Документ подписан простой электронной подписью	
Информация о владельце:	
ФИО: Ястребов Олег Фектерравувное госуда	оственное автономное образовательное учреждение
Должность: Ректор	ния «Российский университет дружбы народов»
Дата подписания: 01.07.2022 15:09:19	ния «поссииский университет дружові народов»
Уникальный программный ключ:	
057-042040040076070777770-64-000440-	Инженерная академия

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Высшая математика (наименование дисциплины/модуля) Рекомендована МССН для направления подготовки/специальности: 13.03.03 «Энергетическое машиностроение» (код и наименование направления подготовки/специальности) Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО): «Энергетическое машиностроение»

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Высшая математика» является воспитание необходимой математической культуры, позволяющей: проводить математический анализ прикладных инженерных задач; развитие логического мышления, умения оперировать с абстрактными объектами.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Высшая математика» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисци-

плины (результаты освоения дисииплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
	Способен применять соответствующий физико- математический аппарат, методы ана-	ОПК-2.1. Умеет применять соответствующий физико-математический аппарат при решении профессиональных задач
ОПК-2	лиза и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-1.2. Умеет применять методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Высшая математика» относится к обязательной части блока Б1.0.01.01 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и практики, способствующие достижению запланированных результатов освоения дисциплины «Высшая математика».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компе- тенции	Предшествующие дисци- плины/модули, прак- тики*	Последующие дисци- плины/модули, практики*
ОПК-2	Способен применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	нет	Вариативная компонента (профильные дисциплины) Теоретическая механика Теория машин и механизмов Гидравлика Теплопередача Турбомашины Государственный экзамен Выпускная квалификационная работа

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Высшая математика» составляет 15 зачетных единиц. Tаблица 4.1. Bиды учебной работы по периодам освоения ОП BО для $\underline{OYHOЙ}$ формы обучения

Вид учебной работы		всего,	Семестр(-ы)		
		ак.ч.	1	2	3
Контактная работа, ак.ч.		378	162	162	54
в том числе:					
Лекции (ЛК)		144	54	54	18
Лабораторные работы (ЛР)					
Практические/семинарские занятия (СЗ)		252	108	108	36
Самостоятельная работа обучающихся, ак.ч.		81	27	27	27
Контроль (экзамен/зачет с оценкой), ак.ч.		81	27	27	27
Of was any source and any source	ак.ч.	540	216	216	108
Общая трудоемкость дисциплины	зач.ед.	15	6	6	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной ра- боты*
	Тема 1.1. Матрицы. Действия над матрицами. Определители. Основные понятия. Свойства определителей. Вычисление определителей. Обратная матрица. Ранг матрицы.	ЛК
Раздел 1. Алгебра	Тема 1.2. Системы линейных уравнений. Теорема Кронекера-Капелли. Методы решения систем ли- нейных уравнений.	ЛК, СЗ
	Тема 1.3 Векторные пространства и линейные операторы на них	ЛК, СЗ
	Тема 1.4. Комплексные числа: формы записи и основные операции.	ЛК, СЗ
	Тема 2.1. Начала векторной алгебры.	ЛК
	Тема 2.2. Плоскости и прямые, способы их задания.	ЛК, ЛР
Раздел 2. Аналитическая геометрия	Тема 2.3. Эллипс, гипербола и парабола: определения, канонические уравнения, основные геометрические и физические свойства.	ЛК, СЗ
	Тема 2.4 Начала общей теории кривых 2 порядка. Основы теории поверхностей 2 порядка.	ЛК, СЗ
	Тема 3.1. Функция. Предел функции. Числовые последовательности.	ЛК, СЗ
Раздел 3. Дифференциаль-	Тема 3.2. Непрерывность функций. Производная. Дифференциал и его геометрический смысл. Основные правила дифференцирования	ЛК, СЗ
ное исчисление функций одной переменной	Тема 3.3. Основные правила дифференцирования. Теоремы Ферма, Роля, Лагранжа, Коши. Предел отношения двух бесконечно малых величин (правило Лопиталя). Формула Тейлора.	ЛК, СЗ
	Тема 3.4. Общая схема исследования функций и построения их графиков.	ЛК, СЗ
	Тема 4.1. Первообразная, неопределенный инте-	ЛК, СЗ
Раздел 4. Интегральное	аздел 4. Интегральное грал и его свойства. Правила интегрирования. Ин-	
исчисление функций од- ной переменной	тегрирование методом замены переменной. Интегрирование по частям. Интегрирование рациональных дробей. Интегрирование тригонометрических	

