Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Александрович

Должность: Ректор **Федеральное государ ственное автономное образовательное учреждение** Уникальный программнь**выслиего образова ния «Российский университет дружбы народов»** са953a0120d891083f939673078ef1a989dae18a

Учебно-научный институт гравитации и космологии

(наименование основного учебного подразделения (ОУП) – разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Современные проблемы физики

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

03.04.02 Физика

(код и наименование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

Гравитация, космология и релятивистская астрофизика. Реализуется на английском языке

(наименование (профиль/специализация) ОП ВО)

1. Цели и задачи дисциплины:

Целью дисциплины «Современные проблемы физики» является изложение последних достижений современной физики в области гравитации и квантовой теории.

- **2. Место дисциплины в структуре ООП:** Дисциплина «Современные проблемы физики» относится к дисциплинам базовой части общенаучного цикла основной образовательной программы по направлению 03.04.02 «ФИЗИКА». Предполагается владение студентом знаниями из общей физики в соответствии со следующими компетенциями:
 - способность оперировать углубленными знаниями в области математики и естественных наук (УК-1);
 - способность оперировать углубленными знаниями в области гуманитарных и экономических наук (УК-2);

(указывается цикл, к которому относится дисциплина; формулируются требования к входным знаниям, умениям и компетенциям студента, необходимым для ее изучения; определяются дисциплины, для которых данная дисциплина является предшествующей)

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- использовать знания современных проблем физики, новейших достижений физики в своей научно-исследовательской деятельности (ОПК-2). (указываются в соответствии с ФГОС ВО)

В результате изучения дисциплины студент должен:

Знать: основные методы описания квантовых коллективных возбуждений.

Уметь: использовать в научном процессе знание фундаментальных основ, современных достижений и тенденций научной деятельности, профессионально оформлять и представлять результаты исследований.

Владеть: методами расчета квантовых коллективных возбуждений.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 2 зачетных единицы.

Вид учебной работы	Всего	Семестры				
	часов	1	2	3	4	
Аудиторные занятия (всего)	26	26				
В том числе:				-	-	
Лекции	13	13				
Практические занятия (ПЗ)						
Семинары (С)	13	13				
Лабораторные работы (ЛР)						
Самостоятельная работа (всего)	44	44				
В том числе:		-		-	-	
Курсовой проект (работа)						
Расчетно-графические работы						
Реферат						

Другие виды самостоятельной ра					
Вид промежуточной аттестации (зачет, экзамен)		2	2		
Общая трудоемкость	108 ч	72	72		
	3зач. ед.	2	2		

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

<u>№</u> п/п	Наименование раздела дисциплины	Содержание раздела				
1.	Достижения в	Кротовые норы, варп-двигатель, труба Красникова,				
1.	классической теории	машина времени, многомерные модели, браны,				
	гравитации	гравитационные линзы, космологические модели с				
	- Pub	фантомной и экпиротической материей. Анизотропные				
		космологические модели с вращением, сдвигом и				
		ускорением.				
2.	Достижения в	Петлевая квантовая гравитация. Теория суперструн.				
	квантовой теории	Квантовая космология. Квантовый гравитационный				
	гравитации	коллапс. Рождение Вселенной из вакуума. Рождение				
		вселенной в лаборатории.				
3.	Достижения в	Кватернионная теория относительности.				
	применении	Космологические модели, построенные на основе				
	гиперкомплесных	финслеровой геометрии. Метрика Бервальда-Моора.				
	чисел в геометрии и	Интерпретация анизотропии пространства в рамках				
	физике	финслеровой геометрии.				
4.	Достижения в	Эксперимент Эйнштейна-Подольского-Розена. Квантовая				
	квантовой механике	нелокальность. Неравенства Белла. Квантовая				
		телепортация. Многомировая интерпретация квантовой				
		механики.				

(Содержание указывается в дидактических единицах. По усмотрению разработчиков материал может излагаться не в форме таблицы)

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми

(последующими) дисциплинами

№	Наименование обеспе-				
Π/Π	чиваемых (последую-	1	2	3	4
	щих) дисциплин				
1.	Физика черных дыр и	+			
	кротовых нор				
2	Алгебра и геометрия			+	
	пространства-времени				
3	Квантовая гравитация		+		+
4	Многомерная	+			
	гравитация				

5.3. Разделы дисциплины и виды занятий

N:	Наименование раздела дисциплины	Лекц.	Практ.	Лаб.	Семин	CPC	Bce-	
	1 / 1 / 1	,	1					

Π/Π			зан.	зан.			ГО
							час.
1.	Достижения в классической теории	3			3	11	17
	гравитации						
2.	Достижения в квантовой теории гравитации	4			4	11	19
3.	Достижения в применении гиперкомплесных чисел в геометрии и физике	3			3	11	17
4.	Достижения в квантовой механике	3			3	11	17

6. Лабораторный практикум

Лабораторный практикум не предусмотрен.

7. Примерная тематика курсовых проектов (работ)

Кротовые норы.

Машина времени.

Алгебра бикватернионов.

Петлевая квантовая гравитация.

Квантовая телепортация.

8. Учебно-методическое и информационное обеспечение дисциплины:

- а) основная литература:
- 1. Р. Пенроуз. Путь к реальности или законы, управляющие Вселенной. Полный путеводитель. М.-Ижевск: РХД, 2007.
- 2. В.В. Белокуров, О.Д. Тимофеевская, О.А. Хрусталев. Квантовая телепортация обыкновенное чудо. Ижевск: РХД, 2000.
- б) дополнительная литература:
- 1. А.П. Ефремов. Кватернионные пространства, системы отсчета и поля.- М.: Изд. РУДН, 2005.
- 2. К.А. Бронников, С.Г. Рубин. Лекции по гравитации по космологии.- М.: МИФИ, 2008.

9. Материально-техническое обеспечение дисциплины:

При чтении лекций и презентации рефератов используются современные информационные технологии

10. Методические рекомендации по организации изучения дисциплины:

В процессе изучения материала студенты знакомятся с литературными источниками по предлагаемой тематике. По окончании курса проводится итоговый контроль знаний (зачет).

(указываются рекомендуемые модули внутри дисциплины или междисциплинарные модули, в состав которых она может входить, образовательные технологии, а также

Разработч Доцент	и ки: УНИГК	М.Л. Фильченков		
Должность,		название кафедры,	инициалы, фамилия)	
Директор кафедры,	УНИГК	А.П. Ефремов	ициалы, фамилия	название

примеры оценочных средств для текущего контроля успеваемости и промежуточной

аттестации)