль (экзамен/зачет с оценкой), ак.ч.		18		18		
Of war any and any and any	ак.ч.	108		108		
Общая трудоемкость дисциплины	зач.ед.	3		3		

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
Раздел 1. История развития нанотехнологии	Введение и терминология. Основные этапы развития нанотехнологии. Методы получения и анализа свойств наноразмерных систем и нанообъектов.	ЛК, ПР
Раздел 2. Пространственная размерность нанообъектов	Примеры наноматериалов и наноустройств. Примеры нанотехнологических процессов: нанопечатная литография, литографически индуцированная самосборка.	ЛК, ПР
Раздел 3. Наноконсолидированные материалы	Нанокомпозиты, наноплёнки, консолидированные порошковые наноматериалы	ЛК, ПР, ЛР
Раздел 4. Особые свойства углерода, обусловливающие формирование из него разнообразных наноструктур	Основные физико-химические свойства углерода, углеродная связь, гибридизация. Аллотропные формы углерода: графит, алмаз, карбин, графен, аморфный углерод, фуллерены, нанотрубки. Структура фуллеренов: геометрия, тип связей, формула Эйлера. Методы синтеза и очистки фуллеренов. Основные физико-химические свойства фуллеренов. Соединения на основе фуллеренов: фуллероиды, фуллериты, фуллериды, интеркаллированные и эндоэдральные структуры. Области применения фуллеренов.	ЛК, ПР, ЛР
Раздел 5. Устройство и принцип действия прибора Nanophox PSS	Изучение устройства и принципа действия прибора Nanophox PSS. Приобретение навыков работы на приборе Nanophox PSS. Получение и анализ лекарственных субстанций, содержащих наночастицы, с помощью прибора Nanophox PSS	ЛК, ПР, ЛР

^{*} - заполняется только по **ОЧНОЙ** форме обучения: ЛК – лекции; ЛP – лабораторные работы; C3 – семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Таолица б.1. Материально-техническое обеспечение бисциплины				
Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины		
Лекционная	Аудитория № 636 для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	(при необходимости) Комплект специализированной мебели; технические средства: Мультимедийный проектор Everycom Hoyтбук Lenovo Thinkpad L530 Intel Core i3- 2370M_2.4GHz/DDR3 4 GB, 1шт Обеспечен выход в интернет. Комплект презентаций. Windows XP, Microsoft Office 2007, Microsoft Security Essentials		
Семинарская	Аудитория № 636 для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	Комплект специализированной мебели; технические средства: Мультимедийный проектор Everycom Hoyтбук Lenovo Thinkpad L530 Intel Core i3-2370M_2.4GHz/DDR3 4 GB, 1шт Обеспечен выход в интернет. Комплект презентаций. Windows XP, Microsoft Office 2007, Microsoft Security Essentials		
Лабораторные работы	Учебная лаборатория для проведения лабораторных занятий, лаб. П-13.	Оснащенность: комплект специализированной мебели; роторный испаритель RV8 IKA Werke GmbH. RV 8; рНметр лабораторный АНИОН-4100 «Евростандарт ТП», г. Санкт - Петербург; плазменный комплекс Горыныч ГП37-10. ООО «Аспромт» Россия; ротационный вискозиметр Brookfield DV3TLV с поверкой (Страна происхождения США; Фирма		

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Практические занятия	Аудитория П-8 для проведения практических занятий, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	«Вгоокfield Engineering Laboratories, Inc»); ультразвуковой генератор И100-840; прибор экологического контроля «Биотокс-10М»; бидистиллятор стеклянный БС; весы аналитические РА64С «ОНАUS». Оснащение аудитории ПВ: Комплект специализированной мебели; технические средства: Прибор для количественного определения наночастиц Nanophox PSS; Спекторфотометр Lambda 950. вкл. Программное обеспечение для оборудования.
Аудитория для самостоятельной работы	Аудитория № 636 для самостоятельной работы обучающихся, оснащенная комплектом специализированной мебели и компьютером с доступом в ЭИОС.	Комплект специализированной мебели; технические средства: Мультимедийный проектор Everycom Hoyтбук Lenovo Thinkpad L530 Intel Core i3-2370M_2.4GHz/DDR3 4 GB, 1шт Обеспечен выход в интернет. Комплект презентаций. Windows XP, Microsoft Office 2007, Microsoft Security Essentials

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

1. Краснюк, И. И. Фармацевтическая технология. Промышленное производство лекарственных средств. Том 2 : учебник / Краснюк И. И. , Демина Н. Б. , Анурова М. Н. , Бахрушина Е. О. - Москва : ГЭОТАР-Медиа, 2022. - 448 с. - ISBN 978-5-9704-6338-3. - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL

: https://www.studentlibrary.ru/book/ISBN9785970463383.html (дата обращения: 26.05.2022).

