Документ подписан простой электронной подписью

Информация о владельце:
ФИО: Ястребов оле жлександровы дарственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов имени Патриса Лумумбы» Должность: Ректор

Дата подписания: 26.05.2023 14:31:54 Уникальный программный ключ:

са953a0120d891083f939673078e**У**мебио[©]научный институт гравитации и космологии

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Многомерная гравитация

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

03.04.02 ФИЗИКА

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

> Гравитация, космология и релятивистская астрофизика. Реализуется на английском языке

> > (наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Многомерная гравитация» (далее — дисциплины) является изучение основных понятий анализа на многообразиях и применению его в простейших многомерных моделях космологического типа, а также формирование математически строго подхода к решению задач многомерной гравитации, в том числе с использованием лагранжевого подхода.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
УК-6	Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки.	УК-6.2 Вырабатывает инструменты и методы управления временем при выполнении конкретных задач, проектов, целей
ОПК-1	Способен применять фундаментальные знания в области физики для решения научно-исследовательских задач, а также владеть основами педагогики, необходимыми для осуществления преподавательской деятельности	ОПК-1.1 Знает основные направления развития современной физики и современные методики преподавания физических дисциплин
ПК-1	Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта	ПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина относится к обязательной части блока Б1 ОП ВО.

В рамках ОП ВО обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения данной дисциплины.

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению

запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
УК-6	Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на	Классическая теория гравитации	Квантовая гравитация
ОПК-1	основе самооценки Способен применять фундаментальные знания в области физики для решения научно-исследовательских задач, а также владеть основами педагогики, необходимыми для осуществления преподавательской деятельности.	Классическая теория гравитации	Квантовая гравитация
ПК-1	Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта	Классическая теория гравитации Физика черных дыр и кротовых нор	Квантовая гравитация

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины составляет _3_ зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения ОП ВО для <u>**ОЧНОЙ**</u>

формы обучения

Вид учебной работы		всего,	Семестр(-ы)			
		ак.ч.	1	2	3	4
Контактная работа, ак.ч.		54			54	
		•				
Лекции (ЛК)		36			36	
Лабораторные работы (ЛР)						
Практические/семинарские занятия (СЗ)		18			18	
Самостоятельная работа обучающихся, ак.ч.		36			36	
Контроль (экзамен/зачет с оценкой), ак.ч.		18			18	
05	ак.ч.	108			108	
Общая трудоемкость дисциплины	зач.ед.	3			3	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
Раздел 1. Элементы анализа в банаховых пространствах	Линейные нормированные пространства, банаховы пространства. Линейные отображения банаховых пространств. Дифференцируемые отображения банаховых пространств (по Фреше). Производная Фреше. Производная композиции функций. Теорема об обратной функции.	ЛК, СЗ
Раздел 2. Гладкие многообразия.	Карта на множестве. Гладкая согласованность карт. Атлас, эквивалентные атласы, полный атлас. Гладкое многообразие. Примеры гладких многообразий. Произведение многообразий. Топология гладких многообразий.	ЛК, СЗ
Раздел 3. Гладкие отображения многообразий.	Гладкие отображения многообразий - морфизмы. Примеры гладких отображений. Композиция гладких отображений. Понятие категории и функтора. Категория гладких многообразий. Примеры гладких многообразий.	ЛК, СЗ
Раздел 4. Касательные пространства и касательные отображения	Касательный вектор в точке. Касательное пространство (к гладкому многообразию) в точке. Кокасательное пространство. Касательное отображение в точке, отвечающее гладкому отображению. Касательное отображение композиции гладких отображений. Базис в касательном пространстве, порождённый картой. Дифференциал вещественнозначной	ЛК, СЗ