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной ра- боты*
	функций. Интегрирование иррациональных функций.	
	Тема 4.2. Определенный интеграл. Формула Ньютона — Лейбница. Несобственные интегралы, их сходимость и основные свойства.	ЛК, СЗ
	Тема 4.3. Площадь криволинейной трапеции. Площадь криволинейного сектора в полярных коорди-	ЛК, СЗ
	натах. Длина дуги кривой. Тема 4.4. Преобразование Лапласа. Преобразование Фурье.	ЛК, СЗ
	Тема 5.1 Задачи, приводящие к дифференциальным уравнениям. Основные понятия теории дифференциальных уравнений. Теорема существования и единственности задачи Коши для уравнения первого порядка. Дифференциальные уравнения первого порядка, интегрируемые в квадратурах: уравнения с разделяющимися переменными, однородные урав-	ЛК, СЗ
Раздел 5. Дифференциаль- ные уравнения	разделяющимися переменными, однородные уравнения, линейные уравнения, уравнения Бернулли, уравнения в полных дифференциалах. Роль дифференцильных уравнений в изучении вынужденных колебаний машин Тема 5.2 Метод Эйлера. Теорема существования и единственности задачи Коши для уравнения n-го по-	ЛК, СЗ
	рядка. Тема 5.3 Уравнения, допускающие понижение порядка. Линейные дифференциальные уравнения попорядка: свойства решений однородных и неоднородных уравнений, фундаментальная система решений, структура общего решения.	ЛК, СЗ
	Тема 5.4 Линейные дифференциальные уравнения с постоянными коэффициентами.	ЛК, СЗ
	Тема 6.1 Функции нескольких переменных. Предел и непрерывность. Частные производные. Частные производные высших порядков.	ЛК, СЗ
Раздел 6. Дифференциальное исчисление функций	Тема 6.2. Формула Тейлора для функции двух переменных. Экстремум функции двух переменных.	ЛК, СЗ
нескольких переменных	Тема 6.3 Необходимые и достаточные условия экстремума. Касательная плоскость и нормаль к поверхности.	ЛК, СЗ
	Тема 6.4 Производная по направлению. Градиент. Тема 7.1 Числовые ряды. Признаки сравнения сходимости рядов с положительными членами. Признаки Даламбера и Коши. Интегральный признак.	ЛК, СЗ ЛК, СЗ
Раздел 7. Ряды	Тема 7.2 Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость Тема 7.3 Функциональные ряды. Степенные ряды.	ЛК, СЗ ЛК, СЗ
	Ряды Тейлора. Тема 7.4 Основы теории рядов Фурье. Тема 8.1 Понятие интеграла Римана на <i>n</i> -мерном	ЛК, СЗ ЛК, СЗ
Раздел 8. Кратные и кри- волинейные интегралы	промежутке. Сведение кратного интеграла к повторному. Замена переменных в кратном интеграле. Геометрические приложения кратных интеграле.	

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной ра- боты*
дисциплины	гралов. Примеры вычисления центров масс пла-	UUIBI
	стин, возникающих в задачах энергетического ма-	
	шиностроения.	
	Криволинейные интегралы 1-го рода и их свойства.	
	Нахождение массы кривой статических моментов	
	и центра тяжести. Криволинейные интегралы 2-го	
	рода и их свойства. Физическая интерпретация.	
	Случай замкнутого контура. Ориентация. Вычис-	
	ление площади с помощью криволинейных инте-	
	гралов. Связь между криволинейными интегра-	
	лами обоих родов.	
	Связь между кратными и криволинейными интегра-	
	лами: формулы Грина и Остроградского-Гаусса	
	Тема 8.2 Криволинейные интегралы 2-го рода и их	ЛК, СЗ
	свойства. Физическая интерпретация.	лк, сэ
	Тема 8.3 Случай замкнутого контура. Ориентация.	ЛК, СЗ
	Вычисление площади с помощью криволинейных	ли, сэ
	интегралов. Связь между криволинейными интегра-	
	лами обоих родов.	
	Тема 8.4 Связь между кратными и криволинейными	ЛК, СЗ
	интегралами: формулы Грина и Остроградского-	JIK, CJ
	Гаусса	
	Тема 9.1. Последовательности и ряды с комплекс-	ЛК, СЗ
	ными членами. Кривые и области на комплексной	JIK, CJ
	плоскости. Понятие комплекснозначной функции	
	комплексного переменного. Предел и непрерыв-	
	ность функций комплексного переменного. Пока-	
	зательные, логарифмические, тригонометрические	
	и гиперболические функции в С.	
	Тема 9.2. Дифференцирование функций комплекс-	ЛК, СЗ
Раздел 9. Введение в тео-	ного переменного. Определение производной. Пра-	JIK, CJ
рию функций комплекс-	вила дифференцирования. Условия Коши-Римана.	
ного переменного	Геометрический смысл модуля и аргумента произ-	
•	водной.	
	Тема 9.3. Интегрирование функций комплексного	ЛК, СЗ
	переменного. Определение интеграла. Свойства ин-	JIK, C3
	тегралов. Оценки интегралов.	
	Интегральная теорема Коши. Теорема о составном	
	контуре. Интегральная формула Коши.	THA CO
	Тема 9.4. Операционное исчисление.	ЛК, СЗ
	Тема 10.1. Пространство элементарных исходов.	ЛК, СЗ
	События, действия над ними. Сигма-алгебра собы-	
	тий. Аксиоматическое определение вероятности.	
	Вероятностное пространство.	
Раздел 10. Элементы тео-	Классическое определение вероятности. Элементы	
рии вероятностей и мате-	комбинаторики. Геометрическое определение	
матической статистики	вероятности.	
	Условная вероятность. Формула умножения веро-	
	ятностей. Формула полной вероятности. Формула Байеса.	
	Схема Бернулли, формула Бернулли. Теорема	
	Пуассона. Локальная теорема Муавра-Лапласа. Ин-	