Дополнительная литература:

- 1. Синтез и функциональные свойства гибридных наноформ биоактивных и лекарственных веществ: монография / В.П. Шабатин, Ю.Н. Морозов, О.И. Верная [и др.]; под редакцией М.Я. Мельникова, Л.И. Трахтенберга. Москва: Техносфера, 2019. 384 с. ISBN 978-5-94836-561-9: 900.00.
- 2. Краснюк, И. И. Биофармация, или основы фармацевтической разработки, производства и обоснования дизайна лекарственных форм: учебное пособие / И. И. Краснюк, Н. Б. Демина, М. Н. Анурова, Н. Л. Соловьева. Москва: ГЭОТАР-Медиа, 2020. 192 с.: ил. 192 с. ISBN 978-5-9704-5559-3. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785970455593.html (дата обращения: 25.05.2022)

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Лань» http://e.lanbook.com/
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
- -реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/
- Федеральный институт промышленной собственности (ФИПС) https://new.fips.ru

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

* - все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

При проведении занятий и организации самостоятельной работы студентов используются традиционные технологии сообщающего обучения, предполагающие передачу информации в готовом виде, формирование учебных умений по образцу.

В рамках практических занятий реализуется взаимообучение слушателей курса - интерактивное обучение, в форме взаимоконтроля самостоятельной работы, совместного решение ситуационных задач, совместной разработка схем сложных процессов, обсуждения проблемных вопросов.

Самостоятельная работа студентов включает изучение основной и дополнительной литературы по данной дисциплине, подготовка выступлений на семинарах, подготовка творческих работ по вопросам иммунобиологических препаратов, их оформление в виде презентаций, а также подготовка и защита доклада по одной из предлагаемых тем.

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Введение в нанотехнологию» представлены в Приложении к настоящей Рабочей программе дисциплины.

РАЗРАБОТЧИКИ:

профессор ИБХТН, д.х.н. Я.М. Станишевский доцент ИБХТН, к.фарм.н., В.Ю. Жилкина,

РУКОВОДИТЕЛЬ ОУП:

Директор ИБХТН, профессор д.х.н.

РУКОВОДИТЕЛЬ ОП ВО: Директор ИБХТН, профессор д.х.н. Я.М. Станишевский

Я.М. Станишевский

ФГАОУ ВО «Российский университет дружбы народов» Институт биохимической технологии и нанотехнологии (ИБХТН)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Введение в нанотехнологию

(наименование дисциплины)

 $04.04.01 - \langle\!\langle Xимия \rangle\!\rangle$ (код и наименование направления подготовки)

«Биохимические технологии и нанотехнологии»

(наименование профиля подготовки)

Магистр

Квалификация (степень) выпускника

Содержание.

- 1. Вопросы для допуска и защиты лабораторных работ
- 2. Тесты по темам
- 3. Вопросы для подготовки к экзамену
- 4. Экзаменационный тест

1. Вопросы для допуска и защиты лабораторных работ

Вопросы для допуска и защиты лабораторных работ «Анализатор размеров частиц NANOPHOX»

Лабораторная работа №1.

- 1. Что такое спектроскопия кросс-корреляции фотонов (РССS)?
- 2. Принцип работы PCCS.
- 3. Схема устройства прибора NANOPHOX.
- 4. В каком диапазоне прибор осуществляет измерение размера частиц?
- 5. При какой длине волны осуществляется измерение?
- 6. Что является источником лазерного луча?
- 7. Требуется ли пробоподготовка образца (разбавление)?
- 8. Что необходимо сделать для приведения прибора в эксплуатацию?
- 9. Извлечение держателя кювет.
- 10. Заполнение ванны термостата.
- 11. Какие кюветы используют для водных растворов, а какие для органических растворителей?
- 12. Расположение кюветы в приборе?
- 13. Как определить откалиброван ли прибор?
- 14. Какое программное обеспечение контролирует измерения на приборе?
- 15. Для анализа каких систем применяется прибор?
- 16. Какие устанавливаются параметры измерения в программе?
- 17. Структура отчетов WINDOX 5 при выводе информации о результатах измерения.
- 18. Какую информацию содержит окно программы NANOPHOX Sensor Control?
- 19. Как вызвать базу данных измерений?
- 20. Запуск окна Signal test.
- 21. Как установить параметры измерений?
- 22. Какую информацию можно получить из окна Signal test?
- 23. Что дает нам возможность говорить о воспроизводимости результатов?