Наименование раздела дисциплины	Содержание раздела (темы)	Вид учебной работы*
	функции. Дуальный базис в кокасательном пространстве.	_
Раздел 5.	Метрика на линейном пространстве.	
Элементы (псевдо-)	Метрика на гладком многообразии. Запись	
римановой геометрии.	метрики в карте. Символы Кристоффеля-	
pp	Шварца. Тензоры Римана и Риччи, скалярная	ЛК, СЗ
	кривизна. Ковариантная производная.	,
	Уравнения геодезических. Основные	
	свойства тензора Римана. Тождество Бьянки.	
Раздел 6.	Компоненты тензора Римана и Риччи для	
Многомерная модель	диагональной метрики. Лагранжево	
космологического типа	представление для вакуумной модели с	
с диагональной	цепочкой одномерных пространств.	
метрикой.	Минисуперметрика и её диагонализация.	
метрикоп.	Функция хода. Решение казнеровского типа	ЛК, СЗ
	в гармоническом и синхронном временах и	
	его обобщение на случай двух риччи-плоских	
	факторпространств. Квантовый случай:	
	уравнение Уилера-ДеВитта и его решение.	
Раздел 7.	п-мерное пространство де-Ситтера dSn.	
Многомерное	Глобально определённая метрика,	
пространство де-	описывающая расширение (n-1)-	
Ситтера.	мерной сферы. Уравнения Эйнштейна с	
Ситтера.	космологической постоянной. Проверка	ЛК, СЗ
	решения для dSn. Обобщение решения на	JIK, CJ
	случай, когда вместо (n-1)мерной сферы -	
	пространство Эйнштейна со скалярной	
	кривизной (n-1)(n-2).	
Раздел 8.		
, ,	(n+1)-мерная гравитационная модель с	
Многомерная	однокомпонентной анизотропной жидкостью.	
гравитационная модель	Уравнения Эйнштейна. Уравнение	
с анизотропной	непрерывности и его интеграл. Лагранжево	пи сэ
жидкостью.	представление уравнений Эйнштейна.	ЛК, СЗ
	Точные решения со степенным и	
	экспоненциальным поведением масштабных	
	факторов. Примеры решений с ускоренным	
Раздел 9.	расширением 3мерного пространства.	
, ,	Внешние формы на гладком многообразии,	
Многомерная	внешнее произведение, внешний	
гравитационная модель	дифференциал. Многомерная гравитационная	пи сэ
с полем внешней	модель с полем внешней формы. Лагранжево	ЛК, СЗ
формы.	представление уравнений движения для Sp-	
	бранного анзатца. Ѕр-бранные решения с	
	цепочкой 1 мерных пространств.	

^{* -} заполняется только по $\underline{\textbf{OЧНОЙ}}$ форме обучения: JK – лекции; JP – лабораторные работы; C3 – семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	_
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	_
Для самостоятельной работы обучающихся	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Б.А. Дубровин, С.П. Новиков, А.Т. Фоменко, Современная геометрия, М.: Наука, 1979. 759 с.
- 2. Л.Д. Ландау, Е.М. Лифшиц, Курс теоретической физики. Т. 2. Теория поля, М. Наука, 1973. 504 с.
- 3. С.С. Кокарев, Введение в общую теорию относительности: учебное пособие Ярославль, ЯрГУ, 2010. 368 с.
- 4. V.R. Gavrilov, V.D. Ivashchuk and V.N. Melnikov, Integrable Pseudo-Euclidean Toda-like Systems in Multidimemsional Cosmology with Multicomponent Perfect Fluid., J. Math. Phys., V. 36, No 10, 5829-5847 (1995) (gr-qc/9407019).
- 5. V.D. Ivashchuk and V.N. Melnikov, Exact solutions in multidimensional gravity with antisymmetric forms, topical review, Class. Quantum Grav., V. 18, R82-R157 (2001); hepth/0110274

Дополнительная литература:

1. М.М. Постников. Лекции по геометрии. Сем. V: Риманова геометрия — М.: Факториал, 1998.- 496 с.

- 2. Ю.С. Владимиров. Пространство-время: явные и скрытые размерности. М.: Наука, 1989.
- 3. Р.М. Уолд, Общая теория относительности. Пер. с английского под ред. И.Л. Бухбиндера, С.В. Червона. М.: РУДН, 2008. 693 с.
- 4. В.И. Арнольд. Математические методы классической механики. М. Наука, 1979. 432с.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров:
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Лань» http://e.lanbook.com/
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы:
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
- реферативная база данных SCOPUS http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине.
- 2. Методические указания по самостоятельной работе.
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

РАЗРАБОТЧИКИ:

Профессор кафедры	Иващук В.Д.		
гравитации и космологии			
Должность, БУП	Подпись	Фамилия И.О.	
РУКОВОДИТЕЛЬ БУП:			
Кафедра гравитации и		Ефремов А.П.	
космологии		TT	
Наименование БУП	Подпись	Фамилия И.О.	
РУКОВОДИТЕЛЬ ОП ВО:			
Директор УНИГК		Ефремов А.П.	
Должность, БУП	Подпись	Фамилия И.О.	