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной ра- боты*
	тегральная теорема Муавра-Лапласа. Примеры ве-	
	роятностных задач, возникающих при проектиро-	
	вании деталей машин	
	Тема 10.2 Случайная величина. Функция распреде-	ЛК, СЗ
	ления и ее свойства. Дискретная случайная вели-	
	чина. Непрерывная случайная величина. Законы	
	распределения случайной величины.	
	Тема 10.3 Основные понятия математической стати-	ЛК, СЗ
	стики: генеральная совокупность; выборка; вариаци-	
	онный и статистический ряды; эмпирическая функ-	
	ция распределения.	
	Тема 10.4 Простейшие статистические преобразова-	ЛК, СЗ
	ния. Проверка статистических гипотез.	

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Компьютерный класс	Компьютерный класс для проведения занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная персональными компьютерами (в количествешт.), доской (экраном) и техническими средствами мультимедиа презентаций.	
Для самостоя- тельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Ильин В.А., Позняк Э.Г. Основы математического анализа.М.: Наука, 1982.
- 2. Кудрявцев Л.Д. Математический анализ.М.: Высш.шк.,1985.

- 3. Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.1, 2. Интегралпресс. 2004.
- 4. Сборник задач по математике для втузов. Ч.1 и 2. Учебное пособие для втузов // Под ред. Ефимова А.В. и Демидовича Б.П. М.: Наука, 1993.
- 5. Ефимов А.В. Краткий курс по аналитической геометрии.
- 6. Клетеник Д.В. Сборник задач по аналитической геометрии: Учебное пособие для втузов СПб: «Специальная Литература», 1998.-200с.
- 7. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных. М.: Финансы и статистика, 1983.
- 8. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Исследование зависимостей. М.: Финансы и статистика, 1985.

Дополнительная литература:

- 1. Задачи и упражнения по математическому анализ для ВТУЗОВ. Под редакцией Б.П. Демидовича. М. Астрель. АСТ.2004.
- 2. Берман Г.Н. Сборник задач по курсу математического анализа. М.: Наука, 1985.
- 3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: т.1-3 / Пред. и прим. А.А. Флоринского. 8-е изд. М.: ФИЗМАТЛИТ, Лаборатория Знаний, 2003. 680 с.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:

Электронно-библиотечная система РУДН – ЭБС РУДН http://lib.rudn.ru/MegaPro/Web

- ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
- ЭБС Юрайт http://www.biblio-online.ru
- ЭБС «Консультант студента» www.studentlibrary.ru
- ЭБС «Лань» http://e.lanbook.com/
- ЭБС «Троицкий мост»
- 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Высшая математика».
- 2. Коршунов Ю.С., Габдрахманова Н.Т. Функции комплексного переменного и операционное исчисление. Учебное пособие по курсу «Высшая математика».- М.: Изд-во РУДН, 2016.- 40 с.
- 3. Габдрахманова Н.Т. Элементы математической статистики Методические указания к выполнению лабораторных работ № 1,2,3 (для студентов инженерного факультета) М.: Изд-во РУДН, 2015.-24 с.

^{* -} все учебно-методические материалы для самостоятельной работы обучающихся размещаются

в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Высшая математика» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИКИ:

доцент		Габдрахманова Н.Т.
Должность, БУП	Подпись	Фамилия И.О.
Председатель МССН		Лазарева Г.Г.
Должность, БУП	Подпись	Фамилия И.О.
Директор Математического института им. С.М. Никольского		А.Б. Муравник
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП: Базовая кафедра Энергетическое машиностроение	J.	Ю.А. Радин
Наименование БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО: Доцент базовой кафедры Энергетическое машиностроение Должность, БУП	Подпись	П.П. Ощепков Фамилия И.О.