Лабораторная работа №2.

- 1. Значения каких параметров необходимо знать для установления размера частиц методом динамического светорассеяния?
- 2. Какие параметры при расчетах учитывает метод динамического светорассеяния?
- 3. Что представляет собой уравнения Стокса-Эйнштейна?
- 4. Какие режимы оценки измерений устанавливает прибор?
- 5. Как осуществить автоматическую настройку наилучшего положения кюветы?
- 6. В чем различие при использовании методов NNLS и 2^{ND} Kumulant?
- 7. Как устранить влияние крупной фракции на конечный результат измерения?
- 8. Что может служить причиной низкой скорости счета кросс-корреляции фотонов?
- 9. Что такое корреляционная функция, от чего она зависит?

Лабораторная работа №3.

- 1. Что представляет собой суспензия как система?
- 2. Что представляет собой эмульсия как система?
- 3. Какие виды деградации системы свойственны суспензиям?
- 4. Что такое корреляционная функция, от чего она зависит?
- 5. Зависимость экспоненциальной временной корреляционной функции рассеянного света от коэффициент диффузии?
- 6. Как можно измерить стабильность исследуемой суспензии или эмульсии?
- 7. Как выглядят кривые если: а. образец стабилен, b. частицы агрегируют, с. частицы седиментируют?
- 8. О чем свидетельствует увеличение времени затухания корреляционной функции рассеянного света?
- 9. Каким образом можно повысить седиментационную устойчивость суспензии?

Вопросы для допуска и защиты лабораторных работ «Применение спектрофотометрии в анализе лекарственных форм»

Лабораторная работа №1

- 1. Объясните суть фотометрического метода
- 2. Объясните, почему рассеянные и поглощенные лучи называются взаимно дополнительными?
- 3. Какова природа возникновения цвета вещества?
- 4. Для исследования каких параметров, явлений и показателей может быть использован метод фотометрии?
- 5. Объясните принцип работы спектрофотометра.
- 6. Объясните правило выбора области фотометрирования.
- 7. На каком законе основано определение концентрации вещества с помощью метода фотометрии?
- 8. Чем объясняется необходимость использования кюветы сравнения?
- 9. В каких случаях возможны отклонения от закона Ламберта Бугера Бера?
- 10. Объясните принцип подбора светофильтров.

Тест по теме «Наночастицы и наноструктурированные материалы в биомедицинских исследованиях и фармации»

- **1.** В задачи программы «Фарма -2020» не входит:
 - А. развитие импортозамещения
 - Б. создание лекарств нового поколения
 - В. обеспечение населения доступными, эффективными и безопасными лекарствами
 - Г. внедрение нанотехнологий в технологию лекарственных форм
- 2. Кем и когда был введен термин «нанотехнологии»?
 - А. в 1959 году Ричардом Фейнманом
 - Б. в 1974 году Норио Танигучи
 - В. в1986 году Эриком Декслером
- **3.** Какие нанообъекты планируют в будущем использовать в качестве возможных носителей лекарственных препаратов?
 - А. липосомы
 - Б. наноконтейнеры из ДНК
 - В. нанокапсулы
 - Г. дендримеры
- 4. Для чего возможно использовать нанотрубки в медицине?
 - А. для сращивания костей
 - Б. для свертывания крови
 - В. для доставки лекарственных препаратов
- **5.** Первые квантовые точки выращивали из селенида и нитрида кадмия и кремния. В настоящее время в медицине планируют использовать квантовые точки, представляющие собой наночастицы углерода. В чем преимущества последних перед первыми?
 - А. меньше по размеру
 - Б. менее токсичны
 - В. можно использовать для профилактики туберкулеза
- **6.** Каковы возможности использования квантовых точек, снабженных специальными маркерами, при биологических исследованиях клетки?
 - А. проникать внутрь клетки, не разрушая ее.
 - Б. наблюдать молекулы внутри клетки с помощью обычного оптического микроскопа благодаря флоуресценции маркеров.
 - В. определять с большой достоверностью молекулярный состав клетки благодаря высокой специфичности маркеров к определенным видам молекул.
- 7. Что такое квантовая точка?
 - А. это объект, обладающий дискретным энергетическим спектром.
 - Б. пространство, ограниченное двумя полупроводниками, где электронный газ ведет себя как двумерный.
 - В. пространство, ограниченное тремя полупроводниками, где электронный газ ведет себя как одномерный.
- 8. Нанокапсулы могут быть введены:
 - А. внутривенно
 - Б. ингалляционно
 - В. интраокулярно
 - Г. внутримышечно
- 9. Стенки нанокапсул имеют толщину:
 - А. ~10–30 нм

Б. ~2−5 нм

В. ~50-80 нм

10. Нановолокно в виде наностержня не определяется параметрами:

A

Б

Ереднеийнюдиричного размерам Етепень агломерирования частиц

удельн**Бастлоциям стомурисским** доставка лекарственных средств»

- 1. Наноносители обеспечивают:
 - А. нахождение клеток-мишеней
 - Б. модификацию малекулы активного ингридиента
 - В. высокую стабильность ЛФ
 - Г. прохождение клеточных барьеров.
- 2. К барьерам для наноносителей относятся:
 - А. мембрана клетки
 - Б. стенки капилляров
 - В. мембрана клеточных органелл
 - Г. эпителий кишечника
- 3. Высвобождение препарата из наносителя возможно контролировать посредствам:
 - А. температуры
 - Б. ультразвука
 - В. ионизирующего излучения
 - Г. диализа
- 4. Преимущества использования наноносителей:
 - А. при использовании наноразмерных носителей снижается объем распределения
 - Б. наноносители обеспечивают длительный срок годности препарата
 - В. при использовании наноносителей замедляются процессы гидролиза лабильных вешетв

Γ

.

- 5. **Ивсеинина** стараживаримость **ПВ** драфобных вашественной ожеде и, таким обраществ делие токов средствым их парентеральное введение
 - А. маркирования поверхности наноносителей антителами
 - Б. преимущественного выхода лекарственных наноносителей в воспаленную или опухолевую ткань вследствие локального повышения проницаемости микрососудов при этих патологических процессах
 - В. применением химических модификаций ЛВ
 - Г. изменения агрегатного состояния ЛВ.
- 6. Способы проникновения содержимого липосом в клетку:
 - А. сливание
 - Б. эндоцитоз
 - В. облегченная диффузия
 - Г. транспорт белками-переносчиками.
- 7. Липосомы при взаимодействии с клеткой способны:
 - А. вызвать образование дополнительных каналов

адсорбироваться к мембране

- В. обмениваться липидами с клеточная мембраной
- Г. изменять дзета-потенциал на поверхности мембраны клетки
- 8. «Идеальная липосома» содержит:

Α

- Б. гидролитические ферменты
- Волимер для стерической защиты от РЭС
- Г. липиды, дестабилизирующие мембрану
- 9. Имичной информа это липосома:
 - А. содержащая на поверхности антитело
 - Б. содержащая иммунопрепарат
 - В. проникающая в Т-лимфоциты
 - Г. доставляющая препарат в красный костный мозг
- 10.Стеллс-липосомы:
 - А. имеют оболочку ПЭГ
 - Б. покрыты метилцеллюлозой
 - В. невидимы для РЭС
 - Г. переносят только гормоны

ФГАОУ ВО «Российский университет дружбы народов» Институт биохимической технологии и нанотехнологии (ИБХТН)

САМОСТОЯТЕЛЬНАЯ УЧЕБНАЯ РАБОТА СТУДЕНТА

по учебной дисциплине

Введение в нанотехнологию

(наименование дисциплины)

04.04.01 Химия

(код и наименование направления подготовки)

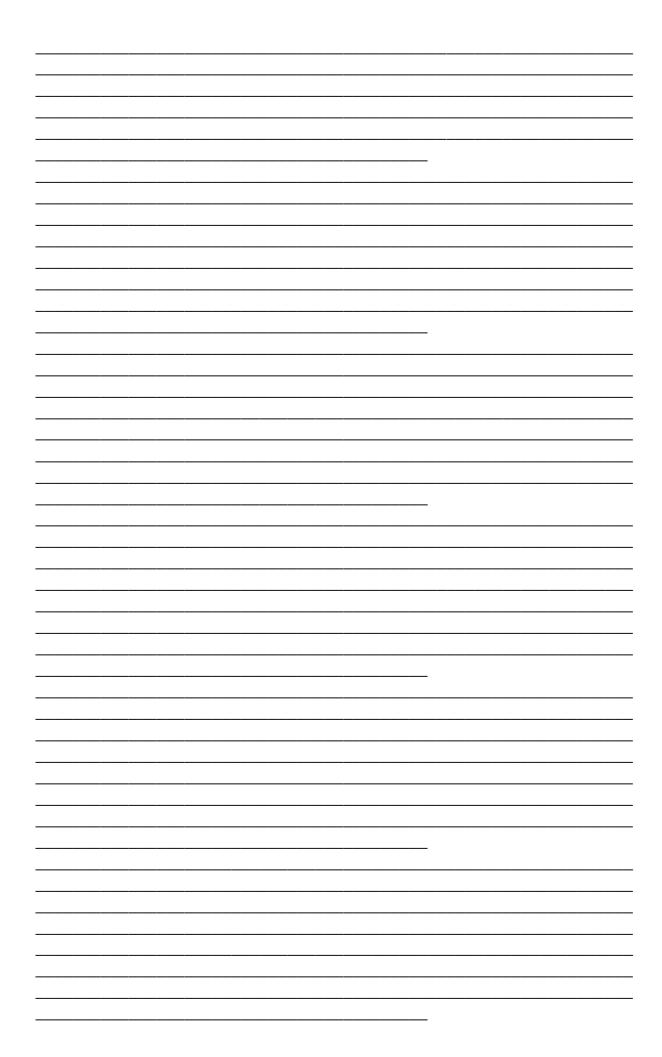
«Биохимические технологии и нанотехнологии»

(наименование профиля подготовки)

Магистр

Квалификация (степень) выпускника

Дайте определение:
Что такое «нано»? -
·
Нанотехнология-
·
2. В каком году термин нанотехнология (nanotechnology) был впервые
предложен профессором Университета Токио Norio Taniguchi для
обозначения процессов управления свойствами материалов на
нанометровом масштабе?
A) 1954;
Б) 1974; D) 1081.
B) 1981; Γ) 1975.
Краткая история нанотехнологий
Отцом нанотехнологии можно считать греческого философа Демокрита.
Примерно в 400 г. до н.э. он впервые использовал слово «атом», что в
переводе с греческого означает «неделимый».
1905 год
1703 год
(Альберт Эйнштейн)
1931 год
(Макс Кнолл и Эрнст Руска)
1959 год


—————————————————————————————————————
1968 год
(Альфред Чо и Джон Артур)
1974 год
(Норио Танигучи)
1981 год
(Герд Бинниг и Генрих Рорер)
1985 год
(Роберт Керл, Хэрольд Крото и Ричард Смэйли) 1998 год
(Сеез Деккер)
1999 год
(Джеймс Тур и Марк Рид).

Даты важнейших открытий

Нобелевски	е выдающиеся достижения в области нанотехнологий отмечень ми премиями.
По физике: 1985 –	
	;
1986 –	
1998–	<u>;</u>
	;
2000–	
2010 –	;
	;
По химии: 1996 –	
	;
1998 –	
2000 –	;
	;
2008–	
	·
	Наблюдение нанообъектов
CTM -	

ACM -	
ПЭМ –	
Основные методы получения наноструктур	
Все методы получения наноструктур можно разделить на две б группы:	ольшие
• диспергационные методы, или методы получения наночасти	і путем
измельчения вещества;	, 11 <i>)</i> 1 1 1 1
• конденсационные методы, или методы «выращивания» нано-	настиц
из отдельных атомов.	
Принципы (типы) нанотехнологий	
1 11	,
1. Нанотехнологии типа «снизу–вверх» (англ. «bottom–	- /
2. Нанотехнологии типа «сверху–вниз» (англ. «top–dow	'n»)
Опишите суть принципа «снизу–вверх» -	

Какие методы относятся к технологиям данного типа:
Опишите суть принципа «сверху–вниз» -
Какие методы относятся к технологиям данного типа:
Химические методы получения наноструктур
Одним из методов получения наночастиц является осаждение их и газовой фазы. С этой целью твёрдое вещество нагревают. При этом оне испаряется, переходя в газообразное состояние. Это газообразное вещество при охлаждении осаждают на одной из поверхностей. При специально подобранных условиях возможно получение наночастии Такое осаждение может сопровождаться химической реакцией.
Вспомните, чем химические явления отличаются от физических? Что происходит при физическом осаждении, а что при химическом?

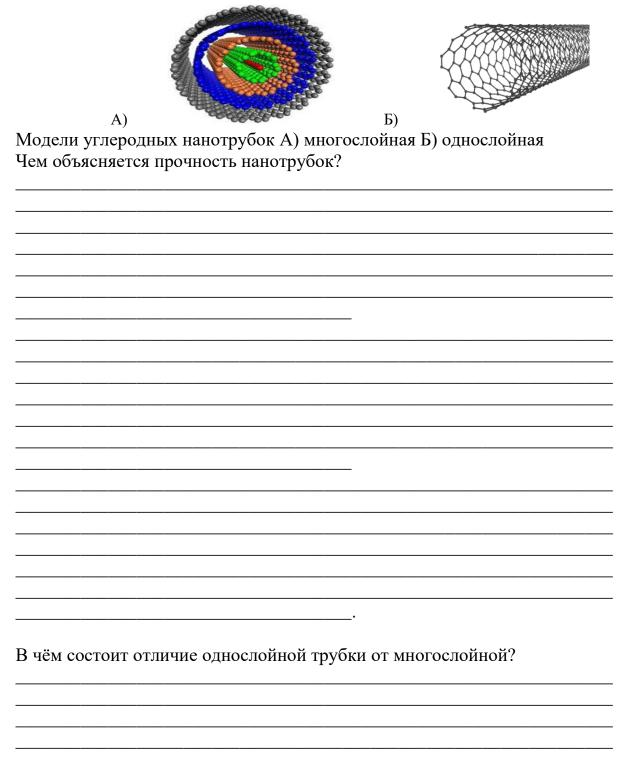
Квантовые точки

Квантовые точки -это
Виды углеродных наноматериалов
Графен
Что такое графен?
·
Как получают графен?
<u> </u>

·
Какими основными свойствами обладает графен?
Углеродная нанотрубка.
Что такое углеродная нанотрубка и какими параметрами структуры она характеризуется?
·
Какие методы используют для получения углеродных нанотрубок?

C	
акими эло глеродны	ектронными свойствами обладают одностенные и многостенны е нанотрубки?
	·
Руллерен	LT
Іто такое (руллерены?
	•

·
Какой из фуллеренов обладает наивысшей симметрией и большей
стабильностью?
·


Наноматериалы и перспективы их применения Углеродные нанотрубки.

Многие перспективные направления в на- натехнологиях связывают с углеродными нанотрубками.

Углеродные нанотрубки — это гигантские молекулы, состоящие только из атомов углерода. Нанотрубки образуются на поверхности угольных электродов при дуговом разряде, в результате испарения атомов углерода с поверхности электродов и последующей конденсацией. Происходит так называемая самосборка углеродных нанотрубок из атомов углерода. Диаметр однослойных нанотрубок около 1 нм, а их длина может быть в миллионы раз больше. Свёрнутый в трубочку листок гораздо труднее согнуть и разорвать, чем обычный лист. Поэтому углеродные нанотрубки такие прочные. Нить, сделанная из углеродных нанотрубок, толщиной всего в человеческий волос способна удерживать груз в сотни килограмм. Протяженные цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров

состоят из одной или нескольких свернутых в трубку гексагональных графитовых плоскостей (графенов) и заканчиваются обычно полусферической головкой.

Углеродные нанотрубки разнобразны по строению. Они могут быть одностенными или многостенными (однослойными или многослойными), прямыми или спиральными, длинными или короткими, и т.д. Различают также проводниковые и полупроводниковые нанотрубки. Модели углеродных нанотрубок одностенная (слева), многостенная (справа) Нанотрубки необыкновенно прочны на растяжение и на изгиб. Под действием больших механических напряжений нанотрубки не рвутся, не ломаются, а просто перестраивается их структура.

·
Возможные опасности, связанные с нанотехнологиями Каковы возможные опасности нанотехнологий?
Каковы возможные опасности нанотехнологий?
Возможные опасности, связанные с нанотехнологиями Каковы возможные опасности нанотехнологий? ———————————————————————————————————
Каковы возможные опасности нанотехнологий?

Программа составлена в соответствии с требованиями ОС ВО РУДН.